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The purpose of this study is to develop an algorithm and a shell model that utilizes the advantages of HPM, for 

material nonlinear large displacement analysis using the shell model. First, the displacement field represented by the 

local coordinate system, which is different for each element, is converted into the local coordinate system of one of the 

adjacent elements. Subsequently, it is converted into the coordinate system of the element boundary edge. Finally, we 

propose a method to calculate the relative displacement from the displacement of the boundary edge of the adjacent 

elements obtained in this manner. In this study, we propose a numerical algorithm of material nonlinear large 

displacement analysis method using flat plate shell elements in HPM. First, we describe the flat plate elements of 

HPM using the local coordinate system. Even with a flat plate, adjacent elements have an angle when a large 

displacement occurs. Next, we propose the relative displacement in this case. The "step by step method" is used 

as the algorithm for large displacement analysis. Finally, the accuracy of the solution of the proposed method is 

verified by a simple numerical examples. 
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1. Introduction 

Simulation of a series of phenomena in which fracture 

progresses from an elastic state, forms a collapse mechanism, 

and then moves discretely is called multi-stage fracture 

simulation (MSFS) [1]. In brittle materials, large displacement 

states, mainly rigid body displacement, often occur under the 

load state that forms the collapse mechanism. Therefore, in 

MSFS, large displacement analysis is required as a numerical 

method under the load state that forms the collapse mechanism. 

   On the other hand, it is convenient to use a plate element or 

a flat shell element for thin plate fracture analysis such as glass 

plate fracture. However, a flat plate initially represented by a 

flat surface will have a curved surface when it is in a large 

displacement state. Therefore, in MSFS, the use of plate 

elements is not appropriate, and it is necessary to use flat shell 

elements. 

In addition, the model order reduction (MOR) method [2] 

has attracted attention in the field of stress analysis, which 

improves the efficiency of processing calculations by reducing 

the number of dimensions of the model. For example, numerical 

results can be obtained in a short time by simplifying the 

computation process with low-dimensional elements, such as 

flat shell elements. Flat shell elements can also be conveniently 

used to analyze other problems in sheet steel conditions, such as 

stress analysis of sheet glass. 

Even in relation to the MOR mentioned at the beginning, a 

method of using an interface element for the deformed 

connection has been proposed [3]. In recent years, models used 

in isogeometric analysis [4] have been developed [5][6], and 

methods such as the isogeomeytric inverse finite element 

method have also been studied [7]. 

Generally, in order to evaluate the safety of a structure, it is 

necessary to understand the destruction state and collapse load 

of the structure. To solve these problems, a hybrid-type penalty 

method (HPM) has been proposed [8]-[11]. In the HPM, an 

independent displacement field is assumed for each element. 

This displacement field is composed of rigid body displacement, 

strain, and its gradient. This is suitable for the analysis of large 

displacement problems in which rigid body displacement is 

predominant. 

The continuity of displacement between elements is 

approximated using a penalty function. Furthermore, the surface 

force is obtained from the relative displacement along the 

boundary between adjacent elements. By applying the fracture 

condition to the penalty function on the element boundary using 

this surface force, it is possible to introduce the fracture 

phenomenon such as slip, crack, and hinge. 



2. Brief Formulation of Flat Shell Element 

The deformed state in the flat shell problem is shown in Fig. 1. 

Horizontal displacement in the flat shell problem is the sum of 

displacement  of in-plane deformation and displacement 

 of out-of-plane deformation as shown. 

The deformation of the flat shell problem is expressed by the 

sum of the plane stress and plate bending deformation.  

 

 

Fig.1 Flat shell deformation 

 

This relation is expressed as follows: 

 

  (1) 

 

Hybrid-type virtual work equation with respect to the M 

subdomain and N intersection boundary is the following: 

 

 

     

    (2) 

 

In HPM, the discretization equation is derived based on the 

hybrid virtual work equation of equation (3). 

 

  (3) 

 

Here, M is the number of elements and N is the number of 

element boundary edges. Here, (e) represents the e element . 

Also, <ab> represents the common boundary 

 of adjacent elements.  

The first term represents the virtual work formula, and the 

second term represents the formula for subsidiary conditions, as 

shown below. 

 

 (4) 

   (5) 

 

Also, is stress, is physical strength,  is displacement, and 

 is virtual displacement.  is Lagrange multiplier. 

Figure 2 shows the degrees of freedom of the flat shell 

elements of HPM. The proposed displacement field is shown in 

equations (6)-(8). The red letters represent the rigid body 

displacement shown in Fig.2. 

