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The purpose of this study is to develop an algorithm and a shell model that utilizes the advantages of HPM, for

material nonlinear large displacement analysis using the shell model. First, the displacement field represented by the
local coordinate system, which is different for each element, is converted into the local coordinate system of one of the

adjacent elements. Subsequently, it is converted into the coordinate system of the element boundary edge. Finally, we

propose a method to calculate the relative displacement from the displacement of the boundary edge of the adjacent

elements obtained in this manner. In this study, we propose a numerical algorithm of material nonlinear large

displacement analysis method using flat plate shell elements in HPM. First, we describe the flat plate elements of

HPM using the local coordinate system. Even with a flat plate, adjacent elements have an angle when a large

displacement occurs. Next, we propose the relative displacement in this case. The "step by step method™ is used

as the algorithm for large displacement analysis. Finally, the accuracy of the solution of the proposed method is

verified by a simple numerical examples.
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1. Introduction

Simulation of a series of phenomena in which fracture
progresses from an elastic state, forms a collapse mechanism,
and then moves discretely is called multi-stage fracture
simulation (MSFS) [1]. In brittle materials, large displacement
states, mainly rigid body displacement, often occur under the
load state that forms the collapse mechanism. Therefore, in
MSFS, large displacement analysis is required as a numerical
method under the load state that forms the collapse mechanism.

On the other hand, it is convenient to use a plate element or
a flat shell element for thin plate fracture analysis such as glass
plate fracture. However, a flat plate initially represented by a
flat surface will have a curved surface when it is in a large
displacement state. Therefore, in MSFS, the use of plate
elements is not appropriate, and it is necessary to use flat shell
elements.

In addition, the model order reduction (MOR) method [2]
has attracted attention in the field of stress analysis, which
improves the efficiency of processing calculations by reducing
the number of dimensions of the model. For example, numerical
results can be obtained in a short time by simplifying the
computation process with low-dimensional elements, such as
flat shell elements. Flat shell elements can also be conveniently

used to analyze other problems in sheet steel conditions, such as
stress analysis of sheet glass.

Even in relation to the MOR mentioned at the beginning, a
method of using an interface element for the deformed
connection has been proposed [3]. In recent years, models used
in isogeometric analysis [4] have been developed [5][6], and
methods such as the isogeomeytric inverse finite element
method have also been studied [7].

Generally, in order to evaluate the safety of a structure, it is
necessary to understand the destruction state and collapse load
of the structure. To solve these problems, a hybrid-type penalty
method (HPM) has been proposed [8]-[11]. In the HPM, an
independent displacement field is assumed for each element.
This displacement field is composed of rigid body displacement,
strain, and its gradient. This is suitable for the analysis of large
displacement problems in which rigid body displacement is
predominant.

The continuity of displacement between elements is
approximated using a penalty function. Furthermore, the surface
force is obtained from the relative displacement along the
boundary between adjacent elements. By applying the fracture
condition to the penalty function on the element boundary using
this surface force, it is possible to introduce the fracture
phenomenon such as slip, crack, and hinge.



2. Brief Formulation of Flat Shell Element

The deformed state in the flat shell problem is shown in Fig. 1.
Horizontal displacement in the flat shell problem is the sum of
displacement 1 of in-plane deformation and displacement
—z(0w /Ox) of out-of-plane deformation as shown.

The deformation of the flat shell problem is expressed by the
sum of the plane stress and plate bending deformation.

before deformation

Fig.1 Flat shell deformation

This relation is expressed as follows:
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Hybrid-type virtual work equation with respect to the M
subdomain and N intersection boundary is the following:
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In HPM, the discretization equation is derived based on the
hybrid virtual work equation of equation (3).
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Here, M is the number of elements and N is the number of

element boundary edges. Here, (e) represents the e element Q(¢),

Also, <ab>  represents the  common
Ceaps 1= 00 N 90®) of adjacent elements.
The first term represents the virtual work formula, and the

boundary

second term represents the formula for subsidiary conditions, as
shown below.
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Also, ois stress, fis physical strength, w is displacement, and
dw is virtual displacement. A is Lagrange multiplier.

