法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-01

レンズダンパーとCLTを用いた間柱型エネル ギー吸収部材の開発 : 水平加力試験と復元 力特性について

宮下, 瑞樹 / MIYASHITA, Mizuki

(出版者 / Publisher)法政大学大学院デザイン工学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. デザイン工学研究科編 / Bulletin of graduate studies.
Art and Technology
(巻 / Volume)
12
(開始ページ / Start Page)
1
(終了ページ / End Page)
2

(発行年 / Year) 2023-03-24

(URL)

https://doi.org/10.15002/00030220

レンズダンパーと CLT を用いた間柱型 エネルギー吸収部材の開発 -水平加力試験と復元力特性について-

STUD TYPE USING LENS DAMPER AND CLT DEVELOPMENT OF ENERGY ABSORBING MATERIALS -HORIZONTAL LOAD TEST AND RESTORING FORCE CHARACTERISTICS -

宮下瑞樹 Mizuki MIYASHITA 主查 宮田雄二郎

法政大学大学院デザイン工学研究科建築学専攻修士課程

In this study, a lens damper is used in a wooden load-bearing wall, and the horizontal loading test and analysis of the load-bearing wall and the analysis model of the load-bearing wall alone are summarized. Key Words: Wooden structure, Lens damper, Restoring force characteristics, CLT

1. はじめに

木造建築は近年の環境問題への関心への高まりに合わ せ、関心が益々高まっている分野である。中でも公共建 築物等における木材利用の推進に関する法律が施行され て以降、中大規模木造建築への注目度は高まっている。 本論文のレンズダンパー耐力壁は、中大規模木造建築へ の使用を目的とした高耐力かつ高性能な耐力壁の開発を 目指している。本論文では耐力壁の加力試験、試験結果 の考察、解析を行った。

2. 試験体および試験概要

(1) 試験体

図 2-1-1 に試験体図、図 2-1-2 に試験体写真を示す。

本論文で実験を行った試験体は先行研究である「レンズ ダンパーを用いた CLT 耐力壁の研究-水平加力試験とモ デル化について-1」の試験体に側柱を取り付けた型で ある。先行研究の加力試験の際、桁材が上下に浮き上が り、最終的にレンズダンパーが破断した。そのため、桁 の浮き上がりを防止しするために側柱を取り付けている。 (2) 加力試験概要

加力制御は試験体の変形角で行い,1/450、1/300、1/200、 1/150、1/100、1/75、1/50、1/30rad 毎に, それぞれ 3 回 ずつ正負交番繰り返しの加力を行った。その後荷重が最 大値から 80%に低下するか回転角が 1/10rad に達する まで一方向に加力した。

図 2-1-2 試験体写真

3. 試験結果

(1)荷重変形角曲線および特性値

図 3-1-1 に各試験体の荷重-変形角曲線、表 3-1-2 に 特性値一覧、表 2-1-3 に短期基準耐力一覧を示す。

図 3-1-1 荷重変形角曲線 表 3-1-2 特性値一覧

	最大耐力	終局耐力	初期剛性	塑性率	降伏点変形角	終局変形角	構造特性
	P _{max} (kN)	P _u (kN)	K (10 ³ kN /rad)	μ (kN)	$(10^{-3} rad)$	$(10^{-3} rad)$	係数 D _s
No.1	91.03	81.39	11.71	2.89	6.94	20.09	0.46
No.2	89.27	81.8	9.77	2.41	8.38	20.16	0.51
No.3	90.44	82.24	10.6	2.59	7.76	20.12	0.49
平均	90.25	81.81	10.69	2.63	7.69	20.12	0.49
標準偏差	0.73	0.35	0.79	0.20	0.59	0.03	0.02
変動係数CV	0.01	0.00	0.07	0.08	0.08	0.00	0.04
ばらつき係数	0.996	0.998	0.965	0.965	0.964	0.999	0.979

表 3-1-3 短期基準耐力

	P_y (kN)	$\begin{array}{c} 0.2P_u\sqrt{2\mu-1} \\ (kN) \end{array}$	$\binom{2}{3}P_{max}$ $\binom{kN}{3}$	P ₁₂₀ (kN)	P_a (kN)
No.1	52.75	35.59	60.69	71.57	
No.2	54.69	31.98	59.51	69.8	
No.3	53.38	33.63	60.29	71.39	
平均	53.61	33.73	60.16	70.92	
標準偏差	0.808	1.476	0.490	0.795	
変動係数CV	0.0151	0.0437	0.0081	0.0112	
ばらつき係数	0.993	0.979	0.996	0.995	
短期基準 せん断耐力Po(kN)	53.23	33.04	59.93	70.55	32.88

各試験体のばらつきが小さく収まっていたことを確認 した。また、壁倍率は短期基準耐力 0.2Pu√(2μ-1)で決まり、 試験体ごとの差から算出したばらつき係数を考慮し、壁 幅 2.1m より 7.99 となった。

(2) 等価粘性減衰定数

性能を示す値である。図 3-2-1 に各試験体の等価粘性減衰 定数を示す。レンズダンパー降伏後はいずれの試験体に おいても、先行研究試験体の値を上回っていたことが確 認できた。また、レンズダンパー要素試験と本試験体3 体の等価粘性減衰定数を比較すると、1/150rad で 36%、 1/100rad で 52%、1/75rad で 45%、1/50rad で 78%の減衰 性能を発揮できていた。先行研究試験体と比較して、桁 を拘束したことによりレンズダンパーの減衰性能が発揮 できたと考察される。

4. 解析結果

弾塑性解析ソフト SNAPver.8 を用い、耐力壁単体の解 析を行った。各接合部の剛性を参考文献³⁾⁴⁾をもとに算出 し、レンズダンパーには要素試験より得られた復元力特 性を入力しモデル化を行った。図 4-1 に解析結果および 実験結果より得られた荷重·変形角曲線を示す。

図 4-1 解析結果 比較

実験結果では解析結果とことなり初期の変形角におい てスリップが見られるが、これは接合部のクリアランス が主な原因と考えられる。レンズダンパー降伏後の変形 角では紡錘型にグラフが広がり、解析結果に近しいグラ フの形を描いていることが確認された。

5. まとめ

本論文ではレンズダンパー耐力壁の実験、考察、耐力 壁単体での解析を行った。今後は本耐力壁を建物に使用 した際の挙動を限界耐力計算等を用いて検討することで、 本耐力壁の有効性がより具体的に明らかになることを期 待する。本論文を指導してくださった宮田先生をはじめ すべての方々に感謝申し上げます。

参考文献

- 1)相良良太,法政大学大学院修士:「レンズダンパーを 用いた CLT 耐力壁の研究」,2022
- 2)柴田明徳,東北大学名誉教授:最新耐震構造解析,第3版, 2014,12
- 部山正弘,東京大学大学院農学生命科学研究科教授:中 大規模木造建築の構造設計の手引き,彰国社,2017
- 4)日本建築学会:木質構造接合部設計マニュアル,丸 善,2009