法政大学学術機関リポジトリ HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-01-15

ISIシェーパーを用いたデジタル直接駆動ス ピーカシステムの研究

大景, 脩志 / OKAGE, Shuji

(出版者 / Publisher) 法政大学大学院理工学研究科 (雑誌名 / Journal or Publication Title) 法政大学大学院紀要.理工学研究科編 (巻 / Volume) 64 (開始ページ / Start Page) 1 (終了ページ / End Page) 7 (発行年 / Year) 2023-03-24 (URL) https://doi.org/10.15002/00026335

ISI シェーパーを用いた デジタル直接駆動スピーカシステムの研究

A STUDY ON DIGITALLY DIRECT DRIVEN SPEAKER SYSTEM USING ISI SHAPER

大景脩志 Shuji OKAGE 指導教員 安田彰

法政大学大学院理工学研究科電気電子工学専攻修士課程

This paper proposes a new dynamic element matching (DEM) method for simultaneously shaping speaker mismatch and inter-symbol interference (ISI) error in digital direct-drive speaker systems. In a previous study, ISI error in a multi-bit Delta-Sigma DAC was analyzed, and a DEM that simultaneously shapes ISI error in addition to shaping the element mismatch was developed. The proposed method was modified to be applied to the driving method of a digital direct-drive speaker system and analyzed by simulation. As a result, it is confirmed that the proposed method simultaneously shapes the element mismatch and ISI error.

Key Words : $\Delta\Sigma$ modulator, Dynamic Element Matching, Noise shaping, Mismatch shaping, ISI shaping

1. はじめに

デルタシグマ (ΔΣ) 変調器はオーバーサンプリングや ノイズシェーピングにより高精度変換を可能にし,アナ ログ/デジタル変換器(ADC)やデジタル/アナログ変換器 (DAC) として広く用いられている.マルチビットの ΔΣ 変調器は1ビットのものと比べて安定性が高く,最大利 得のより大きい雑音伝達関数 (NTF) を実現できるため, より高い信号対量子化雑音比 (SQNR) を得ることができ る.しかし DAC を構成する素子にミスマッチがある場合, 直線性を保証できなくなる.この問題を解決する方法の 一つはダイナミック・エレメント・マッチング法 (DEM) を使用することである.DEM は素子の選択を動的に行う ことで,信号帯域内でミスマッチに起因した雑音を小さ くすることができる.

DEM を用いることによる問題は,素子の遷移数が静的 選択の場合よりも増加し,符号間干渉(ISI)による誤差 が増加してしまうことである.先行研究[1]-[3]ではマルチ ビット ΔΣDAC に用いる,素子のミスマッチと ISI エラー (遷移誤差)をどちらもシェーピングする新たな DEM が 提案された.

デジタル信号でスピーカを駆動することができるデジ タル直接駆動スピーカ(デジタルスピーカ)システムは, 一般的なオーディオシステムに比べ高音質,低消費電力 特性を実現する.

このシステムの構成は従来の ΔΣDAC と同様に, ΔΣ 変 調器とミスマッチのみをシェーピングする NSDEM (ノイ ズシェーピング・ダイナミック・エレメント・マッチング 法)により構成されている.そのため,先行研究で開発さ れた DEM を応用することでより高精度化を図れる.

しかし、デジタルスピーカシステムには各スピーカの 出力を2つの状態で制御する2値駆動方式と3つの状態 で制御する3値駆動方式があり、先行研究で開発された DEM はいずれも2値駆動方式のみに対応している.3値 駆動方式は2値駆動方式に比べ出力可能なレベル数が多 いためSNR が高く、消費電力が小さい利点がある.この ことから、3値駆動方式に適応した新たなDEMの開発は デジタルスピーカシステムの精度向上につながる.本研 究では、3値駆動方式のデジタルスピーカシステムに応用 することができる新たなDEMを提案する.

2. デジタル直接駆動スピーカシステム

(1) デジタル直接駆動スピーカシステム

一般的なオーディオシステムは PC などから送られた デジタル信号を DAC によりアナログ信号に変換し,スピ ーカを駆動するためにアンプで増幅される.一方で,デジ タルスピーカシステムは,アナログ信号に変換すること なくスピーカを直接デジタル信号で駆動するため,低ノ イズ,低消費電力特性を実現できる.

