法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-03

異種蛍光分子を有する電気化学発光素子の開 発と発光過程の解析

KATO, Emiri / 加藤, えみり

(出版者 / Publisher) 法政大学大学院理工学研究科 (雑誌名 / Journal or Publication Title) 法政大学大学院紀要.理工学研究科編 (巻 / Volume) 64 (開始ページ / Start Page) 1 (終了ページ / End Page) 5 (発行年 / Year) 2023-03-24 (URL) https://doi.org/10.15002/00026337

異種蛍光分子を有する電気化学発光素子の開発と 発光過程の解析

ELECTROGENERATED CHEMILUMINESCENCE CELLS USING DIFFERENT FLUORESCENT MATERIALS AND INVESTIGATION OF THEIR EMISSION MECHANISM

加藤えみり Emiri KATO 指導教員 笠原崇史

法政大学大学院理工学研究科電気電子工学専攻修士課程

We improved the electrogenerated chemiluminescence (ECL) performances by using different fluorescent materials. 5,6,11,12-Tetraphenyltetracene (rubrene) and 4-(di-p-tolylamino)-4'-[(di-p-tolylamino)styryl] stilbene (DPAVB) were used as a yellow emitter and an emitting assist dopant, respectively. The ECL solution was prepared by dissolving rubrene and DPAVB in a mixed organic solvent. The microfluidic cell with prepared solution exhibited a bright yellow emission from rubrene. The obtained maximum luminance and current efficiency were 292 cd/m² at 6.0 V and 4.50 cd/A at 5.5 V. We expect that the proposed ECL system will be useful in the development of solution-based display applications. *Key Words* : *Electrogenerated chemiluminescence; Rubrene; Emitting assist dopant; Microfluidic ECL cell.*

1. 研究背景

発光層に発光性溶液を用いた電気化学発光 (ECL)素子 が,新たな自発光デバイスとして注目を集めている. ECL 素子は,酸化インジウムスズ (ITO)やフッ素添加酸化スズ (FTO)などの透明電極が成膜されたガラス基板で発光性 溶液を挟み込むだけで作製され、真空プロセスを必要と しない1-11).常温・常圧下で簡易的に作製できることから, 大面積化や低コスト化, さらに液体の柔軟性や流動性を 活かした次世代のディスプレイ創生への貢献が期待され ている. ECL の発光メカニズムは以下の通りである.素 子に電圧を印加すると,酸化反応によってラジカルカチ オン(R⁺⁺)が,還元反応によってラジカルアニオン(R⁻⁻)が それぞれ生成される. これらのラジカルイオンが対向電 極に向かって溶液中をイオン伝導・拡散し衝突すること で,発光性分子が励起状態となる.励起状態の発光性分 子が基底状態に戻る時、発光性分子固有のエネルギーギ ャップに相当する光エネルギーを放出することで, ECL 発光が観測される. 5,6,11,12-Tetraphenyltetracene (ルブレ ン)は代表的な黄色 ECL 材料であり、1960 年代から研究 されてきた⁷⁻¹²⁾. Nishimura らのグループは,2種類の混 合溶媒 (acetonitrile:1,2-dichlorobenzene=1:2 (v/v))とイオン 伝導補助ドーパント (1,2-diphenoxyethane)を用いること で最大輝度 183 cd/m² (at 8 V)の黄色 ECL を実証した¹⁰⁾.

Kim らのグループは, tetrahydrofuran を溶媒としたルブレン溶液を調製し, 30 cd/m² 以上の輝度を観測した¹¹⁾.

