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Abstract

Referring Expression Comprehension (REC) is a task
in the realm of vision and language, aiming to identify
objects in images based on provided descriptions.
Classic REC methods, however, face challenges in
handling expressions involving multiple targets or empty
scenarios. In this paper, we study the limitations of
existing REC methods, particularly in the context of
Generalized Referring Expression Segmentation (GRES).
In response, we propose Generalized DINO, a model
that extends Transformer-based detectors by
incorporating Region-Image Cross Attention (RIA) and
Region-Language Cross Attention (RLA) mechanisms.
This approach enables the detector to support arbitrary
numbers of target object detection, overcoming the
constraints of traditional REC methods. Comprehensive
experiments on widely-used datasets such as
RefCOCO/+/g and the GRES benchmark gRefCOCO
showcase the superior performance of Generalized
DINO in GRES tasks. The model outperforms even the
robust RELA model, demonstrating a significant stride in
handling expressions with multiple targets or empty
scenarios. Our findings underscore the efficacy of
Generalized DINO in enhancing the robustness and
flexibility of REC models, contributing to multimodal
information processing. The model's ability to handle
complex language expressions involving multiple objects
positions it as a valuable asset in applications like
human-computer interaction and visual question
answering.

1. INTRODUCTION
Object detection, a fundamental concept in computer vision,

revolves around the ability to train machines to recognize and
precisely locate objects within images or videos. In the context
of this paper, imagine having a photograph or a frame from a
video containing various objects like people, cars, or animals.
Object detection involves empowering a computer system to
identify and pinpoint the positions of these objects in the visual
content.

This paper delves into the realm of object detection, with a
particular focus on advancing capabilities through a task
known as Referring Expression Comprehension (REC) [13,

14]. Unlike traditional object detection, which relies solely on
visual features such as shapes and colors, REC integrates
language understanding. It takes object detection a step further
by comprehending language expressions that describe the
specific locations of objects within an image [1, 2, 3].

However, the traditional REC methods have notable
limitations that impede their effectiveness in real-world
applications, particularly their struggle with multiple target
objects and empty-target expressions. As shown in Figure 1(a)
and (b) , we are using Grounding DINO, a transformer-based
detector, which is traditional REC methods owned state-of-art
performed in REC, still unable to deal with multiple targets and
empty-targets.

Figure 1: Comparison of the object detection result by Grounding DINO [6]
and Generalized DINO in Generalized Referring Expression Segmentation
(GRES) [5]. (a) Grounding DINO unable to detect all the correct targets when
multiple targets are requested. However, Generalized DINO successfully
bound all the target objects in the image(b) When the referent does not exist
in the image, for example, the empty target is requested, Grounding DINO
still detects the wrong target in the image due to the model design proposed.
In contrast, Generalized DINO can reject the empty target.

Motivated by the need to bridge language comprehension
with visual perception, the paper explores REC's applications
in human-computer interaction, visual question answering, and
video production. It introduces innovative terms and
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technologies aimed at enhancing the REC task, ultimately
elevating the performance of object detection methods.

To overcome challenges faced by traditional REC methods,
we propose a novel approach named Generalized DINO. This
innovative method addresses limitations, such as struggles with
multiple target objects and empty-target expressions. By
combining techniques, such as incorporating DINO with RELA
[5], aim to enhance the model's flexibility, improving its ability
to accurately detect and comprehend multiple objects within a
given scene. Building a network that divides the image into
regions and facilitates explicit interactions between these
regions. The soft-collation approach significantly improves
flexibility, allowing a more nuanced treatment of features in
each region. This change let Generalized DINO be able to
handle multi-target detection in a single expression to make the
model more robust and reliable applications in natural language
processing and computer vision.

2. RELATEDWORKS

2.1. Referring Expression Comprehension (REC)
Referring Expression Comprehension (REC) [13, 14] is a

task that combines vision and language, where the goal is to
detect specific objects in an image based on language
expressions. In simpler terms, REC is about teaching machines
to understand and act upon instructions in the form of spoken
or written language to identify objects in pictures.

REC methods typically use either a one-stage or two-stage
approach. In a one-stage approach, the system directly predicts
the location of the objects in the image, while in a two-stage
approach, it first generates potential regions and then predicts
the final object locations. These methods, however, have
limitations when dealing with expressions that point to multiple
objects.

To address this limitation, a new task called Generalized
Referring Expression Segmentation (GRES) [5] has been
introduced. GRES aims to handle situations where users
mention multiple objects in one instruction or describe things
not present in the image. Unlike traditional REC, GRES is
designed to address more complex scenarios involving multiple
targets or cases where there are no targets in the image. It
breaks away from the constraints of traditional REC methods
by accommodating both scenarios of multiple targets and
situations where there are no specified targets in the image,
which is the main scope of our research of Generalized DINO.

