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1  INTRODUCTION 

 

1.1 Background and Objective 

In recent years, the model order reduction (MOR) method [1], which improves the efficiency 

of processing calculations by reducing the number of dimensions of the model, has attracted 

attention in the field of stress analysis. For example, as shown in Figure 1.1, when a CAD model 

is used for analysis by the Finite Element Method (FEM) [2], the detailed modeling uses solid 

elements to divide the mesh. However, in the simplified modeling by the MOR method, elements 

with reduced orders, such as flat shell elements [3], are used. In this case, the simulation result 

can be obtained in a shorter time compared with the detailed modeling. 

 

 

Fig.1.1 Modeling by the finite element method 

 

Phenomena such as thermal cracking of flat glass cannot be expressed as cracking even if 

analyzed as an in-plane or out-of-plane deformation problem [4]. It is considered that such a 

phenomenon occurs when both the in-plane and out-of-plane deformation states occur at the same 

time. Flat shell elements can also be conveniently used to analyze problems that receive both in-plane 

and out-of-plane forces at the same time. 

The development of shell elements for use in the finite element method has been underway since 

the 1960s [5], and new elements are still being researched. For example, Hamadi et al. [6] developed 

CAD Model

Solid Element

Flat Shell Element

Detailed Modeling

Simplified Modeling



 

- 2 - 

a flat shell element with four vertices in a quadrangle and one node within the element. In addition, 

benchmark problems were analyzed using general purpose software. Burand and Angalekar [7] 

analyzed a benchmark nonlinear problem using ANSYS software. Lamine et al. [8] analyzed the 

benchmark problem using ABAQUS and compared their results with experimental values. 

Many studies have been conducted on shell structures for geometric nonlinear problems; Rivera 

et al. [9] verified their accuracy using elements with eight parameters. Sze et al. [10] also analyzed 

benchmark problems for various methods in geometric nonlinear problems. 

In relation to the MOR mentioned earlier, a method using an interface element for the deformed 

connection has been proposed [11]. In recent years, models used in isogeometric analysis [12] have 

been developed [13],[14], and methods such as the isogeometric inverse finite element method have 

been studied [15]. 

Generally, to evaluate the safety of a structure, it is necessary to understand its destruction state 

and collapse load. When analyzing progressive fracture problems such as cracks, the handling of 

discontinuous parts is generally complicated. In order to solve these problems, various modeling 

techniques, such as discontinuous elements in FEM, have been studied [16]-[18].  

The hybrid-type penalty method (HPM) [19]-[21], which is based on the principle of the hybrid 

virtual work [22], is one such analysis method. In the HPM, the analysis domain is decomposed into 

subregions, and an independent displacement field is assumed for each element. This displacement 

field is composed of rigid body displacement, strain, and gradient. HPM is suitable for the analysis of 

large displacement problems, wherein the rigid body displacement is dominant. In addition, if HPM 

can be used for the MOR method, it is possible to know the approximate fracture characteristics at the 

initial stage of structural design and provide useful information for safety evaluation. The HPM frame 

elements [23] and flat plate elements [24]-[26] required for simplified modeling of structures have 

already been developed. 

The subsidiary condition regarding the continuity of displacement on the element boundary is 

introduced using the Lagrange multiplier. This undetermined multiplier physically equates to the 

surface force. Therefore, the idea of the spring of the rigid body spring model (RBSM) developed by 

Kawai [27] is applied to the Lagrange multiplier, and the penalty function is used as the spring 

constant; thus, the surface force between the subregions is expressed. The surface force is obtained 

from the relative displacement along the boundary between adjacent elements. By applying the 

fracture condition to the penalty function on the element boundary using this surface force, it is 

possible to introduce fracture phenomena, such as a slip, crack, or hinge. As mentioned above, HPM 
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is used for the analysis of progressive fracture because the occurrence of cracks can be clearly 

expressed by treating the penalty function as a hard spring [28] [29]. 

However, when flat shell elements are used to model the shell structure of a shape, the adjacent 

elements are joined diagonally; therefore, it is challenging to obtain the relative displacement between 

the different coordinate systems. 

The purpose of this study is to develop an algorithm and a shell model that utilizes the advantages 

of HPM, for material nonlinear large displacement analysis using the shell model. First, the 

displacement field represented by the local coordinate system, which is different for each element, is 

converted into the local coordinate system of one of the adjacent elements. Subsequently, it is 

converted into the coordinate system of the element boundary edge. Finally, we propose a method to 

calculate the relative displacement from the displacement of the boundary edge of the adjacent 

elements obtained in this manner. 

 

 

1.2 Contents of this Study 

This thesis is composed of 6 chapters, and the outline of the remaining chapters is as follows: 

Chapter 2 first summarizes the assumptions as in-plane and out-of-plane problems and presents 

that the superposition of these constitutes a flat shell problem. Subsequently, the governing equation 

of the elastic problem and equation of the hybrid virtual work that is the basis of HPM are derived. 

Next, the HPM discretization equation for the flat shell problem is derived. Because this study is 

formulated based on the local coordinate system, the relationship between the coordinate systems is 

described. In addition, the quadratic displacement field used in the proposed model, relationship 

between the stress in the element and the moment, and relationship between the relative displacement 

and the surface force is described. Finally, the accuracy of the solution obtained by the proposed model 

is verified from simple numerical examples. 

Chapter 3 describes the discrete limit analysis of the flat shell problem. First, the fracture 

conditions are described, and the relationship between the surface force and the constitutive equation 

in HPM is summarized. As a numerical algorithm for material nonlinear analysis, the r-min method 

(Yamada's method) in the load increment method is used. Next, the concept of load increment in this 

material nonlinear analysis is described, and the analysis flowchart of this nonlinear analysis method 

is shown. Finally, from a simple numerical calculation example, it is shown that the collapse load 
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obtained by the proposed model is equivalent to the analytical solution. 

Chapter 4 describes the large displacement analysis of the flat shell problem. In this study, the r-

min method in the load increment method described in Chapter 3 is applied as an algorithm for large 

displacement analysis. To control the load increment, a limit rotation angle is introduced and 

described. In the large displacement problem, the coordinate transformation of the stress in the element 

is required owing to the rotation of the local coordinate system. The relationship between this 

coordinate transformation and the stress in the element is also described. Based on the above 

relationship, the algorithm for large displacement analysis is established. Finally, numerical examples 

using this algorithm are shown, and the characteristics and accuracy of the solution are discussed. 

Chapter 5 describes large displacement analysis with material nonlinearity. The numerical 

algorithm for nonlinear analysis uses the r-min method in the load increment method described in 

Chapters 3 and 4. The rate of load increment is determined by simultaneously considering both the 

rate of load increment with respect to the strength, described in Chapter 3, and the rate of load 

increment owing to the limit rotation angle, described in Chapter 4. In this chapter, the details of this 

algorithm are presented. Finally, the characteristics of the solution obtained in the numerical examples 

using the proposed algorithm are described. 

Chapter 6 summarizes the results obtained in this research and describes the future scope.  
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2  DEVELOPMENT OF 

 FLAT SHELL ELEMENT BY HPM 

 

2.1 Assumption of Flat Shell Problems 

 

2.1.1 Assumption of In-plane Problems 

Frequently, a 2D model can usefully represent a 3D model. The thin plate deformation problem 

has two analysis models as shown in Figure 2.1.1. Figure (a) shows an in-plane problem wherein in-

plane deformation is caused by various loads acting in the plane. Figure (b) shows an out-of-plane 

problem wherein bending deformation occurs by the action of an out-of-plane force. 

 

(a) in-plane problem                           (b) out-of-plane problem 

Fig.2.1.1 Thin plate problem 

There are two ways to model the in-plane deformation problem: to assume a plane stress 

condition, where the in-plane force is loaded to a sufficiently thin flat plate; or, to assume a plane 

strain condition, where the lateral force is loaded to a sufficiently long column. The plane stress and 

strain states are shown in Figure 2.1.2(a) and (b), respectively. 

 

(a) plane stress                                        (b) plane strain 

Fig.2.1.2 In-plane deformation problem 

x

yz

x

yz
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Because thin plates are modeled in this study, plane stress conditions are assumed. The stress in 

the plate thickness direction is assumed to be 0 because the thickness is sufficiently low in the plane 

stress state, and it can deform freely. Therefore, the following assumptions are made: 

  (2.1.1) 

2.1.2 Assumption of Out-of-plane Problems 

The thin plate subjected to the out-of-plane load shown in Figure 2.1.1(b) can be modeled in two 

dimensions based on the Kirchhoff theory. The flat plate in Kirchhoff theory is assumed to be in the 

state where the elastic body of thickness t is placed on the neutral plane as shown in Figure 2.1.3. 

Assuming that the elastic body follows the behavior of the neutral plane in two dimensions, the flat 

plate can be treated identically as the neutral plane. 

 

Fig.2.1.3 Plate and neutral plane in Kirchhoff theory 

Following are the assumptions of Kirchhoff theory. 

(i) Assume infinitesimal deformation that is not greater than plate thickness: 

  (2.1.2) 

(ii) The reference plane assumes no stretching: 

  (2.1.3) 

(iii) Normal direction is maintained: 

  (2.1.4) 
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(iv) The length in the normal direction is constant: 

  (2.1.5) 

(v) Normal stress is ignored: 

  (2.1.6) 

2.1.3 Flat Shell Problems 

The deformed state in the flat shell problem is shown in Figure 2.1.4. Horizontal displacement in 

the flat shell problem is the sum of displacement  of in-plane deformation and displacement 

 of out-of-plane deformation as shown. 

 

Fig.2.1.4 Flat shell deformation 

As described above, the deformation of the flat shell problem is expressed by the sum of the plane 

stress and plate bending deformation.  

Flat shell deformation = in-plane deformation + bending deformation 

This relation is expressed as follows. 
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  (2.1.7) 

Here,  is the displacement in the  direction. The displacement contained within the solid red 

line is the displacement due to the in-plane deformation, and the displacement contained within the 

blue solid line is the deformation due to the plate bending deformation. The sum of these 

displacements is the displacement of the flat shell problem proposed in this study. 
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2.2 Governing Equation and Hybrid-type Virtual Work 

 

2.2.1 Governing Equation 

Let , with , be the reference configuration of a continuum body with 

smooth boundary  and closure . Here  is the ndim dimensional Euclidean 

space. 

 

Fig.2.2.1. Reference configuration  and smooth boundary  

The local form of the equilibrium equation for a deformable body is obtained as 

  , (2.2.1) 

  , (2.2.2) 

where  is the body force per unit volume, and  is the Cauchy stress tensor. 

Here  is the vector space of the symmetric rank-two tensor, and  is the 

standard base vector of , such that the stress tensor becomes , where  denotes 

a tensor product;  is a displacement field of particles with reference position . 

Define  and denote the infinitesimal strain tensor by 

  (2.2.3) 

where  is the differential vector operator, and  shows the symmetry element of 

. It is assumed that the boundary . 

  (2.2.4) 

Here , and the displacement is given as follows: 
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  (2.2.5) 

However, , and traction  is prescribed as follows: 

  (2.2.6) 

Here,  is the outward normal vector on the boundary .  