Figure 2 shows the degrees of freedom of the flat shell
elements of HPM. The proposed displacement field is shown in
equations (6)-(8). The red letters represent the rigid body
displacement shown in Fig.2.
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Fig.3 Local Coordinate System for Each Subdomain

As shown in Fig.3, x is a value related to the local
coordinate system x-y-z for each element, and X is a value
related to the global coordinate system X-Y-Z. Also, R is a
coordinate transformation matrix between the global coordinate
system and the local coordinate system. There is the following
relationship between these.

r=R,X 9)

Using these relationships, there are the following
relationships between the local coordinate systems of adjacent

elements.
N -1 N
el = RO (RY) 2l (10)
Here, (a) and (b) represent the adjacent elements (@)

and Q® |, and <23> represents the boundary edge n.-ns as
shown in Fig.2.



The displacement field shown in equations (6)-(8) is simply
written as follows:

ul®) = Ny (11)

Here, w(® is the displacement at an arbitrary point in the
element e, 7{¢) is the degree of freedom of the element e, and
IN(© is the coefficient matrix relating these. The displacement

u<<2> at the boundary edge <s> of the element (e) is defined as

follows:

e) def. e
ull, € | (12)
<s>

represented by a local

coordinate system provided for each element, and the
displacement ul®) _ converted into the coordinate system of

N<s>

The displacement u(<‘2> is

the boundary edge of the element (e) is as follows:

u£z€<>3> = R(<e;>“(<eg> (13)
R(<e§> is the matrix that transforms the local coordinate system
of Q(© into the coordinate system along the element boundary
<S>,

At this time, the displacement on the boundary side of the
adjacent elements based on the local coordinate system of (%)
is expressed as follows:

(ala)  _ pla) (a)
un,<ab> - R<ab>u<ab> (14)
a @ Rl L,
usiu)b> - R<ab>R.5' ) (Rgb)> u<ab> (15)

Here, (bla) is the displacement field of Q(®) represented by
the local coordinate system of Q(). From the above, the relative
displacement é(jgb with respect to the Q@ coordinate

system can be obtained as follows.

— ylble) (16)
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By introducing the above displacement field relation into

equation (3), the discretization equation in HPM based on the
Kirchhoff theory can be obtained as follows:
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Here, K ge) represents a coefficient matrix obtained from the
virtual work equation (4), and Ks_.. is a coefficient matrix
obtained from the incidental condition equation (5). In addition,
P®) means a load term for each element.

(1) Accuracy of Elastic Solution

As a first example, we consider semi-circular curved beam
with a pin support on one end and roller support on the other
end, as shown in Fig. 4(a). The shape of semi-circular curved
beamis R = 0.16m, d = 0.1m, t = 0.002m. Young’s modulus is
E = 190GN/m?, Poisson’s ratio is 0. Line load is applied at the
top middle of the model p = 1kN/m.

Fig. 4(b) shows the beam model representation of the same
problem.

Theoretical result of vertical displacement obtained:

PR® (3m
WTheory = m 7

- 4)2 5.759 mm

Also vertical displacement of frame model showing Fig.4 (b) is
computed as wy = 5.768 mm,

pin support

roller support

(a) flat shell model

P =pd

wy = 5.768 mm

R

pin >!uppurt roller support
f L=2R I
(b) frame model

Fig. 4 Numerical Model for Accuracy of Elastic Solution
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Fig.5 Convergence of Displacement Solution by Number of

Elements



Figure 5 shows the convergence of the displacement
according to the number of elements. The circles are the results
of the flat shell model, and the blue line is the results of the
frame model. The horizontal axis represents the number of
elements, and the vertical axis represents the ratio of the analytical
solution to the vertical displacement of the center. The solution by
the proposed method has an error of approximately 0.4% even with
a rough element division of nearly 20 elements.