2.2. Detection Transformers
Object detection has seen significant advancements through

the use of Detection Transformers (DETRs) [7, 8, 9]. A
Detection Transformer is a transformer-based model
specifically which integrates attention mechanisms with
modifications for object detection in computer vision. DETRs
initially exhibited excellent performance in identifying objects
[20], but their high computational requirements limited their
practicality. Real-Time DETR (RT-DETR) addressed this
challenge by introducing key enhancements to reduce
computational costs. Its design incorporates a backbone, hybrid

encoder, and transformer decoder, which effectively lowers the
computational burden. The IoU-aware query selection further
refines the model's focus on relevant objects, enabling
real-time object detection on accelerated backends. The
development of DETR structures, with subsequent refinements,
paved the way for improvements [15,16,17].

Inspired by BYOL (Bootstrap Your Own Latent), DINO
[10], a noteworthy self-supervised Vision Transformer (ViT)
[21], is recognized for its ability to learn representations from
unlabeled data. BYOL, is a self-supervised learning method
that emphasizes learning useful representations without explicit
labels. It employs a dual neural network setup where one
network generates augmentations of the input data, and the
other predicts these augmentations, facilitating the learning of
rich representations. Building upon this foundation, DINO
introduces the concept of contrastive de-noising and achieves
record-breaking performance on the COCO object detection
benchmark.

Grounding DINO [6], an open-set detector at multiple stages
based on DINO structure with grounded pre-training, set a
state-of-the-art performance in open-set object detection.
However, Grounding DINO fails to tackle the challenge in
GRES due to the decoder structure only fulfilling one
expression that matches one existing target, which is addressed
by our proposed Generalized DINO.

3. PROPOSED METHOD
In this section, we will introduce the model design of

Generalized DINO. In the previous section, we analyze the
limitations observed in Grounding DINO concerning
Generalized Referring Expression Segmentation (GRES). Due
to multi-target expression owning more complex attribute
description and relationship, It required the model to be able to
identify complex interaction among regions in the image, and
capture detailed attributes for all objects.

3.1. Architecture Overview
Figure 2 displays the overall design of Generalized DINO,

which, like Grounding DINO, uses a
dual-encoder-single-decoder architecture with separate
components for processing images and text [6]. It contains an
image backbone for extracting features from images, a text
backbone for extracting features from text, a feature enhancer
for image and text feature fusion, multi-model Transformer
decoder for predicted probability of target region and U-net for
Box refinement.

In processing each (Image, Text) pair, the first step is
extracting vanilla image features and vanilla text features,
derived from image and a text backbone, are input into a
feature enhancer module for cross modality feature fusion to
obtain cross-modality text and image features. Next, the text
and image features are sent to the multi-model decoder to
predict the probability of the target region. Finally, the
probability maps are fed into U-net to do the segmentation and
predict object boxes. As a result, Generalized DINO outputs
the object boxes from given referring expressions. For
example, as shown in Figure 2, the model locates all standing
people from the input image in once model calls. Meanwhile, if



the probability maps predict no target on the image after
prediction, the probability maps will be set to empty and output
nothing on the image.

Figure. 2: The framework of Generalized DINO. We present the overall
framework and multi-model decoder in block 1 and block 2, respectively.

3.2. Feature Extraction and Enhancer
Following Grounding DINO's idea, adding more feature

fusion in the pipeline improves the model's performance [6,
11,12]. Therefore, we perform early fusion in the neck module
which aims to help align features of different modalities. The
input image will extract image features by Swin transformer
[18] encoder, and the input language expression will extract
language features by BERT [19] simultaneously. Once vanilla
image and text features are extracted, we input them into a
feature enhancer designed for cross-modality feature fusion
including three feature enhancer layers. In the first layer, we
use Deformable self-attention to enhance image features and
regular self-attention to enhance text features. Additionally, we
integrate image-to-text cross-attention and text-to-image
cross-attention for feature fusion inspired by GLIP [20].

3.3. Multi-model decoder
The DINO [10] method uses a decoder to map the learned

features to object detection outputs. The decoder is responsible
for predicting the bounding boxes and class labels of objects in
an image. However, DINO employs a query selection
mechanism to generate object bounding boxes by selecting the
most matching query. Since each query can only match one
bounding box, DINO can only detect one result at a time. The
purpose of DINO is designed for individual object detection.
Therefore, classic DINO structure is unable to handle the
GRES problem, which allows arbitrary numbers of referred
targets, including multiple instances or no target circumstances
during the detection.