デジタルスピーカシステムの構成を図1に、各出力の 波形を図2に示す.このシステムでは重み付けの等しい 複数のスピーカユニット、または一つの駆動軸に複数の ボイスコイルを巻いたマルチコイルスピーカを用いる.

図1 デジタルスピーカシステムの構成

図2 5 レベル出力の場合の各入出力波形

入力された PCM や MP3 などのデジタルデータ (a) は, はじめにマルチビット ΔΣ 変調器でオーバーサンプリン グおよび再量子化され,複数のスピーカで駆動できるよ うマルチレベルのパルス密度変調 (PDM) 信号に変換さ れる (b).このとき発生する再量子化雑音は,ΔΣ 変調器 のノイズシェーピングによりオーディオ帯域内では低減 される.次に,温度計コード変換された信号 (c) は NSDEM によりスピーカの特性のバラツキによる誤差をキャンセ ルするために再度変換される (d).最後にスピーカの個 数分あるドライバ回路によりスピーカを駆動する.各ス ピーカには1ビットの PDM 信号が入力され,その出力が 空間合成されることでオーディオ信号を生成する.

(2) Δ Σ 変調器

ΔΣ 変調器はオーバーサンプリングとノイズシェーピングにより帯域内で量子化雑音を低減する.

アナログデジタル変換において、入力信号が急速にラ ンダム的な変化をする場合、量子化雑音は量子化ステッ プ幅を Δ とすると $\Delta^2/12$ となる.この量子化雑音はナイ キスト領域に一様に分布するため、量子化雑音の片側 PSD はサンプリング周波数を fs とすると、 $\Delta^2/6fs$ となる. したがって、ナイキストサンプリングの場合よりも高い サンプリング周波数でサンプリングすることで信号帯域 内の量子化雑音を小さくすることができ、より高い SQNR を得られる.これをオーバーサンプリングと呼ぶ[4][5].

1 次の ΔΣ 変調器を z 領域で解析すると,出力 Y(z)は入力 X(z)と量子化ノイズ E(z)を用いて

$$Y(z) = STF(z)X(z) + NTF(z)E(z)$$
(1)

と表せる. ここで,

であり, *STF*(z)は信号伝達関数 (STF), *NTF*(z)は雑音伝 達関数 (NTF) と呼ぶ. *NTF*(z)は周波数領域で1次のハイ パス特性となる.したがって,量子化雑音は低周波で抑制 される.これをノイズシェーピングと呼ぶ[4][5].

 $\Delta\Sigma$ 変調器は積分器の段数を変えることで高次の $\Delta\Sigma$ 変 調器を構成することができる. 次数をLとした場合のNTF は $(1-z^{-1})^L$ となり, その傾きは 1 次の場合 20dB/dec, 2 次の 場合 40dB/dec, 3 次の場合 60dB/dec である.

しかし、1 ビットの $\Delta \Sigma$ 変調器の場合、3 次以上で不安 定となる.このとき量子化器の実効的なゲインが小さく なる.これに対し $\Delta \Sigma$ 変調器をマルチビットにすること で、量子化器のゲインが明確に決まり高い安定性を得ら れる.したがって、マルチビットの $\Delta \Sigma$ 変調器はより高次 の NTF を使うことができ、より高い SQNR を得ることが できる.

(3) 温度計コード変換

マルチビット $\Delta\Sigma$ 変調器により変換されたマルチレベ ルの PDM 信号は温度計コードに変換される. デジタルス ピーカシステムには各スピーカの出力を(-1,1)の2つの 状態で制御する2値駆動方式と,(-1,0,1)の3つの状態 で制御する3値駆動方式がある.スピーカ数をMとする と,2値駆動の場合,M+1レベル,3値駆動の場合,2M+1レベルとなり,3値駆動にすることでレベル数を2倍 にすることができる.

(4) NSDEM

マルチビット DAC は構成素子の相対的なバラツキに よって非線形な特性となる.これは、デジタルスピーカを 構成するスピーカにも同じことが言える.レーザートリ ミングなどの素子バラツキそのものを低減する方法があ る一方で、デジタル回路により素子の選択を操作するこ とでバラツキによる雑音を ΔΣ 変調器のノイズシェーピ ングと同様に帯域内で小さくすることができる.この手 法をミスマッチシェーピングと呼ぶ[4].

