法政大学学術機関リポジトリ HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-01-15

フレキシブルコイルを用いたMRC-WPTにおけ る自動共振補償機能の実装

馬場, 勝規 / BABA, Katsuki

(出版者 / Publisher) 法政大学大学院理工学研究科 (雑誌名 / Journal or Publication Title) 法政大学大学院紀要.理工学研究科編 (巻 / Volume) 64 (開始ページ / Start Page) 1 (終了ページ / End Page) 7 (発行年 / Year) 2023-03-24 (URL) https://doi.org/10.15002/00026369

フレキシブルコイルを用いた MRC-WPT における 自動共振補償機能の実装

IMPLEMENTATION OF AUTOMATIC RESONANCE COMPENSATION IN MRC-WPT USING FLEXIBLE COIL

馬場勝規

Katsuki BABA

指導教員 指導教員氏名 中村壮亮准教授

法政大学大学院理工学研究科電気電子工学専攻修士課程

In recent years, the number of mobile and wearable devices has been increasing, and there is growing interest in MRC-WPT as a power supply method for these devices. In this study, we proposed a system that automatically compensates the inductance fluctuation caused by coil deformation. *Key Words* : *Wireless power transfer(WPT)*, *Magnetic resonance coupling, Flexible coil, Automatic resonance compensation*.

例は

1. はじめに

近年,モバイル機器やウェアラブル機器の増加に伴い, その電力管理が手間となっている.そこで,これら機器へ の給電方式として無線給電が注目されている.とりわけ, 電磁誘導方式[1]よりも広い伝送範囲を持ち,マイクロ波 [2]やレーザー方式[3]よりも伝送効率が高く人体への影 響も少ないことから,日常生活空間においては磁界共鳴 式の無線給電への関心が高まっている[4].

しかし、これまでの磁界共鳴式無線給電では剛体コイ ルの使用が前提であったため、生活空間における環境 (什器・家具など) や給電対象として数多く存在する柔 軟物への組み込みが難しく, 適用範囲が限定されてい た.柔軟変形可能なコイル(フレキシブルコイル)を用 いた磁界共鳴式無線給電が実現されれば、柔らかい什器 や家具へ送電コイルを内蔵することによる無線給電エリ アの拡張が見込める. 例えば、ソファ、リクライニング チェア,背もたれクッションなどにフレキシブルコイル を内蔵することで給電エリアの拡張が可能なほか、見守 りカメラを搭載したぬいぐるみ, 皮膚貼付型・身体巻き 付け型の生体センサや EMS 機器などにフレキシブルコイ ルを搭載して無線給電対応するといった事が可能となる (図1). さらに生活空間に限定せずに考えると、パイ プ内のモニタリングのために内部壁面にフレキシブルコ イルを貼り付ける形でセンサ類を仕込むといった需要も ある[5]-[8] (図2). このように、フレキシブルコイル を用いた磁界共鳴式無線給電により様々な応用可能性が 広がるが、現状では伝送効率低下などの問題により実施

図1,生活空間内にフレキシブルコイルを用いた例

図2,パイプにフレキシブルコイルを貼り付けた例

限定的である.

磁界共鳴式無線給電では回路系の共振周波数と電源周波 数の一致が高効率・高出力給電の条件であるため,フレ キシブルコイルを利用した場合にはコイル変形に伴うイ ンダクタンス変動により共振周波数が変化するため,伝

図3 磁界共鳴式無線給電の等価回路

送効率の低下が問題であった.そこで,フレキシブルコ イルを用いて高効率な無線給電を行うためには,共振用 の外付けキャパシタの容量値をコイル形状(インダクタ ンス値)に合わせた適切な値に設定ないしは制御すると いった工夫が必要となる.