The constitutive equation to the elastic body is provided as follows by the use of the elasticity 

tensor : 

  (2.2.7) 

The constitutive equation of the three-dimensional problem is given as follows: 

 

 (2.2.8) 

2.2.2 Virtual Work Equation (Weak Forms) 

Let the space of admissible displacement field be denoted by , defined as 

  (2.2.9) 

Moreover, let the space of admissible virtual displacement field be denoted by , defined as 

  (2.2.10) 

Now, using Equation (2.2.1) and integrating the volume of the elastic body, the weak form of 

the static equilibrium of the elastic body is obtained as 

      (2.2.11) 

It can further derive a more common and useful expression to give the divergence of the vector 

 as 
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  (2.2.12) 

Using this equation together with the Gauss’ theorem enables Equation (2.2.11) to be rewritten as 

     (2.2.13) 

This equation is a virtual work equation. If  is the weighing function, it implies a weak form. 

Moreover,  and , where  denotes the Sobolev space of a function 

possessing space integrable derivatives. 

2.2.3 Hybrid-type Virtual Work Equation 

Let  consist of M subdomains  with the closed boundary , as shown 

in Figure 2.2.2. 

  

Fig.2.2.2 Subdomain  and its boundary  

We have, 

    (2.2.14) 

The closure  is defined by the subdomain  and its boundary  as 

  (2.2.15) 

As shown in Figure 2.2.3, the common boundary between the two adjacent subdomains  

and  is defined as 

  (2.2.16) 
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Fig.2.2.3 Common boundary  of subdomains  and  

Suppose  and  are the displacements on , the intersection boundary, in the  

and  subdomains, respectively; they are defined as  

  (2.2.17a) 

  (2.2.17b) 

They have the following relationship: 

  (2.2.18) 

This introduces the subsidiary condition into the framework of the variational Equation (2.2.13) 

with Lagrange multipliers  as 

  (2.2.19) 

Here,  shows the variation of .  

As described above, the hybrid-type virtual work equation with respect to the M subdomain and 

N intersection boundary is the following: 

 

 

    (2.2.20) 
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2.2.4 Physical Meaning of Lagrange Multiplier 

Equation (2.2.20) is expanded as follows: 

  

 

 (2.2.21) 

Therefore, physical meaning of the Lagrange multiplier  is equivalent to the surface force on the 

intersection boundary . That is, 

  (2.2.22) 

Here,   and   represent the surface forces on intersection boundary   at subdomains  

and , respectively. 
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2.3 Discretization of Flat Shell Problems 

 

2.3.1 Definition of Local Coordinate System 

In this study, a local coordinate system was set up for each subdomain, and a displacement 

field within the domain was assumed based on it. The local coordinate system for each subdomain 

is described here. 

Figure 2.3.1 shows the global coordinate system  with respect to the analysis 

domain, and the coordinate system  moves parallel to any vertex of the triangular 

shaped subdomain. 

 

Fig.2.3.1 Parallel translation of the global coordinate system 

At this time, the transformation matrix in the affine transformation is expressed as follows: 

  (2.3.1) 

  (2.3.2) 

Next, as shown in Fig. 2.3.2, the  axis of this coordinate system is rotated such that it coincides 

with one side of the subdomain. At this time, the  axis coincides with the  axis. In addition, the  

axis is rotated such as to face the normal direction of the subdomain. As a result, the plane formed by 

the  and  axes coincides with the plane of the subdomain. 
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Fig.2.3.2 Rotation of axes with respect to the local coordinate system  

This  coordinate system is calculated by the affine transformation as follows: 

  (2.3.3) 

It is expressed as a component using the direction cosine as follows: 

  (2.3.4) 

Here, each component is defined as follows: 

   

   

   

   

By moving the  coordinate system to the centroid of the subdomain as shown in 
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Figure 2.3.3, an independent local coordinate system is determined in each subdomain. 

 

Fig.2.3.3 Parallel translation to the local coordinate system  

The affine transformation related to this translation is obtained as 

  (2.3.5) 

 , (2.3.6) 

Here, 

 

 

 

Consequently, the local coordinate system in the subdomain is as shown in Figure 2.3.4. 

 

Fig.2.3.4 Local coordinate system in a subdomain 

The composite transformation from the global coordinate system to the local coordinate system is as 
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follows: 

   (2.3.7) 

2.3.2 Second-order Displacement Field 

A three-dimensional displaced field  with ndim = 3 is now considered. Here,  is the 

space of admissible displacement field shown in Equation (2.2.9). It carries out Taylor's expansion 

of this displacement  about the point  in a domain  as follows: 

 

 (2.3.8) 

The symbols and their meanings are given below. 

 

 

 

Here,  indicates the value of the physical quantity in the point . The stress analysis often 

needs to check the strain and stress; therefore, it is convenient that the rigid-displacement, strain, 

and slope of strain are the unknowns in the displacement field. Denoting the component of the 

displacement in the , and  directions by , and , respectively, the strain and its derivative 

are given by 

, ,  

, ,  

, ,  

, ,  

, ,  
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, ,  

, ,  

, ,  

, ,  

Now, the three-dimensional quadratic displacement field in the local coordinate system can 

be expressed as follows: 

  

 (2.3.9) 

 

 (2.3.10) 

 

 (2.3.11) 

In this study, the flat shell problem is analyzed by superimposing the plane stress state upon 

the plate bending state. A second-order displacement field is used as the in-plane displacement 

field. The degree of freedom of the in-plane problem is shown in Figure 2.3.5. 

 

Fig.2.3.5 Rigid displacement of in-plane element 
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Now, the displacement field of the in-plane problem is obtained, as follows, from Equations 

(2.3.9) and (2.3.10) for the three-dimensional displacement field. 

   (2.3.12) 

   (2.3.13) 

In the flat plate problem, to express deflection, it is necessary to assume a displacement field 

of a second order or higher. In this study, the second-order displacement field with the lowest 

order is assumed as the deflection. The degree of freedom of the out-of-plane problem is shown 

in Figure 2.3.6. 

 

Fig.2.3.6 Rigid displacement of an out-of-plane element 

In the out-of-plane problem to which the Kirchhoff's assumption is applied, the order required 

for the deflection is two or more. In this study, the second-order displacement field is assumed. 

Now, the displacement field of the out-of-plane problem is obtained, as follows, from Equation 

(2.3.11) for the three-dimensional displacement field. 

  (2.3.14) 

Thus, the degrees of freedom of rigid body displacement of the flat plate shell element in the local 

coordinate system provided for each subdomain are shown in Figure 2.3.7. 
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Fig.2.3.7 Rigid displacement of a flat shell element 

Therefore, the degree of freedom of the flat shell  is as follows: 

  (2.3.15) 

Here,  denote a rigid body displacement vector, rigid body rotation vector, and strain 

vector, respectively. Also,  are the gradients of strain. 

 

 

 

 

 

 

Further, the displacement of an arbitrary point on the neutral plane, with respect to the plate thickness 

direction, in the subdomain is expressed as follows: 

  (2.3.16) 

 

 

, ,  
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,  

 

 

2.3.3 Element Stress and Moment 

(1) In-plane problem 

The displacement field in the in-plane problem is expressed by Equations (2.3.12) and (2.3.13). 

These can be simply expressed as follows: 

  (2.3.17) 

  

  

, ,  

 , ,  

The strain for the plane stress state in subdomain  (element e) can be expressed, as 

follows, using Equation (2.3.17). 

  (2.3.18) 

Here, the components of each matrix are defined as 
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Thus, in the displacement field used in this study, the strain distribution in a subdomain 

(element) is represented by a linear function. This is equivalent to the second-order element in the 

finite element method. 

The stress–strain relationship in the case of plane stress state is derived, as follows, for the 

stress–strain relationship (2.2.7) in the three-dimensional problem: 

 , (2.3.19) 

where 

. 

In addition,  represents a constitutive matrix for plane stress state, which can be expressed by 

the following equation using Poisson ratio  and elastic modulus E. 

  

(2) Out-of-plane problem 

The strain–displacement equation for a three-dimensional problem is given by 

 

 

Applying Kirchhoff's assumption to this relation, the strain–displacement relation for plate 

bending problems is obtained as follows: 
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Integrating both sides of these equations with respect to z gives the following relationship: 

  (2.3.20) 

  (2.3.21) 

Where  are the integral constants. In Kirchhoff's assumption, the neutral surface is an 

inextensible deformation; therefore, the integral constant is zero if the rigid body movement is 

zero. Consequently, the following relationship is obtained: 

  (2.3.22) 

  (2.3.23) 

Applying the deflection expressed by Equation (2.3.14) to Equations (2.3.22) and (2.3.23) 

gives the following relationship: 

  (2.3.24) 

  (2.3.25) 

Therefore, the displacement field of the out-of-plane problem is 

  (2.3.26) 
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, ,  

 ,   

Substituting Equations (2.3.22) and (2.3.23) into the strain–displacement relationship, the 

strain is represented by the deflection , as follows: 

  (2.3.27) 

  (2.3.28) 

  (2.3.29) 

Substituting the relation of Equation (2.3.26) into Equations (2.3.27)–(2.3.29), the strain in the 

subdomain  of the out-of-plane problem can be similarly expressed as follows: 

  (2.3.30) 

  

    

In Equation (2.3.19), the stress–strain relationship is derived assuming a plane stress state. 

Moreover, in the plate bending problem, stress is calculated based on the assumption of a 

constitutive matrix of a plane stress state using the strain represented by Equation (2.3.30). 

  (2.3.31) 
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Whereas, the bending moment in a plate can be computed using Equation (2.3.31) as follows: 

  

 

 (2.3.32) 

Here, is defined as 

  (2.3.33) 

These bending moments can be expressed using components as follows: 

  (2.3.34) 

The relationship between these bending moments are shown in Figure 2.3.8. 

 

Fig.2.3.8 Bending moments acting on a plate 

(3) Flat shell problem 

In this study, the displacement of the flat shell is expressed by superimposing the displacements 

of the in-plane problem upon the out-of-plane problem as expressed by Equation (2.1.7). The 

displacement of the flat plate shell is given below. 
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  (2.3.35) 

  (2.3.36) 

  (2.3.37) 

The degrees of freedom of the flat shell are as shown in Figure 2.3.7, and the displacement field 

is expressed as follows: 

  (2.3.38) 

  

Whereas, the strain in the subdomain  (element e) is expressed, as follows, from the in-

plane deformation and out-of-plane deformation. 

  

  (2.3.39) 

Here, the first term of Equation (2.3.39) represents strain  in the in-plane deformation problem, 

and the second term represents strain  in the out-of-plane deformation problem. The strains are 

given by Equations (2.3.18) and (2.3.30), respectively. 

Additionally, in the flat shell problem, the stress–strain relationship assuming the plane stress 

state used in Equations (2.3.19) and (2.3.31) is applied. This stress–strain relationship is described 

below. 

 , (2.3.40) 

where  is the constitutive matrix. 

Equation (2.3.40) is expressed using strain  in the in-plane deformation problem and strain 

 in the out-of-plane deformation problem as follows: 

  (2.3.41) 
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Substituting Equations (2.3.18) and (2.3.30) into Equation (2.3.41), the following relationship 

can be obtained:  

  (2.3.42) 

The element internal force in the in-plane direction can be obtained by integrating this stress in 

the plate thickness direction as follows: 

  

 

,  (2.3.43) 

where 

  (2.3.44) 

Equation (2.4.44) shows that the stress–strain relationship in the plane stress state is multiplied 

by the plate thickness t. The relationship expressed by the components is as follows: 

  (2.3.45) 

The bending moment can be obtained by multiplying the stress in Equation (2.3.42) by the 

function z in the plate thickness direction and integrating the plate thickness. 

