# 法政大学学術機関リポジトリ

### HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-01-15

## Q値補償回路技術を用いた高分解能CSRRグル コース濃度センサ

小林, 海太 / KOBAYASHI, Uta

(出版者 / Publisher) 法政大学大学院理工学研究科 (雑誌名 / Journal or Publication Title) 法政大学大学院紀要.理工学研究科編 (巻 / Volume) 65 (開始ページ / Start Page) 1 (終了ページ / End Page) 5 (発行年 / Year) 2024-03-24 (URL) https://doi.org/10.15002/00030701

## Q 値補償回路技術を用いた高分解能 CSRR グルコース濃度センサ

#### A CSRR GLUCOSE CONCENTRATION SENSOR WITH INCREASED RESOLUTION

USING THE Q-VALUE ENHANCEMENT CIRCUIT TECHNIQUE

小林海太

Uta KOBAYASHI

指導教員 安田彰

#### 法政大学大学院理工学研究科電気電子工学専攻修士課程

This study proposes a new sensor that detects the glucose concentration of an aqueous solution with increased resolution. It is aimed at the realization of a wearable non-invasive glucose sensor for diabetes patients in future. A modified complementary split-ring resonator (CSRR) is used to determine the concentration by exploiting the change in frequency when an aqueous solution is applied. The Q-value enhancement circuit technique at several GHz is applied to the CSRR to cancel out the loss of a lossy aqueous solution. A prototype of the sensor is developed. The Q-value increases from 30 to over 500 at 5.2 GHz for a glucose solution with a concentration of 100 mg/dl. The measured sensitivity is 69 MHz/% for aqueous glucose solutions with concentrations ranging from 0–10 wt%.

Key Words : glucose sensor, concentration, aqueous glucose solution, CSRR, Q-value enhancement

#### はじめに

糖尿病患者は年々増加している. そして, 糖尿病患者に 欠かせないのが、日々の血糖値の測定である。現在は針を 刺す採血が必要な侵襲型が使われている. 侵襲型は針を 刺す身体的な負担や使い捨て針の購入費用による負担が あり、年々増加していく糖尿病患者は日々これらの負担 を強いられている. そのため, 採血の必要がなく, 負担の ない非侵襲型の血糖値測定の需要が高まっている. これ に対し,近年では高周波の電磁気特性を用いたグルコー ス水溶液の濃度を測定する研究が行われてきた。グルコ ース水溶液は血液を模した代用であり、血糖値測定に流 用できる.また、この測定方法は非侵襲型であり、需要に 応えることが可能である.この測定方法はグルコース水 溶液の誘電率が変化すると共振周波数も変化する.一般 的な構造は誘電体プリント基板の片面に信号伝達用のマ イクロストリップライン (MSL) が配置され、もう片面に はグルコース水溶液の濃度を検知するセンサの役割を果 たす相補型スプリットリング共振器 (CSRR) が配置され る組み合わせである[1]. しかし, センサである CSRR に グルコース水溶液や指が置かれることでセンサに大きい 静電容量と損失成分が加わり,高精度な測定が難しい[2]. また,血糖値測定の精度は真の血糖値に対して 20%以内 の許容誤差であり,低濃度である血糖値は誤差範囲が狭 く,これを満たす精度が必要となるが実現していない.こ のように精度が問題となる CSRR 構造の血糖値センサは [1],[2]の手法では測定精度が低いため,3極の CSRR を用 いた構造[3]や環境の影響を排除するシステムを組み込ん だ構造[4]といった高精度化の研究が行われている.しか し,これらの手法は共振周波数のディップは深くなるが, 依然として血糖値の濃度を識別する分解能が不十分であ った.そのため,本研究では血糖値の濃度を識別できる分 解能を得ることを目的とした.本論文では,CSRR に品質 係数(Q値)を補償する回路(Q-value enhancement circuit) を提案し,分解能を向上させた.



図 1. 従来手法の CSRR





#### 2. Q 補償回路(Q-value enhancement circuit)

(1)従来手法 CSRR 構成と提案手法 CSRR 構成従来手法の CSRR の構成を図1に示す.

提案手法の CSRR を図 2 に示す.提案手法では回路を 組み込むことから CSRR 内にインダクタL<sub>11</sub>, L<sub>12</sub>, L<sub>21</sub>, L<sub>22</sub>を構成し,構造を変化させた. また, MSL を中心に 線対称で構成されている.

提案する CSRR の等価回路図を図 3 に示す. MSL とセンサは基板間の寄生容量*Cs*で結合されている. また,各インダクタは隣り合ったインダクタ間で相互誘 導が生じる.



