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Abstract— In this study, a non-invasive solution for on-bed 
monitoring of human states using FMCW radar is proposed. 
Our unique approach models the bed area and region of interest 
(ROI) from the radar perspective, projecting them into 
azimuth-range and elevation-range maps for precise state 
detection, in which, the Minimum Variance Distortionless 
Response (MVDR) is used for target localization, Fast Fourier 
Transform (FFT) and Weighted Range-Time-Frequency 
Transform (WRTFT) is used for Doppler data extraction. A new 
method is introduced for on-bed state detection by capitalizing 
on chest localization within the azimuth-elevation-range-ROI 
mapping, enhancing detection accuracy, and this method can 
concurrently monitor on-bed presence, posture, motion, and 
turning, providing a holistic view of sleep behavior.  

Keywords— FMCW radar, on-bed, detection, presence, 
motion, posture, angle, range, Doppler. 

I. INTRODUCTION 
Automatically detecting and accurately logging sleep 

states occurring while on bed is of great importance for 
analyzing sleep quality and improving overall health. This is 
because sleep accounts for nearly one-third of an individual's 
life. The ability to accurately differentiate between time spent 
on-bed and off-bed, in addition to detecting posture, and 
motion in an on-bed setting is fundamental in gaining deeper 
insights into sleep patterns, improving automatic sleep 
scoring, and analysis of sleep quality.  

The existing methods for presence detection, 
predominantly relying on cameras [1], [2], [3], and pressure 
sensors[4], come with several limitations, including privacy 
concerns, discomfort, and lack of precision. Ideally, a 
monitoring system operating in such environment and 
conditions should operate without physical contact, without 
causing disruption, and functions effectively even in low-light 
environments commonly encountered during sleep. This led 
us to consider a solution based on radar technology that meets 
all the requirements for monitoring on-bed state.  

Previous studies on the use of radar technology include an 
example of such studies is the work published by MIT labs [5] 
focusing on using radar to capture several types of information 
from the subject and roughly locate his position in a room 
setting. A similar study [6] used dual FMCW radars and 
proposed a solution called Argosleep based on a proposed 
deep learning architecture to classify the different sleep 
postures. FMCW radar was also used for posture classification 
[7][8], sleep stage recognition [9], and to capture vital signs in 
sleep environment [10]. Our proposed solution effectively 
addresses the challenges of restricted radar detection, 
reflections from the surrounding environment, various body 
postures, and multiple reflection locations. Through the 
integration of advanced algorithms and precise localization 
techniques, this work provides an innovative approach that 
enables accurate and comprehensive on-bed presence, 
posture, and movement detection. To summarize, this paper 
makes the following contributions:  

• A unique method to model the bed area and the region 
of interest (ROI) within a sleeping context from the 
radar perspective. This technique allows for the 
projection of the bed area and ROI into elevation-range 
(ER) and azimuth-range (AR) maps. 

•  A novel solution is introduced for detecting the on-bed 
state of a subject by leveraging chest localization in the 
AR-ER-ROI mapping. 

• A comprehensive and simultaneous approach for on-bed 
presence, posture, and motion detection. 

The remainder of this paper is organized as follows. 
Section II showcases our proposed solution highlighting its 
different modules and detection algorithms, while section III 
presents the different radar settings and experimental 
protocols. In Section IV, the evaluation results and discussion 
about performance and current limitations are presented. In 
section V, the paper is concluded with a summary and an 
outline of future work. 

II. ON-BED STATE DETECTION MODELING AND METHODS 
In this section, a comprehensive overview of the proposed 

method for detecting presence, movement, and posture based 
on FMCW radar in an on-bed setting is offered. 

A. Model and Projection of the Region of Interest (ROI) 
One of the most important steps in our proposal is the 

modeling of the bed and the region of detection, call Region 
of Interest (ROI). As shown in Fig. 1, the ROI is a rectangular 
area that matches the dimensions of the bed in length and 
width, with a height of 1 meter. When the target falls within 
the ROI, the target is distinguished to be on the bed. Since 
radar can only provide range, elevation, and azimuth (r, e, a) 
information, a conversion between spherical coordinates and 
Cartesian coordinates is needed. The ROI coordinates (r, e, a) 
are converted from the (x, y, z) system using equations (1) ~ 
(3) where H!  is the height of the radar to calculate the 
corresponding range, elevation, and azimuth values. These 
values are then plotted on the AR (Azimuth-Range) and ER 
(Elevation-Range) maps. The (x, y, z) coordinate system is 
established by taking the radar projection's position on the 
ground as the origin. In Fig. 1, the red line represents the 
effective detection range of the ROI in the AR and ER maps, 
indicating the actual boundaries within which detections are 
considered. On the other hand, the blue line depicts the 
projection of the ROI boundary in the AR and ER maps, but 
it does not serve as the detection range for determining targets.  