  

 

,  (2.3.46) 

where 



 

- 28 - 

  (2.3.47) 

The relationship expressed by the components is as follows: 

  (2.3.48) 

 

2.3.4 Relative Displacement 

The displacement at any point on the neutral plane of the subdomain is given by Equation 

(2.3.16). The displacement of the subdomains  and  on the adjacent boundary , 

shown in Figure 2.3.9, are defined as follows: 

 

Fig.2.3.9 Adjacent boundary  of subdomains  and  

   (2.3.49a) 

  (2.3.49b) 

Here, the superscripts (a) and (b) represent the subdomain numbers, and the subscript <ab> 

represents the adjacent boundary numbers. That is,  implies the displacement on the 

boundary  of the subdomain . Similarly, the coefficient matrix is defined as follows: 

  (2.3.50a) 

  (2.3.50b) 
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Therefore, the displacement of the subdomains  and  on the boundary  is 

obtained as follows: 

  (2.3.51) 

  (2.3.52) 

Equations (2.3.51) and (2.3.52) are represented by the local coordinate system set for each 

subdomain, as shown in Figure 2.3.10. However, in the computation of relative displacement, the 

displacement in each subdomain needs to be represented by the same coordinate system. In this 

paper, the relative displacement is computed according to the coordinate system on the  side. 

 

Fig.2.3.10 Coordinate system for each subdomain 

First, the coordinate transformation between the local and global coordinate systems will be 

summarized. The relationship between the local coordinate system  in the two subregions  

and  and global coordinate system , shown in Figure 2.3.10, is expressed as follows: 

  (2.3.53) 

  (2.3.54) 

Here,  is the transformation matrix of the local coordinate system  and global coordinate 

system  of the element (e); the components are expressed as follows: 
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  (2.3.55) 

Here, each component is obtained using the coordinate system shown in Fig. 2.3.11 

 

Fig.2.3.11 Local coordinate system  and global coordinate system  

,  

,  

 

 

, ,  
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, ,  

Using Equations (2.3.53) and (2.3.54) to transform the local coordinate system  into the 

global coordinate system , we get 

  (2.3.56) 

  (2.3.57) 

From these relationships, the coordinate system of the subdomain  can be transformed 

into the coordinate system of the subdomain  as follows: 

  (2.3.58) 

However, in this paper, to obtain the relative displacement, it is converted into the values in 

the tangential and normal directions with respect to the local coordinate system provided at the 

adjacent boundary shown in Figure 2.3.12. Therefore, it is necessary to convert the displacement 

of the local coordinate system for each subdomain into the displacement of the coordinate system 

along the adjacent boundary. 

 

Fig.2.3.12 Local coordinate system of subdomain and adjacent boundary 
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Focusing on the subregion , the transformation is expressed as follows: 

  (2.3.59) 

 

 

Here,  is the value in the local coordinate system of the partial region,  is the value in the 

local coordinate system provided on the adjacent boundary edge, and  is the coordinate 

transformation matrix for these coordinate systems, expressed as 

  (2.3.60) 

The components of the coordinate transformation matrix are as follows: 

, , ,  

, 

where 

. 

Using the above coordinate transformation relationship, the relative displacement between 

adjacent elements is found. Figure 2.3.13 shows the two subdomains  and  and their 

common boundary . In this paper, the relative displacement of the two subdomains shown 

in Figure 2.3.13 is computed with reference to the normal direction of . 

The displacement  with respect to the coordinate system  on the boundary of 

 can be obtained from Equations (2.3.51) and (2.3.59) as follows: 

 

 (2.3.61) 
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Fig.2.3.13 Local coordinate system on adjacent element boundaries 

The displacement on the boundary of  is converted to the local coordinate system of  

using Equation (2.3.58). The result is further converted into a coordinate system on the boundary 

coordinates based on  using Equation (2.3.59). Consequently, the following relationship is 

obtained: 

 

 (2.3.62) 

The relative displacement  on the neutral plane of the adjacent element can be obtained as 

the difference between Equations (2.3.61) and (2.3.62).  

 

 

  (2.3.63) 

Here, 
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However, in the case of the out-of-plane problem of the proposed model, as shown in 

Equations (2.3.22) and (2.3.23), there is a term related to the gradient of deflection. To maintain 

continuity with respect to these terms, it is necessary to obtain relative quantities in preparation 

for them. With reference to Equations (2.3.24) and (2.3.25), the gradient can be expressed as 

follows: 

  (2.3.64) 

where, 

 

 

 ,  

 

Equation (2.3.64) is expressed as a gradient on the boundary of adjacent elements according 

to the method in Equation (2.3.49a) and (2.3.49b). Next, applying the coordinate transformation 

of Equation (2.3.59) to the local coordinates on the boundary edge, we get 

  (2.3.65) 

  (2.3.66) 

Here,  is the gradient on the boundary  of the region , and  represents the 

coordinate transformation matrix shown in Equation (2.3.60).  is the gradient of 

deflection with respect to the local coordinate system  provided at the boundary  

of the region , and  is the gradient of deflection with respect to the local coordinate 

system  provided at the boundary  of the region .  

Now, the relative deflection gradient is expressed as 
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  (2.3.67) 

Here, 

  

 

2.3.5 Lagrange Multipliers 

The physical meaning of the Lagrange multiplier  is equivalent to the surface force on the 

intersection boundary, as described in Section 2.2.4. Generally, the principle of hybrid-type 

variational work deals with this multiplier as an unknown parameter. Because the Lagrange 

multiplier  is equivalent to the surface force on boundary  in subdomains  and , 

this surface force is assumed as Equation (2.3.3) in this paper. 

  (2.3.68) 

Here,  represents the relative displacement on the intersection boundary  between 

subdomains  and , and  is a matrix that relates the surface force  to relative 

displacement . In this paper, the relative displacement  deals with the displacement on 

the neutral plane represented by Equation (2.3.6) and the gradient of deflection represented by 

Equation (2.3.66). In addition, assuming that the connection of adjacent elements is bent, the 

relative displacement is calculated with reference to the normal vector on the  side. Therefore, 

 is displayed as , which is defined as 

  (2.3.69) 

 represents the relative displacement along the coordinate axes  shown in 

Figure 2.3.14, and  represents the relative displacement related to the rotation of n and s in 

the figure. 
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Fig.2.3.14 Local coordinate system on the boundary  

However,  is the surface force corresponding to their relative displacement, having the 

following relationship: 

  (2.3.70) 

 represents the surface force in the  coordinate axis direction, and  

represents the surface force with respect to the gradient of deflection around the n- and s-axes, 

corresponding to the bending moment; they are expressed in terms of components as follows: 

  (2.3.71) 

  (2.3.72) 

In this paper, the surface force in Equations (2.3.71) and (2.3.72) is computed from Equation 

(2.3.68) using the relative displacement in Equation (2.3.70). Now,  is a penalty matrix and has 

the following relationship: 

  (2.3.73) 

In addition, each component is given as follows: 
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  (2.3.74) 

  (2.3.75) 

In the HPM, using the penalty function , the coefficient  is expressed as follows: 

  (2.3.76) 

The concept of this surface contact used in HPM is exactly the same as RBSM. According to 

the concept of springs used in RBSM, the penalty function used in HPM assumes a very hard 

spring. In this paper, for the penalty function shown in Equation (2.3.75), a weighted penalty 

function is assumed based on the RBSM concept as follows: 

  (2.3.77) 

  (2.3.78) 

  

Fig.2.3.15 Height of the perpendicular line 

 

Here,  is Poisson ratio and h1 and h2 are the heights of the perpendicular line to the intersection 

boundary from the gravity center of each subdomain, as shown in Figure 2.3.15. 
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Also, E is elastic modulus and E’ is penalty value defined as 

  (2.3.79) 

Here, p is a penalty function, and a value  is set. 

 

 

2.3.6 Discretized Equations 

In the derivation of the discretization equation, independent displacement fields for each 

small subdomain, represented by Equation (2.3.38), were substituted into the hybrid-type virtual 

work Equation (2.2.20). The discretization of the first term of Equation (2.2.20) is described first; 

the first term is expressed as follows: 

  (2.3.80) 

Moreover, the strain of the flat shell element is expressed by the following equation: 

 

 (2.3.81) 

Similarly, the virtual strain is also defined as 

 

 (2.3.82) 

Substituting Equations (2.3.81) and (2.3.82) into Equation (2.3.80) obtains the following 

equation: 

 (2.3.83) 
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Here, is a linear function of z. Therefore, the integral for the thickness direction (z) with 

respect to the product with  is 0. Hence, Equation (2.3.83) is expressed as 

 (2.3.84) 

The first term on the right-hand side of Equation (2.3.84) relates to the in-plane deformation, and 

the second term relates to the out-of-plane deformation. 

The first term for in-plane deformation is expressed as 

  

 (2.3.85) 

Similarly, the second term on the out-of-plane deformation is expressed as 

  

, (2.3.86) 

where 

 , 

 . 

Here,  and  are as shown in Equations (2.3.44) and (2.3.47). 

Therefore, the first term of the Equation (2.2.20) for the hybrid-type virtual work is 

discretized as 
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  (2.3.87) 

Similarly, the second term of Equation (2.2.20) can be represented as 

  

 (2.3.88) 

For simplicity, the integral term is expressed as 

  (2.3.89) 

The second term of the virtual work equation is represented as 

  (2.3.90) 

The third term of Equation (2.2.20) is represented as 

  

 (2.3.91) 

The integral term is expressed in the same manner as in Equation (2.3.9). 

  (2.3.92) 

Subsequently, the third term of the virtual work equation is represented as 

  (2.3.93) 
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Therefore, the discretized virtual work equation can be obtained as 

  (2.3.94) 

Now, let  be a matrix that relates the degrees of freedom  in domain  and degrees of 

freedom  in the target subdomain . Then, the displacement and virtual displacement for 

each partial region can be expressed as follows: 

  (2.3.95) 

  (2.3.96) 

Therefore, the discretized virtual work in Equation (2.3.94) is expressed using all degrees of 

freedom  as 

 , (2.3.97) 

where 

 . 

Also, each coefficient matrix is given as follows: 

 

 

 

Equation (2.2.19) demonstrates how the subsidiary conditions for virtual work are considered 

using the Lagrange multiplier. In the case of a flat shell, the subsidiary condition can be expressed 

using the relative displacement shown in Equation (2.3.69). 

 



 

- 42 - 

  (2.3.98) 

The Lagrange multiplier implies the surface force, and in this paper, it is assumed as in Equation 

(2.3.68). Now, using the relation of Equations (2.3.69), (2.3.70), and (2.3.73), this can be 

expressed as 

  

  (2.3.99) 

For the first term of Equation (2.3.99), the relative displacement  is given by 

Equation (2.3.63). Therefore, it can be expressed as 

  

  (2.3.100) 

The integral of the first term of Equation (2.3.99) is expressed as follows: 

  

 

, (2.3.101) 

where 

 . (2.3.102) 

Similarly, regarding the second term, because the relative displacement  is given by 

Equation (2.3.67), it can be expressed as 
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  (2.3.103) 

Similarly, the integral of the second term is expressed as 

  

 

, (2.3.104) 

where 

 . (2.3.105) 

Therefore, Equation (2.3.93) is expressed as follows: 

  (2.3.106) 

Equation (2.3.106) is simplified as 

  (2.3.107) 

Now, let  be a matrix that relates the degrees of freedom  in all partial areas  and 

degrees of freedom  in the target partial area . The degree of freedom  related to the 

target partial area boundary is expressed by the total degree of freedom  as 

  (2.3.108) 

  (2.3.109) 

Substituting Equations (2.3.108) and (2.3.109) into Equation (2.3.107), the discretized 
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subsidiary condition with all degrees of freedom  is obtained as follows: 

 , (2.3.110) 

where 

 . 