NSDEM[4]は高次のミスマッチシェーピングを実現する. 図3に2値駆動のNSDEMを示す. NSDEMは*M*個のループフィルタ(積分器)からなり,*M*個の出力はソート回路を通り,セレクタ回路により1ビットのセレク

図4(a)ソートとセレクタをベクトル量子化器 で表現した2値駆動NSDEM(b)その等価回路

ト信号に量子化される. セレクト信号はセレクトのとき 1, 非セレクトのとき 0 となる. このときソート回路で積分 値の小さい(使用回数が少ない)素子を優先的に選択する ようにソートする. セレクタ回路は優先順位の高い素子 から順に,入力に応じた個数を選択する. そして *M* 個の セレクト信号はフィルタにフィードバックされる.

ここで、図4(a) に示すようにソート回路およびセレ クタ回路はベクトル量子化器(VQ) として解釈できる.

図 4 (b) をもとに VQ での量子化誤差 *e*, 所望の出力信 号 *d*[*n*],素子値誤差を加味した出力 *dm*[*n*]の *z* 変換をそ れぞれ *E*(*z*), *D*(*z*), *Dm*(*z*)とすると

$$\boldsymbol{D}\boldsymbol{m}(z) = D(z) + \frac{1}{1 + H(z)} (\boldsymbol{E}(z) \cdot \boldsymbol{m})$$
(4)

の関係が得られる.式(4)より,素子値誤差を加味した 出力は所望の信号 *D*(*z*)と任意の伝達関数 *MTF*(*z*)=(1+*H*(*z*))⁻¹でシェーピングされた項からなること がわかる.

図5は3値駆動 NSDEM を示す.3値駆動では積分器は P側で使用した場合とN側で使用した場合を区別して積 分し,P側とN側のベクトル量子化器,VQPとVQNで は優先する素子を反対にしてP側とN側の出力の差をシ ェーピングされた系列にする.

(5) ドライバ回路

デジタルスピーカシステムでは図1に示したように, スピーカのドライバ回路にHブリッジ回路を用いる.2値 駆動の場合,出力ユニットを(-1,1)の2値でしか制御で きないため常に全ての出力ユニットを駆動することにな り,消費電力が増加してしまう.一方で3値駆動は入力 が小さい間は多くのHブリッジ回路がスイッチング動作 を止めるため2値駆動に比べ消費電力が小さくなる.

図6 2 値駆動の場合の ISI 誤差モデル

 $e_{01i} e_{11i}$

3. ISI シェーパー

(1) ISI シェーパー

マルチビット ΔΣDAC やデジタルスピーカシステムは 素子(スピーカ)のミスマッチの他に符号間干渉(ISI) の影響も受ける.これは ISI 誤差と呼ばれ,シンボルの遷 移によって起こり,1サイクル前の出力と現在の出力で決 まる非線形な関数である.

ISI 誤差の原因の一つとしてオンとオフの非対称スイッ チングがある. これに対して MOS トランジスタの閾値電 圧を調整するなど, アナログ的な解決法がある. 一方, 先 行研究[1]-[3]ではデジタル的な解決法として, ISI 誤差を シェーピングする新たな DEM アルゴリズムが提案され た. このアルゴリズムは素子のミスマッチと ISI 誤差を同 時にシェーピングすることができる. 先行研究ではいず れも 2 値駆動のマルチビット ΔΣDAC に用いる ISI シェー パーDEM が提案された.

(2) 先行する DEM 技術

図6に2値駆動のISI 誤差モデルを示す.2値駆動の場合,遷移パターンは0→0,0→1,1→1,1→0の4種類となる.ここでは,0→0や1→1のようにシンボルが変わらない場合でも誤差が発生すると仮定し,各遷移で発生するISI 誤差をそれぞれ eooi, eoii, eiii, eioiとする.ISI 誤差の時間関数 ISI_i[n]は次のように書くことができる.この ISI_i[n]は最終的に出力に加算される.

 $ISI_{i}[n] = \alpha_{i} + \beta_{i}d_{i}[n] + \gamma_{i}d_{i}[n-1] + \varepsilon_{i}\Gamma_{i}[n].$ (5)

図8 1次 ISI シェーピング特性

ここで, α_i , β_i , r_i , ϵ_i は, eooi, eoi, eoi, eoi, eoi によって構成 され, 回路実装によって決まり入力には関係しない定数 である. 次に $\Gamma_i[n]$ は,

$$\Gamma_i[n] = (1 - d_i[n-1])d_i[n]$$
(6)

であり、*Fi*[*n*]は立ち上がり遷移の有無を表す非線形な項である.

