法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-02

HYDROGEN ION IMPLANTATION INDUCED LOW RESISTIVE KNb0_3 LAYER IN BULK SINGLE CRYSTAL

Shibasaki, Y. / Kuriyama, K. / Tsuruoka, R. / Tanuma, C. / Shinkawa, A. / Nishimura, T.

(出版者 / Publisher)法政大学イオンビーム工学研究所

(雑誌名 / Journal or Publication Title) PROCEEDINGS OF THE 34th SYMPOSIUM ON MATERIALS SCIENCE AND ENGINEERING RESEARCH CENTER OF ION BEAM TECHNOLOGY HOSEI UNIVERSITY (December 9, 2015)

(巻 / Volume) 34 (開始ページ / Start Page) 36 (終了ページ / End Page) 41 (発行年 / Year) 2016-02

(URL) https://doi.org/10.15002/00030389

HYDROGEN ION IMPLANTATION INDUCED LOW RESISTIVE KNbO₃ LAYER IN BULK SINGLE CRYSTAL

A. Shinkawa[#], R. Tsuruoka, Y. Shibasaki, T. Nishimura, C. Tanuma and K. Kuriyama Hosei University, Koganei, Tokyo 184-8584, Japan

Abstract: Origins of low resistivity in H-ion implanted KNbO₃ bulk single crystals are studied by elastic recoil detection analysis (ERDA) and Van der Pauw methods. The H-ion implantation (peak ion fluence: 5.0×10^{15} cm⁻²) into KNbO₃ is performed using a 500 keV implanter. The sheet resistance decreases from ~10⁸ Ω/\Box for an un-implanted KNbO₃ sample to $2.3 \times 10^5 \Omega/\Box$ for as-implanted and $4.3 \times 10^5 \Omega/\Box$ for 150 °C annealed samples, respectively. The ERDA experiment using the 1.5 MeV-⁴He⁺ beam can evaluate hydrogen from the surface to around 60 nm. The hydrogen concentration near the surface estimated is 5.1×10^{14} cm⁻² for un-implanted KNbO₃ sample, 5.6×10^{14} cm⁻² for as-implanted, 3.4×10^{14} cm⁻² for 150 °C annealed samples, respectively, indicating that a part of hydrogen is diffused out by annealing. The low resistive layer induced in H-ion implanted KNbO₃ suggests the existence of a shallow energy level related to the complex defect consisting of hydrogen interstitial and the proton induced defect such as oxygen vacancy.

I. Introduction

In the development of ferroelectric material, lead is the most important element. The lead-based ferroelectric material such as lead zirconate titanate (PZT) is used in large numbers. It has excellent properties, however, because it contains harmful lead, influence on the environment is concerned. Recently, in order to address this problem, high-performance lead-free material that can be used as a substitute material for PZT is expected. KNbO₃ is one of the lead-free ferroelectric materials.

In the meantime, the ferroelectric field-effect transistor uses the surface conduction of insulating ferroelectric under the gate oxide ^{1, 2)}. Our recent study of ZnO reported the decrease in resistivity from $2.5 \times 10^3 \, \Omega$ cm for un-implanted ZnO to 6.5 Ω cm for H-ion implanted one ³⁾. In the present study, we artificially form a surface conducting layer in KNbO₃ by the H-ion implantation and report the decrease in resistance in H-ion

This article was presented at 22nd International Conference on Ion Beam Analysis, June 14-19, 2015, Opatija, Croatia. It is also accepted for publication to Nucl. Instr. Meth. Phys. Res. B

[#] akira.shinkawa.e8@stu.hosei.ac.jp

implanted KNbO₃ using elastic recoil detection analysis (ERDA) and Van der Pauw technique ⁴⁾.

II. Experimental

The (001) oriented KNbO₃ bulk single crystals were used in the present study. KNbO₃ is a unique dielectric material with four phase transitions, namely rhombohedral (T< -10 °C), orthorhombic (-10 °C < T < 225 °C), tetragonal (225 °C < T < 435 °C), and cubic (T > 435 °C) ⁵⁾. KNbO₃ shows ferroelectricity below 435 °C. Figure 1 shows the perovskite KNbO₃ (orthorhombic) structure in the vicinity of room

perovskite (orthorhombic) KNbO₃ at room temperature.

temperature. In particular, this material cannot maintain single-crystallinity by the rapid heating and cooling. The lattice constant at room temperature is a = 5.695, b = 5.721, and c = 3.974 Å⁶⁾. Ion energies and the corresponding ion fluence were selected to

obtain a uniform depth profile according to the TRIM (Transport of Ions in Matter) simulation of the projected range on the ions (see Fig. 2)⁷⁾. The H-ion implantation into KNbO₃ was performed using an energy of 500 keV (ion fluence: 5.0×10^{15} cm⁻²). The resulting implantation depth and the H concentration were 3650 nm and 1.62×10^{20} cm⁻³, respectively. The band gap of KNbO₃ was determined by optical absorption measurements.

