## 法政大学学術機関リポジトリ

### HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-16

# 多相マルチコイルモータの9相同時制御による d 軸電流の低減

Koseki, Sho / 小関, 将

(出版者 / Publisher) 法政大学大学院理工学研究科 (雑誌名 / Journal or Publication Title) 法政大学大学院紀要.理工学研究科編 (巻 / Volume) 64 (開始ページ / Start Page) 1 (終了ページ / End Page) 6 (発行年 / Year) 2023-03-24 (URL) https://doi.org/10.15002/00026347

## 多相マルチコイルモータの9相同時制御による d軸電流の低減

Simultaneous 9-phase control of multi-phase multi-coil motors for Reduction of d-axis current

#### 小関将 Sho Koseki 指導教員 安田彰

#### 法政大学大学院理工学研究科電気電子工学専攻修士課程

In recent years, motors have been used in many fields, such as automobiles and ships. Motors are required higher output torque and efficiency.

This paper proposes simultaneous 9-phase control method for multi-coil motors using digital direct drive technology, in which all phases are controlled together in a non-multiplexed multiphase method, in order to increase the maximum torque and reduce the d-axis current to achieve higher efficiency. The proposed method is verified by simulation using MATLAB / simulink.

Key Words : Multi-coil motor, multi-phase control, delta-sigma modulation, space vector quantizer

#### 1. はじめに

モータはより多くの分野で使用されるようになってい る.特に,二酸化炭素排出量を削減するため,自動車や船 舶等のモビリティ業界にも使用されている. モビリティ で用いられるモータは航続距離向上のために高い効率が 求められる.また,安全性を確保するため,冗長性が求め られる.

そこで近年は多相モータが注目されている.多相モ ータは従来のモータに比べて高いトルク密度と冗長性を 持つ.多相モータには3相システムを複数並列にするこ とで制御を行う多重3相方式と,全相同時に制御を行う 非多重多相方式に分類される.

また,これまで d 軸電流は,全相の磁束を合成した 際の d 軸方向の電流を示していた.しかし,従来のベク トル制御では各相を個別の d 軸方向電流が流れている. この各相単独の d 軸電流は,モータのトルクに寄与せず, 損失を生じさせる.

本論文では各相単独の d 軸電流の低減による高効率 化を目的とした,全ての相の制御を一斉に行う非多重多 相モータを提案する.

#### 2. マルチコイルモータシステム

#### (1) マルチコイルモータ

マルチコイルモータ(MCM: Multi-coil-motor)<sup>(1)</sup>は永久磁 石同期モータの各相のコイルを複数の並列に分割し,そ れぞれをHブリッジドライバ回路によって各コイルを独 立に制御をすることができる.

コイルが並列に配置される MCM は低電圧駆動が可能 である.また,同相のコイルが複数に分割されているため, 出力に応じて励磁するコイル数を増減することが可能で あり,高効率化ができるといった利点がある.

図1に MCM の結線図を示す. MCM はドライバ回路と して各コイルが H ブリッジ回路に接続されている.

MCM は H ブリッジ回路によって,正方向に電流を流 し,コイルを N 極側に励磁する+1 駆動,負方向に電流を 流し S 極側に励磁する-1 駆動,コイル両端を電源または グランドに接続し,ショートさせた 0 駆動の 3 値駆動が 可能となる.



#### (2) ベクトル制御

ベクトル制御(5)は3相交流電流及び3相交流電圧を直 交2軸回転座標系の一種であるdq座標に変換して電流を 制御する手法である.

図 2 にベクトル制御のブロック図を示す.また,表 面磁石型同期モータ(SPMSM: Surface Permanent Magnet Synchronous Motor)のトルクは(1)式となり,d 軸電流は トルクに寄与しない.



図2 ベクトル制御のブロック図

ベクトル制御は,各相の3相交流から固定座標系であ る αβ 軸の2相に変換する clark 変換((2)式)を行った後, αβ 軸からロータ鎖交磁束方向を基準とした回転座標系で ある dq 軸に変換する park 変換((3)式)を行う. Clark, park 変換により, SPMSM においてトルクに寄与しない d 軸電 流とトルク成分の q 軸電流に分解できる.分解した各電 流を PI 制御によって制御量を求め,逆 Park 変換を行い, 変調器によって変調し,コイルに3 相交流電流を供給し て回転磁界を発生させる.

$$T_m = \frac{P}{2}\varphi_m I_q \tag{1}$$

$$\begin{bmatrix} I_{\alpha} \\ I_{\beta} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} I_{U} \\ I_{V} \\ I_{W} \end{bmatrix}$$
(2)

$$\begin{bmatrix} I_d \\ I_q \end{bmatrix} = \begin{bmatrix} \cos \theta_e & \sin \theta_e \\ -\sin \theta_e & \cos \theta_e \end{bmatrix} \begin{bmatrix} I_\alpha \\ I_\beta \end{bmatrix}$$
(3)

#### (3)空間ベクトル ΔΣ 変調器

空間ベクトル変調器はαβ軸で構成される平面座標系を 基準にして磁界をベクトル量子化する方式である.空間 ベクトルΔΣ変調器のブロック図を図3に示す.