式(5)は最初の3項がDCオフセットと2タップFIR フィルタで構成される線形項であり、4項目が立ち上がり 遷移を表す非線形な項である. ISI 誤差の影響を小さくす るには *Г*_i[*n*]を含む4項目に対処する必要があることがわ かる.

図7に先行研究[2]で開発された *Г*_i[*n*]及び*d*_i[*n*]をシェー ピングする DEM を示す. 図中の *H_{MM}(z*)と *H_{IS}(z*)はミスマ ッチシェーピングと ISI シェーピングにおけるループフ ィルタの伝達関数を表す. 二つのベクトル量子化器, VQ1 と VQ2 はそれぞれオンさせる素子,オンを保持させる素 子を選択することで各素子の立ち上がり遷移数を制御す る. VQ1 と VQ2 の入力セレクト数は *Г*[*n*]および*d*[*n*]-*Г*[*n*] であり,*Г*[*n*]は素子数を*M*として

$$\Gamma[n] = \sum_{i=1}^{M} \Gamma_i[n] \tag{7}$$

を表す.

フィードバックループに設けられたゲイン*G*の設定は ミスマッチシェーピングと ISI シェーピングのトレード オフに関係している.

図8に出力のシェーピング特性を示す.出力はミスマ ッチと ISI 両方を考慮した結果であり、どちらもシェーピ ングされていることがわかる.

4. 提案手法

(1)3値駆動における ISI 誤差モデル

本論文では 3 値駆動のデジタルスピーカシステムに応 用することができる 3 値駆動 ISI シェーパーDEM を提案 する.

図9に3値駆動のISI 誤差モデルを示す.3値駆動の場合,遷移パターンは全部で9種類存在するから,2値駆動に比べ非線形性を持つ項が増加し,ISI 誤差の関数はより 複雑になる.ISI 誤差時間関数 *ISI_i[n]*は以下のように表す ことができる.

 $ISI_{i}[n] = A_{i} + B_{i}d_{i}[n-1] + C_{i}d_{i}[n] + D_{i}(\varGamma p_{i}[n] - \varGamma n_{i}[n]). \enskip (8)$

ここで, *A_i*から *D_i*は *i* 番目の素子に注目した場合,定数 として考えられ, *Гpi*[*n*]と*Гni*[*n*]は

$$\begin{split} & \Gamma p_i[n] = (1 - dp_i[n-1])(1 - dn_i[n-1])dp_i[n](1 - dn_i[n]), (9) \\ & \Gamma n_i[n] = (1 - dp_i[n-1])(1 - dn_i[n-1])(1 - dp_i[n])dn_i[n](10) \end{split}$$

であり, P 側での立ち上がり遷移 (0→1)の有無とN 側 での立ち上がり遷移 (0→-1)の有無を表す非線形な項で ある.また,式(8)は以下の3つの条件を満たすことで 得られる.

① (*dpi*[*n*],*dni*[*n*]) = (1,1) になることはない. すなわち

$$dp_i[n] \cdot dn_i[n] = 0. \tag{11}$$

② 1→-1, -1→1の遷移は起こらない. すなわち

$$dp_i[n-1](1-dn_i[n-1])(1-dp_i[n])dn_i[n] = 0, \quad (12)$$

$$(1 - dp_i[n-1])dn_i[n-1]dp_i[n](1 - dn_i[n]) = 0.$$
(13)

条件①より上式を変形すると,

$$dp_i[n-1]dn_i[n] = 0, (14)$$

$$dn_i[n-1]dp_i[n] = 0. (15)$$

P 側と N 側の ISI 誤差は等しい.

最終的な出力はスピーカ数を*M*とすると,*M*個の出力 を加算した値であるから,最終的な出力に現れる非線形 項は,

$$\begin{split} &\sum_{i=1}^{M} D_i(\varGamma p_i[n] - \varGamma n_i[n]) = \sum_{i=1}^{M} D(1 + \varepsilon_i)(\varGamma p_i[n] - \varGamma n_i[n]) \\ &= D\left((\varGamma p[n] - \varGamma n[n]) + \sum_{i=1}^{M} \varepsilon_i(\varGamma p_i[n] - \varGamma n_i[n])\right) \quad (16) \end{split}$$