 

 (6) 

 (7) 

 (8) 

 

 

 

Fig.2 DOF of Flat Shell Element 

 

 

Fig.3 Local Coordinate System for Each Subdomain 

 

As shown in Fig.3, x is a value related to the local 

coordinate system x-y-z for each element, and X is a value 

related to the global coordinate system X-Y-Z. Also,  is a 

coordinate transformation matrix between the global coordinate 

system and the local coordinate system. There is the following 

relationship between these. 

 

  (9) 

 

Using these relationships, there are the following 

relationships between the local coordinate systems of adjacent 

elements. 

 

   (10) 

 

Here, (a) and (b) represent the adjacent elements    

and  , and <23> represents the boundary edge n2-n3 as 

shown in Fig.2. 



The displacement field shown in equations (6)-(8) is simply 

written as follows: 

 

  (11) 

 

Here,  is the displacement at an arbitrary point in the 

element e,  is the degree of freedom of the element e, and 

 is the coefficient matrix relating these. The displacement 

 at the boundary edge <s> of the element (e) is defined as 

follows: 

 

  (12) 

 

The displacement  is represented by a local 

coordinate system provided for each element, and the 

displacement  converted into the coordinate system of 

the boundary edge of the element (e) is as follows: 

 

  (13) 

 

 is the matrix that transforms the local coordinate system 

of  into the coordinate system along the element boundary 

<s>. 

At this time, the displacement on the boundary side of the 

adjacent elements based on the local coordinate system of  

is expressed as follows: 

 

  (14) 

  (15) 

 

Here, (b|a) is the displacement field of  represented by 

the local coordinate system of . From the above, the relative 

displacement  with respect to the  coordinate 

system can be obtained as follows. 

 

  (16) 

 

By introducing the above displacement field relation into 

equation (3), the discretization equation in HPM based on the 

Kirchhoff theory can be obtained as follows: 

 

  (17) 

,  

 

Here,  represents a coefficient matrix obtained from the 

virtual work equation (4), and  is a coefficient matrix 

obtained from the incidental condition equation (5). In addition, 

 means a load term for each element. 

 (1) Accuracy of Elastic Solution 

As a first example, we consider semi-circular curved beam 

with a pin support on one end and roller support on the other 

end, as shown in Fig. 4(a). The shape of semi-circular curved 

beam is R = 0.16m, d = 0.1m, t = 0.002m. Young’s modulus is 

E = 190GN/m2, Poisson’s ratio is 0. Line load is applied at the 

top middle of the model p = 1kN/m. 

Fig. 4(b) shows the beam model representation of the same 

problem. 

Theoretical result of vertical displacement obtained: 

 

 

 

Also vertical displacement of frame model showing Fig.4 (b) is 

computed as . 

 

 

(a) flat shell model 

 

 

(b) frame model 

Fig. 4 Numerical Model for Accuracy of Elastic Solution 
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Fig.5 Convergence of Displacement Solution by Number of 

Elements 

 



Figure 5 shows the convergence of the displacement 

according to the number of elements. The circles are the results 

of the flat shell model, and the blue line is the results of the 

frame model. The horizontal axis represents the number of 

elements, and the vertical axis represents the ratio of the analytical 

solution to the vertical displacement of the center. The solution by 

the proposed method has an error of approximately 0.4% even with 

a rough element division of nearly 20 elements. 

Figure 6 shows the displacement mode when the number of 

element divisions is 40. As a scale, the displacement is multiplied 

by 5. 

 

 

Fig.6 Distribution of vertical displacements 

 

(2) Pinched Cylinder Analysis 

As a second example, we consider the pinched cylinder with 

both ends free, as shown in Fig. 7.  

 

 

Fig.7 Pinched Cylinder with Free Edges 

 

The shape of cylinder is L = 0.9m, R = 0.16m, t = 0.002m. 

Elasticity modulus E = 190GPa and Poisson's ratio n = 0.265. 

Point load F = 8.386kN is applied at the top middle of the 

model. 
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Fig.8 Vertical Displacement of Loading Point 

 

Figure 8 shows the convergence state of the vertical 

displacement of the loading point. The vertical axis is the 

vertical displacement divided by the analytical solution, and the 

horizontal axis is the number of elements. 

 

3. Material Non-Linear Analysis 

(1) Constitutive Equation for Surface Force  

Discrete analysis using HPM deals with two fractures: one 

within the element and the other between adjacent elements. We 

deal only with failure at the edge between adjacent elements. In 

shell problems, fractures such as bending fractures, slip failures, 

and tensile cracking occur at the edge. We analyzed the progress 

of a hinge with bending fracture. 

Generally, the yield function  and plastic potential 

 are 

 

  (18) 

  (19) 

 

Here, we assume  according to the associate flow rule. A 

plastic hinge is assumed as the fracture condition of the flat 

shell model in HPM. The fracture conditions in this case are as 

follows:  

 

   (20) 

 

where  represents the full plastic moment. 