これまでに、フレキシブルコイルを利用した磁界共鳴式 無線給電に関する研究はわずかながら実施されている. まず、フレキシブルコイルの形状変化はないものと想定 した研究がなされている. 例えば, 外付けキャパシタの容 量値などの決定を目的として, 自由曲面のフレキシブル コイルにおける自己インダクタンスや相互インダクタン スの理論計算の方法を扱ったものがある[9]. これに対し て、フレキシブルコイルの形状変化を見込んだ研究もな されている. 例えば, コイルの小型化及びコイルの巻き付 けをきつくするといった設計上の工夫によって,形状変 化に伴う共振崩れによる伝送効率低下を抑制する研究が なされている[10]. しかし、このような設計上の工夫が必 ずしも送受電コイルに適用できるとは限らず,また,適用 できたとしても形状変化に対して依然として一定の効率 低下は生じている. そこで著者らはフレキシブルコイル の形状変化に伴う効率の低下に対して,外付けキャパシ タの容量値の自動制御を提案した[11]. この手法は、伝送 効率の補償に主眼をおいているため、自動制御による共 振補償を受電側に導入した.本研究ではこの手法を送受 電側両側に搭載する事で, 伝送効率に加えて受電電力を 同時に補償するアプローチを提案する.

2. フレキシブルコイルの変形における受電電力 及び伝送効率の変動と容量制御補償

まず,図3に本稿で扱うSS方式の磁界共鳴式無線給電 の等価回路を示す.ここで、本研究では、受電側リアクタ ンスは受電電力に影響を及ぼす要素の一つであるが、本 研究では、受電側が共振状態である場合のみに送電側の 容量制御を用いることを前提とすると、受電側リアクタ ンスは0とする.この場合の受電電力P_{RL}を定式化すると、 式(1)の通りとなる.これより、送電側リアクタンスX_tは 受電電力に関係しており、送電側リアクタンスX_tは 受電電力に関係しており、送電側リアクタンスX000時 に最大電力となることが見て取れる.また、送電側リアク タンスは伝送効率への影響はない(厳密には内部抵抗の 存在により軽微な影響はあるがこれを無視すると)ため [12]、この場合の伝送効率ηを定式化すると式(3)の通りと なる.これより、受電側リアクタンスX_rは伝送効率に関係 しており,受電側リアクタンスが 0 の時に最大値となる ことが見て取れる.また,送受電両側に搭載しているフレ キシブルコイルの変形は,等価回路においては自己イン ダクタンスL₁,L₂に相当する.これらをまとめると,フレ キシブルコイルを利用した場合,コイルの変形に伴い受 電電力及び伝送効率が変動し,それぞれのリアクタンス が 0 となる共振時において最大電力かつ最大効率で伝送 可能と結論付けられる.

$$P_{\rm RL} = \frac{R_{\rm L}(\omega L_{\rm m})^2}{\{R_1(R_2 + R_{\rm L})^2 + (\omega L_{\rm m})^2\}^2 + \{X_{\rm t}(R_2 + R_{\rm L})\}^2}$$
(1)

where

$$X_{t} = \omega L_{1} - \frac{1}{\omega C_{1}}$$
(2)

$$\eta = \frac{R_{L}(\omega L_{m})^{2}}{R_{1}\{(R_{2}+R_{L})^{2}+(X_{r})^{2}\}+(\omega L_{m})^{2}(R_{2}+R_{L})}$$
(3)

where

$$X_{\rm r} = \omega L_2 - \frac{1}{\omega C_2} \tag{4}$$

そこで、フレキシブルコイルの形状変化によるインダ クタンスの変動に対して、両側の各キャパシタC₁,C₂を制 御して共振状態を維持する(リアクタンスを 0 とする) ことで電力及び伝送効率を最大化する共振補償が考えら れる.これはすなわち、式(5),式(6)を常時満たすように、 自己インダクタンスの変化に合わせてキャパシタを制御 することである.

$$C_1 = \frac{1}{\omega^2 L_1} \tag{5}$$

$$C_2 = \frac{1}{\omega^2 L_2} \tag{6}$$

本研究では、簡易的な構成でありがならキャパシタ C_1,C_2 の等価的な容量値を電子制御可能な容量制御回路を 導入し、さらにそれを用いて最大効率及び最大電力を全 自動で維持する自動共振補償システムを提案する.次章 にて、この容量制御回路および自動共振補償システムの 詳細を述べる.

