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Abstract— This research focuses on fine-tuning the frame range 

for point clouds generated by a millimeter wave radar in the 

context of American Sign Language (ASL) gesture recognition. 

The study employs an IWR6843AOP millimeter wave radar, a 

non-contact device, to capture fifteen ASL gestures, obtaining 

up to 800 samples per sign gesture. Initially, the frame range 

varies from 11 to 120. Training an LSTM model with this initial 

frame range yields an overall accuracy of 88.3% for 15 gestures. 

By fine-tuning the frame range to [30-54] using a histogram 

distribution, the accuracy of sign gesture recognition improves 

to 89.2%. Further enhancement is achieved by adopting a Bi-

LSTM learning model, resulting in an accuracy of 91.7%, 

utilizing approximately 700 samples per gesture as the optimal 

sample size. The research employs two algorithms for fine-

tuning the frame range and explores three learning models: 

LSTM, Bi-LSTM, and Bi-LSTM with an Attention mechanism. 

The obtained accuracies for sign gesture recognition are 89.2%, 

91.7%, and 92.30%, respectively. This study demonstrates the 

efficacy of optimizing the frame range and leveraging Bi-LSTM 

models with attention mechanisms for improved ASL gesture 

recognition accuracy.   
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I. INTRODUCTION 

According to the World Health Organization, over 1.5 
billion people globally live with hearing loss. This number 
could rise to over 2.5 billion by 2050 [1]. The hearing loss 
problem prevents people from effective communication, 
which sometimes leads to social isolation. The most common 
means of communication is the use of hand gestures. However, 
some of them may not be able to access the education of sign 
language but for sure they can read texts. 

To provide such solutions based on transcriptions, there is 
a growing interest in using deep learning and artificial 
intelligence (AI) techniques to recognize sign language 
gestures. The core challenge in implementing such systems 
lies in the effective approach to improving the recognition 
accuracy of the sign gestures captured in the form of 
sequential frame data. These sign gestures can vary in motion, 
speed, and orientation [2], making it difficult to determine the 
appropriate number of frames for training the models to better 
recognize sign gestures. To address this problem, this research 
proposes a way of fine-tuning the frame range in millimeter 
wave radar point cloud generation for sign language gesture 
recognition with Bi-LSTM Attention. The idea is to achieve 
an optimal frame range and training gesture sample size 
through the analysis of a histogram distribution before feeding 
those samples to the learning models. In this research, a 
mmWave radar sensor is adopted due to the privacy protection 
of users. 

The roadmap of this study is the brief outline of the related 
work in Section II; Section III introduces the approach to 
recognizing the sign gesture through frame range fine-tuning, 
while Section IV describes the American Sign Language 

gesture point cloud data collection with a millimeter wave 
radar sensor. Section V gives the details of the frame range 
fine-tuning with the optimal training and validation sample 
size.  Section VI explains the experiment results with remarks. 
Finally, in section VII the conclusion is drawn, and the 
remaining future work is addressed. 

II.   RELATED WORK 

There exist various explorations of sensors and frame 
selection aiming to make effective recognition of sign 
language gestures. To begin with, the MIT students Pryor and 
Azodi in [3] used a pair of electronic gloves to capture and 
translate American Sign Language (ASL) into texts using 
statistical regression. Despite the promise of SignAloud which 
earned the authors the $10,000 MIT-Lemelson prize, the 
employed sensor was a wearable device that is intrusive and 
requires a continuous power supply. 

As alternative solutions, Mathieu and Mieke [4] chose 
only RGB camera data. Their data were trained with a Visual 
Transformer Network (VTN) model to recognize and translate 
sign gestures with an achieved accuracy of 92.92%. In 
preprocessing data, after some visual inspection, 16 frames 
were selected in the middle of the initial video of each sign 
gesture with a temporal stride of 2 frames, for an effective 
temporal receptive field of 32 frames.  However, frame 
skipping can result in sequential information loss. This is more 
problematic in real-time systems. What is more, data from 
RGB cameras reveal privacy, which is a concern.  