r = #x! + y! + (z − H")! (1) 

e = tan#$ 1
y sin θ + (z − H") cos θ
y cos θ − (z − H") sin θ

7 (2) 

a = tan#$ 9
−x

y cos θ − (z − H") sin θ
: (3) 

 



 

 
Fig. 1. Bed ROI model and its projections of elevation-range (ER) and 
azimuth-range (AR) from the view of the radar placed on the head wall. 

B. Processing and Detection Pipeline 
Fig. 2 depicts the processing pipeline adopted in our 

proposed method. It is layered according to three main levels: 
data pre-processing, target data extraction, and target state 
detection.  

(1) Data Pre-processing. The initial stage in the 
processing chain is centered on the acquisition and digital 
conversion of received radar signals. An Analog-to-Digital 
Converter (ADC) is used to convert the radar data into a digital 
format and subsequently, a Fast Fourier Transform (FFT) 
commonly referred to as 1DFFT (range-FFT) is applied to 
extract range information. This step allows the segmentation 
of the collected data into discrete distance intervals, known as 
‘range bins’. Since radar sends multiple chirps per frame, only 
one chirp is selected from each frame which still meets the 
requirements of the proposed solution and further facilitates 
the data processing and storing in later stages. Finally, clutter 
removal is used to eliminate reflections from static objects in 
the environment, such as floors, walls, and furniture.  

(2) Target Data Extraction. This part has two main tasks: 
identifying the location of the target, and extracting movement 
information within the observed scene. For the former task, 
The Minimum Variance Distortionless Response (MVDR) 
algorithm is used to determine the Angle of Arrival (AoA) 
information. This will enable the precise localization of targets 
within the radar's field of view by using range-azimuth-
elevation coordinates. To enhance the detectability of a target 
within the scene, a power threshold is set by analyzing the 
background noise within the scene during the first 10 sec of 
the recording when the scene is empty (calibration process). 
Next, the Cell Averaging - Constant False Alarm Rate (CA-
CFAR) algorithm is applied to further distinguish the most 
significant sources of power and output filtered azimuth-range 
(AR) and elevation-range (ER) maps shown in Fig. 3 (left). 
Then Weighted Range-Time-Frequency Transform (WRTFT) 
[9] is applied to AR and ER maps with time. The final output 
of this step is the weighted range (WR) AT and ET maps. 

 
Fig. 2. Data processing and state detection pipeline.  

 
Fig. 3. A target’s location data (left) and Doppler data (right).  

The latter task is achieved via the Doppler-based 
computation method. The process starts by applying a 2DFFT 
on the radar signals that have already been converted into the 
range domain to facilitate the generation of a Doppler-range 
(DR) map. Following the 2DFFT, the process advances to the 
application of WRTFT to get the WR-DT map which shows 
the Doppler change through time. The standard deviation (SD) 
is used in combination with the smoothing filter Savitsky-
Golay (SG) smoothing filter to facilitate the extraction of the 
start and end of the detected variations triggered by 
movements as shown in Fig. 3 (right). The output from this 
stage serves as a tool for recognizing movement sequences. 

(3) Target State Detection. The final stage in the proposed 
solution is to perform the different state detections, namely 
on-bed presence, posture, and movement, which are explained 
in the next subsection. 

C. On-bed State Detection Methods 
Fig. 4 summarize the details including the data used, the 

functions, and the logic involved in performing these different 
tasks. Four main modules are used including presence 
detection, stand/sit/lie posture detection, and sleep posture 
detection. Details are explained as follows. 



 

 
Fig. 4. Target state detection flowchart (radar at head wall).  

(1) Presence Detection: The primary objective of this 
module is to identify whether the target is present on the bed 
or not. Given that the target is within the radar's field of view, 
the region corresponding to the individual's chest exhibits the 
greatest power. Consequently, the cells with the highest power 
levels, denoted as (e! , r"! ) and (a! , r#! )  in both the 
azimuth-range (AR) and elevation-range (ER) map (P"$ and 
P#$), are recognized as representing the subject's chest. If both 
of these cells fall within the region of interest (ROI), it is 
deemed that the target is on the bed. Conversely, if either or 
both of these cells lie outside the ROI, the target is considered 
to be out of the bed. 