図5 位相制御回路の詳細

図6 V_c, V_{cs}, V_{g1}V_{g2}の各波形

3. 提案する自動共振補償システム

(1) 概要

提案する自動共振補償システムは、フレキシブルコイ ルの形状変化によるインダクタンスの変動に対して、キ ャパシタの等価的な容量値を電子制御して共振状態を維 持するものである.本章では、その実現において中核的な 位置づけである、等価的な容量値の電子制御を可能とす る容量制御回路、その回路を送受電側に搭載した際の共 振補償アルゴリズムに関して詳説する.

(2) 容量制御回路

a) 容量制御の各種方式

等価的な容量値を電子制御する方法については各種技 術が提案されており,無線給電への適用を試みた研究も ある.まず,コンデンサを多数配列して接続を切り変える という直接的な手法が挙げられる[13].これは,実装・制 御ともに容易であるが,制御可能な容量値が離散値にと どまるという問題がある.次に,通信分野などで用いられ る電圧制御コンデンサを使用した手法が挙げられる[14]. これは,容量値の制御こそ連続的ではあるが,電力線上の 電圧自体がコンデンサ値を変化させることから小電力の 伝送に用途が限定される問題がある.

これらに対して,連続的な容量値を実現でき,大電力の 伝送でも利用可能な技術として,半導体スイッチを用い た容量制御が挙げられる[15]. ZVS によりスイッチング損 失を低減した容量制御は,伝送効率の観点では優れてい るものの,スイッチング制御が可能なインバータと併用 してスイッチングタイミングの同期を取ることが前提で あった.一方,多少のスイッチング損失は免れないものの, インバータのスイッチング制御とは独立して利用可能な 簡易的な容量制御も提案されている.[16]本研究では汎 用性の高さも重視するため,この簡易的な容量制御(以下, 従来の容量制御回路)を踏襲することとした.

従来の容量制御回路は, PP 方式の磁界共鳴式無線給電 にのみ用いられてきた.これらは,いずれも PP 方式の磁 界共鳴式無線給電において,送電側並列共振回路の共振 キャパシタとして用いられたものであった.

これに対して、本研究では SS 方式の磁界共鳴式無線給 電における受電側直列共振回路の共振キャパシタとして の利用を想定する.この場合には、従来の容量制御回路を そのまま適用することは出来ないため、SS 方式での利用 のために改良を加えた容量制御回路が提案されている [11].以下に、容量制御回路について説明する.

b)本研究で利用する容量制御

容量制御回路は、図4に示すような回路となっており、 制御用キャパシタC_s、制御用キャパシタの両端に配置し た2石の半導体スイッチ、電圧参照用の固定キャパシタ C_rおよび位相制御回路(図5)で構成されている.

位相制御回路は、固定キャパシタC_rの端子間電圧V_cと制 御電圧±V_{ref}を比較してゲート信号V_{g1}、V_{g2}を出力する (図6).このゲート信号により両端のスイッチが制御さ れる.それに伴い制御用キャパシタC_sの導通・非導通が切 り替わり、制御用キャパシタC_sの両端電圧であるV_{cs}が変 化する、V_{ref}を変更することでデューティ比(キャパシタ が導通されている時間的割合、時比率)を制御でき、元々 の容量C_s値以下での連続的な容量値変化を等価的に実現 できる.なお、等価容量C_{eq}の理論値は制御用キャパシタ C_{cs}の両端に設置されたスイッチをスイッチングさせる位 相角パラメータθを用い、以下の式(7)~(9)で算出される. ここで、位相角パラメータθはデューティ比と式(7)で紐 づけられている.

$$\theta = \arcsin\left(\frac{V_{ref}}{V_{cm}}\right) \tag{7}$$

$$\int_{0}^{\pi} C_{eq} V_{cm} \sin \theta \, d\theta = \int_{0}^{\pi} C_{s} V_{cs} d\theta \tag{8}$$

$$C_{eq} = \frac{2C_s[1 - \cos\theta] + C_s \sin\theta[\pi - 2\theta]}{2}$$
(9)

回路全体の等価容量値C_{toatal}は式(10)で示される.

$$C_{total} = C_r + C_{eq} \tag{10}$$

(3)回路構成

容量制御回路の全体構成を図7に示す.回路は容量制御部,制御電圧生成部,端子間電圧 V_c の抽出部で構成されている. C_s は容量値を変化させる制御用コンデンサであり, C_r は端子間電圧 V_c を得るためのベースコンデンサである.

