法政大学学術機関リポジトリ HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-04

マルチコイルモータの高精度化,高信頼化, 高効率化のための駆動手法

石川, 愛章 / ISHIKAWA, Yoshiaki

(出版者 / Publisher) 法政大学大学院理工学研究科 (雑誌名 / Journal or Publication Title) 法政大学大学院紀要.理工学研究科編 (巻 / Volume) 65 (開始ページ / Start Page) 1 (終了ページ / End Page) 8 (発行年 / Year) 2024-03-24 (URL) https://doi.org/10.15002/00030686

マルチコイルモータの高精度化,高信頼化,高効率化の ための駆動手法

METHODS FOR HIGHER PRECISION, RELIABILITY, AND EFFICIENCY OF MULTI-COILS MOTOR

石川愛章

Yoshiaki ISHIKAWA 指導教員 安田彰

法政大学大学院理工学研究科電気電子工学専攻修士課程

This paper proposes a method for generating output coil combinations for high-precision drive of multi-coils motor (MCM) and verifies the effectiveness of the method through experiments. A method to reduce current distortion caused by deadtime is also proposed, and its effectiveness is verified through simulation. For higher reliability, we also propose a method to compensate the output power even if some of the motor coils are limited and verify the output power under load from experiments. We also propose a method to reduce the noise component of the current flowing for the motor for higher efficiency and verify the effectiveness of the method through simulation.

Key Words : Multi-coils motor, Digitally direct driven technology, Delta sigma modulator, Noise-shaping dynamic element matching

1. はじめに

モータは運動エネルギーを機械エネルギーへ変換する デバイスとして広く用いられてきた.特に,小型化,高出 力化と高効率化を達成可能な永久磁石同期モータ(PMSM) は家電をはじめ電気自動車などにも広く用いられている. このPMSMを利用してデジタル直接駆動技術が適用可能な モータとしてマルチコイルモータ(MCM)が提案されてい る[1].本研究ではこのMCMの高精度化や高信頼化,高効 率化を達成するための手法について提案する.

2. デジタル直接駆動技術

(1) ∆ Σ 変調器

モータをインバータ回路で駆動できるようにするため に、デジタル直接駆動技術では、ΔΣ変調器を用いること で、デジタル信号に変換する.1次のΔΣ変調器の構成を 次の図1に示す.

ΔΣ変調器は、まず入力信号のオーバーサンプリング を行うことで、信号帯域内の量子化雑音を低減させる. 次 にサンプリングした信号をループフィルタと量子化器を 用いて処理することで、ノイズシェーピング特性を有し たデジタル信号が得られる.

(2) Noise-shaping Dynamic Element Matching

ΔΣ変調器で得られたデジタル信号を DAC 等のデバイ スで出力する際,各素子にミスマッチが存在すると,出力 にミスマッチ雑音が生じる.これを低減するには素子の 精度を向上させる必要があるが,コストが問題となる.そ こで,デジタル直接駆動技術では,ミスマッチシェーパー の一つである Noise-shaping dynamic element matching (NSDEM)を用いる.NSDEM の構成を次の図2に示す.

図2 Noise-shaping dynamic element matchingの 構成図

NSDEM は, Δ Σ 変調器のデジタル値に応じて駆動する素 子を選択する. この時, ループフィルタの積分器を用いて, 過去の使用頻度に基づいて選択することで, ミスマッチ シェーピング特性を持った出力が得られる.

(3)マルチコイルモータ

デジタル直接駆動技術では、ΔΣ変調器とNDEMで生成 されたマルチレベルのデジタル信号を駆動する必要があ る.そこで、PMSM のコイルを出力素子として、分割し独 立して駆動させることで、マルチレベル出力を実現する マルチコイルモータ (MCM) が提案されている[1]. MCM の 構成を次の図3に示す.

図3 マルチコイルモータの構成図

図3は、3相3コイルのMCMの構成を示している. これ は、3相として3つのコイルまたは、直列接続されたコイ ル群を持つPMSMに対し、1相あたり3つのコイルに分割 することで得られる.本稿では、3相3コイルのMCMにつ いて論ずる.

(4)デジタル直接駆動システム

マルチコイルモータを駆動するためのデジタル直接駆 動システムを次の図4に示す.