Following implantation, some as-implanted KNbO₃ samples were annealed at temperatures ranging from 100 to 150 °C for 1 hour in nitrogen atmosphere to prevent the degeneration of crystallinity due to phase

Fig 2. Simulated depth profile with the TRIM code of H ions implanted into KNbO₃ for acceleration energy and fluence; energy: 500 keV, fluence: $5.0 \times 10^{15} \text{ cm}^{-2}$.

transition. In sheet resistance measurements using Van der Pauw technique ⁴⁾, electrodes are fabricated using titanium/gold. Hydrogen in H-ion implanted KNbO₃ was evaluated by ERDA using a 1.5 MeV ⁴He⁺ beam. The recoiled H-ions were detected with a solid-state detector located at 15°. An aluminum foil with 7.5 μ m in thickness was placed in front of the ERDA detector in order to stop all the recoiled atoms heavier than hydrogen.

III. Results and discussion

The change in the optical absorbance was not observed before and after H-ion implantation. Therefore, the band gap of $KNbO_3$ did not change by the H-ion implantation. The band gap of $KNbO_3$ estimated by an optical absorption measurement is 3.16 eV (392 nm) at room temperature (see Fig. 3 (a, b)).

Fig 3. Optical absorption spectra of KNbO₃, (a) un-implanted, (b) as-implanted

Table 1 shows the sheet resistance of the un-implanted and as-implanted samples. The sheet resistance of un-implanted samples was high ($>10^8 \ \Omega/\Box$). After the H-ion implantation, the sheet resistance decreased by three orders of magnitude to $2.3 \times 10^5 \ \Omega/\Box$. The decrease would be attributed to a shallow energy level related to the complex defects consisting of hydrogen interstitials and vacancy defect such as the oxygen vacancy (V₀) generated by the H-ion implantation as described later. After subsequent annealing at 100 °C and 150 °C, the sheet resistances were $2.3 \times 10^5 \ \Omega/\Box$ and $4.3 \times 10^5 \ \Omega/\Box$, respectively. The higher sheet resistance of 150 °C annealed samples indicates that a part of hydrogen was diffused out by annealing as described later.

Table 1. The sheet resistance of un-implanted, H-ion implanted $KNbO_3$,

100 °C and 150 °C annealed KNbO ₃ .	
	Sheet resistance $[\Omega/\Box]$
un-implanted	> 10 ⁸
as-implanted	2.3×10^{5}
100 °C-annealed	2.3×10^{5}
150 °C-annealed	4.3×10^5

The hydrogen behavior was calculated by the following process ⁸⁾. The transition energy E_1 of hydrogen recoiled at the surface is

$$E_{1} = E_{0} [4(M_{1}M_{2}) / (M_{1} + M_{2})^{2}] \times (\cos \theta)^{2}, \qquad (1)$$

where E_0 is the energy of the incident helium ion (1.5 MeV), M_1 and M_2 the mass of hydrogen and helium, and θ the recoil angle. The energy E_2 of helium recoiled at the depth (t) is

$$E_{2} = 1.5 - (dE_{He} / dx) \times (t / \sin(\theta/2)), \qquad (2)$$

where (dE_{He} / dx) is energy loss of helium ion in KNbO₃. The energy E₃ of hydrogen at the depth (t) is

$$E_3 = E_2 [4(M_1 M_2) / (M_1 + M_2)^2] \times (\cos \theta)^2,.$$
(3)

The energy E_4 of the recoiling hydrogen at the detector is

$$E_{4} = E_{3} - (dE_{H} / dx) \times (t / \sin(\theta/2)), \qquad (4)$$

where (dE_H / dx) is energy loss of hydrogen ion in KNbO₃. With ERDA experiment using 1.5 MeV-Van de Graaff accelerator of Hosei University, the hydrogen concentration can be evaluated from the surface to around 60 nm in depth. Therefore, H concentration was calculated at 60 nm in depth. Figure 4 shows the hydrogen distribution estimated from ERDA measurements for the un-implanted, as-implanted and 150 °C annealed samples. In un-implanted samples, hydrogen was observed, suggesting that hydrogen was introduced during the crystal growth of KNbO₃. In 150 °C annealed samples, the

ł

Fig 4. ERDA spectra using 1.5 MeV 4 He $^{+}$ ions for un-implanted, H-ion implanted, and 150 °C annealed samples.

hydrogen yields were lower than as-implanted samples, suggesting that a part of hydrogen was diffused out by annealing.