Therefore, the discretization Equation (2.3.20) of hybrid-type virtual work is expressed as 

follows: 

  (2.3.111) 

Here, M represents the number of subdomains (elements), and N represents the number of 

intersection boundaries of adjacent subdomains. Equation (2.3.111) is expressed from Equations 

(2.3.97) and (2.3.107) as follows 

  (2.3.112) 

Because the virtual displacement is arbitrary, the following discretization equation for the 

plate bending problem can be obtained: 

  (2.3.113) 

Here,  and  are defined as 
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2.4 Numerical Examples 

 

2.4.1 Cantilever with Load Acting from Two Directions [30] 

The accuracy of the solution for the proposed flat shell element is verified by a simple 

numerical example. Figure 2.4.1 shows the model used for the analysis. This model is a thin plate 

with a length of 100 mm, width of 20 mm, and thickness of 4 mm, with the left side constrained. 

In-plane and out-of-plane loads are applied along the right edge. The material constants are as 

shown in Figure 2.4.1. 

 

Fig.2.4.1 Numerical analysis model 

Three analysis cases were set according to the loading conditions shown in Figure 2.4.1: 

CASE-1: in-plane load   

CASE-2: out-of-plane load   

CASE-3: both in-plane and out-of-plane loads 

Figure 2.4.2 shows the mesh division and boundary conditions; the upper-half of the analysis 

area is considered symmetrical. As shown in the figure, 10 x 10 mm squares are divided into 

crosses. Figure 2.4.2(a) shows the boundary conditions for the in-plane direction, where the left 

extremity is a slide. Figure 2.4.2(b) shows the boundary conditions for the out-of-plane direction, 

where the left extremity is fixed. 

In-plane load

Out-of-plane load

100

20

t = 4

Elastic modulus

Poisson’s ratio
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(a) Boundary condition (in-plane) 

 

(b) Boundary condition (out-of-plane) 

Fig.2.4.2 Mesh division and boundary conditions 

(1) CASE-1 (in-plane load) 

Figure 2.4.3(a) shows the deformation mode with a Poisson’s ratio of 0 when an in-plane load 

is applied. The displacement at the right extremity represents the simulation result by this method. 

Also, uexact in parentheses represents the analytical solution. The error in this method was less than 

0.01%. Figure 2.4.3(b) shows the deformation mode with a Poisson ratio of 0.3 when an in-plane 

load is applied. As shown, the effect of the Poisson ratio was correctly evaluated for the proposed 

flat shell element. 

 

(a) Poisson’s Ratio: 0 

 

(b) Poisson’s Ratio: 0.3 

Fig.2.4.3 Displacement mode (CASE-1) 

 



 

- 47 - 

(2) CASE-2 (out-of-plane load) 

Figure 2.4.4 shows a deflection curve with a Poisson’s ratio of 0 when an out-of-plane load 

is applied. 

 

Fig.2.4.4 Deflection curve (CASE-2) 

The horizontal axis in Figure 2.4.4 represents the distance from the left edge of the thin plate 

to the center of each element, and the vertical axis represents the deflection. The symbol in Figure 

2.4.4 indicates the deflection of the flat plate shell element and indicates the value at the element 

centroid. The solid line shows the deflection curve based on beam theory, which approaches the 

solution based on the proposed model. Comparing the maximum deflection at the right extremity 

of the proposed model with the solution based on beam theory, the error was found to be less than 

0.26%, confirming the high accuracy of the model. 

Figure 2.4.5 shows the deflection angles when an out-of-plane load is applied. The horizontal 

axis in the figure represents the distance from the left edge of the thin plate, and the vertical axis 

represents the deflection angle. The deflection angles of both the proposed model and beam theory 

are nearly equal. 
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Fig.2.4.5 Deflection angle curve (CASE-2) 

(3) CASE-3 (in-plane + out-of-plane loads) 

Figure 2.4.6 shows the deformation state when the in-plane and out-of-plane loads act 

simultaneously. The horizontal axis represents the horizontal position of the flat plate obtained by 

multiplying the horizontal displacement by 10, and the vertical axis shows the deflection. This 

result is obtained by combining the horizontal displacement of CASE-1 and deflection of CASE-

2. The results concurred with the concept of the proposed flat shell. 

 

Fig.2.4.6 Deformation state for flat shell (CASE-3) 
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2.4.2 Cantilever with Angle [31] 

To examine the accuracy of the displacement solution of the proposed flat plate shell model, 

the verification results using a simple model are shown. Figure 2.4.7 shows a numerical model of 

a cantilever bent at 90° under the axial and shear forces. The dimensions and load are shown in 

the figure. The material has an elastic modulus of E = 100 MPa and Poisson’s ratio of  = 0. For 

the mesh division, a quadrilateral element is used as shown in the figure, and the displacement 

field of the in-plane deformation is a linear function. 

 

Fig.2.4.7 Numerical model for the cantilever bent at an angle 

Figure 2.4.8 shows the value of the penalty function on the horizontal axis, and the ratio of 

the displacement at the beam tip to the beam theory equivalent on the vertical axis. The red line 

represents the horizontal displacement, and the blue line represents the vertical displacement. If a 

penalty of approximately 105–109 is used, a solution that is nearly consistent with the theoretical 

solution can be obtained. When it becomes 109 or more, the error tends to increase owing to the 

influence of the rounding error. 

In Figure 2.4.9, the horizontal axis represents the number of elements, and the vertical axis 

represents the ratio of the model to the beam theory, as in the case of the penalty function. The 

red and blue lines, having the same denotations as the previous figure, show the values obtained 

by dividing the horizontal and vertical displacements by the solution of the beam theory. Even 

with a small number of divisions, such as 5, a solution with small error is obtained for both 
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horizontal and vertical displacements. Because this model uses a quadratic function as the 

displacement field for bending, an accurate solution can be obtained. 

 

 

Fig.2.4.8 Convergence of displacement solution by penalty function 

 

 

Fig.2.4.9 Convergence of displacement solution by number of elements 
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Fig.2.4.10 Displacement mode 

 

 

Fig.2.4.11 Sectional force distribution 
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Figure 2.4.10 shows the displacement mode. The wire frame is the original figure, and the filled 

plane is the deformed state; an appropriate displacement mode has been obtained. 

Figure 2.4.11 shows the cross-sectional force diagram (axial force, bending moment, and shear 

force). The solid red line represents the solution according to the beam theory, the red circles represent 

the surface force on the boundary of the adjacent element, and the blue circles represent the cross-

sectional force within the element. The section forces are in good agreement with the beam theory 

solution. 

 

 

2.4.3 Semicircular Curved Beam [32] 

A semicircular curved beam with a pin support at one end and a roller support at the other end 

was considered, as shown in Fig. 2.4.12(a); Figure 2.4.12(b) shows the beam model representation of 

the same problem. 

 

(a) Flat shell model 

 

(b) Frame model 

Fig.2.4.12 Numerical model for the accuracy of the elastic solution 
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The number of elements in both models shown in Figure 2.4.12 is 20. The parameters of the 

semicircular curved beam are R = 0.16 m, d = 0.1 m, and t = 0.002 m. The Young’s modulus is E = 

190 GN/m2, Poisson’s ratio is  = 0, and geometrical moment of inertia is . 

A line load p = 1 kN/m  was applied at the top-middle of the model.  

The theoretical result of the vertical displacement is 

  

In addition, the vertical displacement of the frame model with 20 elements, as shown in Fig.2.4.12(b), 

was computed as . 

Figure 2.4.13 shows the convergence of the displacement according to the number of elements. 

The circles represent the results of the flat shell model, and the blue line represents the results of the 

frame model with 20 elements. The horizontal axis represents the number of elements, and the vertical 

axis represents the ratio of the analytical solution to the vertical displacement of the center. The 

solution by the proposed method has an error of approximately 0.4% even with a rough element 

division of nearly 20 elements. 

 

Fig.2.4.13 Convergence of the displacement solution by number of elements 

 Figure 2.4.14 shows the displacement mode when the number of element divisions is 40. As a 
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scale, the displacement is multiplied by 5. Figure 2.4.15 shows color contours of the vertical 

displacement distribution. It can be seen that an appropriate coordinate transformation is applied in 

the curved portion. 

 

Fig.2.4.14 Distribution of vertical displacements 

 

 

Fig.2.4.15 Color contours for the distribution of vertical displacements 
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3  DISCRETE LIMIT ANALYSIS OF 

       FLAT SHELL STRUCTURE 

 

3.1 Failure Criterion and Constitutive Equation for Penalty Function 

 

3.1.1 Constitutive Equation for Surface Force 

HPM deals with fracture using two parameters, stress in the element and surface force on the 

element boundary. In this section, yield conditions were induced for surface forces on element 

boundaries such as hinges and slips. The constitutive law and nonlinear analysis method use the 

surface force at the boundary of adjacent elements; thus, they are nearly the same as the nonlinear 

analysis of RBSM [27]. 

If the surface force between the elements is represented by , the yield function f can be 

expressed as follows: 

  (3.1.1) 

The plastic potential Q is expressed in the same way as 

  (3.1.2) 

The general plastic flow rule is expressed by the relationship between stress and strain, but HPM 

uses the surface force per unit area and relative displacement. Therefore, the increment  of the 

relative displacement after plasticization is considered as follows: 

  (3.1.3) 

Here,  indicates an incremental quantity, and p in the superscript indicates a plastic state 

quantity. If the value before plasticization is expressed by the attached e, the total relative displacement 

is expressed as follows: 
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  (3.1.4) 

Moreover, the relationship between the surface force before plasticization and relative displacement 

is expressed as 

  (3.1.5) 

From these relationships, the incremental surface force  can be obtained as 

  (3.1.6) 

Here, the plastic condition is expressed as 

  (3.1.7) 

Substituting Equation (3.1.6) into Equation (3.1.7) and solving for  gives the following relationship: 

  (3.1.8) 

When the  value represented by Equation (3.1.8) becomes negative in the plastic state, it 

becomes the unloading state, and when the  value becomes positive in the unloading state, it 

becomes the reloading state. 

(plastic state)   → unloading state 

(unloading state)   → reloading state 

From the above relationship, the relationship between the incremental surface force and 

incremental relative displacement with respect to the element boundary after plasticization can be 

obtained as follows: 

  (3.1.9) 
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When the associated flow rule is applied in Equation (3.1.9), the relationship between the 

yield function and plastic potential is expressed as 

  (3.1.10) 

 

 

3.1.2 Hinge Condition 

Let  be in the parentheses in Equation (3.1.9); the post-plasticized constitutive matrix for 

various fracture conditions is found by assuming the associated flow rule. 

The surface force  of the flat shell problem is defined by Equation (2.3.70), which is 

rewritten here as follows: 

  (3.1.11) 

Here, the surface force representing the moment is , which is expressed by Equation 

(2.3.72) and rewritten as follows: 

  (3.1.12) 

 

Fig.3.1.1 Moment at an element boundary 

Each component of Equation (3.1.12) is shown in Figure 3.1.1. As shown in the figure, 

 is the component of the bending moment, and  is the component of the torsional 

moment. 
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The yield function owing to the moment is expressed as 

  (3.1.13) 

Now, it is assumed that the hinge in the flat shell is caused by the bending moment. 

  (3.1.14) 

Here,  represents the total plastic moment. 