これまでの一般的な ECL 溶液は、1 種類の発光性分子 を有機溶媒に溶解することで調製されてきたが、近年で は複数の分子を用いる手法も報告されている ¹³⁻¹⁹⁾. 2013 年に, Kobayashi らのグループは黄色分子 (ルブレン)と青 色分子 (9,10-diphenylanthracene (DPA))の2種類の発光性 分子を用いた交流駆動型白色 ECL を実証した¹⁴⁾. 我々の グループは、有機 EL の発光過程を参考に、ホストーゲス ト系溶液を提案してきた¹⁵⁻¹⁹⁾. 有機 EL 素子は, エネルギ 一障壁を緩和し発光層へ効率よく電子や正孔を注入する ために,発光層のみの単層構造ではなく,キャリア注入 層・輸送層といった機能性膜を付与した積層構造が設け られている.また,発光層はワイドギャップなホスト材 料に微量のゲスト材料を添加したホストーゲスト系が一 般的である 20-30). 2014 年に実証した, ルブレンを溶解し た溶液にペリレン誘導体 (DBP)を添加した赤色 ECL^{15,16)} を起点とし, 深青色蛍光分子である 2-tert-butyl-9,10di(naphth-2-yl)anthracene (TBADN)をホストとした白・緑・ 青色 ECL を発展させてきた 17-19). これらの研究から、ゲ スト分子単体では ECL 発光を示さない、もしくは発光が 得られても非常に弱いが、ホスト分子と組み合わせるこ とでゲスト分子由来の視認できる ECL 発光が得られるこ

とを明らかにした.また,発光性分子の電気化学的解析 を行ったところ,エネルギーギャップの観点から,ゲス ト分子の酸化・還元のしやすさはホスト分子のそれらよ り容易であった¹⁹⁾.よって,励起状態のゲスト分子の生 成には,ホスト分子からのエネルギー移動のみでなく他 のプロセスも寄与していると推測されることが示唆され た.しかしながら,現在ディスプレイとしての実用化が 加速している有機 EL 素子と比較して,ECL 素子の発光 特性は改善検討していく必要がある.

本研究では、ルブレンを用いた黄色 ECL 素子の高輝度 化に向けて、発光補助ドーパントを添加した溶液を提案 する. 有機 EL で淡青色分子として用いられている 4-(di-p-tolylamino)-4'-[(di-p-tolylamino)styryl]stilbene (DPA VB)²⁰⁻²²⁾を、ルブレン分子と共に溶解することで溶液を調 製した. 当該溶液は、電極間距離 5 μ m のマイクロ流体 ECL 素子 ^{31,32)}で評価し、ルブレンと DPAVB の酸化還元 特性から発光メカニズムを考察した.

2. 実験方法

図 1 に、発光性分子の化学構造を示す. ルブレン, DPAVB を含む溶液を Solution 1, ルブレンを含む溶液を Solution 2 とした. この時, ルブレンの濃度は 10 mM, DPAVB の濃度は 4 mM とした. Nishimura らの研究 ¹⁰⁾を 参考に, ルブレンの濃度を 10 mM とし, イオン伝導補助 ドーパント 1,2-diphenoxyethane (180 mM)を添加した acetonitrile と 1,2-dichlorobenzene (1:2 (v/v))の混合溶媒に, 発光性分子を溶解した. Solution 1 と Solution 2 を比較す ることで, ルブレン溶液に対する発光補助ドーパント DPAVB の効果を検証した.

図1 使用した発光性分子の化学構造.

図2に、調製した溶液の評価に用いたマイクロ流体ECL 素子のデバイス構造を示す.発光面積は、5 mm² (1 mm× 5 mm)である. 我々がこれまで発展させてきた手法 ^{31,32)} と同様に、Microelectromechanical system (MEMS)プロセス と真空紫外線処理を用いた異種材料接合技術を駆使し、 素子を作製した. ITO が成膜された polyethylene terephthalate (PET)フィルムを陽極基板として使用し、電 極幅は5 mm とした. 一方、FTO が成膜されたガラス基 板を陰極基板として用い、2 mm 幅3本に電極をパターニ ングした後、フォトリソグラフィーによって幅1 mm、厚 さ5 μ m の SU-8 マイクロ流路を基板上に形成した. 接合 前処理として,作製した両基板表面上に,波長 172 nmの キセノンランプ (Ushio, SUS713)を 10 分間照射した.最 後に,120 ℃としたプレス機で 2.8 MPa の圧力をかけ, 両基板を熱圧着させた.