(2) Standing/Sitting/Lying Detection: The detection of the 
three postures is performed only when the subject is identified 
as being on bed. In such instances, the values r"!, e!, and a! 
obtained through presence detection are subsequently used to 
calculate the height of the target's chest (h%) using the formula 
provided in equation (4) where α is the tilt angle of the radar. 
The thresholds (T&'(, T&)') for conducting posture detection are 
calculated based on the subject's height, employing the 
standard ratio between height and either shoulder height or 
shoulder width. 
h% = H− r&'[cos(e')cos(a')sin(α) − sin(e')cos(α)] (4) 

(3) Movement Detection: A specific period is designated 
as the no-target phase at the beginning. The average value of 
the smoothed Doppler SD within this phase is used to establish 
the threshold for detecting movement, referred to as T!*+ . 
Each unit of the smoothed Doppler SD is then compared 
against this threshold, resulting in the generation of a 
preliminary movement outcome represented as a sequence 
called “< mv, >”. However, due to the inherent instability of 
the original signal, an additional algorithm is applied to 
enhance the performance. This algorithm ensures that the 
result will only be modified after the system verifies the 
presence of at least five consecutive changes. The final result 
is saved in a sequence called “< s, >”. 

(4) Sleep Posture Detection: Sleep posture detection is 
specifically applied when the subject is in a lying posture on 
the bed and remains motionless. To address this objective, our 
study employed two distinct methods: logic-based and deep 
learning/DL-based approaches, which are shown in Fig. 6 and 
Fig. 7, respectively. The logic-based method is to utilize the 
features of radar data in different, while the deep learning-
based is to relies on learning ability with labeled data.  

 
Fig. 5. Sleep postures’ maps of WR-DT, RT, WR-AT and WR-ET. 

 
Fig. 6. Sleep posture detection flowchart based on logic. 

 

Fig. 7. Sleep posture detection flowchart based on CNN. 

The proposed logic involves obtaining the DR and AR 
maps over time. WRTFT is used to derive the WR-DT and 
WR-AT grids (P(' and P#'). Additionally, the RT grid (P$') is 
extracted from a single channel for RT information. After 
incorporating Doppler information into the DT map through 
weighted adjustments (resulting in wP('), a subject location 
can be determined using the dominant angle bin (< Ap, >) 
and nearest peak in the range profile (< Rp, > ). Power 
analysis of the WR-DT, WR-AT, and RT maps reveals 
correlations with breathing strength, quantified by the SD and 
average power values during each still period (< Md, >, <



 

Ma, >, < Mr, >).  The logical framework identifies supine 
(S) posture using the mean value of the sleep record as a 
trigger, distinguishing between side and prone (P) postures 
based on changes in distance, and separating left (L) and right 
(R) from side based on changes in azimuth angle. 

Fig. 7 illustrates the DL-based approach, which capitalizes 
on the 2D vector format of the data resembling an image. 
Given this similarity, Convolutional Neural Network (CNN) 
known for its proficiency in image recognition is employed. 
Before initiating the deep learning process, data preprocessing 
and dataset partition are applied. During preprocessing, the 
DT, RT, AT, and ET data are normalized individually and then 
combine them into a unified 2D matrix. As for dataset 
partitioning, various window sizes (WS), sliding window 
sizes (SL), and different combinations of the data were 
experimented. The data from n-k subjects are for training and 
the remaining k subjects’ data are for testing. The subject-wise 
cross-validation is further conducted to evaluate and compare 
the accuracy of the parameters and data used.  

III. RADAR SETTING & EXPERIMENT PROTOCOLS  
In this section, a description about the radar parameters 

used, radar position settings, and three separate experimental 
protocols are presented. 

A. Radar Positions and Parameters 
To evaluate the proposed method, the TI-IWR6843ISK-

ODS [10] coupled with an acquisition board DCA1000 are 
adopted in order to collect the raw ADC data. 16 chirps per 
frame per second is configured for data collection. Each range 
bin represents to 0.04m according to our configuration. The 
radar is connected to a desktop PC where TI mmWave Studio 
software was used to acquire the data and then pass to the 
solution implemented using Python to perform the processing 
task. Fig. 8 illustrates the setting of the three radar positions 
and setting where the experiments took place. 

 
Fig. 8. Radar at head wall, side wall, and ceiling respectively.  

B. Experiment Protocols 
The experimental procedures were carried out in our 

laboratory, involving 10 male participants. We devised three 
separate experiments, each focused on assessing the 
performance and potential limitations of the distinct aspects of 
the judgment process: presence, posture, and movement.  