となる.このとき,

$$\Gamma p[n] = \sum_{\substack{i=1\\M}}^{M} \Gamma p_i[n], \qquad (17)$$

$$\Gamma n[n] = \sum_{i=1}^{M} \Gamma n_i[n] \tag{18}$$

であり、 ε_i は D_i の相対的ミスマッチを表す.式(16)より、ISI 誤差の非線形項を、「各サイクルでの P 側と N 側の立ち上がり遷移数の差」を表す $\Gamma p[n]$ - $\Gamma n[n]$ と、「各スピーカの P 側と N 側での立ち上がり遷移の有無の差」を表す $\Gamma p_i[n]$ - $\Gamma n_i[n]$ に関係した項に分けることができる.

(2)3値駆動 ISI シェーパー

これらに対する提案手法での対処法について以下に示 す. (i)は式 (16) の 1 項目 (*Гр*[*n*]-*Гn*[*n*]), (ii)は式 (16) の 2 項目 (*Гр*_{*i*}[*n*]-*Гn*_{*i*}[*n*]) に対する手法である.

- (i) *Γp[n]=Γn[n] = Γpn[n]として、Γp[n]-Γn[n]*が常に0になるようにする.
- (ii) (*Γp*_{*i*}[*n*]-*Γn*_{*i*}[*n*]) 系列をシェーピングする.

(i)の手法では常に*Гр[n]と Гn[n]をど*ちらも*Грn[n]と*いう 等しい値にする.これにより常に*Гр[n]-Гn[n]=0*が成り立 ち,式(16)の1項目の影響はゼロになる.しかし, *Гр[n]=Гn[n]=Грn[n]*であることは,P側とN側で常に同じ 数のスピーカが立ち上がり遷移することになる.同じ数 のスピーカが P側方向とN側方向にオンするから,当然 それらの合計はゼロである.これは言い換えれば常に 2*Грn[n]*個のスピーカは入力の再現には使用されないこと を意味する.最適な*Грn[n]*の値について洞察を深めるた めに,まずは*Грn[n]*の最も簡単な設定法として*Грn[n]を* 一定値*C*(0<*C*(*M*)にする場合を考える.これにより,シ ステムの入力は以下に示す制約を受けることになる.

許容入力範囲:

$$-(M - 4C) \le d[n] \le (M - 4C) \tag{19}$$

許容入力変化率:

$$|d[n] - d[n-1]| \le C$$
(20)

式(19)と式(20)より C の設定は許容範囲と許容変化 率のトレードオフに関わる.したがって *Fpn*[*n*]は入力に 応じて動的に変更する方が望ましい.提案手法では図10 のように,*Fpn*[*n*]を入力の値とその変化率に応じて変化さ せる.これにより入力に課せられる制約を緩和すること ができる.

次に(ii)の手法は(*Γ_{Pi}[n]*-*Γ_{ni}[n]*)系列をシェーピング することで,ISI 誤差のミスマッチε_iの影響をオーディオ 帯域内で低減する.図11に手法(ii)を実現するシェー ピングループを示す.図中のVQ1~VQ4のセレクト対象 やセレクト数等の一覧を表1に示す.VQ1とVQ2は,P 側で使用するスピーカを選択し,VQ3とVQ4は,N側で 使用するスピーカを選択する.3値駆動のNSDEMと同様

		セレクトする対象	セレクト数[個]	入力積分値	優先するスピーカ
P側	VQ1	オンさせるスピーカ	Грп [n - 1]	積分値変換1の出力	入力積分値の 小さいスピーカ
	VQ2	オンを保持させるスピーカ	dp [n - 1]	積分値変換2の出力	入力積分値の 小さいスピーカ
N側	VQ3	オンさせるスピーカ	Грп [n - 1]	積分値変換3の出力	入力積分値の 大きいスピーカ
	VQ4	オンを保持させるスピーカ	dn [n - 1]	積分値変換4の出力	入力積分値の 大きいスピーカ

表1 VQ1~VQ4のスピーカ選択

表2 シミュレーション条件

Parameters	Value
Number of elements (M)	16
Input frequency [Hz]	2^{-12}
Input amplitude [dBFS]	-10
Sampling frequency [Hz]	1
OSR	256
Number of FFT points	2 ¹⁷
Order of $\Delta\Sigma$ modulator	3
Order of mismatch shaping	2
Order of ISI shaping	2
Mismatch [%]	1
ISI [%]	1
ISI mismatch [%]	1