Owoyemi and Hashimoto [5] converted point cloud 
frames into 3D voxels before feeding them into 3DCNN for 
gesture prediction. Employing such a data representation has 
a few drawbacks. First, 3D voxels are memory-consuming due 
to the need for storing 3D grids. Second, the models require 
much computational cost because the conversion from point 
clouds to 3D voxels is required before a prediction. 

On the other hand, Palipana. S, Salami. D, Leiva. L.A. and 
Sigg. S [6] opted to improve the resolution of the point cloud 
through the frame of point cloud fusions, which consists of 
assembling (clubbing together) point clouds from adjacent 
frames into fewer subframes based on their time of reception. 
This technique reduces the total number of frames into a fixed 
and smaller number of frames. Following this, a combination 
of   LSTM and PointNet++ was leveraged to recognize 
gestures. Although the frame fusions have the potential to 
improve spatial resolution and reduce the sequence length to 
be processed during model training, fixing the frame length 
can result in a decrease of temporal information or their 
complete loss. 

Even though millimeter-wave radar point clouds have 
been utilized for gesture recognition and broadly in human 
activity recognition, it must be emphasized that less is known 
about extensive work aiming to utilize such data for sign 
language recognition. Compared to other gestures, sign 
language gestures are dialect and expressive which consist of 



complicated grammar as well as huge and different etymology 
(vocabularies). So, they require subtle finger coordination and 
body motions to effectively convey a message. A slight 
change in performing sign gestures can result in a wrong 
interpretation which can decrease the recognition accuracy of 
sign gestures. 

To improve accuracy, this research proposes to fine-tune 
the frame range in point cloud generation for sign language 
gesture recognition with LSTM, Bi-LSTM, and Bi-LSTM 
Attention models. The contribution of this work is 
summarized as follows: 

• Introducing a novel approach to improve accuracy while 
fine-tuning the frame range to a narrower range and at 
the same time obtaining the optimal sample size for 
efficient model learning. 

• Show the potential for recognizing sign language 
gestures using millimeter-wave radar point clouds which 
is crucial for privacy preservation. 

• Make the dataset publicly available for researcher 
communities. 

III.   METHODOLOGY FOR IMPROVING THE ACCURACY OF 

SIGN LANGUAGE GETURE RECOGNITION  
 

In this research, the core methodology employs a non-
contact device, a millimeter wave radar sensor to capture a 
sequence of sign gestures performed by different participants. 
Then a histogram distribution is used to fuse all gesture 
samples across the different signs versus the number of frames. 
Then two algorithms are employed to fine-tune the frame 
range with optimal training and validation sample sizes. 
Following this, those samples obtained within the fined-tuned 
frame range are used for training the LSTM, Bi-LSTM, and 
Bi-LSTM Attention mechanisms for learning. The millimeter 
wave radar is utilized in this work because it is non-intrusive 
and ensures users’ privacy. mmWave radars are resilient to 
environmental factors such as fog and illumination, which 
guarantee consistent performance under diverse conditions. 
Moreover, the device consumes low power. Also, its 
compactness and portability make it a better choice for many 
applications. Fig. 1 shows the diagram of the overview of our 
approach.

 

Fig. 1. Fine-tuning frame range in millimeter wave radar point clouds generation for improving sign language gesture recognition.  
 

The above system consists of three major steps which can 
be summarized as data collection, frame range fine-tuning, 
and their evaluations through learning models. 

 

IV.   ASL GESTURE DATA  COLLECTION USING MILLIMETER 

WAVE RADAR 

A. Experiment Setting 

In data collection for this research, the device employed 
was an IWR6843AOP millimeter wave radar sensor from 
Texas Instrument operating in the 60-64 GHz frequency range. 
It consists of 3 transmitting antennas(TX) and 4 receiving 
antennas(RX). The configuration parameters of the device are 
shown in Table 1. The experiment was conducted indoors, in 
an area of dimensions 6m*5m. The device was mounted on a 
stand at a height of 1.5 m with a tilt angle of 0°. This altitude 
and tilt angle were appropriate for capturing all the sign 
gesture data. This angle also canceled the need to later rotate 
the point cloud. On the other hand, the Field of View (FoV) 
was set to 110° to ensure that all the gestures performed 
remained in the waves transmitted by the radar. Furthermore, 
the width of the bounding box was set along the x-axis 
between -3 and 3 to prevent any interference from the walls 
on the signer's right and left sides. Similarly, the length of the 
box describing the y-axis was set between 0 and 6 to avoid 
radar waves reaching the walls behind the signer to reflect 
clutter or noise. Therefore, any value out of these range sets is 

considered as noise and cut off immediately. During the data 
collection process, it was observed that the proximity between 
the radar location and the signer remained within a controlled 
range. The minimum distance maintained between the signers 
and the radar was 1.5 meters, and the maximum was 6 meters.  

