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Abstract—This paper introduces a hand gesture 

classification implementation that combines FMCW radar and 

deep learning. Unlike previous work, this research implements 

a range-aware methodology to automatically locate the hand 

range bin enabling more accurate classification. Our proposal 

is based on the observations made about the impact of the 

subject chest in the Time-Range map and the signature of the 

hand movement in the Range-Doppler map. Then, three distinct 

methods are proposed for hand range bin localization. Method 

I and II take advantage of the first observation by locating the 

chest and using it as a reference to select the hand bin. On the 

other hand, Method III exploits the second observation about 

the Doppler signature of the hand movement to directly select 

the hand bin. Both subject-dependent and independent 

evaluations are performed to classify six hand gestures and 

investigate the impact of several schemes including the type of 

input data, the use of a CNN-only and CNN-LSTM layer, an 

increased range of up to 150 cm, three types of angles, and 

presence of nearby person scenarios. The evaluation showed an 

average accuracy of 98.72% for subject-independent and 

98.69% for subject-independent, with automatic hand position 

detection even at distances of up to 150 cm. 

Keywords—FMCW radar, range bins, range-aware, Doppler, 

hand gesture, deep learning. 

I. INTRODUCTION 

In the past, gesture recognition primarily depended on 
visual, infrared-based systems, and wearable devices that 
required physical contact. However, these conventional 
methods have their drawbacks, especially when used in 
different environmental conditions and lighting situations, 
due to their invasive nature. This led to the rise of Radio 
Frequency (RF) technology including various types of radars 
such as Continuous Wave (CW), Frequency Modulated 
Continuous Wave (FMCW), and Ultra-wideband (UWB) in 
addition to Wi-Fi, as a promising research avenue to address 
the limitations of traditional methods. Among these, FMCW 
is used in this paper due to its flexibility and features 
including Multiple-Input Multiple-Output (MIMO) antennas, 
range, angle, and velocity that can be achieved. 

Numerous studies have explored radar technology for 
hand gesture recognition, particularly the FMCW type. Table 
I presents a comprehensive overview of the most recent 
research, highlighting various radar platforms, parameters, 
and classification methodologies. [1] used a 24 GHz FMCW 
radar to classify four distinct gestures through a custom CNN 
model, achieving 99.9% accuracy under subject-dependent 
conditions. The work in [2-8] used 60 GHz-based radar, while 
[9-18] adopted a 77 GHz radar. Among these studies, [2] 
classified five gestures using Range-Doppler images and a 
CNN-LSTM model, reporting 94.34% accuracy. Some 
research combined multiple radar data types such as TR, TD, 
and RD maps for classification, demonstrating the feasibility 
of using radar technology in diverse applications, such as 

controlling a Nursing Bed with a CRNN-based model to 
classify six gestures [3]. Furthermore, a real-time-based 
system [6] integrated radar data with Transformer encoder-
based classification, achieving 93.95% accuracy for various 
hand gestures within a range of 10 to 20 cm. 

However, these studies exhibit several limitations. The 
precise localization of the hand’s range bin within radar data 
remains a challenge due to radar signal sensitivity to 
environmental reflections. Most of these studies bypassed this 
challenge, relying on fixed-range solutions or limiting the 
radar’s Field of View (FoV) to the hand. This approach, while 
valuable for assessing feasibility, is impractical in real-world 
scenarios. These studies tend to concentrate their efforts on 
relatively short ranges, typically within the confines of 50 cm 
[19]. This narrow scope overlooks the broader contextual 
factors that come into play when a user interacts with a radar 
system at varying distances from the radar source. 

To tackle these issues, the two basic observations are 
based on. First, the chest signature emerges as the most 
prominent and identifiable element [20] in the radar signal 
compared to other body parts for an idle subject, serving as a 
reliable point of reference for pinpointing hand location. 
Second, hand movements generate unique Doppler signatures, 
allowing for effective differentiation from other bodily 
signals through the analysis of range and Doppler information. 