Therefore, the penalty matrix after the hinge generation for the represented penalty matrix in 

Equation (2.3.75) is expressed from Equation (3.1.9) as follows: 

  (3.1.15) 

In the elastic state constitutive Equation (2.3.75) the penalty function related to bending is set to 

0, which implies that the transmission of the bending moment is blocked. 

 

 

3.1.3 Slip Condition 

In this section, the constitutive equation of slip fracture is described as the fracture condition 

due to the surface force in the plane. 

 

1) Mohr–Coulomb condition 

In the case of the in-plane problem, the yield condition is expressed by two surface forces 

 in the normal and tangential directions, as shown in Figure 3.1.2. 

Therefore, the yield function has the following form: 

  (3.1.16) 
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Fig.3.1.2 Surface force at an element boundary for the in-plane problem 

As shown in Figure 3.1.3, when the Mohr–Coulomb condition is used as the fracture 

condition, Equation (3.1.16) is expressed as 

 

Fig.3.1.3 Mohr–Coulomb condition 

  (3.1.17) 

Here, C is the shear strength (cohesion), and  is the internal friction angle. Subsequently, the 

constitutive matrix  after plasticization, shown in Equation (3.1.9), is expressed as 

, (3.1.18) 

where 

 . (3.1.19) 
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Unloading and reloading are determined using  represented by Equation (3.1.8). The value 

of the Mohr–Coulomb condition in the in-plane problem is 

  (3.1.20) 

However, the surface force of the flat shell problem shown in Figure 3.1.2 includes  as 

shown in Equation (2.3.70), which is rewritten as follows: 

  (3.1.21) 

Thus, the surface force of the flat shell problem matches the surface force of the three-

dimensional problem. In the case of a three-dimensional problem, the relative displacement of 

surface force in the shear direction has a combined relationship as shown in Figure 3.1.4 

 

Fig.3.1.4 Relationship of shear direction in the 3D problem 

These relationship can be represented in the matrix form as 

  (3.1.22) 

The transformation matrix of Equation (3.1.22) is applied to the second term on the right-

hand side of Equation (3.1.18). 

 (3.1.23) 
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Here,  are the components of the second term on the right-hand side of Equation 

(3.1.18), and  is expressed as follows: 

  (3.1.24) 

For unloading and reloading, we use  expressed in Equation (3.1.22) instead of  

in Equation (3.1.20). 

 (3.1.25) 

2) Mises condition 

The Mises condition for slip fracture between elements can be expressed by the relationship 

shown in Figure 3.1.5. The yield function of Equation (3.1.16) is expressed as follows: 

  (3.1.26) 

Here,  is the yield stress corresponding to c in the figure. 

 

Fig.3.1.5 Mises condition 

In the case of a two-dimensional problem,  shown in Equation (3.1.9) is expressed as 

follows: 

  (3.1.27) 
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   , 

where 

 . (3.1.28) 

Unloading and reloading are determined using  represented by Equation (3.1.8). The value 

of the Mises condition in the in-plane problem is 

  (3.1.29) 

In the case of three dimensions, the relations of Equations (3.1.22)–(3.1.24) are applied using 

the combined relative displacement and surface force in the shear direction, same as the Mohr–

Coulomb condition. In addition, unloading and reloading are determined using the following 

relationship. 

   (3.1.30) 
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3.2 Progressive Failure Condition and Release Force 

 

3.2.1 Crack Condition 

Fracture dealt in this section is a phenomenon that involves the release of the retained surface 

force in addition to the interruption of force transmission. The fracture patterns dealt with in this 

section are caused by three cases: bending moment, shearing force, and tensile force. 

 

(1) Bending Fracture 

In the hinge condition dealt with in Section 3.1, after the bending moment at the element boundary 

reaches the total plastic moment, as shown by the dotted line in Figure 3.2.1, the force transmission is 

cut off and total plastic moment is maintained. Whereas, the bending fracture dealt with here releases 

the surface force of the moment after the bending moment reaches the total plastic moment, as shown 

by the solid line in Figure 3.2.1. 

 

Fig.3.2.1 Hinge condition and bending fracture 

Therefore, the failure criterion is the same as the hinge condition in Equation (3.1.14), defined as 

follows: 

  (3.2.1) 

After the failure, the release force (Section 3.2.2) is applied, and the constitutive matrix involved 

in bending is set to 0; this relationship is expressed as follows: 

  (3.2.2) 
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  (3.2.3) 

 

(2) Shear Failure 

In the case of slip fracture explained in Section 3.1, the surface force after fracture moves on the 

fracture surface according to the flow rule. In the shear fracture dealt with in this paper, after the 

surface force reaches the fracture condition shown in Figure 3.2.2, the stress is released by the method 

described in Section 3.2.2, and the force transmission is blocked. 

 

Fig.3.2.2 Stress path for shear crack 

Figure 3.2.2 shows the following Mohr–Coulomb failure conditions: 

  (3.2.4) 

However,  represents the resultant force of the two shear surface forces  and , 

as shown in Equation (3.1.22). 

After the failure, the release force shown in Section 3.2.2 is applied, and the constitutive matrix 

involved in shearing is set to 0; this relationship is expressed as follows: 

  (3.2.5) 

  (3.2.6) 
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As shown in Equation (3.2.6), it is assumed that shear failure occurs in the compressed state, and 

the normal direction penalty of the element boundary surface remains. 

If the fracture condition is the Mises condition shown in Figure 3.1.5 and Equation (3.1.26), the 

following fracture condition is used for judgment: 

  (3.2.7) 

Subsequently, the same coefficient matrix as in Equation (3.2.6) is used, and the transmission of 

force in the shear direction is blocked. 

 

(3) Tensile Crack 

Under tensile fracture conditions, tensile fracture occurs when   exceeds the tensile 

strength . As shown in Figure 3.2.3, when the tensile surface force exceeds the allowable tensile 

force, the surface force of the element boundary surface is released by the method described in Section 

3.2.2. Subsequently, the value of the penalty function is set to 0, so that the surface force is not 

transmitted. 

 

Fig.3.2.3 Tensile crack 

The tensile fracture condition is expressed as follows: 

  (3.2.8) 

The constituent matrix after failure is expressed as 

  (3.2.9) 
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  (3.2.10) 

In the case of a tensile crack, the fracture surface becomes an opening surface; therefore, it is 

necessary to not only release the tensile surface force but also the surface forces to block the 

transmission. That is, assuming that bending fracture occurs at the same time, Equations (3.2.2) and 

(3.2.3) are also applied. 

 

 

3.2.2 Release Force 

In this study, the release of surface force is simply the total release. The release force  

at the elementary boundary  is obtained as follows: 

  , (3.2.11) 

Where  is the surface force, and  is the matrix that relates the relative displacement 

and degree of freedom of the element.  can be decomposed for each subregion  and 

 as follows: 

  (3.2.12) 

Let  and  be the release forces acting on the centroids of the regions  and 

, respectively, adjacent to the boundary surface . Then, the following relationship can 

be obtained from Equation (3.2.12): 

  (3.2.13) 

 

(1) Release force of a bending fracture 

In the case of bending fracture, the surface force related to bending shown in Equation 

(2.3.72) is released, which is reproduced below. 
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  (3.2.14) 

 related to bending is shown in Equation (2.3.67), which is reproduced below. 

  (3.2.15) 

From the above relationship, the release forces  and  related to bending 

fracture can be obtained from Equation (3.2.13) as follows: 

  (3.2.16) 

 

(2) Release force of a shear failure 

In the case of shear failure, the three-dimensional surface force shown in Equation (2.3.71) 

is released; Equation (2.3.71) is reproduced below. 

  (3.2.17) 

Moreover,  of shear failure is shown in Equation (2.3.63), which is reprinted below. 

  (3.2.18) 

From the above relationship, the release forces  and  related to shear fracture 

can be obtained from Equation (3.1.13) as follows: 

  (3.2.19) 

 

(3) Release force of a tensile crack 

In the case of a tensile crack, in addition to the surface force shown in Equation (3.2.19), the 

surface force shown in Equation (3.2.16) is also released. Therefore, the release force in this case 
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is expressed as follows: 

 

 (3.2.20) 
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3.3 Algorithm for Material Nonlinear Analysis 

 

3.3.1 Load Incremental Method using r-min Method 

In this study, the r-min method [33] of the load increment method was used for the nonlinear 

analysis. This method searches for the first yielding boundary among the element boundaries and 

automatically determines the rate of load increment required for that boundary to yield. The found 

element boundaries are yielded, and incremental loads applied sequentially. The following is the 

algorithm for this method. 

 

1) Classify boundaries into plasticized and non-plasticized element boundaries at the 

beginning of the incremental stage. For the plasticized element boundaries, a total 

coefficient matrix is constructed using a penalty matrix that considers plasticity. 

2) For the given load increment, solve the coefficient matrix made in (1), and compute the 

incremental surface force. The resulting surface force is added to the previous surface 

force, and the increment rate rmin is computed such that all of the surface force is equal 

to or less than the yield strength. 

3) The surface force at this stage is obtained by multiplying the incremental surface force 

by the load increment rate obtained in (2) and adding it to the previous surface force. 

Here, the surface force that has reached the yield strength follows the plastic flow rule. 

4) Repeat steps (1)–(3) until the total load increment reaches the acting load. 

 

Problems involving plastic deformation focus on when the surface force in the elastic state 

yields to the plastic state. Figure 3.3.1 shows a conceptual diagram for explaining the load 

increment rate; P is the position of the surface force up to the previous time, and R is the position 

where the incremental surface force obtained at the current time and the previous surface force is 

added. That is, the incremental surface force of the current time is PR. If R clearly exceeds point 

Q of the initial yield surface, it implies that an extra surface force QR is acting. Therefore, the 

surface force in R is returned to the position of Q, and only the elastic part of PQ is left. For this 

purpose, the following load increment rate is used. 
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Fig.3.3.1 Rate of load increment 

  (3.3.1) 

If the value obtained by multiplying the incremental surface force by the rate of load 

increment r is added to the previous surface force, the surface force does not exceed the yield 

surface. Computing this rate of load increment r for all element boundaries, the smallest one, rmin, 

is set as the current rate of load increment. 

For nonlinear analysis, the load  is divided into several incremental loads . For this 

incremental load, the rate of load increment up to the i-1th step is found according to the rmin 

method, and the total is set as rmin. As a result, the total load applied up to the i-1th step is . 

Therefore, the load to be loaded in the i-step is as follows: 

  (3.3.2) 

Next, if the rate of load increment obtained by applying this load  is , the load 

 acting in step (i + 1) is given by the following equation: 

  (3.3.3) 

Therefore, assuming that the load applied at the beginning is , the load  applied 

in the nth step is as follows: 

  (3.3.4) 
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The uppermost part of Figure 3.3.2 is a conceptual diagram showing the relationship of 

Equation (3.3.4). 

 

Fig.3.3.2 Concept of the rate of load increment 

Assuming the case where tension or shear cracks occur at the element boundary in the (k-1) 

load step, at the element boundary where cracks occur, the value of the penalty function is set to 

0 to block the transmission of surface force. The surface force at the element boundary is 

distributed to the related subregions as a release force . The release force at the Sth 

element boundary is computed by the following equation: 

  (3.3.5) 

As shown in Figure 3.3.2, the distributed release force is applied to the next load step, and 

the incremental computation is analyzed based on those loads. Thus, the incremental load is 

computed as follows: 

  (3.3.6) 

The above process is repeated until all the initially applied load and release forces are used 

up. Then, the total load increment rate is computed as follows: 

  (3.3.7) 
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When this  becomes 1, the incremental calculation converges. As shown above, this 

algorithm is similar to the rmin method in the conventional load increment method, except that it 

gives a release force. 