 
Table 1. The radar configuration parameters 

Parameters Value 

Start Frequency 60-64 

Number of transmitters 3 

Number of receivers 4 

ADC sampling rate (MSPS) 25 

Range Resolution(m) 0.084 

Maximum unambiguous range(m) 7.279 

Maximum Radial Velocity(m/s) 4.618 

Radial velocity resolution(m/s) 0.032 

B. Radar Point Cloud Generation Techniques  

The point clouds are obtained through a series of Fast 

Fourier Transformers of the transmitted and received signal 

from the radar [7]. 

(1) Range-FFT: The radar sends a chirp signal whose 

frequency increases linearly over time and the mixing 

operation between the transmitted and received chirps 

produces an intermediate frequency (IF) signal. The 

range of the detected object is linearly proportional to 



the frequency of the IF signal, which is computed using 

the Fast-Fourier Transform (FFT) operation. 

(2) Doppler -FFT: At least two chirps are used to estimate 

the radial velocity of an object. The phase difference of 

two chirps at the range-FFT peak is proportional to the 

radial velocity of the detected object. An FFT 

operation on the range signal produces a peak at the 

velocity of the object. 

(3) CFAR: The sum of the Doppler-FFT matrices creates 

a pre-detection matrix that corresponds to the detected 

objects. 

(4) Angle-FFT: For each object, an FFT of the angle is 

performed on the corresponding CFAR peaks across 

multiple Doppler-FFTs. Velocity-induced phase 

changes are Doppler-corrected before computing the 

angle-FFT. 

The points clouds are generated within sequential frames. 

The above steps of point cloud generations were not 

performed in this work. It has already been implemented in 

the TI module. 

C. The Structure of the Frames 

To capture the frames of point clouds, the Texas 
Instrument demo (TI) module was used for parsing data that 
is received at the serial port. The demo generates the point 
cloud and tracking information using a TLV (type-length-
value) data structure scheme. For every frame, a packet is sent 
consisting of a fixed-sized Frame Header and then a variable 
number of TLVs based on what was detected in that scene. 
The TLVs are encoded in a data structure forming three parts 
which are 3D point clouds, target list objects detected in the 
scene, and the associated points. 

D. The American Sign Language Data Collection  

In this study, the American Sign Language (ASL) gestures 
were adopted because it is widely used by deaf communities 
in over 20 countries. Fifteen distinct ASL words were selected 
for the study and their reference videos were identified in 
Sign_lex [8]. All these sign words are different in meaning 
and they express a meaningful idea whenever they are 
arranged in a certain order. For example,  

“Good afternoon, everyone, my name is Eric. Welcome 
to this research. We learn sign language with radar.”  

These words are finally counted as 15 sign gestures 
because “name” and “is” form a compound word (e.g., 
name_is), and “sign” and “language” form another 
compound word (e.g., sign_language). The images of the 
different gestures are shown in Fig.2  

E. The Studies of the ASL before Data Collection 

The dynamics of the phonological structures such as shape, 
movement, location of hands, and the coordination of fingers 
were thoroughly studied from [8] considering the professional 
credibility of these sources. This primary study aimed to 
obtain quality data. Due to the impact related to the phonology 
complexity on the sign gestures, a subtle change in the to-and-
from motion, repetition frequency, and movement direction 
can result in a wrong interpretation [8] of the gestures. Each 
sign has an onset offset (the start and end of the sign times 
respectively) which is crucial for defining the temporal length 
of the sign gesture. On the completion of the sign gesture 
studies, the participants were trained to ensure proficiency like 
native signers. 