We considered the increasing strain on the plastic hinge 

using the flow theory of plasticity. For this case, the incremental 

bending moment is obtained as follows: 

 

    (21) 

 

where  represents the relative displacement, and the penalty 

function is given as 

 

    (22) 

 

(2) Load Incremental Method 

For nonlinear analysis, “the R-min method” [14] in the load 

increment method shown in Fig.10 was used. The method first 

searches for the boundary of the element for the smallest rate of 

load increment. At the element boundary where the hinge occurs, 

the coefficient matrix of equation (17) is obtained using the 

incremental relationship of equation (21), and the minimum rate 

of load increment is searched again. This process was repeated 

until all the loads were applied 

Assumably, the stress state shifts from point P to point R 

owing to the loading. Because the stress state cannot exceed the 



yield surface, it is necessary to return it to point Q. The load 

whose stress state does not exceed the yield surface is obtained 

by multiplying stress at point R by the increment rate, which is 

given as follows: 

 

     (23) 

 

 

Fig. 9 Relationship between yield surface and stress state 

 

Figure 9 shows a conceptual diagram for explaining the 

load increment rate; P is the position of the surface force up to 

the previous time, and R is the position where the incremental 

surface force obtained at the current time and the previous 

surface force is added. That is, the incremental surface force of 

the current time is PR. If R clearly exceeds point Q of the initial 

yield surface, it implies that an extra surface force QR is acting. 

Therefore, the surface force in R is returned to the position of Q, 

and only the elastic part of PQ is left. For this purpose, the 

following load increment rate is used. 

Accordingly, the (i + 1) th acting load  can be 

obtained from the i-th load  as follows: 

 

   (24) 

 

The term  denotes the rate of load increment, and it can 

be obtained from equation (20) as follows: 

 

   (25) 

When the yield function is given by equation (20), the rate 

of load increment is computed as follows: 

 

   (26) 

 

We obtain r as follows: 

 

   (27) 

 

Therefore, the bending moment  after the increment can 

be obtained by adding the incremental bending moment  

multiplied by r to the previous bending moment . One has 

 

   (28) 

 

In the case of bending moment, residual load at the nth step 

will be 

 

   (29) 

 

The cumulative rate of load increment is as follows: 

 

   (30) 

 

When , an iteration is finished. 

 

4. Large Displacement Analysis 

(1) Numerical Algorithm by Step-by-Step Method 

Large displacement analysis is difficult to handle as a linear 

analysis like small deformation analysis because the stiffness 

matrix changes with the deformation of the object. In this paper, 

as shown in Fig. 10, we use the step-by-step method to analyze 

the large displacement problem by repeating the 

micro-deformation analysis. 

 

1.Divide the load P into n equal parts and find the 

incremental load DP.

2. Analyze the small deformation problem with 

load increment DP.

3. Update node coordinates with displacement 

increment Dun+1 

4. Addition of stress after the coordinate 

transformation

5. Create a stiffness matrix with the shape after 

updating the node coordinates
 

Fig.10 Large displacement analysis method by step-by-step 

method 

 

As shown in the figure, the load acting on the object is 

divided into several incremental loads, and the small 

deformation problem is analyzed for each incremental load. The 

obtained displacement  is added to the coordinate 

value  before deformation, the coordinate value is updated, 

and the shape after deformation is created as .  

The previous stress is added to the incremental stress to 

obtain the total stress, a rigidity matrix is created with 

deformation, the coordinate value is updated, and the shape 

after deformation is created as . The previous stress is 

added to the incremental stress to obtain the total stress, a 

rigidity matrix is created with the new node coordinate values, 

and the linear analysis is repeated. 



 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Analysis Flow of Large Displacement Problem by Step-by-step Method with Hinge Condition 

Figure 11 shows the analysis flowchart of the load increment 

method proposed in this study. In this method, the stiffness matrix 

is recreated for each load increment; therefore, the computation 

process takes time. However, a stable solution can be obtained even 

under a load state near the collapse load. In addition, the load 

increment can be calculated from the load increment rate obtained 

by analysis, and a more accurate collapse load can be obtained. 

Four conditions are assumed as factors that determine the load 

increment rate: plastic hinges, slips, shear cracks, and tensile cracks. 

These load increment rates are found for all unfractured element 

boundaries, and the smallest of them is set to the current load 

increment rate. 

For shear cracks and tensile cracks under the four conditions, a 

process to release the surface force has been added. In this study, 

the surface force is fully released, but it is also possible to gradually 

release it by changing the release rate. 

The above operation is repeated until the load increment rate 

rmin is 1; that is, the assumed total load is applied. However, if the 

mechanism is formed before it becomes 1, the load value at that 

time becomes the collapse load. 

