法政大学学術機関リポジトリ HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-01-15

イオン注入された4H-SiC上へのグラフェン成長と表面のプラズマ前処理による効果

西村, 智朗 / 中村, 徹 / 杉町, 徹 / 椎名, 裕亮

(出版者 / Publisher)法政大学イオンビーム工学研究所

(雑誌名 / Journal or Publication Title)

Report of Research Center of Ion Beam Technology, Hosei University / 法政 大学イオンビーム工学研究所報告

(巻 / Volume) 35 (開始ページ / Start Page) 11 (終了ページ / End Page) 13 (発行年 / Year) 2016-02-15 (URL) https://doi.org/10.15002/00030315

2. イオン注入された4H-SiC上へのグラフェン成長と 表面のプラズマ前処理による効果

杉町 徹*、椎名 裕亮*、西村 智朗**、中村 徹*

1. はじめに

グラフェンは単層炭素原子でできたバンドギャッ プがゼロの半導体である。その電気移動度は高く 200.000 cm²/Vs 以上にもなる¹⁾。高い電気移動度を 得るためには高配向グラファイトからの剥離グラフ ェンが用いられるがドメインサイズが *u* mのオーダ ーであるため大きなデバイス作成にはあまり適さな い。単一配向の大面積グラフェンを作成する方法の 一つとしてSiC基板を高温アニールする方法がある。 高温では表面からSiが抜け、残った炭素が表面を移 動しグラフェンを形成する。また、低圧Ar雰囲気 下で加熱するとSiが表面から抜けにくくなり、この ような雰囲気下ではグラフェンの膜質が良くなると 報告されている²⁾。SiC上のエピタキシャルグラフェ ンはSiC基板とグラフェンとの間の界面の影響によ りn型的な振る舞いを行うと報告されている^{3,4)}。一 方、平面デバイス作成のためにはその電気的特性を 変えるためにイオン注入技術がよく用いられる。イ オン注入によって作られた基板結晶のダメージを回 復させて注入元素を活性化するためには1700℃以上 での高温アニールを行う必要があるが、このアニー ルによって表面には大きなマイクロステップが形成 される。我々はCF4によるSiC基板のプラズマ前処 理がこのマイクロステップの抑制に効果的であるこ とを見出している⁵⁾。今回は各種SiC基板上で作成さ れたグラフェンの特性の違いを報告する。基板には Al注入を行ったものと行っていないもの、またCF4 プラズマ処理を行ったものと行っていないものを用 意し、計4種類の基板についてグラフェン形成を試 みてその特性をAFM、ラマン分光、ホール測定で 評価した。

2. 実験

サンプルはn+の4H-SiC(0001) 基板(4° off) の上にn

型のエピタキシャル層 (6 × 10¹⁵ / cm³, 厚み5 μm) が成長されているものを用いた。グラフェン形成に は普通0° off基板が用いられるが、今回はSiCデバイ ス作成によく用いられる4° off基板を用いて研究を 行った。Alイオン注入はエネルギー170-260 keVで 総量1.2 × 10¹⁵ cm⁻²を注入した。図1に示されてい るようにアクセプタ濃度とp層の厚みはそれぞれ 4 × 10¹⁹ cm⁻³ と500 nmである。CF₄プラズマ処理 はICPドライエッチング装置を用いて400 WのRFパ ワー、真空度は0.4 Pa、流量30sccmの条件下で1分 間行われた。この処理の後に注入種の活性化のため に試料をRFアニール炉でAr雰囲気下、1700℃で30分 間アニールを行った。この過程で出来てしまう表面 グラファイト層はICPドライエッチング装置を用い て酸素雰囲気下で、200 WのRFパワー、真空度 0.2 Pa、流量10sccmの条件の下、1分間処理するこ とで除去した。この後、高品質グラフェン層を作成 するために 10 kPa Ar 雰囲気下で 1500℃で30分間 加熱を行った。グラフェン形成に対するCF4プラズ マ処理の影響とAl注入の影響を明確にするため、以 下の4つのSiC試料上にグラフェンを作成した。(a)

*法政大学大学院理工学研究科、**法政大学イオンビーム工学研究所 この研究はMRS Proceedings Vol. 1693 (2014). DOI:http://dx.doi.org/10.1557/opl.2014.673 に掲載されている。 プラズマ処理なし、(b) プラズマ処理あり、(c) イオ ン注入のみ、(d) イオン注入後プラズマ処理。また 表面モルフォロジーはAFMを用いて10 × 10 μm² の範囲を測定し評価した。グラフェンの構造と均一 性はラマンスペクトル及びラマンマッピング(2D ピークの半値幅を用いたマッピング)を用いて評価 し、ホール測定を行って電気的特性を評価した。

 図2 (a)、(b) はイオン注入を行っていない 試料に対し、CF4プラズマ処理を行わ ない場合とCF4プラズマ処理を行った 場合のAFMイメージを示している。
 (c)、(d) はAIイオン注入を行った試料 に対するCF4プラズマ処理を行わない 場合とCF4プラズマ処理を行った場合 のAFMイメージを示している。

図3 (a)、(b) はイオン注入を行っていない 試料に対し、CF4プラズマ処理を行わ ない場合とCF4プラズマ処理を行った 場合のラマンスペクトルを示している。 (c)、(d) はAIイオン注入を行った試料に 対するCF4プラズマ処理を行わない場 合とCF4プラズマ処理を行った場合の ラマンスペクトルを示している。