図2 マイクロ流体 ECL 素子の構造. FTO-glass 基板を陰 極基板, ITO-PET フィルムを陽極基板とし,厚さ5 µm の SU-8 流路を両基板で挟み込んだ.

ルブレンと DPAVB の酸化還元特性は、電気化学アナ ライザ (BAS, ALS600E)を用いたサイクリックボルタン メトリー (CV)測定により評価した. 直径 1 mm の glassy carbon disk を作用電極, Ag wire を参照電極, Pt wire coil を対極とした 3 電極セルシステムを用いた. 測定溶液の 発光性分子濃度は共に 1 mM とし, ECL 溶液と同様の acetonitrile と 1,2-dichlorobenzene (1:2 (v/v))の混合溶媒を用 いて, それぞれの発光性分子を溶解した. さらに,支持 電解質 として tetrabutylammonium hexafluorophosphate (TBAPF₆)を 100 mM 添加した.スキャンレートは 100 mV/s とし,電位は ferrocene/ferrocenium (Fc/Fc⁺)酸化還元系で校 正した.

発光性分子の吸収スペクトル,フォトルミネッセンス (PL)スペクトルは UV-visible spectrophotometer (Hitachi, U-5100), spectrofluorometer (Shimadzu, RF6000)でそれぞれ 取得した. ECL スペクトルは, Optics analyzer (Ocean Optics, Flame-S)と光ファイバ (Ocean Optics, 径 1000 μ m)で測定 した. 電流密度 – 電圧 – 輝度 (*J-V-L*)測定には, source meter (Keithley, model 2400)と luminance meter (Konica Minolta, LS-160)を使用した.

3. 結果·考察

図3に、DPAVB (1 mM)とルブレン (1 mM)のCV 測定 結果を示す. ルブレンは、1 価の明確な酸化波と還元波を 示した.また、それらの中間電位は、0.38 V、-2.0 V vs Fc/Fc⁺であった.一方で、DPAVB もまた酸化・還元波を 示し、酸化側の中間電位は 0.26 V vs Fc/Fc⁺であり、還元 波は-2.5 V vs Fc/Fc⁺付近に観測された.このことから、 DPAVB はルブレンよりもわずかに酸化しやすく、極端に 還元しにくい電気化学的特性をもつことがわかった.ま た、得られた DPAVB の酸化波は可逆的であるが、還元

図 3 DPAVB とルブレンの酸化還元特性. DPAVB はル ブレンよりもわずかに酸化しやすく,極端に還元しにく い電気化学的特性を示した.

図4に、DPAVB とルブレンの吸収スペクトル及びPL スペクトルを示す. DPAVBは、波長464,493 nm にピー ク位置を有する青色領域にPL スペクトルを示した.一方 で、ルブレンは450~550 nm に吸収スペクトルを示し、 最大ピーク波長557 nm の黄色領域にPL スペクトルが観 測された.

図 4 DPAVB とルブレンの吸収スペクトル及び PL スペ クトル.

図 5(a)に、直流電圧 5.0 V を印加した場合の Solution 1 を含む素子の様子を示す.マイクロ流路から、明るい黄 色発光が観測された.図 5(b)に、5.0 V 印加時の Solution 1, 2 の ECL スペクトルを示す. Solution 1 は 4 mM の DPAVB を含んでいるが、得られた Solution 1, 2 の ECL スペクト ルは互いに、また、ルブレンの PL スペクトルと概ね一致 した.これらの ECL スペクトルピーク位置は、560 nm 付 近であった.いずれの素子からもルブレン由来の ECL 発 光が得られたことから、Solution 1, 2 では、ルブレンの ラジカルカチオンとラジカルアニオンが生成されている と考えられる.