Figure 6 shows the displacement mode when the number of
element divisions is 40. As a scale, the displacement is multiplied
by 5.
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Fig.6 Distribution of vertical displacements

(2) Pinched Cylinder Analysis
As a second example, we consider the pinched cylinder with
both ends free, as shown in Fig. 7.

Free edge

/2

\F L2

Fig.7 Pinched Cylinder with Free Edges

The shape of cylinder is L = 0.9m, R = 0.16m, t = 0.002m.
Elasticity modulus E = 190GPa and Poisson's ratio n = 0.265.
Point load F = 8.386kN is applied at the top middle of the
model.
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Fig.8 Vertical Displacement of Loading Point

Figure 8 shows the convergence state of the vertical
displacement of the loading point. The vertical axis is the
vertical displacement divided by the analytical solution, and the
horizontal axis is the number of elements.

3. Material Non-Linear Analysis
(1) Constitutive Equation for Surface Force

Discrete analysis using HPM deals with two fractures: one
within the element and the other between adjacent elements. We
deal only with failure at the edge between adjacent elements. In
shell problems, fractures such as bending fractures, slip failures,
and tensile cracking occur at the edge. We analyzed the progress
of a hinge with bending fracture.

Generally, the yield function f(M o) and plastic potential
O(M,o) are

fiMe)=0 (18)
®(M,o)=10 (19)

Here, we assume f = ® according to the associate flow rule. A
plastic hinge is assumed as the fracture condition of the flat
shell model in HPM. The fracture conditions in this case are as
follows:

1]

M) = (20)

where M, represents the full plastic moment.

We considered the increasing strain on the plastic hinge
using the flow theory of plasticity. For this case, the incremental
bending moment is obtained as follows:

AM, = kWA (21)

where Ad represents the relative displacement, and the penalty
function is given as

) _ (e 1 Je)s.(e)
kP = k| é,j—mfuﬁf kj (22)
i i

(2) Load Incremental Method

For nonlinear analysis, “the R-min method” [14] in the load
increment method shown in Fig.10 was used. The method first
searches for the boundary of the element for the smallest rate of
load increment. At the element boundary where the hinge occurs,
the coefficient matrix of equation (17) is obtained using the
incremental relationship of equation (21), and the minimum rate
of load increment is searched again. This process was repeated
until all the loads were applied

Assumably, the stress state shifts from point P to point R
owing to the loading. Because the stress state cannot exceed the



yield surface, it is necessary to return it to point Q. The load
whose stress state does not exceed the yield surface is obtained
by multiplying stress at point R by the increment rate, which is
given as follows:

i
=13

(23)

(n) ‘\

Initial yield surface

Fig. 9 Relationship between yield surface and stress state

Figure 9 shows a conceptual diagram for explaining the
load increment rate; P is the position of the surface force up to
the previous time, and R is the position where the incremental
surface force obtained at the current time and the previous
surface force is added. That is, the incremental surface force of
the current time is PR. If R clearly exceeds point Q of the initial
yield surface, it implies that an extra surface force QR is acting.
Therefore, the surface force in R is returned to the position of Q,
and only the elastic part of PQ is left. For this purpose, the
following load increment rate is used.

Accordingly, the (i + 1) th acting load P“*") can be
obtained from the i-th load ") as follows:

pltl = (1—r)P® (24)

The term 7% denotes the rate of load increment, and it can
be obtained from equation (20) as follows:

fIM+r-AM) <0 (25)
When the yield function is given by equation (20), the rate
of load increment is computed as follows:

M, +r-AM, .
— | =1=0
( *My ) (26)
We obtain r as follows:
M, + M,
= — 27
AM, @9

Therefore, the bending moment Az"+! after the increment can
be obtained by adding the incremental bending moment AM
multiplied by r to the previous bending moment A{4™. One has

M"™ ' =M"+r-AM (28)

In the case of bending moment, residual load at the n™ step
will be

n—1

P =T[ 11 -r)AP (29)

i=0

The cumulative rate of load increment is as follows:

n k—1
rroraL =Y (H [(1- r,-)]) Tk (30)

k=1 i=0
When Trorar = ], an iteration is finished.