3. 結果

図2はグラフェン形成後の各種サンプルのAFM イメージである。プラズマ処理、イオン注入共に行 わなかった試料では大きなマイクロステップが形成 されているのが見て取れ (a)、そのRMS値は 9.2 nm 程度であった。一方プラズマ処理を行ったサンプル は小さなステップテラス構造が観察され(b)、その RMS値は1 nm程度であった。イオン注入を行った サンプルに関してもプラズマ処理の有無によるマイ クロステップの有無が見て取れる(c)、(d)。 試料(c)、 (d)のRMS値は8.4 nmと3.5 nm程度であった。図3は グラフェン形成後のラマンスペクトルを示してい る。全てのサンプルでG-band、2D-bandが見えてお りグラフェンが形成されている事が分かる。特にグ ラフェンの欠陥に起因するD-bandピークはAlイオ ン注入済みの基板上に作成されたグラフェンにのみ 観測されていることが見て取れる(c)、(d)。図4はラ マンスペクトルの2D-bandピークの半値幅の大きさ を10 × 10 μm²にわたってマッピングしたもので あり、膜の均質性を評価することが可能である。図 4(a)、(b) からはプラズマ処理によって膜の均質性 が向上していることが見て取れる。AIイオン注入を 行っている場合でも、プラズマ処理を施していない 場合だと膜の均質性が悪いが(c)、プラズマ処理を行 うと均質性が向上していることが分かる (d)。表1 はホール測定の結果を示している。イオン注入およ

 図4 (a)、(b) はイオン注入を行っていない 試料に対し、CF4プラズマ処理を行わ ない場合とCF4プラズマ処理を行った 場合のラマンスペクトルの2Dスペク トルのFWHMを強度としてマッピン グしたものである。また、(c)、(d) は 同様にAIイオン注入を行った試料に対 するCF4プラズマ処理を行わない場合 とCF4プラズマ処理を行った場合のラ マンマッピングである。 表1 ホール測定の結果。(a)、(b) はイオン 注入を行っていない試料に対し、CF4 プラズマ処理を行わない場合とCF4プ ラズマ処理を行った場合の結果を示し ており、(c)、(d) はAIイオン注入を行 った試料に対するCF4プラズマ処理を 行わない場合とCF4プラズマ処理を行った場合の結果である。

試料	シート抵抗	ホール係数	移動度	シート濃度	型
	(Ω/sq)	(m ² /C)	(cm ² /Vs)	(E13/cm ²)	
(a)	4131	-56.2	136	-1.11	n
(b)	1261	-49.1	389	-1.27	n
(c)	2829	-42.1	146	-1.48	n
(d)	8366	+47.1	56.2	+1.33	р

びプラズマ処理を行っていない試料(a)の場合、n型 の特性を示しその移動度は136 cm²/Vsであった。 またプラズマ処理を行った基板では同様にn型を示 すがその移動度は389 cm²/Vsと向上していること が分かる。一方AIイオン注入を行った試料ではプラ ズマ処理を行わない場合はn型を示しその移動度は 146 cm²/Vsであるが、プラズマ処理を行った試料 はp型の特性を示しその移動度は56 cm²/Vsであっ た。(d)の試料に見られるようにAIイオン注入によっ てグラフェンがp型化した理由はおそらくSiC表面の フェルミレベルがAIイオン注入によって低くなった ためではないかと思われる。同じAIイオン注入にお いても(c)の試料がp型化していない理由はモルフォ ロジーの悪さによる欠陥量が多いためではないかと 考えている。

4. 結論

4° off の4H-SiC (0001) 基板を用い、デバイス作 製プロセス (イオン注入)を見込んだ表面上のグラ フェン形成を試みた。その結果、活性化アニール前 のCF4プラズマ処理は活性化後のSiC表面のマイク ロステップ抑制に効果的である事が分かった。また、 その後形成したグラフェンもプラズマ処理を行わな い試料と比較してより均質なグラフェンになること が分かった。イオン注入を行わない場合ではCF4プ ラズマ処理の有無により移動度が136 cm²/Vs から 389 cm²/Vsに向上することが分かり、Alイオン注 入を行った試料ではCF4プラズマ処理無しの場合は グラフェンはn型を示し、CF4プラズマ処理を行っ た場合はp型を示すことが分かった。

謝辞

この研究の一部は VLSI Design and Education

Center (VDEC)、Synopsysと共同研究している東 大、および平成25-29年度文部科学省私立大学戦略 的研究基盤形成支援事業の助成を受けたものであ る。

参考文献

- S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
- T. Ohta, A. Bostwick, T. Seyller, K. Horn and E. Rotenberg, Science **313**, 951 (2006).
- A. J. Strudwick and C. H. Marrows, J. Mater. Res. 28, 1 (2013).
- 4) C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov and U. Starke, Phys. Rev. Lett. **103**, 246804 (2009).
- 5) T. Sugimoto, M. Satoh and T. Nakamura, in Proceedings of the 28th Symposium on Materials Science and Engineering, Tokyo, Japan, 4 December 2009 (Research Center of Ion Beam Technology, Hosei Univ.), p. 93.