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Abstract— This study uses advanced machine learning techniques to create and assess effective predictive 

maintenance strategies for coal mills. The focus is determining coal mills' safe and unsafe operational phases, 

predicting potential tripping events, and scheduling maintenance to prevent equipment failures. The study used 

Gaussian Mixture Models (GMM) to cluster operational phases and Long Short-Term Memory (LSTM) models, 

including the CNN+LSTM architecture, for predictive analysis. The study evaluated the models using various 

metrics such as accuracy, precision, recall, F1, and ROC_AUC score. The research findings show that LSTM 

models, especially the CNN+LSTM architecture, can accurately identify unsafe operational phases and predict 

coal mill tripping events. The CNN+LSTM architecture has an output value that increases towards the failure 

moment, indicating its effectiveness in capturing relevant temporal patterns. This can be useful for scheduling 

inspections before failure. 
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I. INTRODUCTION 

In South Africa, coal is the primary source of electricity 

generation. The country has several power plants that 

account for most of its electricity production. Coal-fired 

power plants make up 75% of South Africa's electricity 

generation. Coal mills are a crucial component in the 

operation of coal-fired power plants, as they are 

responsible for grinding coal into small particles for the 

combustion process and electricity generation. Coal mills 

(Fig. 1) need to always operate efficiently; to ensure 

optimal operation, research has focused on analyzing the 

effects of improper mill load line air-fuel ratio and other 

factors that can impact coal mill performance [1]. 

However, limited methodologies are available for 

classifying or labeling unsupervised coal mill operations 

data. This study aims to contribute to a better 

understanding of large and complex data of coal mill 

systems. 

Coal-fired power plants rely on coal mills to crush, dry, 

and transport coal to the boiler burners, where it is burned 

in a combustion process to generate electricity [2]. These 

mills are crucial for ensuring the correct particle size of the 

coal and maintaining plant efficiency. However, complex 

issues may negatively impact mill performance, which 

engineers and operators must address to optimize plant 

operation. It is crucial to ensure that coal mills operate 

safely and efficiently to avoid power loss or complete 

 
Fig. 1: The vertical spindle MPS spindle Coal mill 

operation [1] 
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Fig. 2: Mill downtime causes [4] 

 

Figure 2:  

 



shutdown (Fig. 2) of the plant unit, which can increase 

harmful emissions [3]. Optimizing coal mill performance 

and reducing maintenance downtime is essential, and 

several factors (Fig. 2) can affect mill performance, such 

as grinding zone issues, bearing/gearboxes, feeders, 

primary air or exhausters, control systems, and classifiers 

issues [4]. 

To effectively handle mechanical failures in engineering 

systems, it’s crucial to have a carefully thought-out 

maintenance plan (Fig. 5). By selecting the right 

maintenance approach based on the type of equipment or 

system, it’s possible to identify losses early on and take 

prompt action, which leads to optimal resource utilization 

and better planning [10]. 

 The dataset used in the research is from a medium-

speed coal mill used in an 800MW power station in South 

Africa. The research will focus on coal flow, primary 

airflow, mill current, and inlet pressure. These variables 

are crucial for feeding and drying the coal in the mill: 

• Coal flow (kg/s): The amount of coal fed into the 

mill depends on the boiler load demand.  

• Primary Air (PA) flow (kg/s): The PA flow is 

directly related to the coal load demand and is 

responsible for conveying and drying the coal as 

it is fed through the mill.  

• Mill current (A): The current motor that drives 

the rotating grinding track.  

• Mill inlet pressure (kPa): The inlet pressure is 

formed by a combination of the PA flow and the 

settings of the cold/hot air dampers, and it is 

responsible for feeding and drying the coal. 

To ensure that mills operate efficiently between 40% to 

100% boiler load, it's important to consider variables that 

affect coal mill performance. The coal flow into the mill 

determines the primary air mass flow, which is controlled 

by the characteristic curve in Fig. 3. The measured PA flow 

is compared to the target value, and any difference is 

adjusted through the hot/cold air control damper. Getting 

the air-fuel mixture right is crucial for optimal efficiency. 