4. Large Displacement Analysis
(1) Numerical Algorithm by Step-by-Step Method

Large displacement analysis is difficult to handle as a linear
analysis like small deformation analysis because the stiffness
matrix changes with the deformation of the object. In this paper,
as shown in Fig. 10, we use the step-by-step method to analyze
the large problem by

displacement repeating  the

micro-deformation analysis.

1.Divide the load P into n equal parts and find the
incremental load AP.

2. Analyze the small deformation problem with <——
load increment AP.

3. Update node coordinates with displacement
increment Au™!

wn+1 — " + Aun+1

4. Addition of stress after the coordinate
transformation

5. Create a stiffness matrix with the shape after —
updating the node coordinates

Repeat n times

Fig.10 Large displacement analysis method by step-by-step
method

As shown in the figure, the load acting on the object is
divided

deformation problem is analyzed for each incremental load. The
n+1

into several incremental loads, and the small

obtained displacement Au is added to the coordinate
value ™ before deformation, the coordinate value is updated,
and the shape after deformation is created as &+,

The previous stress is added to the incremental stress to
obtain the total stress, a rigidity matrix is created with
deformation, the coordinate value is updated, and the shape
after deformation is created as ™ 1. The previous stress is
added to the incremental stress to obtain the total stress, a
rigidity matrix is created with the new node coordinate values,
and the linear analysis is repeated.
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Fig. 11 Analysis Flow of Large Displacement Problem by Step-by-step Method with Hinge Condition

Figure 11 shows the analysis flowchart of the load increment
method proposed in this study. In this method, the stiffness matrix
is recreated for each load increment; therefore, the computation
process takes time. However, a stable solution can be obtained even
under a load state near the collapse load. In addition, the load
increment can be calculated from the load increment rate obtained
by analysis, and a more accurate collapse load can be obtained.

Four conditions are assumed as factors that determine the load
increment rate: plastic hinges, slips, shear cracks, and tensile cracks.
These load increment rates are found for all unfractured element
boundaries, and the smallest of them is set to the current load
increment rate.

For shear cracks and tensile cracks under the four conditions, a
process to release the surface force has been added. In this study,
the surface force is fully released, but it is also possible to gradually
release it by changing the release rate.

The above operation is repeated until the load increment rate
rmin 1S 1; that is, the assumed total load is applied. However, if the
mechanism is formed before it becomes 1, the load value at that
time becomes the collapse load.

(2) Numerical algorithm of Material Nonlinear Large
Displacement Analysis

Figure 12 shows the analysis flow of the large displacement

problem with material nonlinearity in this study. As shown in

the figure, the solution is first obtained by linear analysis of the
small deformation problem.

Next, the load increment rate for the material nonlinear
problem is obtained, and the load increment rate due to the limit
rotation angle for the large deformation problem is obtained in
(*1). Then, the minimum load increment rate is calculated by
(*2). For stress, the coordinate transformation is applied in (*3).
After that, the total load increment rate used up to now is
computed by (*4). If this value is less than 1, the coordinates
are updated and the linear analysis is repeated again with the
remaining load.

(3) Numerical Example of Large Displacement Analysis

In this section, we verify the accuracy of the solution of the
large displacement analysis by the proposed step-by-step
method for the elastic problem of the flat shell. Figure 12 shows
the model and mesh division used in the analysis.

E =10GPa
v=20

Elastic modulus

Poison’s ratio P

Jt=05m

b=1m

L=10m

mesh division

HEEE HEN

\ Az@n =10 m |

Fig.12 Numerical Model for Cantilever




As shown in the figure, the numerical model is a flat plate with
one end fixed, and the dimensions are as shown in the figure.
The material constants used in the analysis are also shown in
the figure. The mesh is divided as shown in the lower part of the
figure, but the number of divisions is analyzed assuming
various cases.