The hydrogen concentration at 60 nm from the surface was calculated by the following equation.

$$Y = [NQ (d\sigma / d\Omega) \Delta\Omega] / \sin \theta/2, \qquad (5)$$

where Y is the yield of recoiled hydrogen near the surface, N the hydrogen concentration, Q the number of incident ${}^{4}\text{He}^{+}$ ions (9.4 × 10¹² for the present study), (d σ / d Ω) ⁹⁾ the differential scattering cross section, $\Delta\Omega$ solid angle of detector (9.8 mrad), and θ the recoil angle (30°). Table 2 shows the hydrogen concentrations of KNbO₃ at 60 nm of the un-implanted and as-implanted samples. In these samples,

hydrogen concentrations were 5.1×10^{14} cm⁻² and 5.6×10^{14} cm⁻², respectively. After the subsequent annealing at 150 °C, the hydrogen concentration reduced to 3.4×10^{14} cm⁻², suggesting that a part of hydrogen was diffused out by annealing.

Hydrogen concentration[cm ⁻²]	
un-implanted	5.1 × 10 ¹⁴
as-implanted	5.6×10^{14}
150 °C-annealed	3.4×10^{14}

Table 2. The hydrogen concentrations of KNbO₃ estimated at 60 nm in depth.

The present ERDA study shows the out diffusion effects due to the thermal annealing on hydrogen included in a thin surface layer. The hydrogen concentration is same orders of 10^{14} cm⁻² for un-implanted and as-implanted samples, while the resistance after H-ion implantation and annealing is three orders of magnitude lower than that of un-implanted samples. Therefore, the low resistive layer in H-ion implanted samples suggests the existence of a shallow energy level related to the complex defect consisting of hydrogen interstitial and the proton induced defect such as V₀. The V₀ defect has been reported in the hydrogen implanted ZnO bulk single crystal ¹⁰.

IV. Conclusion

The H-ion implantation into KNbO₃ bulk single crystals was performed using an energy of 500 keV (ion doses: 5.0×10^{15} cm⁻²). The band gap of KNbO₃ bulk single crystals did not change by the H-ion implantation. The band gap of KNbO₃ estimated by optical absorption measurements was 3.16 eV (392 nm). The sheet resistance of H-ion implanted KNbO₃ bulk single crystals changed from >10⁸ Ω/\Box for un-implanted samples to $2.3 \times 10^5 \Omega/\Box$ for as-implanted ones. The low resistive layer induced in H-ion implanted KNbO₃ suggests the existence of a shallow energy level related to the complex defect consisting of hydrogen interstitial and the proton induced defect such as oxygen vacancy. The sheet resistance of 150 °C annealed samples decreased to $4.3 \times 10^5 \Omega/\Box$ from the as-implanted samples of $2.3 \times 10^5 \Omega/\Box$. From ERDA measurements, the slight increase in sheet resistance in the 150 °C annealed samples was related to the out diffusion of hydrogen. The present study suggests the potential application of the H-ion implanted KNbO₃ layer with low resistivity as a surface conduction layer of insulating ferroelectric under the gate oxide.

References

- [1] G. Hirooka, M. Noda and M. Okuyama, Jpn. J. Appl. Phys. 43, 2190 (2004).
- [2] B. Y. Lee, T. Minami, T. Kanashima and M. Okuyama, Jpn. J. Appl. Phys. 45, 8608 (2006).
- [3] T. Kaida, K. Kushida, T. Ida, K. Kuriyama, K. Kushida and A. Kinomura, Nucl. Instr. Meth. Phys. Rev. B 332, 15 (2014).
- [4] L. J. van der Pauw, Philips Research Reports 13, 1 (1958).
- [5] G. Shirane, R. Newnham, and R. Pepinsky, Phys. Rev. 96, 581 (1954).
- [6] JCPS 32-0822.
- [7] J. F. Ziegler, M. D. Ziegler, J. P. Biersack, Nucl. Instrum. Methods Phys. Rev. B 268, 1818 (2010).
- [8] L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis, Chapter 3 (1986).
- [9] 500 mb for 1.5 MeV-⁴He⁺ beam from Ion Beam Analysis Nuclear Data Library.
- [10] T. Kaida, K. Kamioka, T. Nishimura, K. Kuriyama, K. Kushida, and A. Kinomura, Nucl. Instr. Meth. Phys. Rev. B 365, 171 (2015).