図4 デジタル直接駆動システムの構成図

デジタル直接駆動システムは、ΔΣ変調器,NSDEM およ び駆動回路と MCM で構成される.駆動回路には一般的に Hブリッジ回路が用いられる.Hブリッジ回路はコイルの 両端に正電圧,逆電圧,短絡の3値の電圧を印加するこ とが可能である.

3相3コイルの MCM を駆動するには、入力に3相交流な どの3相信号が用いられる.それらの信号からΔΣ変調 器によって-3から+3の7レベルの量子化値が得られる. この量子化値から NSDEM を用いることで3コイルそれぞ れに加える-1,0,+1の3値信号が得られる.この信号に 基づき駆動回路を用いることで実際にコイルに電圧が印 加され,磁界が発生する.この磁界によって回転子に対し トルクを生み出すことで MCM は駆動する.

3. 高精度駆動システム

(1) Honeycomb-structured Space Vector Delta Sigma Modulation

デジタル直接駆動技術は従来スピーカを駆動するため のシステムとして考案されている.そこで,デジタル直接 駆動技術をモータのために最適化し,高精度駆動を可能 としたシステムが提案されている[2].

MCM を駆動する際に3相信号ではなく、磁界ベクトルを 直接量子化するためのシステムとして Honeycombstructured space vector delta sigma modulation (HSVDSM) が提案されている. HSVDSM の構成を次の図5に 示す.

図5 Honeycomb-structured space vector delta sigma modulationの構成図

HSVDSM は、3 相信号を2 軸に変換した α β 信号が入力 され、任意の次数のループフィルタ(図 5 は 2 次のルー プフィルタを用いている。)で処理される.処理された信 号はハニカム構造型ベクトル量子化器で量子化され、離 散化された量子化ベクトルは、後段へ出力されると同時 にループフィルタへフィードバックされる.

ハニカム構造型ベクトル量子化器の量子化平面を次の 図6に示す.

図6 ハニカム構造型ベクトル量子化器の量子化平面

3相3コイルのMCMには計9つのコイルが存在し,全部 で127通りの磁界ベクトルを合成可能である.ハニカム 構造ベクトル量子化器は,これらの合成磁界ベクトルを 量子化ベクトルとして保持し,入力ベクトルに対して最 も近傍にある量子化ベクトルを出力する.

(2) Full-search Dynamic Three-Phase Multi-Coil-Motor Matching

HVDSM が出力する量子化ベクトルに対して,そのままで は NSDEM を適用することができない. そこで,全てのコ イルを対象にシャッフリング手法を適用する Fullsearch dynamic three-phase multi-coil-motor matching (FDTMM) が提案されている[2]. FDTMM の構成を 次の図7に示す.

図7 Full-search dynamic three-phase multicoil-motor matching の構成図

図7よりFDTMMは前段のHSVDSMから出力された量子化 ベクトル,ループフィルタの積分値,Max moduleの出力 がSelector モジュールに入力される.ループフィルタは 任意の次数で,9コイルの正方向と負方向の駆動頻度を表 す為,18個必要となる.また,Max module はそれらのル ープフィルタの積分値の内,最大値を求めて Selector ブ ロックに入力する.Selector ブロックでは,各量子化ベ クトルを実現するコイルの駆動パターンをテーブルとし て保持し,ループフィルタを用いて,使用頻度が少ないコ イルを可能な限り多く使用するコイルの駆動パターンを 選択して出力する.

(3)動的なコイルパターン生成手法

FDTM は、コイルの駆動パターンを全て保持することから、回路規模が大きくなるという問題があった.そこで、 コイルの駆動パターンを、量子化ベクトルに対して動的に生成する手法を提案する.提案するコイルパターンの 生成手法の流れを次の図8に示す.

図8において,まずHSVDSMから出力された量子化ベクトルから,Phase drive generationを用いて基準となる3相の駆動量ベクトルを得る(図8①).次に,得られた3相の駆動量ベクトルに対して,打ち消し磁界を合成することで,7行3列の相の駆動量行列を得る(図8②). ここで,ループフィルタの積分値(図8③)から,3相の 各相と、-3~+3 までの各駆動量における最適な駆動パタ ーンを求める(図8④).駆動量行列の各要素に対し、 各相各駆動量の駆動パターンを当てはめることで、7行18 列の駆動パターン行列が得られる(図8⑤).最後に、 駆動パターン行列から使用頻度の少ないコイルを可能な 限り多く使用する駆動パターン行を選択して、出力およ びループフィルタへのフィードバックを行う(図8⑥).