In Fig. 13, the horizontal axis is the limit rotation angle, and
the vertical axis is the value obtained by dividing the deflection
at the free end by the solution of the beam theory. The red circle
represents the deflection at the free end, and the blue triangle
represents the horizontal displacement. A convergent solution is
obtained when the limit rotation angle is set to 0.05 or less.
Expressed in degrees, it is about 2.860. Sin2.860 is about
0.0499, which is similar to the limit rotation angle.

11
1.05(E

05 omm? 3

—O— deflection w

displacement (Present/Theoritical)

0.95
—\— displacement
0.9
P =10kN/m
0.85 =,
L=10m
08 | IR — | U R— T
0.01 0.001 0.0001 0.00001

limit rotation angle
Fig.13 Accuracy of Displacement u and w for Limit Rotation
Angle

Figure 14 shows the dimensionless deflection of the free end
of the flat plate on the horizontal axis and the dimensionless
load on the vertical axis. The blue circle is the solution by this
method, and the results are almost the same.

15
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Fig.14 Relationship between Load and Large Deflection

On the other hand, in Fig.15, the horizontal axis shows the
dimensionless horizontal displacement value, and the vertical
axis shows the dimensionless load. The blue circle is the
solution by this method, and the results are almost the same.
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Fig.15 Relationship between Load and Lateral Displacement

Figure 16 shows the displacement mode. The figure shows
an example of 20 divisions, and the deflection and horizontal
displacement are shown on a real scale.

© PL?
=144
1

Fig.16 Displacement Mode for each Load

(4) Numerical Example of Large Displacement Analysis with
Hinge

Figure 17 shows the model and mesh division used in the
analysis. As shown in the figure, the numerical model is a portal
frame with both end fixed, and the dimensions are as shown in
the figure.

Elastic modulus E = 100GPa

P =10 kN/m Poison’s ratio v =0

ﬁ\

S
//JI‘/ 02111
> N -
2 ,11 <5
-~ P
N Mesh Division

7z
0

Full plastic moment M, =10 kNm

l=10m

(a) Model (b) Mesh
Fig.17 Numerical Model for Gate Frame

In the nonlinear analysis, it was assumed that only the
plastic hinge was generated, and only the total plastic moment
was set. The material constants used in the analysis are shown
in the figure. As shown on the right of the figure, the mesh was



divided into 50 rectangular elements for columns and beam
members, and 150 in total.

Figure 18 shows the dimensionless displacement of upper
right corner of the frame on the horizontal axis and the
dimensionless load on the vertical axis. The collapse load of the
large displacement solution is slightly higher than that.

Figure 19 shows the displacement mode.

=

nit load o

pL 3
M, r
2 b

—

Large + Hinge
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----- Limit Load
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— (%1073
77 (X1077)

Fig.18 Load-Displacement Curve for Large Displacement
Analysis with Hinge Condition

Fig.19 Displacement Mode at Collapse Load for Portal Frame
Fixed at Both End

5. Conclusion

In this paper, we proposed a numerical method to the
material nonlinear large displacement problem using flat shell
in HPM. Since HPM independent
displacement field for each element, the displacement field can
be expressed using the local coordinate system set for each
element. The application of this displacement field is convenient
for shell elements based on the Kirchhoff-Love theory, which
in-plane deformation and out-of-plane

elements uses an

can superimpose
deformation.
However, in HPM, which introduces the continuity of
displacement using a penalty function, it is difficult to handle
relative displacement in the case of a shell structure in which
adjacent elements are not flatly connected. In this paper, we

proposed a method to transform the displacement into one of
the local coordinate systems of adjacent elements in the
calculation of this relative displacement.

Finally, we proposed an algorithm for material nonlinear
large displacement analysis that combines the algorithm of large
displacement analysis and material nonlinear analysis. We were
able to show the characteristics of the solution obtained by
proposed method from a simple numerical example.
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