マルチコイルモータに用いる空間ベクトル変調器と して、ハニカム構造型空間ベクトル ΔΣ 変調器(HSVDSM: Honeycomb-structured Space Vector Delta Sigma Modulation) がある. HSVDSM は1コイルで再現できる磁界ベクトル を量子化間隔とするハニカム構造空間ベクトル量子化器 とループフィルタから構成され、ループフィルタの出力 と量子化された座標の差分をフィードバックすることで 信号帯域内の量子化雑音を低減させる. そして、空間ベク トル量子化器によって量子化することで所望のコイルの 数と方向を決定できる.

3 相モータにおける 1 相あたり 3 コイルの場合の HSVDSM の量子化座標は図4のようになる.



#### (4) 多重3相制御

2重3相モータ<sup>(6)</sup>の制御ブロック図を図5に示す.多重 3 相制御は通常の3 相ベクトル制御を複数重ねることで 動作させることができる.図5内のPhase shift ブロック で基準となる上段の3相セットの位相は変化させず,下 段のセット分の位相をシフトさせる.それ以降は通常の3 相制御と同様である.このため,変換方式や,変調器は通 常の3相のものを使用可能である.



3. 提案手法

#### (1)概要

本論文では、9 相における MCM の制御方法を提案する. 相数を9相にすることで、d 軸成分の最も小さいコイルを選択し、各相のd 軸電流を低減することができる.

9相 MCM の巻き線構造を図6に示す. 図6に示すように本論文で提案する多相 MCM は互いに電気角で40°づつシフトした巻き線を持つ.



図6 9相の電気角配置

(2)9相における SVDSM

9 相における SVDSM の量子化ポイント図を図 7 に示 す.そして,その拡大図を図 8 に示す.



図7 9相 SVDSM の量子化座標

9 相 SVDSM における量子化ポイントの選択パターン は黒い点線上のパターン 1 と,赤い点線上のパターン 2 の 2 パターンに分けることができる. 図 8 内の+U 相軸方 向を例としたパターン 1 の作動コイルを表 1,図 8 内の +U 相軸と-y 相軸の間の赤い点線を例とした 1 パターン 2 の作動コイルを表 2 に示す.

パターン 1 の量子化座標のベクトルの位相は, 20°ず つシフトされた電気角で配置される.図8の+U相軸を例 に挙げると, U, y, b相の3相分コイルを使用すること で合成磁界を生成し,量子化座標を再現する.

パターン 2 の量子化座標のベクトルの位相は, パター ン1 の軸を 10° ずつシフトされた電気角で配置される. 図 8 の-y 相軸を例に挙げると, U, y, a, b 相の 4 相分のコ イルを使用することで合成磁界を生成し, 量子化座標を 再現する.



図8 9相 SVDSM の量子化座標の拡大図

| 表1 パターン1の作動コイル |   |    |    |                      |
|----------------|---|----|----|----------------------|
|                | U | у  | b  | distance from origin |
| V1             | 1 | 0  | 0  | 1                    |
| V2             | 2 | 0  | 0  | 2                    |
| V3             | 1 | -1 | -1 | 2.879                |
| V4             | 2 | -1 | -1 | 3.879                |
| V5             | 1 | -2 | -2 | 4.758                |
| V6             | 2 | -2 | -2 | 5.758                |

表2 パターン2の作動コイル

|     | U | у  | а | b  | distance from origin |
|-----|---|----|---|----|----------------------|
| V7  | 1 | -1 | 0 | 0  | 1.969                |
| V8  | 2 | -2 | 0 | 0  | 3.938                |
| V9  | 2 | -2 | 1 | -1 | 5.67                 |
| V10 | 2 | -2 | 2 | -2 | 7.402                |

#### (3)9相における clark 変換,絶対変換

絶対変換とは、3相2相変換前後で瞬時電力を不変とす る変換方式である.絶対変換の係数をKとして3相2相 変換である clark 変換式を表すと、以下の式(4)のように表 すことができる.