 

 

3.3.2 Rate of Load Increment 

In the nonlinear analysis used in this study, the load increment rate is computed from 

Equation (3.3.1) for the boundary surface between all the unfractured elements．Assuming that 

the surface force at the element boundary is , the incremental surface force is , and the load 

increment rate is . The following relationship must be satisfied so that the surface force does not 

exceed the fracture surface: 

  (3.3.8) 

For all unfractured surface forces, find  using Equation (3.4.8), and let the minimum value 

be the current load increment rate. 

If the current surface force is , the surface force  after the increment can be 

calculated as follows: 

  (3.3.9) 

The load increment rate for each failure condition is computed below. 

 

(1) Hinge Condition 

The hinge condition is expressed by Equation (3.1.14). Applying this to Equation (3.3.8) 

gives the following: 

  (3.3.10) 

By solving this for , the load increment rate  for the hinge condition can be obtained as 

follows: 

  (3.3.11) 
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(2) Slip Condition (Mohr–Coulomb) 

Among the slip conditions, the Mohr–Coulomb condition is expressed by Equation (3.2.4). 

Applying this to Equation (3.3.8) yields the following: 

  (3.3.12) 

The load increment rate  can be obtained by solving the following quadratic equation: 

  (3.3.13) 

Here, each coefficient is given below. 

 

 

 

 

(3) Slip Condition (Mises) 

Among the slip conditions, the Mises condition is expressed by Equation (3.2.7). Applying 

this to Equation (3.3.8) yields the following: 

  (3.3.14) 

The load increment rate  can be obtained by solving the quadratic equation shown in 

Equation (3.3.13). Here, each coefficient is given below. 
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(4) Tensile Crack Condition 

Assuming that the tensile strength is , the condition of tensile failure is expressed by 

Equation (3.2.8). Applying this to Equation (3.3.8) yields the following: 

  (3.3.15) 

By solving this for , the load increment rate  for the condition of tensile fracture can be 

obtained as follows: 

  (3.3.16) 

 

 

3.3.3 Analysis Algorithm 

Figure 3.3.3 shows the analysis flowchart of the load increment method proposed in this study. 

In this method, the stiffness matrix is recreated for each load increment; therefore, the computation 

process takes time. However, a stable solution can be obtained even under a load state near the collapse 

load. In addition, the load increment can be calculated from the load increment rate obtained by 

analysis, and a more accurate collapse load can be obtained. 

Four conditions are assumed as factors that determine the load increment rate: plastic hinges, 

slips, shear cracks, and tensile cracks. These load increment rates are found for all unfractured element 

boundaries, and the smallest of them is set to the current load increment rate. 

For shear cracks and tensile cracks under the four conditions, a process to release the surface 

force has been added. In this study, the surface force is fully released, but it is also possible to gradually 

release it by changing the release rate. 

The above operation is repeated until the load increment rate rmin is 1; that is, the assumed total 

load is applied. However, if the mechanism is formed before it becomes 1, the load value at that time 

becomes the collapse load. 
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Fig.3.3.3 Flowchart for the load incremental method using the rmin method 

  



 

- 76 - 

3.4 Numerical Examples 

 

3.4.1 Flat Shell 

As an example of discrete limit analysis, a flat plate shell, in which four sides of a rectangular 

plate are simply supported, is analyzed. Figure 3.4.1 shows the geometrical properties of the flat plate 

shell, where a = 2 m and thickness t = 0.1 m. The mesh division divides the square area into crosses 

as shown in the figure, and the number of elements is 1024. 

 

Fig.3.4.1 Model and mesh division of a flat plate shell with simple supports 

The material constants used in the analysis are the elastic modulus  , 

Poisson’s ratio , and total plastic moment . 

 

(1) Concentrated load 

First, we show an example of analysis when a concentrated load P = 4.0 N acts on the center of 

the square plate. 

Figure 3.4.2 shows the load–displacement curve; the horizontal axis represents the non-

dimensional value of the deflection w, and the vertical axis represents the non-dimensional value of 

the applied load. The circles in the figure represent the results obtained by the present method, and the 

dashed-dotted line represents the theoretical collapse load. The non-dimensional collapse load 

obtained by the present method is 8.0, which is the same as its theoretical equivalent. 

Figure 3.4.3 shows the hinge line. Figure 3.4.3(a) shows the collapsed state experimentally by A. 

Sawczuk and T. Jaege [34]; Figure 3.4.3(b) shows the hinge line assumed in the plastic analysis; 



 

- 77 - 

Figure 3.4.3(c) shows the progress of the hinge line by the present method. The numbers in the figure 

are non-dimensional load values. The final mechanism by the present method includes the hinge line 

assumed in the plastic analysis. Therefore, it is considered that the collapse loads are the same. 

 

 

Fig.3.4.2 Load–displacement curve of a flat plate shell with centrally concentrated load 

 

 

Fig.3.4.3 Hinge line of a flat plate shell with centrally concentrated load [34] 
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(2) Distributed load 

Next, we show an example of analysis when a distributed load p = 1.0 N/m2 acts on the surface 

of the square plate. 

Figure 3.4.4 shows the load–displacement curve; the horizontal axis indicates the dimensionless 

value of deflection, and the vertical axis indicates the non-dimensional value of load. The circles in 

the figure indicate the results obtained by this method, the dashed-dotted line indicates the collapse 

load obtained by plastic analysis, and the dashed line indicates the upper and lower-bound solution. 

The non-dimensional collapse load obtained by the present method is 24.0, which is the same as the 

collapse load in the plastic analysis. 

Figure 3.4.5 shows the hinge line. Figure 3.4.5(a) shows the experimental collapse by A. Sawczuk 

and T. Jaege [34], similar to the case under concentrated loading. Similarly, Figure 3.4.5(b) shows the 

hinge line assumed in the plastic analysis. When a concentrated load acts, the hinge line progresses 

from the center; whereas when a distributed load acts, it progresses from the four corners. Even when 

distributed loads are applied, the final mechanism by this method includes the hinge line assumed in 

the plastic analysis. Therefore, even in this case, the collapse loads by plastic analysis and the present 

method are the same. 

 

 

Fig.3.4.4 Load–displacement curve of a flat plate shell with distributed load 
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Fig.3.4.5 Hinge line of a flat plate shell with distributed load [34] 

 

 

3.4.2 Portal Frame 

To examine the accuracy of the displacement solution of the proposed flat plate shell model, 

the results of the verification using a simple model are presented. Figure 3.4.6(a) shows the 

numerical model of the portal frame under a horizontal load of P = 1 kN/m. As a boundary 

condition, the lower ends of both the columns are fixed. The dimensions and loads are shown in 

the figure.  

      

 (a) Numerical model  (b) Mesh division 

Fig.3.4.6 Numerical example 
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The material has the modulus of elasticity E = 100 GPa, Poisson’s ratio , and full plastic 

moment . A quadrilateral element is used for the mesh division, as shown in Fig. 

3.4.6(b), and the displacement field of the in-plane deformation is a linear function. Although the 

figure shows an example of division of each member into 20 parts, 50 divisions were used in the 

analysis. 

 

(1) Elastic Analysis 

Figure 3.4.7 shows the displacement mode in the elastic analysis; the values in parentheses 

are the results of the framed structural analysis. The vertical displacements in both the analyses 

were nearly the same, although the difference between the horizontal displacements was 0.4%. 

 

Fig.3.4.7 Displacement mode for the elastic analysis 

Figure 3.4.8 shows the distribution of bending moments in the elastic analysis. At all 

endpoints, there was a difference of 1 or less in the third digit, although the distributions were 

nearly the same. 
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Fig.3.4.8 Bending moment for the elastic analysis 

 

(2) Nonlinear Analysis 

Figure 3.4.9 shows the results of the elastoplastic analysis for the problem shown in Fig. 3.4.6 

The analysis uses the same conditions, such as the shape dimensions, loading conditions, and 

condition of constraints. Figure 3.4.9 shows the load–displacement curves; the vertical axis 

represents the dimensionless load, and the horizontal axis represents the horizontal displacement 

of the loading point. The blue dashed line represents the limit load in the plastic analysis of the 

framed structure. The numbers attached to the white circles and nodes of the portal frame in the 

figure indicate the order of occurrence of the plastic hinges. 

 

Fig.3.4.9 Load–displacement curve for the nonlinear analysis 
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Figure 3.4.10 shows the distribution of bending moments when the collapse mechanism is 

formed. The bending moment at the node of the plastic hinge was consistent with the full plastic 

moment. 

 

Fig.3.4.10 Bending moment in the collapse mechanism 

 

 

3.4.3 Two-hinge Arch  

Figure 3.4.11 shows the two-hinge arch analysis model. The analysis configuration is an arc 

with a radius of  rotated  from the position  from the horizontal, and both the 

ends have hinge supports. The depth is , and the plate thickness is . The 

material has modulus E = 190 GPa, Poisson’s ratio , and plastic moment . 

The number of element is 90, with 45 divisions on one side (in increments of ). 

 

Fig.3.4.11 Numerical model for the two-hinge arch 
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Fig.3.4.12 Displacement mode (Scale: Displacement*400) 

Figure 3.4.12 shows the displacement modes. The wireframe shows the original shape before 

deformation, and the gray-filled shape is the shape after deformation. The displacement scale has 

been multiplied by 400. A total of three large curvatures appear, one in the center and two on the 

sides. 

 

Fig.3.4.13 Hinge lines 

The hinge line is generated at the point where a large curvature occurs. In this study, the 

influence of the axial force is ignored, and the hinge is evaluated only by the bending moment. 

However, the hinge occurs at a fixed position regardless of the axial force [35]. In a previous 

study, the hinge occurred at a position of  from the supporting point [35]; however, it 

occurred at  in this analysis. Because the element division is in increments of , the accuracy 

is not higher than this, but the result is roughly consistent with the theoretical consideration. 
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Fig.3.4.14 Load–displacement curve 

Figure 3.4.14 shows the load–displacement curve, 1 and 2 in the figure represent the order of 

occurrence of hinges. The horizontal axis represents the deflection at the center of the arc, and the 

vertical axis represents the non-dimensional load. The non-dimensional collapse loads in the 

plastic analysis and in the present method were 8.5 and 8.52 respectively, indicating an error of 

less than 1%. 
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4  LARGE DISPLACEMENT ANALYSIS 

OF FLAT SHELL STRUCTURE 

 

4.1 Deformation of Limit Rotation Angle 

 

4.1.1 Euler Angle 

Figure 4.1.1 shows the Euler angles  that represent the relationship between the 

Cartesian coordinate systems before and after the rigid body rotation in three-dimensional Euclidean 

space.  

 

Fig.4.1.1 Euler angle 

Using this, the exact three-dimensional rigid body displacement function   is 

expressed as follows: 

  (4.1.1) 
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Here,   are the translational displacement components of the origin. And 

 are the following direction cosines: 

  

   

   

 

 

4.1.2 Limit Rotation Angle 

The exact rigid body displacement function for in-plane deformation in a flat shell can be treated 

as a two-dimensional problem with respect to the local coordinate system  shown in Figure 4.1.2. 