Coal fired Power Plants’ smooth running depend mainly 

on the effective operation of coal mills.  

Various theories have been proposed for detecting and 

diagnosing faults in coal mills [6], including genetic 

algorithms[7], data-based [8] and model-based methods 

[9], and deep learning techniques such as Stacked 

Autoencoders [11] and Long-Short-Term-Memory Auto- 

Encoder [12]. Other approaches not specific to coal mills 

but are related to coal mills include Kernel Principal 

Components Analysis [13], Hierarchical Clustering [14], 

and Support Vector Regression [14]. The research on 

classifying operations based on significant input variables 

was inspired by W Fan et al. [15] 's use of a combination 

of the Gaussian Mixture Model (GMM) and Multi-output 

Relevance Vector Regression (MRVR) to detect faults and 

identify operating modes in a coal mill. This innovative 

approach has shown promising results and holds great 

potential for improving the efficiency and safety of 

industrial processes. 

This study aims to detect extreme modes of operation 

and monitor the deterioration of a coal mill over time. Its 

objective is to tackle the difficulty of labeling a large 

amount of data in coal mill operations. Furthermore, the 

study will compare LSTM architectures to GMM-labeled 

datasets for detecting faults in unlabeled datasets and 

consider the temporal dependency. 

 

II. METHODS 

A. Overview of the dataset 

The data from a coal-fired coal mill in South Africa was 

analyzed for two years. After data preprocessing and 

feature selection, the remaining dataset was explored to 

identify patterns and clusters. Based on sensor availability, 

expert knowledge, and correlation analysis, the original set 

of fourteen variables was reduced to eight. Strongly 

 

Fig. 3: The Primary Air Fuel Design Diagram [5] 

 
Fig. 4: Coal flow(kg/s) vs. Mill Primary Air flow(kg/s) 

 

 

 

 

 

Fig. 5: Traditional maintenance strategies 

 

 



correlated variables were selected as input to the GMM 

model (Table I). 

B. Data Cleaning and Pre-processing 

To ensure accurate analysis, missing data from non-

operational periods were removed. Mean values were used 

to fill in missing data. Normalization and scaling were 

crucial in preparing data for input into LSTM models. The 

correlation analysis showed that Mill PA flow, Mill Inlet 

pressure, and Motor Current were closely related to Coal 

flow (Table I). 

 

Table I: Top 4 features Importance and odd ratios 

Feature Unit Importance Odds ratio 

Coal flow kg/s 0.623844 3.199737 

Mill PA flow kg/s 0.328844 0.275644 

Mill Inlet Pressure kPa 0.027189 0.507782 

Motor Current A 0.020124 1.000744 

 

The data shows a wide range of coal mill operations and 

interdependent variables affected by changes in load 

demand. Correlated features were easily identified and 

grouped together. 

C. Gaussian Mixture Model 

The GMM clusters are formed by assuming a Gaussian 

shape of chosen features and have been helpful in 

monitoring coal mill operating conditions [15]. It can 

identify extreme modes of operation, which can be either 

safe or unsafe (Fig. 4). However, identifying the optimal 

number of clusters can be challenging, especially with 

high-dimensional data. The proposed GMM with EM 

method is shown in Fig. 6. 

Let X= [x1, x2, x3…xm] T 

N(x|(μk, Σk)) =
1

(2πk)
m
2 |Σk|

1
2

exp{−
1

2
(x−μk)TΣk

−1(x−μk)}   (1) 

 

Where K represents the number of clusters formed by 

Gaussian Mixtures clusters, covariance (Σ𝑘), mean ( μ𝑘) 

and weight  (πk)   16] 17]. Where θ  = μk, Σ𝑘   the 

Maximum log probability with weights and covariance. 

 

Logp(𝑋|θ) = ∑ 𝑙𝑜𝑔 ∑ π𝑘𝑁(𝑥𝑖|μ𝑘 , Σ𝑘)𝑘
𝑘=1

𝑘
𝑘=1   (2) 

 

To use the expectation maximization technique, 

estimating the number of clusters with K-means 

initialization. Then refine accuracy with the Expectation-

Maximization (Fig. 6) method and solve Equations 1 to 2. 