制御電圧生成部は、参照電圧である端子間電圧 V_c を整流 し、差動回路を通して制御電圧 $\pm V_{ref}$ を生成するものであ る.参照電圧に差動回路の利得を乗じた形で制御電圧 $\pm V_{ref}$ が生成されるため、参照電圧によらずにデューティ比 と差動回路の利得が一対一に対応することとなる.所望 のデューティ比を実現する差動回路の利得は、可変抵抗 $R_{13} \sim R_{16}$ を適切に制御することで得られる.

図7 回路の全体図

端子間電圧抽出部では、参照電圧である端子間電圧 $V_c e$ オペアンプを使用して交流波形の形で抽出している. こ の波形は位相制御で使用される. 容量制御部における位 相制御回路では V_c と+ V_{ref} および- V_{ref} を比較し、ゲート信 号 V_{g1} と V_{g2} を生成する. ゲート信号を用いてスイッチング を行うことで制御用コンデンサの等価的な容量値 $C_{eq} e$ 変化させる. ここで、等価容量 C_{eq} とスイッチングにおけ る位相角パラメータ θ (デューティ比と紐づけられる)と の関係は、前述と同様である.

以上をまとめると、改良された容量制御回路は、可変抵 抗 $R_{13} \sim R_{16}$ を調整することで、デューティ比(とそれに伴 う位相角パラメータ θ)の変化を通して、等価容量 C_{eq} を調 整するものである.

(4)共振補償アルコリズム

容量制御回路を用いて最大効率を全自動で維持する自動 共振補償について述べる.電力及び伝送効率とリアクタ ンスの関係は式(1),(3)の通りであり,それぞれのリアク タンスが0の時に最大電力及び,伝送効率が最大となる. そのため、コイル形状に応じた自己インダクタンスに対 して式(5),(6)を満たすようにキャパシタを制御すること が基本的な考え方となる.ここで,各自己インダクタンス *L*₁,*L*₂自体を計測することは困難であるため、各キャパシ タの容量値に対する受電電力及び,伝送効率の特性曲線 が単峰性となることを利用して,山登り法で最大値探索 することを考える.

図8に自動共振補償のシステム構成を示す.送受電それぞれで計測機により電圧・電流の実効値及び位相差を 取得して,計算機内部では伝送効率 η を算出し,山登り法 により等価容量を決定づける可変抵抗値を調整している. なお,送電側リアクタンス X_t は受電電力に影響を及ぼし, 式(5)を満たした時,最大電力となるが,伝送効率は変動 しない.しかし,受電側リアクタンス X_r は伝送効率,受電 電力が共に変動する.これより,伝送効率を最適化しつつ 最大電力を探索するためには受電側,送電側の順に共振 状態を補償する必要がある.つまり制御するキャパシタ は C_2 , C_1 の順となる.

受電側容量制御回路の山登り法の詳細フローを図9に 示す.まず,効率の補償を行うため,送電側キャパシタ C_1 の値を固定する.次に,前時刻と現時刻での伝送効率 η を 比較し,効率が高くなった場合には受電側キャパシタ C_2 を調整する方向(可変抵抗値の増減方向)を維持し,効率 が低くなった場合には受電側キャパシタ C_2 を調整する方 向(可変抵抗値の増減方向)を逆転させる.また,効率が 振動的な挙動を示した場合には,容量値の調整量を減ら していくことで最大値に収束させた.また,送電側容量制 御回路による受電電力の補償は,受電側の制御アルコリ ズムと同様ではあるものの,比較対象は受電電力かつ,受 電側キャパシタ C_2 の値は固定するものとした.