本提案手法を用いてコイルの駆動パターンを動的に生 成して FDTMM を作成した場合と、従来のコイルの駆動パ ターンを全てテーブルで保持する手法を用いて FDTMM を 作成した場合を比較する. それぞれを Field programmable gate array (FPGA) で合成した場合に使用 するルックアップテーブル (LUT) の量を表1に示す.

表1 使用したルックアップテーブルの量の比較

	使用したルックアップテーブルの量
従来の FDTMM	137, 983
提案する FDTMM	10, 414

表1より提案手法を用いることで,LUT を 92.5%削減す ることができる.

また、従来の $\Delta \Sigma$ 変調器と NSDEM を使用したデジタル 直接駆動システムと、提案手法を用いた HSVDSM と FDTMM による高精度駆動システムを実装し、MCM を駆動した場合 の比較を行った. 測定には図9に示すように、3相交流を入力し、オープ ンループ制御を行った場合(図9①)のα軸電圧と、回 転速度と3相電流を用いたベクトル速度制御によるクロ ーズドループ制御を行った場合(図9②)のトルクを比 較した.測定条件を表2に示す.

	条件	値
電源電圧 [V]		15
スイッチング周波数 [Hz]		200,000
オープン ループで の構成	デジタル直接駆動	2 次ΔΣ変調器,
	システム	2次 NSDEM
	高精度駆動	2 次 HSVDSM,
	システム	2次 FDTMM
ループで の構成 クローズ ドループ での構成 オープン ループ クローズ クローズ プ	デジタル直接駆動	2次ΔΣ変調器,
	システム	1 次 NSDEM
	高精度駆動	2 次 HSVDSM,
	システム	1次FDTMM
オープン	入力周波数 [Hz]	12
ループ	振幅 [dBFS]	-13
クローズ	回転速度 [rpm]	6
ドループ	負荷トルク [N・m]	0.5

表2 高精度駆動の比較測定の測定条件

図9 高精度駆動の比較測定のシステム

図 9 より、オープンループ制御(図 9 ①)を行った場 合に得られた α 軸電流の Fast Fourier transform (FFT) 解析 結果を図 10 に示す.また、クローズドループ制御(図 9 ②)を行った場合に得られたトルクの FFT 解析結果を図 11 に示す.

図11 クローズドループ制御時のトルク周波数特性

図 10 より HSVDSM と FDTMM を用いた高精度駆動シ ステムは、従来のΔΣ変調器と NSDEM を用いたデジタ ル直接駆動システムよりも 20kHz における電圧ノイズを 12.52dBV 低減していることが確認できる.また、図 11 よ り、トルクの基本波を 0.1Hz とした時、高精度駆動システ ムは、従来のデジタル直接駆動システムと比較して、12 の 倍数次高調波を低減していることが分かる.

4. フェイルセーフ機能

(1) 補完磁界生成

MCM の信頼性を高めるための手法として, MCM に含まれ るコイルが故障した時, 他のコイルで代替することで, 故 障したコイルを補う補完磁界生成アルゴリズムが提案さ れている[3]. 補完磁界を生成するためのフローを図 12 に 示す.

図 12 より, 例えば, U 相で正方向駆動するコイルが 1 つ足りないとき, V 相と W 相のコイルを 1 つずつ負方向に 駆動することで, 補完を行うことが可能である.

しかし,この補完磁界生成フローは、1相ごとに1コイ ルずつ補完可能かを判定することから、2相以上や2コイ ル以上の補完可能かの判定は複雑化する問題があった.

そこで,3コイル以上の多コイルや3相以上の多相 MCM の場合でも,複数の相や複数のコイルに対しても一度に 補完磁界を生成できるような手法を提案する.

(2) 打ち消し磁界を使用した補完磁界生成

提案する補完磁界生成手法を用いることで,2コイル以 上や2相以上にわたってのコイルの故障に対しても,打 ち消し磁界を一括で生成することが可能である.また, MCM が多コイルや多相化した場合でも単純な拡張で補完 磁界生成アルゴリズムを適用可能である.