Based on these observations, three methods are proposed 
to achieve a range-aware implementation that can 
automatically detect the hand location. The first two methods 
first locate the chest and then estimate the hand’s relative 
position, while the third method leverages the Doppler 
signature of hand movement. All three methods produce 
Time-Doppler matrices and spectrogram images for CNN-
based classification. One of the goals in this research is to 
assess and figure out the most effective method, considering 
factors like data type, deep learning model, radar 
distance/angle, and nearby person impact. The results indicate 
that Method III with a base CNN achieves the highest 
classification accuracy, with 98.72% in subject-dependent 
evaluations and 98.69% in subject-independent scenarios. 
The main contributions of this research include the following. 

 Range-aware automatic selection of hand-bin: Proposed 
three methods for detecting accurate hand positions using 
range and Doppler data from FMCW radar. 

 Combinational optimization of the methods, data types, 
and classification models: Classified six gestures based on 
the best combination achieving 98.69% in the range of 30 
to 150 cm, which is farther than conventional work. 

 Extensive evaluation of the proposed methods and impact 
factors: Evaluated the performance and limitations of the 
proposed method through different distances, angles, and 
the presence of a nearby person. 



 

TABLE I.  RELATED WORK ON FMCW RADAR-BASED HAND GESTURE CLASSIFICATION 

Ref. 
Freq. 
(GHz) 

Frame 
(ms) 

Num. of 

Chirps 

Resolution 
Radar Data Used Algorithm Used 

Num. of 

Gestures 
Eval. 

Acc. 
(%) Range Velocity 

[1], 2022 24 � � � � TD CNN 4 SD 99.9 

[2], 2018 60 100 16 2.1 cm 244 cm/s RD CNN & LSTM 5 SI 94.3 

[3], 2021 60 24 32 3 cm 16 cm/s RD CNN & LSTM 6 SI 94.3 

[4], 2021 60 200 16 � � 2-axis TR EMA 2 � � 

[5], 2021 60 200 � � � RD CNN 11 SI 78.9 

[6], 2022 60 � 16 2.5 cm 122 cm/s RD Transformer 20 SD 94.0 

[7], 2022 60 20 256 � 3.9 cm/s 3-axis TR CNN 5 SI 89.1 

[8], 2023 60 100 128 5 cm � TR, TD, TA CNN & LSTM 12 SI � 60 

[9], 2020 77 25 64 4.8 cm 15.4 cm/s TR, TD, TA CNN 8 SI 84.6 

[10], 2020 77 14 128 15 cm 8.1 cm/s TD CNN 8 SI 90.5 

[11], 2020 77 10 � 4.7 cm 36 cm/s RD CNN & HMM 10 SI 97.4 

[12], 2021 77 20 32 4 cm 22 cm/s 2-axis TR, TD MobileNetV2 3 SD � 90 

[13], 2021 77 55 - 3.8 cm � RD EVL-NN 5 SI 89 

[14], 2021 77 41 256 3.8 cm 4.8 cm/s TD CNN 6 SI 85.3 

[15], 2022 77 32 32 � � TR CNN 5 SD 98.3 

[16], 2022 77 30 � 3.9 cm 13 cm/s 2-axis TR, TD LSTM 12 SD 94.3 

[17], 2022 77 20 128 � � TR, TD, TA, DA, RA CNN 6 SI 92.0 

[18], 2023 77 40 128 3.9 cm � TR, TD CNN & Transformer 6 SD 99.2 

“�”: Not mentioned, T: Time, R: Range, D: Doppler, A: Angle, SD: Subject-dependent, SI: Subject-independent 

The remainder of this paper is structured as follows. 
Section II delves into the details of the proposed range-aware 
hand gesture classification method. The experimental setup 
and the dataset details are explained in Section III, while the 
evaluation results are reported in Section IV. The conclusion 
and future work are outlined in the last section. 

II. HAND RANGE-AWARE GESTURE RECOGNITION 

This section offers a comprehensive overview of our 
range-aware hand gesture classification pipeline as illustrated 
in Fig. 1. The pipeline has four main steps: raw data collection 
and pre-processing, hand-range estimation, data formatting 
and preparation, and hand gesture classification. 

 

Fig. 1. Range-aware hand gesture classification pipeline. 