(2) Q 補償回路(Q-value enhancement circuit)

Q 補償回路と CSRR (Q-value enhancement circuit) を図 4 に示す. 図 4 より, Q 補償回路は相互結合したインダク タと電流帰還回路 (Current feedback) から構成される. 相 互結合している 1 次インダクタ (Primary inductor) と 2 次 インダクタ (Secondary inductor) はセンサ面にあり, via を 通して信号伝達部である MSL に部品実装した電流帰還回 路に接続される.  $C_p$ はセンサに存在するキャパシタであ るが, コンダクタンスを生じさせるコンダクタンス $G_p$ を 含む. コンダクタンス $G_p$ は 1 次インダクタ内の損失分 $R_1$ と合成できる. また, 共振器の損失分 $R_5$ は

$$R_S = R_1 + \alpha \tag{1}$$

となる. 共振器の損失 $R_s$ が 0 となる時, 共振器は理想的 な状態となる. 指の大きい損失が共振器に加わったとし ても共振器の損失分 $R_s$ が 0 となれば, 指の損失に関係な く理想的な状態で血糖値測定を可能にし, 分解能を向上 できる. そのため, 本研究では Q 値補償回路を用いて共 振器の損失 $R_s$ を等価的に 0 にする. キャパシタの損失分  $G_P$ を 0 とすると, 1 次インダクタの $L_1$ と $R_1$ の電圧は

$$v_{L1} = j\omega L_1 i_L \tag{2}$$

$$v_{R1} = R_1 i_L \tag{3}$$

GHz 帯の高周波では $\omega L_1$ が $R_1$ より大きいため、 $v_{L1}$ は $i_L$ より、 $\frac{\pi}{2}$  rad 進んでいる.

電流帰還回路は1次インダクタから電圧を感知し,2次 インダクタに電流を供給する.供給される電流は比例定 数 k と相互コンダクタンスg<sub>m</sub>を用いて,

$$i_{cf} = jkg_m \omega L_1 i_L \tag{4}$$

となる.

電流 $i_{cf}$ は 2 次インダクタにある $L_2$ を流れる. これにより、トランス結合している 1 次インダクタの $L_1$ に誘導電圧が発生する. 誘導電圧 $v_{fpri}$ は相互インダクタンス M、式(4)を用いて、

$$v_{fpri} = j\omega M i_{cf} = -kg_m \omega^2 M L_1 i_L \tag{5}$$

となる.

式(5)より, 誘導電圧 $v_{fpri}$ は1次インダクタにある $R_1$ にかかる電圧 $v_{R1}$ と逆位相の電圧であることがわかる.これにより,

$$kg_m\omega^2 ML_1 = R_1 \tag{6}$$

となる時, 共振器の損失は 0 となって共振器は理想的な 状態となる. 式(6)は $g_m$ で $R_1$ と等しくなるように調節が可 能である. また, キャパシタの損失 $G_P$ が 0 でない場合は 共振器の損失 $R_S$ は $R_1 + \alpha$ となるため, 共振器の損失 $R_S$ と  $kg_m\omega^2 ML_1$ が等しくなるよう $g_m$ を調整することで共振器 は理想的な状態となる.

指を模したグルコース水溶液を図 4 に加えた場合の等 価回路図を図 5 に示す.図 5 に示したように、電流帰還 回路はトランジスタと可変抵抗から構成される。トラン ジスタのベースに1次インダクタの電圧を接続する。ト ランジスタの遷移周波数が十分に高い場合、トランジス タは入力電圧と同相のコレクタ電流を変換する。式(6)の 相互コンダクタンスgmは可変抵抗またはエミッタ電圧 V<sub>EE</sub>により調整可能である。

指を模したグルコース水溶液はキャパシタ $C_T$ と損失分 $R_T$ を持つ.このときの共振器の共振周波数とQ値は

$$f_{dip} = \frac{1}{2\pi\sqrt{L_1(C_S + C_P + C_T)}}$$
(7)

$$Q = R \sqrt{\frac{C_S + C_P + C_T}{L_1}} \times \frac{C_S}{C_S + C_P + C_T}$$
(8)

となる.

グルコース水溶液は濃度が高くなるとキャパシタ $C_r$ が 小さくなり,損失分 $R_r$ は大きくなる.式(7),(8)より,共 振周波数は高くなり,Q値は小さくなる.これにより,グ ルコース水溶液の濃度が上がるにつれ,共振周波数を正 確に検知できなくなって分解能が劣化する.グルコース 水溶液の濃度による共振周波数を表すS21を図6に示す.

グルコース水溶液は濃度が高くなるとキャパシタ $C_T$ が 小さくなり,損失分 $R_T$ は大きくなる.式(7),(8)より,共 振周波数は高くなり,Q値は小さくなる.これにより,グ ルコース水溶液の濃度が上がるにつれ,共振周波数を正 確に検知できなくなって分解能が劣化する.グルコース 水溶液の濃度による共振周波数を表すS21を図6に示す.



図 5. グルコース水溶液を加えた Q 値補償回路と CSRR の等価回路



#### 3. 実験結果

(1) 基板実装

図 2 に示した CSRR と Q 値補償回路をプリント基板に作成した. プリント基板は 1GHz で誘電率が 3.8 から 4.0 の FR-4 プリント基板を使用した. 図 7, 8 に部品実装前の CSRR のみの基板を示す.