Soft assignment is completed with output 

hyperparameters. 

 

 

Fig. 6: The proposed GMM with EM method 

 

 

Fig. 7: Box plots of Clusters (0: safe operation and 1): Unsafe operation for feature input variables 

 

 

 



D. Cluster Evaluation Criteria 

Clustering methods like Silhouette, BIC, AIC, and 

Davies-Bouldin Index were used to determine the ideal 

number of hidden clusters. The BIC and AIC  are the best 

methods for selecting the precise number of clusters in 

GMM [16]. They help in accurately matching the optimal 

cluster numbers [18]. 

BIC = log(𝑁) Xm − 2 log(𝑀𝐿𝐿)  (3) 

AIC = 2Xm − 2log(𝑀𝐿𝐿)   (4) 

 

N is the sample size and, MLL is the Maximum log 

likelihood, Xm is the number of observed features selected 

(Table I ).  

 

To distinguish the clusters, choosing the lower score that 

shows the similarity between each cluster and its closest 

one is best  19]. As shown in Equation (7), the Davis-

Bouldin score determines the clusters' similarity level  20]. 

δ𝑘 = √
∑ ‖𝑋𝑛−𝐶𝑘‖2

𝑛∈ℝ

𝑁𝑘
    (5) 

Skl =   
𝛿𝑘+𝛿𝑙

‖𝐶𝑘−𝐶𝑙‖
    (6) 

DBI= 
1

𝐾
∑ 𝑀𝑎𝑥  Sk    (7) 

Where Ck is the cluster center, Xn is a set of datapoints that 

belong to cluster K, and 1/Nk is the normalization of the 

number of data points in the cluster. 

E. Analyze with design specifications. 

To ensure reliability, a safe cluster was identified using 

GMM (Fig. 4). It was compared to the original design ( 

Fig. 3) to ensure accuracy and optimal performance. 

 

F.  The Choice of input X features 

K-means was initially used, and other clustering 

techniques were later employed. However, reducing the 

number of input features (Table I) had a negative impact 

on the likelihood score and convergence time. Increasing 

the number of clusters while keeping the features constant 

isolated the unsafe mode and subdivided the safe mode into 

different operational modes. This method is similar to 

techniques used in previous studies to identify operating 

modes [17][18]. This study aims to identify unsafe modes 

of operation and prevent them from occurring. 

G. Temporal dependencies models 

Multiple LSTM models (Fig. 8) will be presented and 

evaluated based on their ability to address temporal 

dependencies using appropriate metrics. The performance 

of these models will showcase their potential to aid 

engineers and operators in identifying risks and taking 

corrective action. A hypothetical scenario will also be 

discussed to demonstrate how an LSTM model can suggest 

an inspection to prevent a coal mill failure based on past 

events. 

 

H.  LSTM Evaluation Criteria 

After employing GMM clusters, the classification 

model's performance will be evaluated using the 

assessment metrics displayed in Table II. 

 

III. RESULTS 

A. GMM Cluster Distribution Analysis 

The GMM method can divide a large dataset into safe 

and unsafe modes. Following the mill load line (Fig. 3), the 

coal mill can operate safely. Coal flow rate and primary air 

flow are highly correlated (Fig. 7(a)and (d)), resulting in a 

tight cluster of safe operating modes. Mill inlet pressure 

and motor current have a high odds ratio (Table I) of falling 

into the unsafe operating zone. 

 

 

Fig. 8: The process for LSTM architectures 

 

 

Table II: Evaluation Metrics for classification [21][22] 

Accuracy P=Precision R= Recall F1 score 

𝑇𝑃  + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑇𝑃

𝑇𝑃  +  𝐹𝑃
 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

2  × P × 𝑅

𝑃 + 𝑅
 

                                                                                               



B. Cluster Evaluation Criteria 

The DBI score is lowest when there are only 2 or 5 

clusters (Fig. 9). It's better to have a lower DBI score as it 

signifies a more significant distinction between clusters 

[19]. After analysis, the data showed two distinct clusters 

when K=2. 