A. Raw Data Collection and Pre-processing 

The first task in the proposed pipeline is collecting data 
using radar and performing the different pre-processing steps 
required. The FMCW radar adopted in this research is the 
Texas Instruments (TI) board operating at 60 GHz frequency 
(IWR6843ODS) [21] coupled with a DCA1000 acquisition 

card [22] that helps obtain the raw data with higher transfer 
bandwidth. The raw data obtained from the FMCW radar and 
its processing flow are shown in Fig. 2. 

The radar generates a sinusoidal signal called “chirp” 
whose frequency increases linearly with time. This signal is 
emitted via the transmitting (TX) antenna and subsequently 
received by the receiving (RX) antenna. An intermediate 
frequency (IF) signal is derived from the difference between 
the transmitted TX and the received RX signals. The IF signal 
is then converted into a digital format using an Analog-to-
Digital Converter (ADC). Subsequently, a Fast Fourier 
Transform (FFT) is applied to extract range information by 
separating the reflections from each chirp into a series of 
distances called “range bins” where each range bin is a 
multiple of 7.8cm (radar range resolution). This operation is 
commonly referred to as 1DFFT or Range-FFT. Each range-
bin data can be aligned according to the temporal data 
obtained from each chirp inside a radar frame (128 chirps per 
frame), to form the Time-Range (TR) map where each frame 
is 25ms long. Furthermore, a clutter removal procedure is 
executed to suppress noise from static objects by removing 
the mean value of the signal, leaving only the signature from 
moving targets. 

 

Fig. 2. Raw data collection and pre-processing flow. 



 

Doppler-FFT is then applied to the TR sequence to 
construct the Time-Range-Doppler (TRD) matrix using 
Short-Time Fourier Transform (STFT). Subsequently, the 
Time-Doppler (TD) map is generated by selecting a particular 
range bin where the hand gestures are located. The precise 
estimation of hand range is very important since it has a direct 
impact on the quality of the signal, which may further 
influence the accuracy of the hand gesture classification. 

B. Data Extraction 

To estimate a correct hand range, i.e., the bin where the 
hand gesture is located, three different methods are proposed. 
Since a chest is always with displacement due to breathing 
and heartbeat that cause a relatively strong signal in radar data 
[23] [24], Methods I and II use this information to first locate 
the chest range bin as the strongest signal in the TR data. Then 
they temporarily select the 5th bin before the chest as the 
initial range bin for the hand. This temporary bin is selected 
when considering the bin size (7.8cm) and the typical distance 
between the extended arm and the chest (≈ 40cm). 

As depicted in Fig. 3, Method I will determine the exact 
hand-bin by further selecting the strongest signal among the 5 
bins centered around the temporary hand-bin and forms the 
final TD matrix data based on the determined bin. This range 
is chosen based on the possible distance covered when 
extending and retracting the hand which can be up to 15 cm 
(±2 range bins) before and after the temporary hand range bin. 

 

Fig. 3. Raw data collection and pre-processing flow. 

On the other hand, instead of selecting the strongest bin, 
Method II generates the TD matrix data for all 5 bins 
surrounding the temporary hand bin and then takes the 
resulting mean matrix as the data used for classification. The 
pseudocodes for Method I and II are shown in Algorithm 1 
and 2 respectively, while the sample data of TR and TD are 
given in Fig. 4. 

 

Fig. 4. Example of the output from Method I and II: TR (left), TD (right). 

 

 

Unlike Methods I and II, Method III relies on detecting the 
hand location based on the nearest detected movement in the 
Range-Doppler (RD) data [25]. As shown in Fig. 5, this is 
achieved by first applying a max filter with a neighborhood of 
3 to extract the peak values from each RD matrix followed by 
a threshold mask of 10 (determined empirically) to further 
highlight the relevant peaks by reducing the other values to 0. 

 

Fig. 5. Movement-based hand range detection and data extraction. 

 

Fig. 6. Resulting maps at each step of Method III. 