$$\begin{bmatrix} C_{uvw}^{\alpha\beta} \\ C_{uvw} \end{bmatrix} = K \begin{bmatrix} \cos(2\pi) & \cos\left(\frac{2}{9}\pi\right) & \cos\left(\frac{4}{9}\pi\right) & \cdots & \cos\left(\frac{16}{9}\pi\right) \\ \sin(2\pi) & \sin\left(\frac{2}{9}\pi\right) & \sin\left(\frac{4}{9}\pi\right) & \cdots & \sin\left(\frac{16}{9}\pi\right) \end{bmatrix}$$
(4)

絶対変換の条件は変換と逆変換を行うともとに戻るため, 以下の式(5),(6)として表される.

$$\left[C_{uvw}^{\alpha\beta}\right]\left[C_{uvw}^{\alpha\beta}\right]^{T} = E \tag{5}$$

$$\begin{bmatrix} C_{uvw}^{\alpha\beta} \\ C_{uvw}^{\alpha\beta} \end{bmatrix} \begin{bmatrix} C_{uvw}^{\alpha\beta} \\ C_{uvw} \end{bmatrix}^{\prime}$$

$$= K \begin{bmatrix} \cos(2\pi) & \cos\left(\frac{2}{9}\pi\right) & \cos\left(\frac{4}{9}\pi\right) & \cdots & \cos\left(\frac{16}{9}\pi\right) \\ \sin(2\pi) & \sin\left(\frac{2}{9}\pi\right) & \sin\left(\frac{4}{9}\pi\right) & \cdots & \sin\left(\frac{16}{9}\pi\right) \end{bmatrix}$$

$$\times K \begin{bmatrix} \cos(2\pi) & \sin(2\pi) \\ \cos\left(\frac{2}{9}\pi\right) & \sin\left(\frac{2}{9}\pi\right) \\ \cos\left(\frac{4}{9}\pi\right) & \sin\left(\frac{4}{9}\pi\right) \\ \vdots & \vdots \\ \cos\left(\frac{16}{9}\pi\right) & \sin\left(\frac{16}{9}\pi\right) \end{bmatrix}$$

$$= K^{2} \begin{pmatrix} \frac{9}{2} & 0 \\ 0 & \frac{9}{2} \end{pmatrix} = K^{2} \times \frac{9}{2}E \qquad (6)$$

式(6)より,絶対変換係数 $K = \sqrt{2/9}$ となり,9相での clark 変換は式(7)となる.

$$\begin{bmatrix} C_{uvw}^{\alpha\beta} \\ = \sqrt{\frac{2}{9}} \begin{bmatrix} \cos(2\pi) & \cos\left(\frac{2}{9}\pi\right) & \cos\left(\frac{4}{9}\pi\right) & \cdots & \cos\left(\frac{16}{9}\pi\right) \\ \sin(2\pi) & \sin\left(\frac{2}{9}\pi\right) & \sin\left(\frac{4}{9}\pi\right) & \cdots & \sin\left(\frac{16}{9}\pi\right) \end{bmatrix}$$
(7)

#### 4. シミュレーション

提案する9 相制御システムを適用した MCM モデル, 従来の3重3相 MCM モデル,通常の3相 MCM モデル の各相での電流をd軸電流に変換し,その結果から電流, d 軸電流成分による銅損を比較検証する.さらに,トルク あたりの銅損という指標により比較を行った.

シミュレーションンは MATLAB/simulink を用いて行った. 提案する 9 相制御システムを適用した MCM シミュ レーションブロックを図 9, 従来の 3 重 3 相 MCM ブロッ クを図 10, シミュレーション条件を表 3 に示す.



シミュレーションブロック



図 10 3 重 3 相 MCM シミュレーションブロック

表3 シミュレーション条件

| contents                               | value  |     |   |  |
|----------------------------------------|--------|-----|---|--|
| phase                                  | 3      | 3-3 | 9 |  |
| Number of H-bridge drivers<br>/ phasae | 3      | 2   | 2 |  |
| Number of coils connected<br>in series | 2      | 1   | 1 |  |
| slot                                   | 18     |     |   |  |
| pole                                   | 12     |     |   |  |
| Winding resistans $[m\Omega]$          | 90±3%  |     |   |  |
| coil inductance[µH]                    | 159±3% |     |   |  |
| Vdd[V]                                 | 8      |     |   |  |
| SVDSM clock[kHz]                       | 200    |     |   |  |
| speed command[rpm]                     | 300    |     |   |  |
| Load torque[mNm]                       | 100    |     |   |  |

図 11 に 9 相シミュレーションにおける U 相の電流の d 軸成分,図 12-14 に 3 重 3 相シミュレーションの A, B, C モジュール内の 1 相分(0°,40°,80°)の電流の d 軸成 分,図 15 に HSVDSM を使用した通常の 3 相マルチコイ ル駆動シミュレーションにおける U 相の電流の d 軸成分 の電流波形を示す.