 

Fig.4.1.2 Local coordinate system and in-plane displacement field of flat shell 

Now, Equation (4.1.1) is expressed as follows: 

  (4.1.2) 

When considering finite rotation, an incremental calculation that expands Equation (4.1.2) by 

Taylor series and considers up to the quadratic term is often used. 
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However, in the discrete element method and rigid body spring model, minute rotation is 

assumed, and the following relationship is assumed: 

  (4.1.3a) 

   (4.1.3b) 

Now, Equation (4.1.2) is approximated as follows: 

  (4.1.4) 

In the large displacement problem, a large rigid body rotation occurs where Equation (4.1.3) is 

not satisfied. The rigid body rotation angle that satisfies Equation (4.1.3) is defined as the limit rotation 

angle. Subsequently, an incremental method is proposed that computes sequentially so as not to exceed 

the limit rotation angle. The details of this algorithm are described in Section 4.3. 
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4.2 Coordinate Transformation of Stress 

 

4.2.1 Rotation of Element Stress 

The method proposed in this paper analyzes the small deformation problem sequentially while 

updating the node coordinates for the large displacement problem. Figure 4.2.1 shows the cantilever 

before and after deformation. 

 

 

Fig.4.2.1 Cantilever deformation with updated node coordinates 

The total displacement is obtained by accumulating the updated values of the nodal coordinates. 

However, for elemental stress, coordinate transformation is required owing to the changes in the local 

coordinate system; Figure 4.2.2 shows this relationship. 

The left-hand side of the figure shows the stress state before deformation. By updating the nodal 

coordinates after deformation, this stress becomes like the stress shown in red on the right-hand side 

of the figure. If the stress is expressed in the local coordinate system for each element, the result of 

the incremental analysis by the new coordinate system can be simply added to the previous stress. 

However, this method cannot properly evaluate the stress distribution of the analysis domain because 

the definition of stress for each element is different. Therefore, we propose a method of converting 

stress into a global coordinate system and evaluating the stress in a unified coordinate system. 
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(a) Before deformation 

 

(b) After deformation 

Fig.4.2.2 Coordinate transformation of stress in large displacement analysis 

As shown in Figure 4.2.2, let  be the stress in the deformed coordinate system , which 

is rotated by   from the global coordinate system  , the following relationship exists 

between the two coordinate systems: 

 , (4.2.1) 

where  

 . (4.2.2) 

Therefore, the stress  before deformation is converted to the stress  after deformation as 

follows: 
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  (4.2.3) 

Using this stress, the stress in the global coordinate system can be obtained by the following 

incremental computation: 

  (4.2.4) 

 

 

4.2.2 Rotation of Surface Force 

As shown in Figure 4.2.3, the surface force is expressed by the local coordinate system of the 

element boundary surface, thus, coordinate transformation is not needed. 

 

(a) Before deformation 

 

(b) After deformation 

Fig.4.2.3 Rotation of the surface force in large displacement analysis 
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This implies that the coordinate transformation is not required in incremental computation, as 

shown below. 

  (4.2.5) 
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4.3 Large Displacement Analysis Algorithm via Step-by-Step Method 

 

4.3.1 Step-by-Step Method 

Similar to small deformation analysis, large displacement analysis is difficult to handle as a linear 

analysis method because the stiffness matrix changes with the deformation of the object. In this paper, 

as shown in Figure 4.3.1, the step-by-step method is used to analyze the large displacement problem 

by repeating the small-displacement analysis. 

 

Fig.4.3.1 Large displacement analysis method by a step-by-step method 

As shown in the figure, the load acting on the object is divided into several incremental loads, 

and the small deformation problem is analyzed for each incremental load. The obtained 

displacement  is added to the coordinate value  before deformation, coordinate value is 

updated, and shape after deformation is created as  . The previous stress is added to the 

incremental stress to obtain the total stress, a rigidity matrix is created with the new node 

coordinate values, and the linear analysis is repeated. 

In this case, the error may accumulate depending on the setting of the incremental load. In 

this study, a method is proposed to determine the load increment so as not to exceed the limit 

rotation angle defined in Section 4.1.2.  
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4.3.2 Analysis Flow 

The analysis flowchart in the present method is depicted in Figure 4.3.2. As shown in the 

figure, the solution is obtained by linear analysis of the small deformation problem, and the load 

increment rate for not exceeding the limit rotation angle is obtained in (*1). Because it is a linear 

analysis, the current increment value is obtained by multiplying this load increment rate by the 

obtained solution. By adding this to the previous values, the current total displacement, stress, and 

surface force are obtained. However, for stress, the coordinate transformation described in Section 

4.1.2 in (*2) is required. Subsequently, the total load increment rate used up to now is calculated 

by (*3). If this value is less than 1, the coordinates are updated, and the linear analysis is repeated 

with the remaining load. 

   However, the limit rotation angle affects the solution in this case. In general, it is possible to 

prevent the accumulation of errors by satisfying Equation (4.1.3); that is, setting it to 3° or less. 

 

Fig.4.3.2 Analysis flowchart of large displacement problem by the step-by-step method  
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4.4 Numerical Examples 

 

4.4.1 Cantilever Beam 

In this section, the accuracy of the solution of the large displacement analysis by the step-by-

step method proposed in Section 4.1 was verified for the elastic problem of the flat shell. Figure 

4.4.1 shows the model and mesh division used in the analysis. As shown in the figure, the 

numerical model is a flat plate with one end fixed. The dimensions and material constants are 

shown in the figure. The mesh is divided as shown in the lower part of the figure, but the number 

of divisions is analyzed assuming various cases. 

 

Fig.4.4.1 Numerical model and material constants for elastic cantilever beam 

In Figure 4.4.2, the horizontal axis is the limit rotation angle, and the vertical axis is the value 

obtained by dividing the deflection at the free end by the solution of the beam theory. The red 

circle represents the deflection at the free end, and the blue triangle represents the horizontal 

displacement. A convergent solution is obtained when the limit rotation angle is set to 0.05 radians 

or less. This angle expressed in degrees is roughly 2.86o. Sin 2.86o is equal to roughly 0.0499, 

which is similar to the limit rotation angle. 

Figure 4.4.3 shows the dimensionless deflection of the free end of the flat plate on the 

horizontal axis and the dimensionless load on the vertical axis. Horizontal displacement does not 

occur in infinitesimal deformation problems. The solid red line shows the large displacement 

solution by the beam theory, and the solid black line shows the solution by the infinitesimal 

deformation theory. The blue circle is the solution by this method, and the results are nearly the 

same. 
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Fig.4.4.2 Accuracy of the displacement u and w for limit rotation angle 

 

 

Fig.4.4.3 Relationship between load and large deflection 

In Figure 4.4.4, the horizontal axis represents the dimensionless horizontal displacement 

value, and the vertical axis represents the dimensionless load. Horizontal displacement does not 

occur in infinitesimal deformation problems. The solid red line shows the large displacement 

solution by the beam theory. The blue circle is the solution by this method, and the results are 

nearly the same. 
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Figure 4.4.5 shows the displacement mode. The figure shows an example of 20 divisions, and 

the deflection and horizontal displacement are shown on a real scale. 

 

 

Fig.4.4.4 Relationship between the load and lateral displacement 

 

 

 

Fig.4.4.5 Displacement mode for each load 
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4.4.2 Flat Shell Fixed at Both Ends 

Figure 4.4.6 shows an example of elastic large displacement analysis of a beam with fixed 

ends. Figure 4.4.6(a) shows the shape and dimensions. The load was applied at the center of the 

flat plate shell as shown in the figure; the load values are set for four cases of P = 0.25, 0.5, 0.75, 

and 1.0 N. The elastic modulus is E = 206 GPa and Poisson ratio  = 0. The number of elements 

is 100 as shown in Figure (b). The limit rotation angle is set to 0.0001 rad. 

 

(a) model and material properties 

 

(b) mesh division 

Fig.4.4.6 Numerical model for the flat shell fixed at both ends 

Figure 4.4.7 shows the relationship between load and deflection. The deflection is the central 

value of the beam, and the load is the applied load. The dashed-dotted line represents the 

theoretical solution due to small deformation. because it is a linear solution, the deflection 

according to the load state is proportional. The solid line represents the theoretical large 

displacement solution. The rate of increase in deflection decreases as the load value increases. 

The circles represent the deflection of large displacement analysis by this method. The solution 

obtained by this method is close to the theoretical large displacement solution. 
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Fig.4.4.7 Deflection for each load 
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5  LARGE DISPLACEMENT ANALYSIS 

                WITH MATERIAL NONLINEARITY  

 

5.1 Load Increment Method using Limit Rotation Angle 

As described in Section 4.1, the analysis method for the large displacement problem proposed in 

this study finds a solution by repeating the small displacement analysis. Each iterative analysis step 

has the same algorithm as the linear analysis in the small deformation problem. Also, in the case of 

material nonlinear problems, the algorithm of material nonlinear analysis developed in Chapter 3 can 

be applied. However, the method proposed in this paper uses the load increment rate due to the limit 

rotation angle. Therefore, when determining the load increment rate, the load increment rates for both 

the material nonlinearity and limit rotation angle are obtained, and the smaller value is used for the 

load increment rate. Hence, when the load increment rate is determined by the limit rotation angle, the 

elastic state is maintained and fracture phenomenon does not occur in the corresponding load step. 

The outline of the algorithm per load step is as follows: 

(1) Classify elements and element boundaries into yield and elastic states. For the yielded 

elements and element boundaries, the total coefficient matrix is constructed using the 

coefficient matrix after plasticization. 

(2) For the given load increment, solve the coefficient matrix created in (1), and compute the 

incremental surface force. 

(3) From the obtained displacement increment, find the load increment rate so that the limit 

rotation angle is not exceeded. Also, from the incremental stress or surface force, the load 

increment rate required for all elements or element boundaries to yield is computed. The 

smallest of these load increment rates is the current load increment rate. 

(4) The stress and surface force at this stage are obtained by multiplying the incremental value 

obtained in step (3) by the load increment rate and adding it to the previous value. Here, the 

stress or surface force that reaches the yield strength then conforms to the plastic flow rules. 

(5) Repeat steps (1)–(4) until the incremental load reaches the working load. 
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5.2 Flow Diagram of Material Nonlinear Large Displacement Analysis 

Figure 5.2.1 shows the analysis flowchart of the large displacement problem with material 

nonlinearity used in this study. As shown in the figure, the solution is first obtained by linear analysis 

of the small deformation problem. 

 

Fig.5.2.1 Analysis flowchart of the large displacement problem with material nonlinearity 

Next, the load increment rate for the material nonlinear problem is obtained, and the load 

increment rate due to the limit rotation angle for the large deformation problem is obtained in (*1). 

Subsequently, the minimum load increment rate is calculated by (*2). For stress, the coordinate 

transformation described in Section 4.2.2 is applied in (*3). Finally, the total load increment rate used 

up to now is computed by (*4); if this value is less than 1, the coordinates are updated, and the linear 

analysis is repeated with the remaining load.  
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5.3 Numerical Examples 

 

In this section, the accuracy of the solution of the large displacement analysis with material 

nonlinearity of the flat plate shell is verified by the step-by-step method proposed in Section 4.2.  

 

5.3.1 Flat plate shell fixed at one end 

Figure 5.3.1 shows the model and mesh division used in the analysis. As shown in the figure, 

the numerical model is a flat shell with one end fixed, and the dimensions are presented. In the 

nonlinear analysis, it was assumed that only the plastic hinge was generated and the total plastic 

moment was set. The material constants used in the analysis are shown in the figure. The mesh 

was divided into 20 rectangular elements as shown in the lower part of the figure. 