Next, the strongest Doppler peaks are extracted from the 
filtered results of each range bin, and the smallest bin index 
among these peaks is taken as the hand location. This process 

Algorithm 1 of Method I 

1: list Bins ← � � 
2: for R in TR do 

3:     Chest-bin ← Argsort (R) [�1] 

4:     Hand-bin_tmp ← Chest-bin � 5 

5:     Hand-bin ← Argsort (R [Hand-bin_tmp � 2, Hand-bin_tmp + 2]) [�1] 

6:     Add Hand-bin to Bins 

7: end for 

8: Hand-bin ← Mode (Bins) 

9: Get TD from Hand-bin 

Algorithm 2 of Method II 

1: list Bins ← � � 
2: for R in TR do 

3:     Chest-bin ← Argsort (R) [�1] 

4:     Add Chest-bin to Bins 

5: end for 

6: Hand-bin_tmp ← Mode (Bins) � 5 

7: Hand-bin_range ← R [Hand-bin_tmp � 2, Hand-bin_tmp + 2] 

8: Get 5 TDs from Hand-bin_range 

9: TD ← Mean (5 TDs) 



 

is repeated for each frame in the data. Finally, the set of hand 
locations across all frames is used to generate a TD map for 
the hand gesture. Algorithm 3 summarizes the 
implementation steps of Method III. Visualizing the results as 
an image, it can be seen that the combination of Doppler 
information between frames effectively captures hand gesture 
features, as shown in Fig. 6. 

 

C. Data Formatting 

Seven distinct data formats are derived from the Time-
Doppler (TD) data generated by the three proposed methods 
explained previously. Fig. 7 shows the four main visual 
representations of these data formats. The raw data format 
involves the use of the resulting TD matrix in a numerical 
format. This is done by saving the result in its original form 
within a CSV file and treating it as raw data. The threshold 
data format introduces a threshold mechanism, set at three 
times the average value of the entire matrix (set empirically), 
with values below this threshold set to zero. The modified 
matrix is then saved as threshold data in another CSV file. 

 

Fig. 7. Four main distinct data formats. 

The above raw and threshold data are also represented 
visually as (a) and (b), respectively, and are treated as image 
data. In these formats, the original matrices are rendered into 
spectrograms, where the intensity of color is used to convey 
signal strength. This approach provides a different perspective 
on the data, for observing signal variations and patterns that 
may not be so clear in the numerical representations. 

 The time series data traces the edges of the gesture 
features in the positive and negative directions in each frame 
based on the threshold matrix data shown in (b). The resulting 
lines are smoothed using a Savitzky-Golay filter to obtain a 2-

line format shown in (c). The 1-line format is obtained from 
(d) the difference between these two lines, and the 3-line 
format from the combination of these three lines. 

D. Hand Gesture Classification 

Two CNN-based models are investigated to classify the 
different hand gestures from the collected data. Fig. 8 
provides a visual representation of the Convolutional, Dense, 
and LSTM layers employed in these models, along with their 
respective parameters and structural arrangements. 

 

Fig. 8. CNN-only and CNN-LSTM architectures adopted. 

The input data for both models depend on the type of data, 
with a structure of 100 x 47 for matrix data, 99 x 74 x 3 for 
image data, and 100 x N (number of lines) for line data. The 
first model is based on a basic CNN architecture comprising 
five convolutional layers interspersed with five Max pooling 
layers. Max pooling is implemented to reduce the size of the 
feature map in the convolutional layer, retaining only robust 
features. To prevent overfitting during training, a dropout 
layer with a 0.5 ratio is incorporated. Subsequently, dense 
layers are used for classification, relying on the features 
extracted in the previous convolutional part of the model. The 
final dense layer, representing the model’s output, is sized 
according to the number of gestures learned (six gestures). 

The second model is similar to the first one but replaces 
one of the dense layers with an LSTM layer as highlighted in 
red in Fig. 8. Both models use the Adam optimizer with a 
learning rate of 0.001, a batch size of 32, and 500 epochs for 
training. An early stopping condition is implemented, 
ensuring that the training halts if the loss value fails to 
decrease over several epochs and saves the model in the state 
with the lowest loss value. 

III. EXPERIMENTAL SETUP AND HAND GESTURE DATASET 

This section presents details about the experiment scene 

and data collection protocol. In addition, the hand gestures 

considered in this study, the dataset collected, and their use 

for training and evaluation of the models are explained. 