(1) Presence Experiment: The subject is asked to sit at 
locations 01-13 and perform different actions for 10 sec each 
(staying still, moving head, moving body, moving arm) as 
shown in Fig. 9. The subject has 5 seconds to transmit between 
locations. This experiment is repeated once for each radar 
location (R1: head wall, R2: side wall, and R3: ceiling).  

 
Fig. 9. Presence experiment.  

(2) Standing/Sitting/Lying and Movement Experiment: 
The subject is asked to first stand at locations SD1-SD4 as 
shown in Fig. 10 while performing different actions for 10 sec 
each (staying still, moving head, moving body, moving arm), 
before switching to sitting on bed at locations ST1-ST4 and 
performing the same group of movement.  After sitting on bed, 
the experiment is switched to lying on bed at location L1-L5, 
performing the same group of movements, to see the impact 
of movements to the recognition of postures. 

 
Fig. 10. Standing/sitting/lying posture experiment.  

(3) Sleep Posture Experiment: the subject is instructed to 
assume various postures while lying on the bed. Each posture 
requires the subject to maintain stillness for a duration of 1 
minute. The experiment consists of two primary parts: turning 
to the right and turning to the left. The turning to the right part 
includes 1 supine, 2 right side, and 1 prone. Similarly, the 
turning to the left part comprises 1 supine, 2 left side, and 1 
prone posture. Consequently, each posture in the experiment 
is represented by a 2-minute data segment. 

 
Fig. 11. Sleep posture experiment.  



 

IV. STATE DETECTION RESULT AND DISCUSSION 
This section presents the results derived from the various 

experiments conducted for evaluation. The evaluation 
involves comparing the number of correct detections and 
calculating various assessment metrics, including precision, 
F1-score, and analyzing the impact of each condition on the 
correct detection of presence, posture, and movement.  

A. Presence Detection Result 
Following the experimental details depicted in Fig. 9, the 

results from 10 subjects have been collated in Table I. Across 
all locations inside the bed (07-13), our solution provided a 
100% F1-score for presence detection while sitting and 
performing the different actions with different radar locations 
proving the reliability of on-bed detection. On the other hand, 
the detection of off-bed targets shows some limitations at 
specific locations depending on radar position. When radar is 
placed at head wall (R1), the performance in locations 02 - 05 
achieves good performance, while there is a huge drop for 
locations 01 and 06 with an F1-score of 18.4% for the latter. 
This can be attributed to the critical position of these points at 
the edge of the FoV of the radar triggering multiple cases of 
false detections, in addition to the unique sitting way for each 
subject at the edge of the bed which also caused false 
detections. Switching to side wall (R2), there is a noticeable 
drop across all outside locations, especially for location 02 
which may lay outside or at the edge of the field of view of the 
radar due to its closeness (sitting in the 0.5 m gap between the 
bed and the radar as shown in Fig. 8) and a low elevation since 
radar is at 1.35 m while the chest of the subject while sitting 
is at 0.6-0.7 m. In addition, and similar to the case of R1, 
location 01 also gave a poor performance. 

TABLE I.  POSITION-DEPENDENT PRESENCE DETECTION RESULTS 

 
When examining the results of detection from ceiling 

position (R3), the improvement in performance is clear across 
all locations with a drop only in location 01 which proves to 
be a limitation for our current detection solution according to 
the results. The ceiling location allows the radar to have a 
better view of the bed when comparing to head wall and side 
wall which explains the improvement in detection for off-bed 
cases. The analysis of the experimental results across the three 
radar positions demonstrates the reliability of our solution in 
determining the subject’s presence on the bed. It is worth 
mentioning that these results are aggregated without 
considering the various movements performed during the 
experiments.  

B. Movement Impact on Presence Detection 
As shown in Fig. 12, the presence detection achieves an 

F1-score higher than 90% under the impact of the different 
movements and in all three radar positions. In line with 
expectations, the result indicates a downward trend in 
performance transitioning from a still state to motion, with full 
body or arm movements having the most notable performance 
drops. The magnitude of head movement is comparatively 
smaller when compared to body and arm movement, resulting 
in a relatively smaller drop in performance. 

 
Fig. 12. Impact of motion on presence detection per radar position.  