However, inspired by RELA [5], Generalized DINO extends
to be able to deal with multiple targets and empty targets.
Generalized DINO’s decoder divides the feature maps into

regions, and interacts among these regions in the𝑃 × 𝑃 =  𝑃2

model. Think of these "regions" as corresponding to patches in
the image, much like ViT does. Each region will individually
calculate the probability of expression matching and finally

form a “minimap” for further use.The multi-model decoder has
two main parts: Region-Image Cross Attention (RIA) and
Region-Language Cross Attention (RLA).

3.3. Region-Image Cross Attention (RIA)
The RIA model achieves this by performing attention

interaction between image features and learnable region-based
queries, resulting in the generation of region features
corresponding to each query. Firstly, attention maps are
generated for each query by interacting the image features with
query embeddings, indicating the spatial regions in the image
that correspond to each query. Then, these attention maps are
utilized to extract region features from the respective regions
for further use.

3.5. Region-Language Cross Attention (RLA)
The RLA models dependencies between regions and

language. It consists of self-attention and multimodal
cross-attention. Self-attention is used to model the
dependencies between regions by interacting a region feature
with all other regions, calculating an attention matrix, and
outputting relation-aware region features. Multimodal
cross-attention is used to model the dependencies between
regions and language. It takes language features as input for
values and keys and region image features as input for queries.
It establishes relationships between each word and each region
and generates language-aware region features using the
obtained word-region attention. Finally, the relation-aware
region features, language-aware region features, and region
image features are combined and further fused using a
multi-layer perceptron (MLP).

3.6. Outputs and Loss
The output from the multi-model decoder, called a

“minimap”, shows the probability of each region containing
targets. The minimap can be regarded as the predicted
segmentation mask used in object detection. It will be input
into the U-Net to perform segmentation to identify target
objects at a pixel level; post-processing steps can be applied to
create bounding boxes. By analyzing the segmented regions,
algorithms can determine the minimum bounding rectangles or
use contour information to encapsulate the identified objects.
This involves finding the coordinates of segmented regions and
generating bounding boxes accordingly.



Figure. 3: U-Net performs segmentation to separate the minimap, then identify
target objects and create bounding boxes to output results.

4. Experiments
We conduct extensive experiments to represent the efficacy

of Generalized DINO. First, we show the results on the
gRefCOCO dataset to show the performance of Generalized
DINO in GRES tasks. Then we test Generalized DINO against
other REC methods and thoroughly assess their performance.

4.1. Generalized Referring Expression
Segmentation (GRES)
Setting. For conducting GRES tasks with Generalized

DINO, we utilize the gRefCOCO dataset [5] for
experimentation. The gRefCOCO dataset contains 278,232
expressions, including 80,022 multi-target expressions and
32,202 no-target expressions, referring to 60,287 distinct
instances found in 19,994 images. All bounding boxes for the
target instances are provided. Following the UNC partition of
RefCOCO, we divide the images into four subsets: training,
validation, test-A, and test-B. We add the gRefCOCO training
set into the mixed training dataset in Generalized DINO to
pretrain for 150,000 steps. Throughout this experiment, we use
Generalized Intersection over Union (gIoU) and Complete IoU
(CIoU) as the primary metrics for object detection, assessing
the accuracy of bounding box predictions. GIoU averages the
IoU for each mask, whereas cIoU computes the cumulative
intersection area over the cumulative union area across the
whole dataset. For no-target samples, we introduce the
No-target-accuracy (N-acc.) metric to measure the model’s
performance on identifying no-target samples. For no-target
samples, the gIoU values of true positive no-target samples are
regarded as 1, while gIoU values of false negative samples are
treated as 0.

Results. Table 1 shows the performance of different models
in GRES. We mark the best results in bold. RELA is the
strongest model on the GRES. But Generalized DINO

outperformed RELA, showing approximately a 2%
improvement in gIoU and 5% in N-acc. Generalized DINO
achieved over 66% in gIoU on the validation set, showing the
superiority of Generalized DINO in GRES task.

Table１　Generalized referring expression segmentation
(GRES) results on gRefCOCO. gIoU and CIoU are metrics
focusing on bounding box accuracy in object detection and

N-acc evaluates a model's ability to correctly identify samples
with no target present

Method Validation Set
gIoU cIoU N-acc.