A. Experimental Setup and Protocol 

The hand gestures implemented in this work were 

selected to satisfy an intention for simple control of 

contactless hand gesture-based applications. As shown in Fig. 

9, the six hand gestures from big gestures like push to tiny 

gestures like pinch were used in this study. 

The experimental procedures were carried out in the 

laboratory involving fourteen subjects. Fig. 10 illustrates the 

setting of the range experiment scene, in which the radar 

device mentioned in Section II (A) was used. In each 

experiment, the subject is asked to sit in front of the radar at 

Algorithm 3 of Method III 

1: list Dopplers ← � � 
2: for RD in TRD do 

3:     RD_MF ← Maximum Filter (RD, 3) 

4:     RD_Mask ← np.where (RD, RD_MF, RD, 0) 

5:     if RD_Mask ≤ 10 then 

6:         RD_Mask ← 0 

7:     end if 

8:     list Doppler_peaks ← � � 
9:     for R in RD_Mask do 

10:         Add Doppler_peaks to Max (R) 

11:     end for 

12:     Hand-bin ← np.where (Doppler_peaks ≠ 0) [0] 

13:     Get D form Hand-bin 

14:     Add D to Dopplers 

15: end for 

16: Get TD from Dopplers 



 

a specific distance. As shown in Fig. 11, the subject performs 

the same gesture 10 times following the beep sounds. The 

experiments for all six gestures are repeated once for each 

distance, namely 30, 60, 90, 120, and 150cm away from the 

radar. In addition, during the experimental measurement, 

only one subject is in the range to avoid the detection of other 

moving objects. This beep is also used in the experiments in 

terms of angle and nearby person impact described below. 

 

Fig. 9. Hand gesture types used in the experiment. 

 

Fig. 10. Experimental scene of range conditions. 

 

Fig. 11. Hand gesture data collection protocol. 

In the angle variation experiment, contrary to the range 

condition, the hand gesture is performed from a position 

other than directly in front of the radar. Fig. 12 illustrates 

three distinct angular conditions: (i) Horizontal (45 degrees 

to the right from the radar), (ii) Vertical (upper side from 

radar), and (iii) Diagonal (combination of horizontal and 

vertical). The vertical angle may vary based on the physical 

characteristics of the subject. Under all the above angular 

conditions, the hand-to-radar distance is approximately 60 

cm. This experiment was composed of three types of gestures 

with representative characteristics: small movement Pinch, 

large movement Push, and fast movement Shake. These 

angular conditions and gesture sets are aimed at evaluating 

the effectiveness of the proposed method. 

 

Fig. 12. Experimental scene of angle conditions. 

In the experiments of nearby person conditions, a person 

other than the subject performing the gesture was used to 

investigate the impact of dynamic signals from the nearby 

person. As shown in Fig. 13, the subject executing the gesture 

was positioned 60 cm in front of the radar, while (i) another 

person sat next to the gesturing subject, and (ii) a person 

moved horizontally with the radar positioned behind the 

gesturing subject. To indicate the detailed distances, in the 

experiment (i), the distance between both persons is 

approximately 30 cm, and the distance between the radar and 

the sitting persons is about 120 cm. On the other hand, in the 

experiment (ii), the walking person is approximately 180 cm 

from the radar and approximately 40 cm from the subject 

performing the gesture. The gestures used are the same as in 

the angle condition experiment.  

 

Fig. 13. Experimental scene of nearby person conditions. 

A laptop PC is connected to the radar through an Ethernet 

cable to collect the data, and save it into a binary file with TI 

mmWave Studio software [26]. Subsequently, the binary file 

is parsed by MATLAB while all other data processing, model 

training, and evaluation are performed using a custom Python 

code developed at our laboratory. The deep learning models 

were trained on a desktop PC with a 6 CPU core AMD Ryzen 

5, NVIDIA RTX3060 GPU, and 16 GB RAM for higher 

computational speed. 