 

Fig. 2. Pictures of the fifteen words. 

 

Four volunteers, one female and 3 males, aged between 21 

to 36 with heights between 150 and 186 cm participated in the 

signing experiment. These varying gender and physical 

attributes make a good diversity enriching the dataset quality. 

During data collection, only one participant at the time stood 

upright in front of the radar to sign. His/her hands remained in 

the upper body environment with reference to the prescription 

[8]. What is more, to increase the spatial diversity of the 

dataset, the distance between the radar and the signer was 

often varied between 1 to 5 meters, with varying angles of 0 

to 45°from the axe of the radar to the signer.  

 

Fig. 3. A person performing a sign gesture during data collection 

 

A software developed by Professor Huang Laboratory was 

used to initiate the frame capture and stop capturing whenever 

the gesture starts and ends respectively. After the stop, the 

varying frames of point clouds were saved into JSON files 

according to their time of arrival. Each sign’s overall data 

contains on average 200 samples from each person. Figure 3 

shows the sign language gesture data collection with a signer 

in front of the radar standing upright. 

 

F. Description of the Point Cloud Generated in the Frames 

The sign gesture samples consist of varying numbers of 
frames of point clouds. This initial number of frames ranges 
between 11 and 120. Each frame contains an unordered set of 
point cloud data represented by x, y, and z coordinates in 3D 
space. Each point is associated with a Doppler information 
value. The Doppler represents a micro-motion signature of the 
sign performed. The change in the coordinates values 
indicates the point motion in space. The coordinates and the 



Doppler represent the features for training the models. The 
initial varying frame numbers are later fine-tuned to another 
range before using the related data for the learning models. 

V.   FINE-TUNING FRAME RANGE WITH OPTIMAL SAMPLE 

SIZE   

After data collection, comes the fine-tuning of the varying 
frame numbers to a range. The approach consists of three steps 
as follows: 

•   The representation of the histogram of all gesture sample 
counts versus(vs.) frame numbers. 

•   Fusion of histograms and identification of the frame 
range with the optimal sample sizes through 
Algorithm1&2.  

•    Applying the algorithms to the fused histograms 

A. Histogram of Gestures Counts vs. Frames Numbers.  

In this section, the histogram of the distribution of all sign 

gesture samples versus the number of frames was represented 

and visualized as shown in Fig. 4. The histogram data 

structures are dictionaries where the key represents the frame 

number, and the values represent the sign gesture sample 

counts associated with the keys. These histograms were later 

fused into one histogram as described in the next section B. 

 
 

Fig. 4. The histogram of gesture samples vs the number of frames. 

Fig. 4 presents histograms for 15 sign gestures, depicting 

the gesture sample sizes (Vs) frame numbers, with frame 

numbers on the x-axis ranging from 11 to 120 frames, and the 

number of gestures on the y-axis with the peak reaching 86 

samples. 

B. Fusion of Histogram 
To fine-tune the frame range, all the fifteen sign gestures' 

histogram distributions were fused into one and visualized as 
shown in Fig. 5, and Algorithms 1&2 were applied. The 
reason for this fusion was to get insights into the concentration 
of all samples united. The fusion process begins with the 
selection of the histogram containing a greater number of 
frames within its frame range axis. Once this base histogram 
has been identified, the next step involves the integration of 
the remaining histograms one by one. So, all the remaining 

samples are distributed across their equivalent frame numbers. 
This makes the base histogram grow in height continuously 
until the fusion is completed. 

 
Fig. 5. The fused histogram with the fine-tuned frame range. 

 

Fig. 5 shows the fused histogram of all sign data with a 
peak value of 565, occurring at frame number 47. This is an 
important starting point for the frame range fine-tuning with 
the algorithms. 

C. Algorithm 1 for Fine-Tuning Frame Range 

The input of Algorithm1 is the fused histogram in Fig. 5 
and the output is a fine-tuned frame range. Algorithm 1 starts 
on the peak, at frame number 47 expanding one frame left 
and another right simultaneously and computes the sum of 
samples in the window until the optimal training and 
validation target sample sizes are reached. For example, the 
calculation is given below.  