4, 実験

(1)実験システム

図 10,11 に自動共振補償システムの実験構成および実 験風景を示す.ファンクションジェネレータから入力さ れた電力は,送電コイル,受電コイル,容量制御回路を流 れ,最終的に負荷抵抗へと供給される.送受電での電圧と 電流は,オシロスコープ(TBS2104)で差動電圧プローブお よび電流プローブを通して計測した.コイルは25回巻き, 半径 20cmの柔軟変形コイルを使用した.送電側のフレキ シブルコイルには共振用コンデンサを直列接続し,85kHz で共振させた.

図10 実験構成

図7における各種回路パラメータは、表1に示す通りで ある.制御電圧生成部では、デジタルポテンショメータ ーをR₁₃~R₁₆に使用し、オペアンプの利得を調整した. また、デジタルポテンショメーターの定格電圧を超えな いように分圧抵抗を使用し、正しく分圧を行うために分 圧抵抗とデジタルポテンショメーターの間にボルテージ フォロワーを挟むことで絶縁処理を行った.位相制御回

路のゲート信号が電圧不足に陥ることによる半導体スイ ッチの動作不良を防ぐ処置として、ゲートドライバ IC (1EDF5673F) によりゲートドライバ回路を構成した. 容量制御回路に用いる半導体素子としては、N チャンネ ル MOSFET(G01N20LE) を使用した. 計算機には Raspberry Pi4を使用し、計算機からは SPI 通信を通じ てデジタルポテンショメーターを制御し、制御用コンデ ンサ C_1, C_2 の等価的な容量値を変化させた.

	表1 回路パラメータ	
Symbol	Parameters	Value
\overline{f}	Frequency	$85 \mathrm{~kHz}$
V_{in}	Input Voltage	$10V_{rms}$
L_1	Inductance of transmitter coil	$575.329 \mu H$
L_2	Inductance of reciver coil	$573.151 \mu \mathrm{H}$
R_{L_1}	ESR of transmitter side	12.421 Ω
R_{L_2}	ESR of reciver side	12.4895 Ω
C_{r1}, C_{r2}	Base capacitor	$4900 \mathrm{pF}$
C_{s1}, C_{s2}	Control Capacitor	$3900 \mathrm{pF}$
$R_1 \sim R_4$		$1000 \mathrm{k}\Omega$
$R_5 \sim R_8$		$220 k\Omega$
R_{9}, R_{10}		$390 \mathrm{k}\Omega$
R_{11}, R_{12}		$20 \mathrm{k}\Omega$
$R_{13} \sim R_{16}$	Digital potentiometar	$0\sim 100 \mathrm{k}\Omega$
$R_{17} \sim R_{32}$		$10 \mathrm{k}\Omega$
R_L	Output resistance	100Ω

図12 a コイルの折り曲げ角度30度 b コイルの折り曲げ角度90度 (1)フレキシブルコイルの形状変化に対する電力及び 効率補償

自動共振補償の性能確認を行うため、コイルの形状変 化に対して「理想共振(理想の容量値に手動設定)」、 「自動共振補償(提案手法)」、「非共振(容量値を固定)」 の3パターンの条件で比較実験を行った.コイル間の伝 送距離は 105[mm]の水平ギャップとした.図12のよう にして、送受電側両方のフレキシブルコイルを0~120度 まで10度ずつ折り曲げた時の効率及び電力の変化を計測 した.

まず,理想共振の実験方法について説明する.こちらは, フレキシブルコイルの折り曲げ角度ごとに,受電側全体 が 85kHz で共振するよう直列接続された共振コンデンサ の容量値を都度調整した.調整にはインピーダンスアナ ライザーを用いて手動で行うものとした.次に,非共振の 実験方法について説明する.

こちらは、フレキシブルコイルが平坦な状態(折り曲げ 角度 0 度)にて 85[kHz]で共振する値に共振コンデンサの 容量値を固定した.これにより、フレキシブルコイルを形 状変化させると非共振状態となる.最後に本研究で提案 する自動共振補償の場合について説明する.ここでは、先 述した山登り法による自動共振補償を適用し、十分に時 間が経過して安定した状態での結果を測定した.