に P 側の VQ と N 側の VQ では優先するスピーカが反対 になる.このとき,(i)の手法により VQ1 と VQ3 は各 サイクルで毎回 $\Gamma p[n]=\Gamma n[n]=\Gamma pn[n]$ 個のスピーカをオン させるから,入力の再現は VQ2 と VQ4 が担うことにな る.よって VQ2 と VQ4 のセレクト数はそれぞれ dp[n]と dn[n]に等しくなる.また,提案手法では前述した 3 つの 条件(条件①~条件③)を満たさなければならない.この うち,条件①と条件②を満たすためにスピーカの優先順 位をその都度変更する必要がある.VQ1~VQ4 の前に設 けられた積分値変換1~4 は過去の出力をもとに積分値を 変更することで,優先順位の変更を行う.

5. シミュレーション結果

シミュレーションは MATLAB/Simulink を用いて行った.シミュレーション条件を表2に示す.

図 12 に出力 dp[n]-dn[n](=d[n])のスペクトル,図 13 に P 側と N 側の立ち上がり遷移の差である *Грi*[n]-*Гni*[n]のス ペクトルを示す.

結果から, DEM を用いない場合と比較し,提案手法を 用いた場合はどちらも設定通りの 40dB/dec の傾きのシェ ーピング特性が確認できる.

図14には入力振幅対SNDRのグラフを示す.入力振幅 が-7dBFS より小さい場合は提案手法を用いた場合の SNDR は DEM を用いない場合と比較してより高い値と なり最大で約20dB向上した.しかし,入力振幅が-7dBFS より大きくなると入力が許容範囲を超え,出力は入力に 追従できなくなる.そのため,DEMを用いない場合と提 案手法を用いる場合のSNDRの差は小さくなる.このと

図 12 出力 dp[n]-dn[n](=d[n])のスペクトル

き DEM の出力波形には歪みが生じシェーピング特性を 得られない.

6. 結論

本論文ではデジタルスピーカシステムのさらなる高精 度化を目的とし、3 値駆動に対応する新たな ISI シェーパ ーDEM を提案した.

提案手法は素子のミスマッチと ISI を同時にシェーピ ングし、シミュレーションにより 2 次のシェーピングを 実現することが示された.このとき提案手法は DEM を用いない場合と比較し,最大で 20dB SNDR が向上した.

しかし,3値駆動の場合の ISI は2値駆動の場合に比べ てより複雑な非線形関数となり,これに対処するにはい くつかの条件を満たす必要がある.それにより許容範囲 と許容変化率の制約が入力に課せられる.シミュレーシ ョンでは許容される入力の最大振幅は-7dBFS となり,入 力振幅がこの値を上回った場合,出力のシェーピング特 性が失われ SNDR は低下する.このように,3値駆動の場 合の ISI シェーピングはこれらの制約とトレードオフと なる.制約の影響を低減しつつ遷移を入力と無相関にす ることが今後の課題となる.

謝辞

本論文を作成するにあたり,多くのご指導を頂いた法 政大学理工学部安田彰教授,及び同研究室の皆様に深く 感謝申し上げます.

参考文献

- L. Risbo, R. Hezar, B. Kelleci, H. Kiper, and M. Fares : "Digital approaches to ISI-mitigation in high-resolution oversampled multi-level D/A converters", IEEE J. Solid-State Circuits, Vol. 46, No. 12, pp. 2892-2903 (2011)
- 2) A. Sanyal and N. Sun : "Dynamic Element Matching Techniques for Static and Dynamic Errors in Continuous-Time Multi-Bit $\Delta\Sigma$ Modulators", IEEE journal on Emerging and Selected Topics in Circuits and Systems, Vol.5, No.4, pp. 598-611 (2015)
- 3) Vincent O'Brien, Anthony G. Scanlan, and Brendan Mullane : "A Reduced Hardware ISI and Mismatch Shaping DEM Decoder", Circuits, Systems, and Signal Processing (2017)
- 4)安田彰:「ΔΣ 変調技術を用いた素子バラツキにロバストなアナログ/デジタル混載回路に関する研究」法政大学 (2000)
- 5) Shanthi Pavan, Richard Schreier, Gabor C. Temes 著, 和保 孝夫, 安田彰監訳:「ΔΣ型アナログ/デジタル変換器入 門 第2版」, 丸善出版 (2019)