700 classes * 15 samples/class 
The 700 samples were decided empirically through 

experiments. If the training and validation sample in 
summation is equal to the optimal target, then the process 
stops otherwise the frames are further expanded and the same 
summation is recomputed. The summation formula is as 
follows: 

 Optimal training data = ∑ 𝑣𝑎𝑙𝑢𝑒𝑠(𝑖)
right index

k=(left index)
         (1) 

 
Where values(i) represent the number of data samples at 

the frame number i and left index and right index are the 
expanded frames on the left- and right-hand side respectively. 
The resulting frame range is the range, [30-60] with an 
accuracy of 89%. The problem with Algorithm 1 is an over-
selection due to the asymmetry of histogram distribution.    

D. Algorithm 2 for Fine-Tuning Frame Range 
Algorithm 2 is a revised version of Algorithm 1. They 

share the same frame expansion concepts. However, the key 
difference is the selection of the greatest sign gesture sample 
value by comparing the number of sign gesture samples at the 
expanded frames and adding that value to the summation 
representing the future training and validation samples in 
optimization. The objective is to meet the training sample 

Frame number 47 



requirements with a narrower frame range while solving the 
asymmetric distribution with respect to the peak. The pseudo-
code of Algorithm 2 is shown below in Fig. 5.  

 

 
Fig. 5. The pseudo code of Algorithm 2 

 
Fig. 5 shows the revised algorithm for fine-tuning the 

frame range. The algorithm returns “left_index” and 
“right_index” which are respectively the lower number of and 
the highest in the range. Upon implementation of the 
algorithm, the resulting range was [30,54]. Furthermore, sign 
gestures whose sequence lay in this fine-tuned range were 
used for training the learning models. 

VI. EXPERIMENT RESULTS AND REMARKS 

For the evaluation, 90 % of data was used for training and 
10% for validation, and the Long Short-Term Memory 
(LSTM) network model designed by Piotr Grobelny and 
Adam Narbudowicz in [9] for recognizing the 12 gestures was 
adopted with different parameters for the recognition of the 
gestures within the fine-tuned range. LSTM was used 
considering its efficiency in sequential data modeling.  

Furthermore, this LSTM model was made Bidirectional in 
the current work, making it possible to train backward and 
forward directions. The activation function was tanh, and the 
loss function was cross-entropy. Recognition accuracy was 
defined as the percentage of the correctly recognized gestures 
divided by the total number of tested gestures. 

                     𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100% (
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑡𝑜𝑡𝑎𝑙
)                            (2) 

A. Integration of An Attention mechanism  

An attention [15] function can be described as mapping a 
query and a set of key-value pairs to an output, where the 
query, keys, values, and output are all vectors. It is useful in 
sequence-to-sequence modeling, and it enables representing 
data with better context. The attention mechanism is defined 
as follows: 

      𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√𝑑𝑘

)𝑉                    (3) 

 

Where Q, and K are queries and keys of dimension 𝑑𝑘 (the 
dimension of k) and V, the value at the keys. The dot product 

of the query with all the keys is performed and divided by √𝑑𝑘. 

Following this, the softmax function is applied to the results 
to scale the feature values between [0,1].     In this research, 
before the generation of the final output of the Bi-LSTM, the 

mapping result of the initial input in the hidden layer was 
recomputed with Attention mechanism before passing it to the 
fully connected layer for better interpretation. The dot product 
of the query and keys was performed without the scaling 

factor 
1

√𝑑𝑘
. 

The model parameters were decided empirically and are 
summarized in Table 2. The results of the recognition 
accuracies are summarized in Table 3. A K-fold cross-
validation method was used to confirm the consistency of the 
accuracy. In this case, K was equal to 5. 

 
Table 2. Parameters of the learning models 

parameters values 

layer 2 

neurons 64 

Epochs 10 

Optimizer Adam 

 
Table 2. shows the learning model parameters which can 

be fine-tuned. After experimenting with several parameters,  2 
layers of 64 neurons and 10 epochs were the best and the 
Adam optimizer was used.  