コイルの折り曲げ角度に対する伝送効率及び電力の変 化を図 12, 13 に示す.理想共振とした場合は、コイルの 折り曲げ角度に対して必ず共振状態になるように実際の コンデンサを調整したため、最大の伝送効率及び電力で あることが見て取れる.一方で、非共振とした場合は、フ レキシブルコイルの折り曲げ角度が増加するにつれて、 伝送効率η及び受電電力P_Lは著しく低下した.対して、自 動共振補償の場合は、折り曲げ角度の増加に対する効率 低下を抑制出来ており、一定の効率低下はあるものの、理 想共振の波形に沿うように伝送効率及び電力が変動した. 折り曲げ角度が 120 度の時などは、非共振の場合の伝送 効率と比べて 14%の効率向上及び、0.1W の電力改善が見 られた.

(2) 容量制御回路の応答性

次に,自動共振補償の即応性を確認するための実験を 行った.まず.フレキシブルコイルを変形させない状態 で容量制御回路を動作させて共振状態とした.そして, スイッチを用いて回路を一時停止した後に,フレキシブ ルコイルを90度に折り曲げた.

図13 各回路条件における折り曲げ角度に対する伝送効率の変化

図13 各回路条件における折り曲げ角度に対する受電電力の変化

図15 伝送効率η及び、受電電力PRLの時間変化と位相差の変化

このことにより、コイルの自己インダクタンスが変動 することで、共振状態が意図的に崩される.最後に、再び 容量制御回路を動作させ、共振状態へと移行する様子を 確認した.ここでは、伝送効率 η 、電圧・電流の位相差 θ 、 受電電力 P_L に関して、回路動作の再開直後から共振状態 になるまでの時間推移を確認した.

実験結果を図 15 に示す.時間経過とともに伝送効率η及 び受電電力P_Lが改善され,位相差が0に近づいている様 子が分かる.また,なお,受電側制御と送電側制御の切り 替えのタイミングは,青線で示している.約1.4秒で伝送 効率,受電電力,位相差が収束した.収束時の位相差θは2 度程度であり,力率に換算すると0.9993であり,共振状 態に復帰したと考えて良い.

5. 結論

本研究では、フレキシブルコイルを用いた磁界共鳴式 無線給電において、コイル形状の変化に対して高い伝送 効率を維持する自動共振補償システムを新たに提案した. これは、送受電の伝送効率及び受電電力を山登り法で最 大化するように等価容量値を制御することで、コイル形 状変化に伴う共振崩れを補償するものであった. SS 方式 の磁界共鳴式無線給電での利用に当たって、安定化のた めのフィードバック回路を追加するなど、容量制御回路 自体も従来のものから改良したものを用いた. 最後に, 実 機実験を通して,一定以上のコイルの折り曲げ角度にて 非共振状態と比べて伝送効率が向上することや即応性の 高さを実証した.具体的には、フレキシブルコイルを0~ 120 度まで 10 度ずつ折り曲げた時の伝送効率及び受電電 力変化などを測定し、折り曲げ角度 120 度の時には非共 振と比べて 14%の効率向上かつ 0.1Wの電力改善に成功 した.また、時間応答に関しても、90度にコイルを折り 曲げた直後から, 共振状態を補償するまでに約1.4 秒と十 分な速度で共振状態に復帰することを確認した. 今後は, さらなる効率改善のためのスイッチングロスの抑制や送 電電力の大電力化といったことを見据えて回路の改良を 進めていきたいと考えている.

謝辞:

本研究に当たり,中村壮亮准教授には本研究で不明な点 や,相談したい時に対して適切な指導を賜りました.ここ に深謝の意を表します.また,研究を進めるうえで,実験 空間の設営や,実験を共同作業で進めてくださった中村 壮亮研究室メンバーに,感謝いたします.野田聡人准教授 には,研究内容を第三者の観点から助言をいただき,大変 感謝いたします.株式会社ダイヘン研究員宮浦氏には,容 量制御回路に関する様々な知見をいただきました.厚く 御礼申し上げます.