また, MSL 面に部品実装を行った.本研究ではエミッ タ電圧*V<sub>EE</sub>からg<sub>m</sub>を調整し、Q 値補償を行った.そのため、 可変抵抗は扱わず、金属皮膜抵抗を実装した.図9に図8 の MSL 面に Q 値補償回路を部品実装した基板を示す.* 



図 7. CSRR 基板 (センサ面)



図 8. CSRR 基板(MSL 面)



図 9. 部品実装した Q-value enhancement circuit

(2) 100mg/dL グルコース水溶液を用いた実験

指を模すため、グルコース水溶液をビニール手袋に入れた.それをセンサに置き、実験を行った.図10に基板 と指を模したグルコース水溶液を示す.

図 10 の状態でエミッタ電圧 $V_{EE}$ を変化させ、 $g_m$ を調整 して実験を行った.図 11 にエミッタ電圧 $V_{EE}$ を印加せず、 Q 値補償回路を動作させなかった時の結果を示す.

図11より、Q 値補償回路が動作しない場合、グルコース水溶液が持つ損失によって共振周波数のディップが浅くQ値が劣化し、共振周波数を正確に判定することが難しい.しかし、エミッタ電圧V<sub>EE</sub>を印加してg<sub>m</sub>を調整することで共振周波数のディップは深くなり、Q 値は劣化しない.図12にQ 値補償回路を動作させたときの結果を示す.



図 10. 試作基板と指を模したグルコース水溶液





果(Q 値補償回路動作有り)



≥ 13. ハイナス電流を変化させた际の S21 ナイック床さ と *Q* 値の実験結果(100mg/dL グルコース水溶液)

図 12 より、Q 値補償回路が動作したことで共振周波数が 明確になったことがわかる.図 13 に 100mg/dL グルコー ス水溶液の実験結果を示す.図 13 より、エミッタ電圧 $V_{EE}$ を印加し、トランジスタに流れる電流 $I_{RE}$ は増加する.電 流 $I_{RE}$ の増加に伴い、 $g_m$ は増加する.そして、式(6)に近 づくにつれて、共振周波数のS21のディップは深くなり、 Q 値は大きくなることがわかる.一方、式(6)の共振器の 損失より $kg_m\omega^2ML_1$ が大きくなるとき、 $kg_m\omega^2ML_1$ は損 失として働き、共振周波数のディップは浅くなり、Q 値は 劣化する.



(3) 10,000mg/dL グルコース水溶液を用いた実験 100mg/dL グルコース水溶液を用いた実験と同様に 10,000mg/dL グルコース水溶液を用いた実験を行った. そ して,Q値補償回路による同様のコカが見られた.図14 にQ値補償回路を動作させた結果を示す.図14より, 100mg/dL グルコース水溶液でもQ値補償回路により 共振周波数のディップを確認できた.

(4) 各濃度のグルコース水溶液による実験 各濃度のグルコース水溶液の共振周波数の S21 ディップ を-35dB に調節して共振周波数と Q 値を確認した. グル コース水溶液の濃度は 0, 100, 3000, 5000, 10,000mg/dL とした. 図 15 に実験結果を示す. 図 15 より, 0 から 10,000mg/dL で共振周波数 5.12GHz から 5.81GHz と 690MHz 変化したことがわかる.これはグルコース水溶液 の 1mg に対して 69kHz の変化である.

#### 4. まとめ

本研究ではグルコース水溶液の濃度を測定するための 高感度 CSRR センサを提案した. このセンサは CSRR の 共振特性を高めるため,提案した Q 値補償回路を用いた. 試作したセンサはグルコース水溶液に対して 1mg あたり 69kHz の感度を示した. これは本研究のセンサが正確に 血糖値を検出する能力を持ち, 非侵襲型血糖値センサの 実用化を可能にすることを示している.

謝辞:本研究を進めるにあたり,多大なるご指導と助言を して頂いた安田先生,杉本先生,山下先生に深く感謝申し 上 げます.そして,本研究にご協力いただいた安田研究 室の皆様にもこの場をお借りして感謝申し上げます.ま た,本研 究は東京大学大規模集積システム設計教育研究 センター を通しキーサイト株式会社の協力で行われた ものである.



参考文献

- J. Bonache, M. Gil, I. Gil, J. Garcia, and F. Martin, "On the electrical characteristics of complementary metamaterial resonators," IEEE Microwave and Wireless Components Letters, vol.16, no.10, pp.543-545, October 2006.
- 2) A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization," IEEE Sensors Journal, vol.14, no.5, pp.1345-1351, May 2014.
- 3) A. E. Omer et. al., "Non-Invasive Real-Time Monitoring of Glucose Level Using Novel Microwave Biosensor Based on Triple-Pole CSRR," IEEE Trans. Biomedical Circuits and Systems, vol.14, no.6, pp.1407-1420, December 2020.
- 4) C. Jang J. K. Park, H. J. Lee, G. H. Yun, and J. G. Yook, "Non-Invasive Fluidic Glucose Detection Based on Dual Microwave Complementary Split Ring Resonators With a Switching Circuit for Environmental Effect Elimination," IEEE Sens. J., vol.20, no.15, pp.8520-8527, August 2020.
- 5) Y. Sugimoto, "Extension of power-transmitting distance for a WPT system using Q-value enhancement technique," Proceedings of 4<sup>th</sup> Australian Microwave Symposium, Paper no. AMS F3J, February 2020.