提案する補完磁界生成手法では,図8 で用いた打ち消し磁界ベクトルを+3~-3 まで7 通りをまとめることで得られる Canceled field array を使用する.

提案する補完磁界生成手法を図 13 に示す.3 相の駆動 量ベクトルを拡張し,打ち消し磁界ベクトルからなる7行 3 列の Canceled field array を加算することで,7行3 列の3 相の駆動量行列を得ることができる(図 13 ①). 得られた3 相の駆動量行列の中から,MCM において使用可 能なコイルで実現可能かつ,打ち消し磁界ベクトルの大 きさが少ない行を選択することで,補完磁界を適用した MCM の3 相の駆動量ベクトルが得られる(図 13 ②).

提案する補完磁界生成手法を実装して MCM でベクトル 速度制御を行い,負荷トルクに対する回転速度を測定した.測定条件を表3に示す.また,測定された負荷トルク に対する回転速度を図14に示す.

条件	值
電源電圧 [V]	8
スイッチング周波数 [Hz]	200, 000
速度指示值 [rpm]	1,000
負荷トルク [N・m]	0, 0. 1, 0. 2, 0. 3, 0. 4, 0. 5

表3	補完磁界生成手法の測定条件	ł

図14よりU相を1コイル制限した場合は負荷トルクが 0.5N・mとなると、補完磁界を生成しない場合は回転速度 が35rpm低下し、965rpmとなった.一方で、提案手法を 用いて補完磁界を生成した場合、回転速度は13rpm低下 し987rpmとなり、回転速度の低下を抑制できることが分 かった.

図14 補完磁界を生成した場合の負荷トルクに 対するマルチコイルモータの回転速度

また、U相とV相を1コイルずつ制限した場合は、負荷 トルクが0.5N・mとなると補完磁界を生成しない場合、回 転速度は16rpm低下し、984rpmとなった.一方で提案手 法を用いて補完磁界を生成した場合は、回転速度は低下 せず1000rpmを維持できることが分かった.

このことから, MCM のコイルが一部制限された状態でも 補完磁界を生成することで出力範囲を補い,出力の低下 を抑制できると考えられる.

5. デッドタイム補償

モータを駆動するインバータ回路に含まれるブリッジ 回路は上下のスイッチング素子は相補的に動作する.こ の時,ブリッジ回路の出力が切り替わるとき,スイッチン グ素子が同時に ON し,貫通電流が流れるのを防ぐために, デッドタイムと呼ばれる上下のスイッチング素子が両方 とも OFF となる期間が挿入される.デッドタイムによっ てモータに奇数次の高調波電流が生じることから,これ らを補償手法が提案されている[4][5].しかし,この補償 手法はパルス幅変調 (PWM) 方式を前提としていることか ら,本稿ではデジタル直接駆動システムに適用可能なデ ッドタイム補償手法を提案する.

提案するデッドタイム補償器を追加したデジタル直接 駆動システムを図 15 に示す.

図15 提案するデッドタイム補償付きのシステム

図 15 より誤差電圧補償器は、NSDEM の各コイルの出力 およびコイル電流から補償量を決定し、任意の次数の Δ Σ 変調器(図 15 では 2 次 Δ Σ 変調器を用いている.)の フィードバック経路に合成することで補償を行う.誤差 電圧補償器の補償量を表 4 に示す.なお、 t_d はデッドタイ ム期間、 t_s はスイッチング周期、iはコイル電流、 I_{th} は電 流閾値を表す.

前回の駆動量	現在の駆動量	誤差電圧補償量
0	+1	$-\frac{t_d}{t_s} (i > -I_{th})$
+1	0	$\frac{t_d}{t_s} \ (i < I_{th})$
0	-1	$\frac{t_d}{t_s} \ (i < I_{th})$
-1	0	$-\frac{t_d}{t_s} (i > -I_{th})$
-1	+1	$-2\frac{t_d}{t_s} \ (i > -I_{th})$
+1	-1	$2\frac{t_d}{t_s} \ (i < I_{th})$
other	rwise	0

表4 デッドタイム補償量

提案するデッドタイム補償システムに対しMATLAB およ び Simulink を用いてシミュレーションを行い検証した. 3 相のΔ変調器には3 相交流信号を入力し, デッドタイム をモデル化したコイルに流れる電流をシミュレーション した.シミュレーション条件を表5に,シミュレーショ ン結果を図16に示す.