図 5 (a) 4.0 V 印加時の Solution 1 を含む素子の様子. (b) 4.0 V 印加時の Solution 1, 2 の ECL スペクトル. いずれの 素子からもルブレン由来の ECL 発光が得られた.

図 6(a), 図 6(b)に, Solution 1, 2 を含むマイクロ流体 ECL 素子の J-V-L 特性と、電流効率-電圧 (CE-V)特性を それぞれ示す.いずれの素子も、印加電圧を大きくする と、電流密度、輝度は安定して増加していき、Solution 1 の電流密度と輝度は、Solution 2 のそれらより大幅に向上 した. Solution 1 の最大輝度は, 292 cd/m² (at 6.0 V)であり, Solution 2 (86.2 cd/m² (at 5.5V))の約 3.4 倍であった. 図 6(b) より, Solution 2 の電流効率は, 3.5 V で最大値 2.99 cd/A が示された.しかしながら, 3.5 V よりも大きな電圧範囲 では、大幅に減少し続けていった.一方、Solution 1 の電 流効率は 3.0~6.5 V の範囲で 3.0 cd/A 以上であり, 5.5 V で最大値 4.50 cd/A が示された. 以上のことから, Solution 1では、ルブレン分子のラジカルカチオンとラジカルアニ オンの衝突のみでなく、他のプロセスも寄与したことで、 励起状態のルブレン分子が効率よく生成されたことが示 唆された.

図3より, DPAVB はルブレンよりわずかに酸化しやす いことがわかった.したがって,Solution 1を含む素子で は,ルブレンのラジカルカチオンとラジカルアニオンの みでなく,DPAVBのラジカルカチオンも生成されている と推測される.したがって,Solution 1における励起状態 のルブレンが生成された過程として,ルブレンのラジカ ルカチオンとラジカルアニオンの衝突の他に,DPAVBの ラジカルカチオンとルブレンのラジカルアニオンの衝突 が生じたことが考えられる.得られたSolution 1の最大電 流効率 (4.50 cd/A at 5.5 V)は, これまで報告されているル ブレンを用いた ECL 素子の中で最も高い値であり, 3.0 ~6.5 V の電圧範囲で 3.0 cd/A 以上の高い電流効率が維持 された. このことから,素子内でルブレン及び DPAVB のラジカルカチオンと, ルブレンのラジカルアニオンが バランスよく生成され, 効率よく衝突したと考えられる.

図 6 Solution 1, 2 を含むマイクロ流体 ECL 素子の(a) *J-V-L* 特性. (b)*CE-V* 特性. Solution 1 を含む素子の最大輝 度と最大電流効率はそれぞれ, 292 cd/m² (at 6.0 V), 4.50 cd/A (at 5.5 V)であった.

4. 結論・今後の展望

本研究では、発光補助ドーパントとして淡青色分子で ある DPAVB を添加したルブレン溶液を調製し、その発 光特性を評価した.その結果、輝度、電流効率の大幅な 向上を確認した.Solution 1を含む素子からは明るい黄色 発光が観測され、最大輝度は292 cd/m² (at 6.0 V)であった. さらに、これまで報告されたルブレンを用いた ECL 素子 の中で最も高い値である、4.50 cd/A (at 5.5 V)の最大電流 効率が得られた.発光性分子の CV 測定から、DPAVB は ルブレンよりもわずかに酸化しやすく極端に還元しにく い電気化学的特性を示した.このことから、ルブレンの ラジカルカチオンとラジカルアニオンの衝突に加え、 DPAVB のラジカルカチオンとルブレンのラジカルアニ オンの衝突も生じたことで、効率よく励起状態のルブレ ンが生成されたと推測される.

