ようこそ ゲスト さん
ログイン
入力補助
English
カテゴリ
インデックスツリー
ランキング
アクセスランキング
ダウンロードランキング
その他
法政大学
法政大学図書館
インデックスツリー
資料タイプ別
学内論文
大学院紀要=Bulletin of graduate studies
法政大学大学院紀要. 理工学・工学研究科編
法政大学大学院紀要. 理工学研究科編
法政大学大学院紀要. デザイン工学研究科編
法政大学大学院紀要. 情報科学研究科編
法政大学懸賞論文優秀論文集
法政大学国際文化学部国際社会演習トランスナショナル・ヒストリー研究卒業論文集
このアイテムのアクセス数:
60
件
(
2025-07-16
08:33 集計
)
Permalink : https://doi.org/10.15002/00025388
Permalink : https://hdl.handle.net/10114/00025388
閲覧可能ファイル
ファイル
フォーマット
サイズ
閲覧回数
説明
gradse_63_20R4126
pdf
219 KB
84
論文情報
ファイル出力
アイテムタイプ
紀要論文
タイトル
機械学習を用いたAndroidマルウェア検知の再考
その他のタイトル
RETHINKING OF ANDROID MALWARE DETENCITION USING MACHINE LEARNING
著者
著者名
山崎, 一希
著者名
YAMAZAKI, Kazuki
言語
jpn
ISSN
24368083
DOI
https://doi.org/10.15002/00025388
出版者
法政大学大学院理工学研究科
雑誌名
法政大学大学院紀要. 理工学研究科編
巻
63
開始ページ
1
終了ページ
6
発行年
2022-03-24
著者版フラグ
Version of Record
キーワード
Android malware
machine learning
抄録
The Android OS has been gaining market share in recent years due to the increase in IoT devices and the popularity of smartphones. In general, attackers target systems with a large number of users, and the number of Android malware victims has been increasing. In 2017, it was reported that 750,000 new Android malware were discovered in the first quarter alone. In 2017, 750,000 new Android malware were reported to have been discovered in the first quarter of the year alone, making Android malware an urgent issue to be addressed. In the past, three methods of malware detection were used: surface analysis, dynamic analysis, and static analysis. However, these methods have disadvantages in terms of human and time costs. Recently, in addition to these conventional rule-based methods, detection methods using machine learning have been reported. In particular, methods based on deep learning have been attracting attention. Compared to classical machine learning methods such as logistic regression, methods based on deep learning are said to have higher generalization performance and more accurate detection capability. Many reports on the application of deep learning techniques have shown accuracies of over 90%. However, in the case of Android malware, which is difficult to collect data, it is often evaluated within the same dataset, and overtraining on the dataset is suspected. In this study, we evaluate the generalization performance of the model on both known and unknown datasets. In addition, by comparing classical machine learning and deep learning, we reconsidered the pros and cons of using deep learning. As a result, we found that the discrimination accuracy of the unknown dataset is about 10 15% lower than that of the known dataset. In addition, there was no significant difference in accuracy between classical machine learning and deep learning.
資源タイプ
Article
インデックス
資料タイプ別
 > 
学内論文
 > 
法政大学大学院紀要. 理工学研究科編
501 学内論文
 > 
紀要
 > 
法政大学大学院紀要. 理工学研究科編
 > 
63
ホームへ戻る