- 表5 デッドタイム補償のシミュレーシ	ション条件
----------------------	-------

条件	値
振幅 [dBFS]	-6.02
入力周波数 [Hz]	1,100
スイッチング周波数 [Hz]	500,000
閾値電流 [A]	0
電源電圧 [V]	48
インダクタンス [H]	$20~\mu$
直列抵抗 [Ω]	0.25
デッドタイム [s]	250n

図16 提案するデッドタイム補償による コイル電流の周波数特性の比較

図 16 より, デッドタイム補償を使用することで, 100Hz 時の電流ノイズを 20dB 低減できるほか, デッドタイムを 加えることで発生していた奇数次高調波も低減できるこ とが分かった.

6. セグメントパルスシャーピング技術の適用

デジタル直接駆動システムはモータに印加する電圧が ノイズシェーピング特性を持つことから流れる電流にお いて高周波帯域に存在する量子化雑音成分がカットされ る.一方で,鉄損の低減やコギングレスを目的としたコア レスモータにおいては、コイルのインダクタンスが小さ いことから、ノイズシェーピング特性によって高周波帯 域に存在する量子化雑音成分が電流として流れるように なる.これは、MCMの駆動精度を低下させるほか、騒音や 銅損の増加による効率低下の原因となる.そこで、デジタ ル直接駆動技術における量子化雑音を低減し、コアレス モータなどの低インダクタンスのコイルを持つ MCM に適 した制御手法を提案する.

デジタル直接駆動システムにおいて、モータに流れる 電流の量子化雑音を低減させるには、ΔΣ変調器のオー バーサンプリング周波数の増加や、量子化器のレベル数 を増加させることが挙げられる.しかし、前者は駆動回路 のスイッチング損失の増加につながり、後者はモータの 大きさなど構造上の制約が存在する.

この時, NSDEM が出力するパルスを時間方向に分割する ことで、物理的な素子の数を増やさずにレベル数を増加 させるセグメント化パルスシェーピング技術 (SPST) が提 案されている[6][7][8].しかし、分割数を増やすことで スイッチング回数が増加し、駆動回路のスイッチング損 失の増加につながる.

そこで、本稿ではコイルが駆動するパルス幅を可変さ せることで、スイッチング回数の増加を抑えつつ、ΔΣ変 調器のレベル数を増加させ、量子化雑音の低減を目指し たパルス幅可変方式のセグメントパルスシェーピング技 術を提案する.提案するパルス幅可変方式のセグメント パルスシェーピング技術を用いたデジタル直接駆動シス テムを図 17 に示す.

図 7 提案9 るハルス幅可変万式の セグメントパルスシェーピング技術 図 17 は 1 相あたりの分解能を 2.5 ビット増加させた, 提案するパルス幅可変方式のセグメントパルスシェーピ ング技術の構成図である.まず,マルチビットΔΣ変調器 は-3 から+3 の7 レベルから-24 から+24 までの 49 レベル ヘ増加させる.次に 24 個のループフィルタを持つ 3 値駆 動型 NSDEM でシャッフリングを行う.これにより得られ る 24 個の 3 値信号を 3 つに分割し,8 個の 3 値信号の合 計を求めることで,-8 から+8 の 9 レベルの信号が 3 個得 られる.これらの信号を PWM で駆動することで,デジタ ル直接駆動システムの量子化雑音を低減させることが可 能となる.

パルス幅可変方式のセグメントパルスシェーピング技 術を用いたデジタル直接駆動システムを MATLAB および Simulink でシミュレーションを行い検証した.3 相交流 信号を入力し, MCM をオープンループで駆動した時,コイ ルに印加される電圧の FFT 解析を行った.シミュレーシ ョン条件を表6に, FFT 解析結果を図18に示す.