B. Hand Gesture Dataset and Data Partitioning 

Considering the range experiment for fourteen subjects 

(they did not participate in all experiments), six different 

gestures repeated ten times, across three different distances, 

our dataset has a total of 3600 samples (600 samples for each 

gesture). The image data was saved in PNG format while the 

matrix data was saved as CSV files organized according to 

the six gesture classes. In the case of training for subject-

dependent evaluation, the data are separated using the split 

ratio of 8:1:1 while applying a 10-fold cross-validation 

process. On the other hand, for subject-independent, Leave-

One-Out Cross-Validation (LOOCV) is adopted to set the 

data from ten subjects for training and the remaining subject 

data for testing. 

A total of five subjects participated in the angles and 

nearby person experiment, performing three different 

gestures. Three different angles and two multiple-person 

scenarios were conducted, and the data set included 150 

samples (50 samples per gesture) for each experiment. This 

dataset is utilized as test data, employing a model trained on 

the dataset collected in the range condition experiments. To 

evaluate the generality of the training model, each subject is 

removed from the range condition experiment, which is 

treated as the training data set, so that both data sets do not 

contain data from the same subject.  



 

IV. RESULTS AND DISCUSSIONS 

This section summarizes the hand gesture classification 

results from the CNN model compared with the combination 

of CNN and LSTM for each of the three proposed hand-bin 

estimation methods. Furthermore, in-depth discussions about 

the impact of data type, change in distance, subject-

dependent vs independent, angle, and nearby person 

performance based on the results are given. 

A. Impact of Data Type and Model 

Table II shows the classification accuracies and their 

averages for each combination of model, data partitioning 

method, proposed method, and data format on matrix data.  

When using the matrix data type, it is clear that using the raw 

data with Method II produced the best results for both 

subject-dependent and subject-independent assessments. 

This may be due to the thresholding matrix data deleting 

important features of the gesture. In addition, since Method 

II uses the average map of five TD maps, the features may 

have been fully used in the learning process.  

In addition, a slight decrease in accuracy was observed 

when transitioning from subject-dependent to subject-

independent evaluations. This discrepancy can be attributed 

to the model training approach, where subject-dependent 

models are trained on data from all subjects. In contrast, 

subject-independent models are tested on subjects not 

included in the training dataset. Furthermore, the CNN-only 

model is more accurate than the combination model of CNN 

and LSTM in all conditions. 

TABLE II.  ACCURACY RESULT FOR MATRIX DATA (RATE %). 

Model CNN-only CNN+LSTM 
Ave. 

Data Raw Threshold Raw Threshold 

SD 

M I 94.41 93.91 93.83 93.02 93.79 
M II 96.75 96.52 96.3 96.19 96.44 

M III 96.58 95.97 96.16 95.52 96.06 

Ave. 95.91 95.47 95.43 94.91 95.43 

SI 

M I 92.5 91.63 92.13 90.47 91.68 

M II 96.02 95.55 95.36 95.0 95.48 

M III 95.83 95.5 94.47 93.66 94.86 

Ave. 94.78 94.23 93.99 93.04 94.01 

SD: Subject-dependent, SI: Subject-independent, M: Method 

 

On the other hand, the combination of Method III and the 

CNN-only model in the case of image data generated the best 

results for both subject-dependent and independent 

recognition as shown in Table III. Although there is a drop in 

accuracy when considering subject-independent, the results 

are still over 97.4% which is considered good. This can be 

explained by the additional features that the model can learn 

from the rich image-based data compared to matrix data. 

Overall, image data demonstrated better performance than 

matrix data and line data for both subject-dependent and 

subject-independent classification with the combination of 

Method III and a CNN-only model. 

For the line data, accuracy improves with increasing each 

additional line, and even more so for the CNN+LSTM model. 

This is because the line data is time series, and the effect of 

LSTM, which is suitable for this, is evident. Despite the 

smallest input size data format, the line data achieved 97.69% 

accuracy for the combination of Method III, CNN and LSTM 

model, and three lines data format on the subject-independent. 

The accuracy is already as good as 3-line when 2-line is used, 

and this is thought to be due to tracking hand Doppler, where 

features extend in the positive and negative directions of the 

TD map. 

TABLE III.  ACCURACY RESULT FOR IMAGE DATA (RATE %). 

Model CNN-only CNN+LSTM 
Ave. 