LTS [23] 53.16 51.54 -
VLT [24] 51.73 51.62 47.47
CRIS [25] 57.19 55.51 -
LAVT [22] 58.14 57.50 49.72
ReLA [5] 63.06 62.18 56.10
Generalized DINO (Ours) 66.77 63.78 62.97

4.2. Referring Expression Comprehension (REC)
Setting. To evaluate its capabilities across diverse tasks, we

examine the performance of Generalized DINO in the REC
task. We use Grounding DINO [10] as our baseline to compare
the performance of different models on RefCOCO, RefCOCO+
[6], and RefCOCOg [7]. The models are firstly pre-trained as
in GRES, and then fine tuned for 10 epochs with a joint dataset
of these three REC training sets. The primary metrics for object
detection in this task are gIoU and CIoU.

Table2　Referring Expression Comprehension results on
RefCOCO dataset

Method RefCOCO
Val. Test-A Test-B

VGTR [26] 77.15 82.09 69.05
TransVG [27] 79.53 82.95 73.83
RefTR [28] 80.04 82.77 77.73
MDETR [29] 86.91 87.84 81.70
Grounding DINO [6] 90.12 92.77 87.28
Generalized DINO (Ours) 87.93 90.51 83.99

Results. Table 2 shows the performance of different models
in the REC task. We mark the best results in bold. Our model
demonstrates nearly identical performance to Grounding
DINO, which is the second best accuracy performance on the
REC task. However, in the test set of RefCOCO, Grounding
DINO outperforms our model by approximately 2% to 5%.
Further discussion on this performance difference is provided
in the discussion.

4.3. Visualization
Figure 3 displays visual results of Generalized DINO from

the validation set of gRefCOCO, illustrating how the model
addresses the primary challenges in GRES—multiple targets
and empty targets. In part (a), Generalized DINO successfully
bound the box on all targets referred to, while Grounding
DINO [6] only bound one of requested instances. In part (b),
Grounding DINO mistakenly bound the box on the object in



the image which disagrees with the referring expression, but
Generalized DINO successfully rejects all the empty targets.

Figure. 4: Visualizations of Grounding DINO [6] and Generalized DINO in the
GRES task [5]. The first column shows the referring expressions in the
instructions, the second column shows Grounding DINO detection results, and
the third column is the detection result and rejections of Generalized DINO. In
the upper part is multiple targets cases, each target will bound a box on the target.
In the lower part is an empty target case, the images will turn dark to indicate that
no box is bound in image. All examples are selected from the gRefCOCO
validation set.

4.4. Discussion and Limitations
Generalized DINO exhibits considerable strengths in

handling GRES tasks; it surpasses the original best model in
GRES by achieving approximately a 2-5% improvement in
accuracy for GERS tasks. However, there are acknowledged
limitations in traditional REC tasks, with potential challenges
related to fine-grained details, complexity, and generalization.
Our model, utilizing U-Net for minimap segmentation to
identify target objects and bounding boxes, faces a drawback
where this process may result in the loss of fine-grained details,
consequently impacting box prediction accuracy.

Figure. 5: Failure cases of our method on gRefCOCO dataset. Showing that the
limitation of segmentation on the model

In Figure 5, we present instances where our model fails to
identify target objects accurately through segmentation in the
minimap. This limitation affects the overall performance of
Generalized DINO on REC tasks compared to Grounding
DINO, a model known for its state-of-the-art performance in
object detection, primarily due to the segmentation steps
involved. To address this challenge in future work, one
potential approach is to minimize the impact of the
segmentation process. This can be achieved by exploring
alternatives such as skipping the segmentation process in the
model and using a Transformer to replace U-Net, thus
mitigating the loss of fine-grained details in target objects.

4.5. Future Work
To enhance the model's performance in GRES tasks, further

work should focus on developing strategies to overcome the
existing limitations. For instance, exploring advanced
multimodal large language models to replace GLIP could
contribute to improved results. Additionally, addressing cases
where users reference multiple subjects in a singular prompt or
provide incongruent descriptions with any image target
remains a challenge. Future research efforts should aim to
refine the model's ability to handle such complex scenarios,
potentially involving more sophisticated attention mechanisms
or context-aware approaches.

5. Conclusion
We have presented a Generalized DINO in this paper,

specifically designed to overcome limitations inherent in
existing Referring Expression Comprehension (REC) methods,
particularly in the challenging context of Generalized Referring
Expression Segmentation (GRES) [5]. By extending the
Transformer-based detector DINO with the Region-Image
Cross Attention (RIA) and Regional Language Attention
(RLA) mechanism, Generalized DINO demonstrates
remarkable improvement in handling expressions involving
multiple targets or empty scenarios. Our experiments
conducted on gRefCOCO datasets, highlight the superior
performance of Generalized DINO in GRES tasks, surpassing
even the robust RELA model. Generalized DINO represents a
significant step towards enhancing the robustness and
flexibility of REC models, contributing to the broader field of
multimodal information processing.
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