 

Fig.5.3.1 Numerical model and material constants for the flat shell fixed at one end 

Figure 5.3.2 shows the dimensionless deflection of the free end on the horizontal axis and 

dimensionless load on the vertical axis. The solid red line shows the result of the large 

displacement analysis proposed in this paper, and the solid black line shows the result of 

infinitesimal deformation by the beam theory. The blue dashed line indicates the limit load in 

beam theory. The collapse load due to infinitesimal deformation is consistent with the solution of 

limit analysis. Whereas, the collapse load of the large displacement solution is slightly higher than 
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that. 

Figure 5.3.3 shows the displacement mode under a collapse load. 

 

Fig.5.3.2 Load–deflection curve for the flat shell fixed at one end 

 

Fig.5.3.3 Displacement mode at the collapse load for the flat shell fixed at one end 
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5.3.2 Flat plate shell fixed at both ends 

Figure 5.3.4 shows the model and mesh division used in the analysis. As shown in the figure, 

the numerical model is a flat shell with both ends fixed; the dimensions are presented in the figure. 

In the nonlinear analysis, it was assumed that only the plastic hinge was generated and the total 

plastic moment was set. The material constants used in the analysis are shown in the figure. The 

mesh was divided into 20 rectangular elements as shown in the lower part of the figure. 

 

Fig.5.3.4 Numerical model and material constants for flat shell fixed at both ends 

 

Fig.5.3.5 Load–deflection curve for the flat shell fixed at both ends 
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Figure 5.3.5 shows the dimensionless deflection at the center on the horizontal axis and 

dimensionless load on the vertical axis. The solid red line shows the result of the large 

displacement analysis proposed in this paper, and the solid black line shows the result of 

infinitesimal deformation by the beam theory. The blue dashed line indicates the limit load in 

beam theory. The collapse load owing to infinitesimal deformation is consistent with the solution 

of the limit analysis; whereas, the collapse load of the large displacement solution is slightly 

higher than that. 

Figure 5.3.6 shows the displacement mode under a collapse load. 

 

Fig.5.3.6 Displacement mode at collapse load for the flat shell fixed at both ends 

 

5.3.3 Portal frame 

Figure 5.3.7 shows the model and mesh division used in the analysis. As shown in the figure, 

the numerical model is a portal frame with both ends fixed. The dimensions are presented in the 

figure.  

 

Fig.5.3.7 Numerical model and material constants for the portal frame fixed at both ends 
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In the nonlinear analysis, it was assumed that only the plastic hinge was generated and the 

total plastic moment was set. The material constants used in the analysis are shown in the figure. 

As shown on the right of the figure, the mesh was divided into 50 rectangular elements for 

columns and beam members, with 150 elements in total. 

 

Fig.5.3.8 Load–deflection curve for the portal frame fixed at both ends 

 

Fig.5.3.9 Displacement mode at collapse load for the portal frame fixed at both ends 
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Figure 5.3.8 shows the dimensionless displacement of the upper-right corner of the frame on 

the horizontal axis and dimensionless load on the vertical axis. The solid red line shows the result 

of the large displacement analysis proposed in this paper, and the solid black line shows the result 

of infinitesimal deformation by the beam theory. The blue dashed line indicates the limit load in 

beam theory. The collapse load due to infinitesimal deformation is consistent with the solution of 

limit analysis; whereas, the collapse load of the large displacement solution is slightly higher than 

that. 

Figure 5.3.9 shows the displacement mode under a collapse load. 
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6  CONCLUSION 

 

The primary goal of this study was to develop a shell model that uses the benefits of the HPM 

[19]-[21] and an algorithm for material nonlinear large displacement analysis using the shell 

model. The displacement field represented by the local coordinate system differs for each element. 

It was converted into the local coordinate system of one of the adjacent elements, and then to the 

coordinate system of the element boundary edge. The proposed method to calculate the relative 

displacement from the displacement of the boundary edge of the adjacent elements was obtained 

in this manner. HPM is based on the principle of the hybrid virtual work [22] and studies 

discontinuous elements in the finite element analysis method. In the HPM, the analysis domain is 

decomposed into subregions, and an independent displacement field is assumed for each element. 

This displacement field is composed of rigid body displacement, strain, and gradient. HPM is 

suitable for the analysis of large displacement problems where rigid body displacement is 

dominant. HPM can be used in an MOR method, which reduces the number of dimensions of the 

model. By using HPM for the MOR method, we can know the approximate fracture characteristics 

at the initial stage of structural design and provide information for safety evaluation. 

In Chapter 2 we represented in-plane and out-of-plane problems, provided assumptions for 

modeling these problems, and showed that the superposition of these constitutes a flat shell 

problem. Subsequently, a governing equation of the elastic problem and hybrid virtual work 

equation were derived. Next, the HPM discretization equation for the flat shell problem was 

derived. The relationship between the coordinate systems was also described because our study 

was based on the local coordinate system. In the proposed model quadratic displacement field 

was used, and we described the relationship between the stress and the moment in the element. 

We also described the relationship between the relative displacement and surface force.  

The accuracy of the solution for the proposed flat shell element is verified by numerical 

examples. We considered a cantilever with load acting from two directions [30]. Three cases were 

set according to the loading conditions: in-plane load, out-of-plane load, and both in-plane and 

out-of-plane loads. For the first case, there was a displacement at the right extremity in the 
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simulation result by this method as well as in the analytical solution. The error in this method is 

less than 0.01%. For the second case, the deflection curve based on the beam theory approaches 

the solution based on the proposed model. Comparing the maximum deflection at the right 

extremity of the proposed model with the solution based on beam theory, the error was found to 

be less than 0.26%, confirming that high accuracy is obtained. Moreover, the deflection angles of 

both the proposed model and beam theory are nearly equal. For the third case, the result was 

obtained by combining the horizontal displacement of first case and deflection of second case. 

The results concurred with the concept of the proposed flat shell. 

To examine the accuracy of the displacement solution of the proposed flat plate shell model, 

we considered a cantilever bent at an angle. In this example, if a penalty approximately in the 

range of 105–109 is used, a solution that is nearly consistent with the theoretical solution can be 

obtained. When it becomes 109 or more, the error tends to increase owing to the influence of the 

rounding error. Even with a small number of divisions, such as 5, a solution with little error is 

obtained for both horizontal and vertical displacements. Because this model uses a quadratic 

function as the displacement field for bending, an accurate solution can be obtained. Surface force 

on the boundary of the adjacent element and cross sectional force within the element obtained by 

proposed method are in good agreement with the beam theory solution. 

Further for examination of the accuracy of the proposed method, we considered a semicircular 

curved beam [32] with a pin support at one end and roller support at the other end. The vertical 

displacement of the frame model with 20 elements was 5.768 mm, whereas the theoretical result of 

the vertical displacement was 5.759 mm. The solution by the proposed method has an error of roughly 

0.4% even with a rough element division of nearly 20 elements. 

Chapter 3 has described the discrete limit analysis of the flat shell problem. In the first step, the 

fracture conditions are described, and the relationship between the surface force and constitutive 

equation in HPM is summarized. As a numerical algorithm for material nonlinear analysis, the r-min 

method (Yamada's method) in the load increment method is used, concept of load increment in this 

material nonlinear analysis is described, and flowchart of this nonlinear analysis method is shown. 

Finally, the numerical calculation examples are presented. 

As a first example of discrete limit analysis, a flat plate shell, with four sides of a rectangular plate 

simply supported, is analyzed. The mesh division divides the square area into crosses, and the number 

of elements is 1024. We considered an example where a concentrated load acts on the center of a 

square plate. The collapse load obtained by the present method had the same value as the theoretical 
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collapse load. For this example, the experimental results are also given. The final mechanism of the 

present method includes the hinge line assumed in the plastic analysis. Therefore, it is considered that 

the collapse loads are the same. We also considered an example where a distributed load acts on the 

surface of a square plate. The collapse load obtained by the present method had the same value as the 

collapse load in the plastic analysis. When a concentrated load acts, the hinge line progresses from the 

center, whereas when a distributed load acts, it progresses from the four corners. Even when 

distributed loads are applied, the final mechanism of this method includes the hinge line assumed in 

the plastic analysis. Therefore, even in this case, the collapse load by plastic analysis and present 

method had the same value. 

The next example is a portal frame under a horizontal load, where lower ends of both the 

columns are fixed. A quadrilateral element is used for mesh division, and the displacement field 

of the in-plane deformation is a linear function. In case of elastic analysis, the vertical 

displacements in both the analyses were nearly the same, although the difference between the 

horizontal displacements was 0.4%. For the bending moments in the elastic analysis, at all 

endpoints, there was a difference of 1 or less in the third digit, although the distributions were 

nearly the same. 

In case of elastoplastic analysis, the problem uses the same conditions, such as the shape 

dimensions, loading conditions, and condition of constraints, and the bending moment at the node 

of the plastic hinge was consistent with the full plastic moment.  

The last example to examine the accuracy of the proposed method is a two-hinge arch. In the 

numerical model the number of element is 90, with 45 divisions on one side (in increments of ). 

The hinge line is generated at the point where a large curvature occurs. In this study, the influence 

of the axial force is ignored, and the hinge is evaluated based on the bending moment. However, 

the hinge occurs at a fixed position regardless of the axial force [35]. The hinge occurred at a 

position of  from the supporting point in a previous study[35]; however, it occurred at  

in this analysis. Because the element division is in increments of , the accuracy is not higher, 

but the result is nearly consistent with the theoretical consideration. The non-dimensional collapse 

load in the plastic analysis was 8.5 and 8.52 in the present method, with an error of less than 1%. 

Chapter 4 describes the large displacement analysis of the flat shell problem. In this study, the r-

min method in the load increment method, described in Chapter 3, is applied as an algorithm for large 

displacement analysis. In order to control the load increment, a newly defined limit rotation angle is 

used. 



 

- 110 - 

For verification of accuracy, we considered an elastic problem of a cantilever beam. The 

numerical model is a flat plate with one end fixed. A convergent solution is obtained when the 

limit rotation angle is set to 0.05 or less. Expressed in degrees, it is approximately 2.86o. Sin 2.86o 

is approximately 0.0499, which is similar to that of the limit rotation angle. Large displacement 

solution by the beam theory and the solution by this method are nearly consistent． 

The next example is an elastic large displacement analysis of a beam with fixed ends. The 

load was applied at the center of the flat plate shell. The number of elements is 100, and the limit 

rotation angle is set to 0.0001 rad. The results show that the solution obtained by this method is 

close to the theoretical large displacement solution. 

Chapter 5 describes large displacement analysis with material nonlinearity. The numerical 

algorithm for nonlinear analysis uses the r-min method in the load increment method, described in 

Chapters 3 and 4. The rate of load increment is determined by simultaneously considering the rate of 

load increment with respect to the strength, described in Chapter 3, and rate of load increment owing 

to the limit rotation angle, described in Chapter 4. 

In the nonlinear analysis, it was assumed that only the plastic hinge was generated, and only 

the total plastic moment was set. To verify the accuracy of the solution of the large displacement 

analysis with material nonlinearity, we considered a flat plate shell fixed at one end. The mesh 

was divided into 20 rectangular elements. Subsequently, we considered a flat plate shell fixed at 

both ends, and the final example was a portal frame with both ends fixed. For these 3 cases, the 

results show that the collapse load due to infinitesimal deformation is consistent with the solution 

of limit analysis. The collapse load of the large displacement solution is slightly higher than that 

from limit analysis. 
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