Data Raw Threshold Raw Threshold 

SD 

M I 98.38 98.27 97.75 95.94 97.58 

M II 98.63 98.49 98.27 97.22 98.15 
M III 98.72 98.63 98.38 98.05 98.44 

Ave. 98.58 98.46 98.13 97.07 98.06 

SI 

M I 98.33 97.91 97.47 95.13 97.21 

M II 98.58 98.08 97.69 96.14 97.62 

M III 98.69 98.58 98.11 97.41 98.2 

Ave. 98.53 98.19 97.76 96.23 97.68 

SD: Subject-dependent, SI: Subject-independent, M: Method 

TABLE IV.  ACCURACY RESULT FOR LINE DATA (RATE %). 

Model CNN-only CNN+LSTM 
Ave. 

Data 1 L 2 L 3 L 1 L 2 L 3 L 

SD 

M I 82.72 94.19 94.99 91.52 95.91 96.58 92.65 

M II 86.58 96.0 96.22 93.94 96.72 97.61 94.51 

M III 90.27 96.27 96.88 94.8 97.63 97.72 95.59 

Ave. 86.52 95.49 96.03 93.42 96.75 97.3 94.25 

SI 

M I 81.86 94.08 94.13 91.36 95.88 96.52 92.3 

M II 85.83 94.86 95.3 91.77 96.55 97.44 93.62 

M III 89.91 95.97 96.83 93.63 97.36 97.69 95.23 

Ave. 85.87 94.97 95.42 92.25 96.6 97.22 93.72 

SD: Subject-dependent, SI: Subject-independent, M: Method, L: Line 

B. Impact of Hand Distance 

Fig. 14 summarizes the classification performance of 

hand gestures at different distances: 30, 60, 90, 120, and 150 

cm. To make this assessment, threshold image data are used 

in conjunction with Method III and a CNN-only model due 

to this combination previously showing the best results. In 

the case of subject-dependent evaluations, the model 

displayed high accuracy. It consistently exceeded 97% across 

all distances, confirming its reliability. Notably, it performed 

better at 30, 60, 90, and 120 cm but slightly less accurately at 

150 cm, which was expected since the radar signal naturally 

weakens as the subject moves farther away, making it harder 

to detect gesture features. 

However, in the case of subject-independent (training 

data does not include test users) evaluations, the accuracy 

was slightly lower than subject-dependent with a randomly 

split data set. At 150 cm, the accuracy was the lowest, but 

even then, it remained at a respectable accuracy of 97.5%. 

These results indicate that despite the challenges of subject-

independent scenarios and increased distance, our model 

remains reliable and effective.  

 

Fig. 14. Classification accuracy by distance. 



 

C. Impact of Gesture Type 

To check the impact of hand gesture type on performance, 

the classification accuracy is shown in Fig. 15 for the subject-

dependent (a) and subject-independent (b) validation using 

image data, Method III, and a CNN-only model (the best 

combination shown previously). From (a), the classification 

model exhibited good reliability in distinguishing various 

hand gestures in a subject-dependent evaluation, achieving a 

classification rate of 98% and higher for nearly all gestures. 

Likewise, subject-independent (b) provides further evidence 

of our model’s reliability and accuracy, with all gestures 

achieving over 97% accuracy. 

The main misclassifications were between PD and PU, 

and from Ps to Pi. These may be attributed to the similarity 

of PD and PU gestures due to the symmetrical signature in 

the radar Doppler images, and Ps has some data on weak 

signals at distances of 90 cm or more. It is also possible that 

the strength of the signal varies with the speed at which the 

gesture is performed. This underscores the importance of 

including angle range maps in the future to address this 

limitation. 

 

Fig. 15. Hand gesture classification (subject-dependent vs independent). 

D. Impact of Angle 

Figure 16 shows (a) the average accuracy of gesture 

classification at each angle, (b) the confusion matrix for the 

diagonal angle with the lowest accuracy, (c) the Push gesture 

in front of the radar, and (d) the Push gesture at the upper 

right angle from the radar, which contains noise. Normal is a 

condition in which there are no horizontal and vertical angles, 

just the radar and the subject facing each other, and the 

distance between them is 60 cm. Despite cross-validation to 

ensure that each subject participating in the collection of 

angle data was not included in the training set of range data, 

Normal achieved 100% accuracy for all of them. However, 

some subjects were less accurate for horizontal and vertical 

angles, and accuracy was even lower for angles in both angles. 