 

(2) Numerical algorithm of Material Nonlinear Large 

Displacement Analysis 

Figure 12 shows the analysis flow of the large displacement 

problem with material nonlinearity in this study. As shown in 

the figure, the solution is first obtained by linear analysis of the 

small deformation problem. 

Next, the load increment rate for the material nonlinear 

problem is obtained, and the load increment rate due to the limit 

rotation angle for the large deformation problem is obtained in 

(*1). Then, the minimum load increment rate is calculated by 

(*2). For stress, the coordinate transformation is applied in (*3). 

After that, the total load increment rate used up to now is 

computed by (*4). If this value is less than 1, the coordinates 

are updated and the linear analysis is repeated again with the 

remaining load. 

(3) Numerical Example of Large Displacement Analysis 

In this section, we verify the accuracy of the solution of the 

large displacement analysis by the proposed step-by-step 

method for the elastic problem of the flat shell. Figure 12 shows 

the model and mesh division used in the analysis.  

 

 

Fig.12 Numerical Model for Cantilever 



As shown in the figure, the numerical model is a flat plate with 

one end fixed, and the dimensions are as shown in the figure. 

The material constants used in the analysis are also shown in 

the figure. The mesh is divided as shown in the lower part of the 

figure, but the number of divisions is analyzed assuming 

various cases. 

In Fig. 13, the horizontal axis is the limit rotation angle, and 

the vertical axis is the value obtained by dividing the deflection 

at the free end by the solution of the beam theory. The red circle 

represents the deflection at the free end, and the blue triangle 

represents the horizontal displacement. A convergent solution is 

obtained when the limit rotation angle is set to 0.05 or less. 

Expressed in degrees, it is about 2.86o. Sin2.86o is about 

0.0499, which is similar to the limit rotation angle. 
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Fig.13 Accuracy of Displacement u and w for Limit Rotation 

Angle 

 

Figure 14 shows the dimensionless deflection of the free end 

of the flat plate on the horizontal axis and the dimensionless 

load on the vertical axis. The blue circle is the solution by this 

method, and the results are almost the same. 
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Fig.14 Relationship between Load and Large Deflection 

 

On the other hand, in Fig.15, the horizontal axis shows the 

dimensionless horizontal displacement value, and the vertical 

axis shows the dimensionless load. The blue circle is the 

solution by this method, and the results are almost the same. 
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Fig.15 Relationship between Load and Lateral Displacement 

 

Figure 16 shows the displacement mode. The figure shows 

an example of 20 divisions, and the deflection and horizontal 

displacement are shown on a real scale. 

 

 

Fig.16 Displacement Mode for each Load 

 

(4) Numerical Example of Large Displacement Analysis with 

Hinge  

Figure 17 shows the model and mesh division used in the 

analysis. As shown in the figure, the numerical model is a portal 

frame with both end fixed, and the dimensions are as shown in 

the figure. 

 

 

Mesh Division

 

(a) Model               (b) Mesh 

Fig.17 Numerical Model for Gate Frame 

In the nonlinear analysis, it was assumed that only the 

plastic hinge was generated, and only the total plastic moment 

was set. The material constants used in the analysis are shown 

in the figure. As shown on the right of the figure, the mesh was 



divided into 50 rectangular elements for columns and beam 

members, and 150 in total. 

Figure 18 shows the dimensionless displacement of upper 

right corner of the frame on the horizontal axis and the 

dimensionless load on the vertical axis. The collapse load of the 

large displacement solution is slightly higher than that. 

Figure 19 shows the displacement mode. 

 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

Large + Hinge

Infinitesimal

Limit Load

 

Fig.18 Load-Displacement Curve for Large Displacement 

Analysis with Hinge Condition 

 
 

 

Fig.19 Displacement Mode at Collapse Load for Portal Frame 

Fixed at Both End 

 

 5. Conclusion 

In this paper, we proposed a numerical method to the 

material nonlinear large displacement problem using flat shell 

elements in HPM. Since HPM uses an independent 

displacement field for each element, the displacement field can 

be expressed using the local coordinate system set for each 

element. The application of this displacement field is convenient 

for shell elements based on the Kirchhoff-Love theory, which 

can superimpose in-plane deformation and out-of-plane 

deformation. 

However, in HPM, which introduces the continuity of 

displacement using a penalty function, it is difficult to handle 

relative displacement in the case of a shell structure in which 

adjacent elements are not flatly connected. In this paper, we 

proposed a method to transform the displacement into one of 

the local coordinate systems of adjacent elements in the 

calculation of this relative displacement.  

Finally, we proposed an algorithm for material nonlinear 

large displacement analysis that combines the algorithm of large 

displacement analysis and material nonlinear analysis. We were 

able to show the characteristics of the solution obtained by 

proposed method from a simple numerical example. 
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