C. Standing/Sitting/Lying Posture Detection Result 
Next, the posture detection results are presented with the 

radar positioned in the head wall position (R1) since it is 
considered the most practical for a real-world deployment and 
is less considered in most previous studies which focused 
mainly on the ceiling position. Among all postures, lying was 
detected with the highest precision, achieving an impressive 
F1-score of 99.5%. Both sitting and standing postures were 
also recognized with over 90% accuracy. Fig. 13 also displays 
the impact on posture detection performance between still and 
when moving. The result shows a clear decrease in accuracy 
when switching from still state into moving across all 
postures.  

 
Fig. 13. Detection results in still (left) and accuracy impact in motion (right).  

D. Movement Detection Result 
From Fig. 14, the accuracy of moving the whole body is 

understandably higher since it is easier to detect due to the 
large reflecting surface compared to the arm or the head. In 
addition to having a relatively smaller reflective area, the 
movements of the head exhibited by some of the subjects were 
very small and contributed to the low accuracy results. 

 
Fig. 14. Detection accuracy of still vs movement actions. 



 

E. Sleep Posture Detection Result 
Based on the logical framework outlined in Fig. 6, its 

performance is first evaluated using 3-category recognition, as 
depicted in the left confusion matrix in Fig. 15. The results 
revealed an impressive accuracy of 98.11% for the 3-category 
recognition based on our logic approach. Notably, all supine 
postures in the experiment records were correctly identified. 
However, errors primarily happened in distinguishing prone 
postures, which were occasionally misclassified as supine. A 
detailed analysis of each experiment highlighted a correlation 
with body mass; subjects with higher body mass exhibited 
more powerful breathing, leading to false recognition of prone 
as supine. Given the excellent results achieved through 3-
category recognition, we extended our analysis to 4-category 
recognition, as shown in the right confusion matrix in Fig. 15. 
The overall accuracy for 4-category recognition reached 
94.79%. As the proposed logic focuses on distinguishing left 
and right from side postures, the recognition results for supine 
and prone remained consistent. However, errors in prone 
posture recognition also affected the accuracy of left and right 
recognition, as the logic relies on changes in azimuth angle 
and previous postures. 

In the CNN approach, we trained the model using various 
window sizes (WS), sliding window sizes (SL), and subject-
independent data. The results are presented in the left table of 
Fig. 16, where D represents the WR-DT map, R denotes the 
RT map, E signifies the WR-ET map, and A represents the 
WR-AT map. From the results, it is observed that increasing 
the window size led to improved performance. Similarly, as 
the sliding window size increased, the results also 
demonstrated improvement. Regarding data combination, the 
DRA combination yielded the best results, surpassing the 
performance achieved when using all four data sources. After 
extensive experimentation with WS-wise, SL-wise, and 
different data combinations, the optimal parameters is 
identified: a window size of 30 seconds, a sliding window size 
of 5 seconds, and the DRA data combination, resulting in an 
accuracy of 94.38%. To provide a comprehensive evaluation 
of the model, we employed an advanced 5-fold cross-
validation approach. The resulting confusion matrix, depicted 
on the right side of Fig. 16, demonstrates an overall accuracy 
of 93.25%. 

Upon comparing the CNN approach with the logic 
approach, it is found that the logic approach achieved slightly 
higher accuracy in posture recognition. However, the CNN 
approach holds the advantage of real-time applicability, 
whereas the logic approach requires analysis after recording 
the entire sleep session. Each approach has its own strengths 
and limitations, and the choice depends on the specific 
application requirements. 

V. CONCLUSION AND FUTURE WORK 
This research is focused on a novel on-bed state detection 

solution leveraging FMCW radar technology. One of the key 
contributions lies in a unique bed modeling strategy from the 
radar's viewpoint, facilitating the projection of the Region of 
Interest (ROI) into AR and ER maps. Additionally, an 
innovative solution is presented for identifying the on-bed 
state of individuals by pinpointing chest location. We further 
achieved simultaneous detection of on-bed presence, motion, 
posture, and turning. In addition, a comprehensive 
experimental evaluation is performed to determine the 
robustness and constraints of our proposed approach.  

 

Fig. 15. Logic-based sleep posture detection confusion matrices. 

 

Fig. 16. CNN-based sleep posture detection accuracy and confusion matrix. 

On the other hand, currently, the attempts to differentiate 
when the subject is off-bed yield suboptimal accuracy across 
all radar positions. Enhancing the off-bed detection logic 
requires further investigations. Furthermore, our objective is 
to expand the applicability of the logic for sleep state 
monitoring across all three radar positions, with a subsequent 
focus on the most practical position, namely the nightstand. 
Additionally, considering the prolonged duration of sleep, 
post-processing can be applied to the deep learning approach. 
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