The comparison of push gestures shows that (d) contains 

noise other than gesture features not found in (c). This noise 

might be attributed to the subject performing the gesture 

while standing, causing reflected signals from body parts 

other than the chest to have a greater impact compared to the 

seated state. In particular, the noise at the diagonal angle (d) 

was a noticeably larger feature than at the non-normal angle 

(c), which may have been a wrong learning process. In 

addition, in the experimental setup, this feature appeared due 

to the body being closer to the front of the radar than to the 

gesturing left hand. Therefore, the TD map must be trimmed 

so that only gesture features remain, and the state during non-

gestures must be learned. 

 

Fig. 16. Angle results and impact of decreased accuracy. 

E. Impact of Nearby Person 

This experiment is to investigate the impact of gestures in 

experiments with two people who are all within radar sensing 

range, including scenarios with a person sitting next to the 

subject or walking behind the subject. Fig. 17 shows the 

average classification accuracy per scenario in (a), the 

confusion matrix for the “walking person” experiment with 

the lowest accuracy (b), and comparison examples of the TR 

map for the Pinch gesture that affected accuracy for (c) 

Sitting and (d) Walking. While sufficient accuracy was 

obtained in the experiment with a person sitting next to the 

subject, the accuracy was significantly decreased in all 

subject test sets in the experiment with a person walking 

behind the subject. Among them, there was a high rate of 

misclassification for Pinch gestures with small motions and 

weak reflection signals. 

 

Fig. 17. Nearby person results and impact of decreased accuracy. 

Comparing the TR maps, in scenario (c) a person walking 
is detected in the range of 20 to 35 of the range value, with 
scattered green dots indicating detection of hand position, and 
green dots are not detected stably at 9 or 10 of the range value 
expected at the hand detection position. This indicates that 
when people are next to each other, the effect is small due to 
their proximity to each other, while when people are far from 
each other (and also when people are continuously moving 
behind the subject), they are affected by stronger reflected 
signals. Thus, the accuracy of hand position detection may 
depend on the type of gesture and the distance between people, 
as well as the interference of large and/or fast-moving objects. 



 

V. CONCLUSION AND FUTURE WORK 

In this paper, a range-aware hand gesture recognition 

system based on FMCW radar and deep learning is presented. 

The key contributions of this research include the proposals 

of three novel methods to automatically detect the hand range 

bin using radar data. Additionally, the classification of six 

hand gestures using a CNN-based model from a distance of 

up to 150 cm was achieved. The evaluation results showed 

that the combination of Method III with base CNN proved to 

be the best among the three proposed methods. This research 

achieves an average accuracy of 98.72% in the subject-

dependent scenario and 98.69% in the subject-independent 

scenario surpassing the previously similar work [14]. In the 

angular condition, at a fixed distance of 60 cm, 99% was 

achieved at 45 degrees horizontally and vertically and 95% 

at diagonal angles. On the other hand, in the scenario with a 

nearby person, the result was good if the person was close to 

the other person, but the performance was affected if the 

person was far away from the subject and kept moving. 

While the results show promise, there are some 

limitations and areas for improvement in future research. To 

enhance the model’s accuracy and enable additional 

capabilities, it will be very useful to include angle 

information in combination with range and Doppler to 

improve our range awareness methodology and help 

distinguish similar gestures. Another important aspect is to 

increase the dataset by training more subjects and gesture 

types. It also needs to be robust to the effects of any distance 

or angle range, two or more subjects, or other dynamic 

interfering objects. In the future, the model can be further 

enhanced and more practical by training it to recognize 

special gestures for specific applications. This is a logical 

next step based on the results achieved by this research so far. 

Furthermore, the ability to recognize gestures from further 

away and to extract data only from subjects who are gesturing 

among multiple persons could open up new possibilities and 

make the technology even more versatile. 
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