C  LSTM Results and Analysis of Models’ Performance 

As presented in Table V, various deep learning models 

have been evaluated to assess their potential applications, 

such as LSTM, BiLSTM, Stacked LSTM, and 

CNN+LSTM. 

Table III and Fig. 10 analysis suggest that the 

CNN+LSTM model with a sequence length of 5 is the most 

effective, with a high F1 score of 0.91. The stacked LSTM 

model follows with a score of 0.70, and the LSTM model 

comes in third with a score of 0.58. The F1 score is an 

important metric to consider when dealing with 

imbalanced datasets. 

 Based on the results of the model testing, it was found 

that BiLSTM had poor performance in ROC_AUC as 

compared to the other models when tested at sequence 

lengths of 5 and 10. However, it showed better 

performance when tested at a sequence length of 15. This 

suggests that BiLSTM may perform better when given 

sufficient time to learn the true pattern of the system. 

Therefore, it may be recommended to use BiLSTM for 

higher sequence lengths in order to improve its 

performance. Stacked LSTM had the highest f1 score, 

followed by Stacked LSTM, and BiLSTM had the worst 

performance at the sequence length of 5. ROC AUC is a 

widely used evaluation metric for classification tasks, 

measuring a model's ability to distinguish between positive 

and negative instances. 

The CNN+LSTM model with sequence length 5 is the best 

model, followed by stacked LSTM. BiLSTM performs 

better at higher sequence lengths. Choosing the right 

evaluation metric is critical to measure model effectiveness 

when dealing with imbalanced datasets accurately. 

 

IV. DISCUSSION 

To test the effectiveness of an LSTM model in 

preventing load losses, suppose the coal mill experienced 

a trip due to low PA flow at exactly 10:20 PM on February 

22nd, 2021. Prior to this, an unsafe operation was recorded 

by the GMM model at 21:50 PM. Similar events occurred 

on February 19th and February 21st. These incidents were 

used to test LSTM models' ability to predict and warn 

against unsafe operations (Fig. 11). 

Different LSTM architectures, including BiLSTM, 

Stacked LSTMs, and CNN+LSTM, were analyzed to 

 

 

Fig. 9: Unsupervised evaluation metrics 

 

Fig. 10: Evaluation results of different models at different 

sequence lengths 

 

Table III: LSTM Model Evaluation Metrics Results 

 

 

A. Sequence length = 5

B. Sequence length = 10

C. Sequence length = 15

Model Architectures Seq_Length

Trainable 

Parameters Recall Precision F1 ROC_AUC Accuracy

LSTM 5 0,435 0,892 0,585 0,93 0,986

10 0,757 0,466 0,577 0,94 0,976

BiLSTM 5 0,191 1 0,322 0,92 0,982

10 0,125 1 0,222 0,85 0,981

Stacked LSTM 5 0,588 0,869 0,702 0,93 0,989

10 0,786 0,623 0,695 0,94 0,985

CNN+LSTM 5 0,915 0,905 0,909 0,97 0,996

10 0,877 0,355 0,505 0,96 0,963

0,103 0,91 0,185 0,980,89

LSTM(Units=100)

Dropout=0.80

Optimizer=SGD

Loss=Binary crossentropy

43 701

Bidirectional(units=276)

Dropout=0.5

Optimizer=SGD

Loss=Binary crossentropy

162 565

LSTM(units=100)

LSTM(units=50)

Dropout=0.5

Optimizer=SGD

Loss=Binary Crossentropy

162 565

15

Conv1D(Filters=100,Kernel=8,Activation=relu

Max pooling (pool size=2)

LSTM(Units=100)

Dropout=0.80

Optimizer=Adam

Loss= Binary Crossentropy

87 001

0,781 0,624

0,9720,94

0,95

0,96

0,694 0,98515

15 0,403 0,933 0,563 0,986

15 0,872 0,424 0,571

 