 
Table 3. Recognition accuracy before and after optimization 

 Recognition Accuracy in percentage (%) 

Frame 

range 

LSTM Bi-

LSTM 

Bi-LSTM 

Attention 

Before 

optimization 

[11-120] 

800 

samples 

88.3 88.7 89.86 

After 

optimization 

[30-54] 

700 

samples 

89.2 91.7 92.30% 

>=740 per 

class 

[30-54] 

740 

samples 

85.5 87.3 92.22% 

 
Table 3. shows the overall recognition accuracy of the 15 

words ASL sign gestures before and after the fine-tuned frame 
range with different models. Before fine-tuning, the initial 
frame range was [11-120] and the recognition accuracy sign 
of the LSTM, Bi-LSTM, and Bi-LSTM Attention models 
were 88.3%, 88.7%, and 89.7% respectively. After Fine-
tuning, the frame range was reduced to [30-54]. The 
recognition accuracies of the LSTM, Bi-LSTM, and Bi-LSTM 
Attention were 89.2% (+1%), 91.7% (+3%), and 92.30% 
(+2.44%), respectively. Only the Bi-LSTM Attention was K-
fold cross-validated. The results show an improvement in the 
recognition accuracies across all the models after the fine-
tuning. The reason for this improvement is the ability of the 
fine-tuning algorithm2 to extract more informative samples 
from the initial dataset for appropriately training the models. 
On the other hand, the higher recognition accuracy of the Bi-
LSTM over the LSTM is because the backward and forward 
direction of the Bi-LSTM made it possible to capture the past 
and future context data sequence.  As for the Bi-LSTM 
Attention, its superiority in the recognition accuracy over both 
LSTM and Bi-LSTM Attention is because the Attention 
mechanism made a better representation of the input sequence 
which led to better interpretation in the Fully connected layer. 

As can be seen in Table 4, after fine-tuning, the training 
and validation size which initially was 12032 samples was 
reduced to 10535 through some adjustments. This represents 
a 12.46% decrease. There is a decrease in 6003 frames out of 



the overall frames. This significant decrease in the amount of 
training and validation samples as well as the frame range 
while improving the recognition accuracy across models 
proves the effectiveness of the fine-tuning approach.The 
statistics are shown in Table 4. 
 

Table 4. The statistic parameters before and after optimization 

 Frame 

range 

Training 

samples 

Frame 

number 

Before 

optimization 

[11-120] 12032 37918 

After 

optimization 

[30-54] 10535 31915 

 

Figure 6 gives the confusion matrix of the fifteen-sign 

gesture recognition with the Bi-LSTM Attention model. 

From this figure, we can see a few pairs of sign gestures are 

confused to a certain extent observed in the matrix. This is 

due to the strong similarity between those gestures. However, 

the models can recognize many sign gestures with less 

confusion. For instance, the recognition of accuracy of the Bi-

LSTM Attention which is 92.30% shows the efficiency of the 

models in better performance.  

 

 
Fig. 6. Confusion matrix using Bi-LSTM Attention without cross-

validation. 

 

VII. CONCLUSION AND FUTURE WORK 

This research fine-tuned the frame range from [11-120] to 
[30-54] of point clouds of 15 American sign language gestures 
captured with an IWR6843AOP millimeter. The work fuses 
the histogram distribution of all samples across the 15 sign 
gestures versus the number of frames and uses a revised 
algorithm to determine the area in the fused histogram where 
the quality and optimal data size for training and validation are 
concentrated. As a result, this contributed to improving the 
recognition accuracy of LSTM, Bi-LSTM, and Bi-LSTM 
Attention mechanism models with data whose sequence lies 
in this fine-tuned range. This significant recognition accuracy 

increase across the models shows the potential of recognizing 
sign language with mmWave radar point cloud. 

For further use, this frame range fine-tuning can be applied 
to many other activity recognitions using sequential point 
cloud data as well as in other fields. For instance, in the fields 
where Real-time decisions are critical and where memory 
constraints are prominent to optimize processing time and 
memory. However, the fact that, after the fine-tuning, some 
sign gesture samples may be slightly imbalanced across 
classes may require additional data in the fine-tuned range for 
adjustments. In future work, this can be addressed while 
refining the current algorithm for real-time application. 
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