しかしながら,詳細な発光メカニズムは未解明である ため,DPAVB単体溶液のECL特性やJ-V-L特性を取得し, クロノアンペロメトリー測定などの電気化学的な分析手 法を用いて調査していく予定である.また,有機 EL 素子 と比較すると,本研究で提案した素子の発光特性は低く, ECL 素子をディスプレイ材料として応用するためには, さらなる高輝度化及び光の三原色を示す ECL 素子が必要 である.赤,緑,青色材料として,ルテニウム錯体¹⁴⁾, イリジウム錯体⁵⁾, DPA^{6,7)}がそれぞれ広く用いられてい る.本論文で提案したシステムが,高輝度・高効率 ECL 素子の開発や赤・緑・青色 ECL 素子の発展に貢献するこ とを期待する.

5. 謝辞

本研究を進めるにあたり、多くの方々にご指導、ご鞭 撻を賜りました.指導教員である笠原崇史准教授には、 研究テーマの方向性・考察だけでなく、研究活動の在り 方など、細部にわたり多大なご助言をいただきました. 深く感謝申し上げます.また、笠原研究室 OB の先輩方、 同期や後輩の皆様とは活発な意見交換をさせていただき、 多くの刺激と示唆を頂戴しました.4年間という長い間、 皆様と共に研究活動を進められたことを幸運に思います. 心よりお礼申し上げます.最後に、これまで支えてくだ さった両親に心から感謝いたします.誠にありがとうご ざいました.

参考文献

- H. Oh et al. : Balancing the concentrations of redox species to improve electrochemiluminescence by tailoring the symmetry of the AC voltage, ChemElectroChem, Vol. 5, pp. 2836-2841, 2018.
- T. Nobeshima et al. : Advantage of an AC-driven electrochemiluminescent cell containing a Ru(bpy)₃²⁺ complex for quick response and high efficiency, J. Mater. Chem., Vol. 20, pp. 10630-10633, 2010.
- T. Nobeshima et al. : Reaction mechanism and improved performance of solution-based electrochemiluminescence cell driven by alternating current, Jpn. J. Appl. Phys., Vol. 52, pp. 05DC18, 2013.
- R. Nishimura et al. : Color control of electrochemiluminescence based on duty ratio of applied waveform voltage, Jpn. J. Appl. Phys., Vol. 55, pp. 042101, 2016.
- K. Nishimura et al. : Solution electrochemiluminescent cell using tris(phenylpyridine) iridium, Jpn. J. Appl. Phys., Vol. 40, pp. L945-L947, 2001.
- H. Hwang et al. : Improvement of brightness, color purity, and operational stability of electrochemiluminescence devices with diphenylanthracene derivatives, J. Mater. Chem. C, Vol. 5, pp. 12513-12519, 2017.
- J. Y. Kim et al. : Smart approach to liquid electrolyte-based multi-colored electrochemiluminescence for lighting applications, J. Mater. Chem.

C, Vol. 5, pp. 4214-4218, 2017.