Fig. 11: Selected test scenario of Coal flow(kg/s) and Mill 

PA flow(kg/s) over he period of 4 days in 12 hours intervals 

 



predict failure. The CNN+LSTM model stood out for its 

sensitivity to detecting impending failure, as shown by a 

rise in output values before the moment of failure on 

February 21st at 10:20 PM (Fig. 12). This model's CNN 

component helped identify spatial patterns, while the 

following LSTM layers monitored time-based 

relationships. In contrast, other LSTM architectures did not 

demonstrate the same sensitivity. The rise in output values 

of the CNN+LSTM model over time before the moment of 

failure aligns with expectations and underscores its 

potential for early detection of coal mill tripping events. 

The GMM+CNN+LSTM architecture was found to 

optimize failure detection by integrating temporal 

information from sensor data. The GMM output value 

indicates that the operation is highly unsafe, whereas the 

CNN+LSTM model estimates the output value around the 

GMM value estimate. Based on this, an inspection is 

estimated on February 21st , which is 75 minutes after the 

extreme GMM unsafe operation label . Overall, the study 

showed that the CNN+LSTM model was better suited for 

anticipating impending failure and may be a useful tool for 

early detection of similar events. 

 

V. CONCLUSION 

This study analyzed different LSTM models, including 

CNN+LSTM, to detect safe and unsafe operations of a coal 

mill using GMM for clustering. The models showed 

potential in accurately predicting unsafe modes, but there 

are limitations in generalizing to other coal mills or 

domains. Thus, it is necessary to fine-tune and optimize the 

models for practical deployment, but the analysis provided 

valuable insights for improving predictive maintenance 

strategies in the Power Engineering industry.  
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[16] Géron, A, "Gaussian Mixtures," in Hands on machine 

Learning with Sci-kit Learn. Keras, Tensorflow, CA, O" 

Reily Media Inc., 2019, p. 239. 

[17] J. Yu and S. J. Qin, "Multimode process monitoring 

with Bayesian Inference based finite Gaussian mixture 

models," AIChe J, vol. 54, no. 7, pp. 188-1929, May 

2008. 

[18] M. A. T. Figueiredo and A. K. Jain, "Unsupervised 

learning of finite mixture models," IEEE Transactions 

on Pattern Analysis and Machine Intelligence, vol. 24, 

no. 3, pp. 381-396, March 2002. 

[19] D. L. Davies and D. W. Bouldin, "A Cluster Separation 

Measure," IEEE Transactions on Pattern Analysis and 

Machine Intelligence, Vols. PAMI-1, no. 2, pp. 224-227, 

April 1979. 

[20] A. K. Singh, S. Mittal, P. Malhotra and Y. V. Srivastava, 

"Clustering Evaluation by Davies-Bouldin Index (DBI) 

in Cereal data using Kmeans," in Fourth International 

Conference on Computing Methodologies and 

Communication (ICCMC), 2020. 
[21] J. Davis and M. Goadrich, "The relationship Between 

Precision-Recall and ROC Curves," in proceedings of 
the 23rd International Conference on Machine learning 
(ICML '06), Pittsburg, USA, 2006. 

[22] Powers D. M. W. "Evaluation: from precision, recall and 
F1 measure to ROC, informedness, markedness and 
correlation," Journal of Machine learning Technologies, 
vol. 2, no. 1, pp. 37-63, 2011. 

 

 


	I. INTRODUCTION
	II. METHODS
	A. Overview of the dataset
	B. Data Cleaning and Pre-processing
	C. Gaussian Mixture Model
	D. Cluster Evaluation Criteria
	E. Analyze with design specifications.
	F.  The Choice of input X features
	G. Temporal dependencies models
	H.  LSTM Evaluation Criteria

	III. RESULTS
	A. GMM Cluster Distribution Analysis
	B. Cluster Evaluation Criteria
	C  LSTM Results and Analysis of Models’ Performance

	IV. DISCUSSION
	V. CONCLUSION
	ACKNOWLEDGEMENT
	References