シ <u>ェーピング技術のシミュレーション条件</u>			
	条件	値	
	入力振幅 [dBFS]	-4.4	
	入力周波数 [Hz]	20	
	入力電圧 [V]	48	
	ΔΣ変調器, NSDEM	500, 000	
	駆動周波数 [Hz]		
	ΔΣ変調器の次数	2 次	
	NSDEM の次数	2次	

表 6 パルス幅可変方式のセグメントパルス

図16 提案するパルス幅可変方式のセグメントパル スシェーピング技術によるU相コイル電圧の周波数特性

図16よりパルス幅可変方式によるセグメントパルスシ エーピング技術を用いることで、U相に印加される電圧の ノイズフロアを10kHzにおいて、20dB低減できているこ とが分かる.このことから、モータに流れる電流の雑音を 低減でき、銅損によるモータの損失を低減させることが できる.

7. まとめ

本稿では、MCMの高精度化、高信頼化および高効率化を 目的として、MCMの高精度駆動を実現するFDTMMの動的な コイルパターンの生成手法やデッドタイムによる電流歪 みを補償するための手法、コイルが一部故障しても駆動 を続けるための打消し磁界を用いた補完磁界の生成手法、 MCM に変更を加えずに量子化雑音の低減を実現するパル ス幅可変方式によるセグメントパルスシェーピング技術 をそれぞれ提案した.

MCM の高精度化に関しては,提案した動的なコイルパタ ーンの生成手法によって,FDTMM の実装に必要な回路規模 を削減することで,実装の容易化を行ったうえで,実験か ら a 軸電圧のノイズフロアを低減し,また MCM のトルク で発生する12の倍数次高調波を低減できることが分かっ た.また,提案したデッドタイム補償システムによって, デッドタイムによって発生する奇数次高調波電流を抑制 しつつ,ノイズフロアを低減させることがシミュレーシ ョンから確認された.

MCM の高信頼化においては提案した打消し磁界を用い た補完磁界の生成手法によって, MCM の一部のコイルの駆 動が制限された状態で,負荷トルクが発生しても MCM の 速度低下を抑制できることが実験から分かった.

また,MCMの高効率化のために,提案したパルス幅可変 方式によるセグメントシェーピング技術は,シミュレー ションから MCM に印加される電圧のノイズフロアを低減 できることが確認された.

今後の課題として次のことが挙げられる.動的なコイ ルパターンの生成手法に関しては,他の手法と組み合わ せることで駆動精度の向上による性能の向上が行えるか の検証を行いたい.デッドタイム補償システムに関して はテストベンチに対して実装を行い,測定から効果の検 証を行いたい.打消し磁界を用いた補完磁界生成手法に 関しては,駆動範囲の補償がどこまで行えるかの条件の より詳細な検証を行いたい.パルス幅可変方式によるセ グメントパルスシェーピング技術においては,テストベ ンチに対して実装を行い効率向上の検証を行いたい.

謝辞

本稿の作成にあたり,多くのご指導および助言をいた だきました法政大学理工学部安田彰教授,および同研究 室の皆様に深く感謝申し上げます.

参考文献

- 1)原島昇:デジタル直接駆動モータシステムの大出力化 に関する研究,法政大学大学院紀要.理工学研究科編, Vol.55, pp.1-6,2014
- 2)松尾遥,本山佳樹,石間泉,西勝聡,安田彰:量子化誤 差と製造バラツキの影響を低減させた高精度マルチコ イルモータの実現,電気学会研究会資料, Vol.17, pp.103-107, 2017
- 3) 吉田建, 安田彰: マルチコイルモータの動作不良時にお ける出力最大化の基礎的検討, 令和 3 年電気学会全国 大会論文集, pp.203-204, 2021
- 4) 岩路善尚,足塚恭:高トルク&高速応答!センサレス・ モータ制御技術,CQ 出版社,2017
- 5) 電気学会・センサレスベクトル制御の整理に関する調 査専門委員会: AC ドライブシステムのセンサレスベ クトル制御, オーム社, 2016
- 6)春海豪:セグメントパルスシェーピング技術を用いた デジタル直接駆動型スピーカの構成検討,法政大学大 学院紀要.理工学研究科編, Vol.58, pp.1-8,2017
- 7) 植田眞輝: FIR フィルタを用いたセグメントパルスシェ ーピング型デジタル直接駆動スピーカ,法政大学大学 院紀要.理工学・工学研究科編, Vol.61, pp.1-7, 2020
- 8) 寧飛越:スイッチングロス削減に向けたセグメントパルスシェーピング型デジタル直接駆動スピーカシステム,法政大学大学院紀要.理工学研究科編, Vol.64, pp.1-9