図 11 および図 15 から,1 相あたりのトルクに寄与し ないd 軸電流の peak to peak は3 相駆動では7.028[A]であ るのに対し,9 相駆動では2.137[A]であり,1 相当たりの d 軸成分電流は約70%低減されていることがわかる.こ の時の3重3相シミュレーションにおける各 d 軸成分電 流の peak to peak はそれぞれ約3.4-3.6[A]であるが,電気 角が0°と80°に配置されたコイルではそれぞれバイア スがかかっている.これは,多重にしたことにより,各モ ジュールで位相差を与えたことに起因する. また,3 相駆動,3重3相駆動,9 相駆動シミュレーションにおける全相分の d 軸成分電流の3-4 秒の1 秒間で2000 ポイントをサンプリングし,式(8)により求めた,各コイルに流れる d 軸成分の銅損を全相分足し合わせた結果を表4に示す.



(3重3相駆動シミュレーション:0°)



(3 重 3 相駆動シミュレーション: 40°)



図 14 1 相当たりの d 軸電流 (3 重 3 相駆動シミュレーション: 80°)



 $P = \frac{RI_d^2}{pt}$ (8)
pt:サンプリング数(2000 ポイント)

表 / d 軸雲流に上ろ雲力の比較

| 衣4 0 軸电価による电力の比較 |        |          |        |  |  |
|------------------|--------|----------|--------|--|--|
|                  | 3phase | 3-3phase | 9phase |  |  |
| copper loss[W]   | 1.314  | 1.916    | 0.1711 |  |  |

表4より,9相でのd軸電流による電力は3重3相のd 軸成分電流による銅損より約91%低減され,3相のd軸 成分電流による銅損より約87%低減されている.

次に,300[rpm]時の最大トルクをシミュレーションにて 測定し,比較指標として,トルクあたりの d 軸成分によ る銅損の値を求めた.その結果を表5に示す.この結果, 提案する9相 MCM では,通常の3相 MCM と比べ,約 90%低減し,3重3相 MCM より約86%低減した.

表5 トルクあたりの銅損

|                               | 3phase | 3-3phase | 9phase |
|-------------------------------|--------|----------|--------|
| copper loss[W]<br>torque[N·m] | 6.771  | 4.925    | 0.7128 |

#### 5. まとめ

本論文ではマルチコイルモータの 9 相での制御方法を 提案した.

SPMSMにおいて d 軸電流はトルクに寄与せず, 無駄な 成分である.これを本論文での提案手法により,1 相当た りの d 軸電流を従来の3 相に比べ,約 70%低減し,全相 合計での d 軸電流成分による銅損を 87%低減することを 示した.また,表5 による指標により,トルクあたりの d 軸成分による損失も最も少ないことを示した.

#### 謝辞

本研究を進めるにあたり,多くのご指導と助言をいた だきました法政大学理工学部安田彰教授に深く御礼申し 上げます.また,様々な協力をいただいた同研究室の皆様 に厚く御礼申し上げます.

#### 参考文献

- 1) 倉持大吾:デジタル直接駆動技術の三相同期電動機への適用,法政大学大学院工学研究科修士論文(2013)
- 2)松尾遥,本山佳樹,石間泉,西勝聡,安田彰:量子化雑 音と製造誤差による素子バラツキの影響を低減させた 高精度マルチコイルモータの実現,電気学会電子回路 研究会,ECT-17 (2017)
- 3)松尾遥,本山佳樹,曽我美泰隆,西勝聡,安田彰:マル チコイルモータのモデルに関する一提案,電気学会電 子・情報・システム部門大会講演論文集,GS13-1(2015)
- 4)吉田建:マルチコイルモータの動作不良時における最大 出力の工場法,電気学会全国大会,WEB24-C2,5-119 (2020)
- 5)松木洋介:定電圧振幅楕円に着目した新しい座標系を用 いた永久磁石同期モータ駆動システムの高性能化に関 する研究,名古屋大学大学院工学研究科電子情報シス テム専攻博士論文(2019)
- 6)Yao mingqing, ma Hongwei, ren jingpan: research on control strategy of diode clamped three-level 12-phase permanent magnet synchronous motor, chinese automation congress(2022)