参考文献

- Y. Jang and M. M. Jovanovic, "A contactless electrical energy transmission system for portable-telephone battery chargers," IEEE Transactions on Industrial Electronics, vol. 50, no. 3, pp. 520-527, 2003.
- 2),K. M. Farinholt, G. Park, and C. R. Farrar, "RF Energy Transmission for a Low-Power Wireless Impedance Sensor Node," IEEE Sensors Journal, vol. 9, no. 7, pp. 793-800, 2009.
- 3) N. Kawashima and K. Takeda, "Laser energy transmission for a wireless energy supply to robots," in Proc. Symp. Robotics and Automation in Construction, pp. 373–380, 2005.
- 4) L. Chen, S. Liu, Y. C. Zhou, and T. J. Cui, "An optimizable circuit structure for high-efficiency wireless power transfer," IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 339-349, 2013.
- 5) K.Shimamura, M.Koizumi, Y.Mizuno, and K.Komurasaki, "Eff ect of Axial Slit on Metallic Tube for Wireless Power

Transfer via Magnetic Resonance Coupling: Application of Magnetic-Resonance Coupling Techniques for Infrastructure Diagnostics," Electrical Engineering in Japan, vol. 197, no. 1, pp. 46-54, 2016.

- 6) D. X. Yang, Z. Hu, H. Zhao, H. F. Hu, Y. Z. Sun, and B. J. Hou, "Through-Metal-Wall Power Delivery and Data Transmission for Enclosed Sensors: A Review" {¥it Sensors}, vol. 15, no. 12, pp. 31581-31605, 2015.
- 7) M. Yamakawa, Y. Mizuno, J. Ishida, K. Komurasaki, and H. Koizumi, "Wireless power transmission into a space enclosed by metal walls using magnetic resonance coupling," {¥it Wireless Engineering and Technology}, vol. 5, no. 1, pp. 19–24, 2014.
- 8) K. Shimamura and K. Komurasaki, "Wireless power transmission into metallic tube using axial slit for infrastructure diagnostics," {¥it Wireless Engineering and Technology}, vol. 6, no. 3, pp. 50-60, 2015.
- 9) T. Hou, J. Xu, W.S. Elkhuizen, C. C. L. Wang, J. Jiang, J. M.
 P. Geraedts, and Y. Song, "Design of 3D Wireless Power Transfer System Based on 3D Printed Electronics," IEEE Access, vol. 7, pp. 94793-94805, 2019.
- 10) F. Wen, F. Jing, Q. Li, R. Li, L. Liu, and X. Chu, "Curvature Angle Splitting Suppression and Optimization on Nonplanar Coils Used in Wireless Charging System," IEEE Transactions on Power Electronics, vol 35, no. 9, pp. 9070-9081, 2020.
- 11) S.Nakamura, K.Baba, and T.Miyaura, "Automatic Resonance Compensation for Efficient WPT via Magnetic Resonance Coupling Using Flexible Coils," Energies, 2021.
- 12) T. Imura and Y. Hori, "Unified Theory of Electromagnetic Induction and Magnetic Resonant Coupling, IEEJ Transactions on Industry Applications, vol. 135, no. 6, pp. 697-710, 2015.
- 13) Y. Lim, H. Tang, S. Lim, and J. Park, "An adaptive impedance-matching network based on a novel capacitor matrix for wireless power transfer," IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4403-4413, 2014.
- 14) R. W. Porto, V. J. Brusamarello, L. A. Pereira, and F. R. de Sousa, "Fine tuning of an inductive link through a voltagecontrolled capacitance," IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 4115-4124, 2017.
- 15) J. Zhang, J. Zhao, Y. Zhang, and F. Deng, "A Wireless Power Transfer System With Dual Switch-Controlled Capacitors for Efficiency Optimization," IEEE Transactions on Power Electronics, Vol. 35, No. 6, pp. 6091-6101, 2020.
- 16) R. Denieport, F. Rodes, M. Zhang, X. Wang, and X. Ren, "Medical power generator using a voltage mode resonant converter controlled by a synchronous switched capacitor is MRI compatible,"IEEE International Conference on Electronics, Circuits and Systems, ICECS, pp. 530- 533, 2014.