- M. Honma et al. : Fundamental properties of light-emitting liquid crystal cells operated under alternating voltage, J. Appl. Phys., Vol. 114. pp. 053108, 2013.
- M. Honma et al. : Fundamental emission characteristics of light-emitting liquid crystal cells with rubrene-doped 4-cyano-4'-pentylbiphenyl, Appl. Phys. A, Vol. 115, pp. 873-878, 2014.
- K. Nishimura et al. : Solution electrochemiluminescent cell with a high luminance using an ion conductive assistant dopant, Jpn. J. Appl. Phys., Vol. 40, pp. L1323-L1326, 2001.
- J. Y. Kim et al. : Solvent-assisted strongly enhanced light-emitting electrochemiluminescent devices for lighting applications, RSC Advances, Vol. 11, pp. 4682-4687, 2021.
- D. M. Hercules : Chemiluminescence resulting from electrochemically generated species, Science, Vol. 145, pp. 808-809, 1964.
- H. Minami et al. : Electrochemically triggered upconverted luminescence for light-emitting devices, Chem. Commun., Vol. 55, pp. 12611-12614, 2019.
- T. Nobeshima et al. : Alternating-current-driven, color-tunable electrochemiluminescent cells, Adv. Opt. Mater., Vol. 1, pp. 144-149, 2013.
- T. Kasahara et al. : Multi-color microfluidic electrochemiluminescence cells, Sens. Actuators A, Vol. 214, pp. 225-229, 2014.
- T. Kasahara et al. : Color-tunable microfluidic electrogenerated chemiluminescence cells using Y-shaped micromixer, Jpn. J. Appl. Phys., Vol. 57, pp. 128001, 2018.
- 17) Y. Koinuma et al. : White electrogenerated chemiluminescence using an anthracene derivative host and fluorescent dopants for microfluidic self-emissive displays, Sens. Actuators A, Vol. 306, pp. 111966, 2020.
- Y. Koinuma et al. : Green electrogenerated chemiluminescence using a quinacridone derivative as a guest molecule, Electrochem. Commun., Vol. 127, pp. 107047, 2021.
- 19) E. Kato et al. : Sky-blue electrogenerated chemiluminescence using anthracene derivatives as host and guest molecules, Jpn. J. Appl. Phys., Vol. 61, pp. 060903, 2022.
- 20) X. R. Wang et al. : Efficiency and color coordinate improvement using codopants in blue organic light-emitting diode, Jpn. J. Appl. Phys., Vol. 44, pp. 8480-8483, 2005.
- 21) C.-W. Huang et al. : Creating a molecular-scale graded

electronic profile in a single polymer to facilitate hole injection for efficient blue electroluminescence, Adv. Mater., Vol. 20, 3709-3716, 2008.

- 22) M. C. Nelson et al. : Low onset stimulated emission in electrically pumped organic light-emitting diodes, ASC Photonics, Vol. 9, pp. 511-517, 2022.
- H. Nakanotani et al. : High-efficiency organic light-emitting diodes with fluorescent emitters, Nat. Commun., Vol. 5, pp. 4016, 2014.
- 24) H. Murata et al. : Emission mechanism in rubrene-doped molecular organic light-emitting diodes: direct carrier recombination at luminescent centers, IEEE J. Sel. Top. Quantum Electron., Vol. 40, pp. 119-124, 1998.
- 25) C. H. Chuen et al. : Highly-bright white organic light-emitting diodes based on a single emission layer, Appl. Phys. Lett., Vol. 81, pp. 4499-4501, 2002.
- 26) G. Li et al. : Combinatorial fabrication and studies of bright white organic light-emitting devices based on emission from rubrene-doped 4,4'-bis(2,2'diphenylvinyl)-1,1'-biphenyl, Appl. Phys. Lett., Vol. 83, pp. 5359-5361, 2003.
- Y.-C. Tsai, Long-lifetime, high-efficiency white organic light-emitting diodes with mixed host composing double emission layers, Appl. Phys. Lett., Vol. 89, pp. 243521, 2006.
- 28) K. Okumoto et al. : High efficiency red organic light-emitting devices using tetraphenyldibenzoperiflanthene-doped rubrene as an emitting later, Appl. Phys. Lett., Vol. 89, pp. 013502, 2006.
- 29) M. A. Wolak et al. : High-performance organic light-emitting diodes based on dioxolane-substituted pentacene derivatives, Adv. Funct. Mater., Vol. 16, pp. 1943-1949, 2006.
- 30) S. Tao et al. : Efficient blue organic light-emitting devices based on novel anthracene derivatives with pronounced thermal stability and excellent film-forming property, Chem. Phys. Lett., Vol. 429, pp. 622-627, 2006.
- 31) K. Okada et al. : Fabrication of microfluidic electrogenerated chemiluminescence cells incorporated with titanium dioxide nanoparticles to improve luminescent performances, Appl. Phys. Express, Vol. 13, pp. 107001, 2020.
- 32) K. Okada et al. : Microfluidic electrogenerated chemiluminescence cells using aluminum-doped zinc oxide nanoparticles as an electron injection layer, Sens. Actuators A, Vol. 334, pp. 113329, 2022.