法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-12

層状複水酸化物を用いた排水中のホウ酸イオ ンと水銀イオンの除去

平野, 琳大朗 / Hirano, Rintaro

(出版者 / Publisher) 法政大学大学院理工学研究科 (雑誌名 / Journal or Publication Title) 法政大学大学院紀要.理工学研究科編 (巻 / Volume) 64 (開始ページ / Start Page) 1 (終了ページ / End Page) 2 (発行年 / Year) 2023-03-24 (URL) https://doi.org/10.15002/00026320

層状複水酸化物を用いた 排水中のホウ酸イオンと水銀イオンの除去

REMOVAL OF BORIC ACID ION AND MERCURY ION IN WASTEWATER USING LAYERED DOUBLE HYDROXIDES

平野琳大朗

Rintaro Hirano

指導教員 渡邊雄二郎

法政大学大学院理工学研究科応用化学専攻修士課程

We have attempted to synthesize layered double hydroxides (LDHs) adsorbents that can selectively remove harmful substances such as boron (B) and mercury (Hg) contained in wastewater. The calcined CaAl-LDH demonstrated high B removal performance of 96% in the B solution coexisting with sulfate ions. The calcined CaAl-LDH forms ettringite and incorporates B into the crystals, achieving a level of purification below the effluent standards. Furthermore, [S₃]²⁻ intercalated MgAl-LDH can selectively remove Hg from Hg-contaminated water containing Mn and Fe ions.

Key Words : Layered Double Hydroxide, Boron, Mercury, Wastewater, Ettringite

1. 緒言

日本は四大公害を契機に環境汚染物質の規制が厳格化 し、近年は大規模な公害は見られなくなった。しかし IT 産業の拡大や地方での工業化によって水質浄化技術は需 要を増している。ホウ素(B)、水銀(Hg)は排水基準値が定 められているが、特定の業種で暫定排水基準値が定めら れていることや、基準値を上回る濃度が検出される超過 事例が後を絶たないなど、まだ多くの問題が山積みとな っている。

層状複水酸化物(Layered Double Hydroxides : LDHs)は陰 イオン交換能を有する水酸化鉱物の一種であり(例えば、 MgAl 系鉱物名:ハイドロタルサイト、CaAl 系鉱物名:ハ イドロカルマイトなどがある)、低コストで作製でき、再 利用も可能であるため陰イオン吸着材として有望視され ている。しかし排水中には競合する多価アニオンが多く 含まれており、選択性の低い B(OH)4の吸着は阻害され てしまうため排水の浄化に用いることは難しい。一方、 水銀イオン(Hg²⁺)は排水中に低濃度で存在する場合が多 いため、吸着材には高い選択性が求められる。そこで LDH にポリスルフィド基を導入して LDH 層間で金属-S 結合の形成 ¹⁾を誘発させることで、排水中の Hg²⁺を選択 除去することを検討した。本研究では排水浄化を想定し、 メッキ排水に多く含まれる硫酸イオン(SO42)が多く含ま れる溶液中のBと、Hg 排水に含まれる Mn や Fe が共存 した溶液²⁾中のHg²⁺を、LDHで除去可能か検討する。

2. 実験方法

2.1 LDH 吸着材の調製

Ca/Al モル比を 2 に調製した Ca(NO₃)₂ と Al(NO₃)₃の混 合溶液と NaOH 溶液を蒸留水へ同時に滴下し 1 時間攪拌 した。吸引濾過で得られた固相を乾燥させて NO₃ Ca-Al-LDH を得た。また Mg/Al モル比を 2 に調製した Mg(NO₃)₂ と Al(NO₃)₃ の混合溶液を用いて上記と同様の 方法で NO₃ MgAl-LDH を合成した。得られた CaAl-LDH と MgAl-LDH の一部を 500°C, 2h で焼成し、焼成物 (CaAl-LDH-500, MgAl-LDH-500)を得た。

Hg²⁺の吸着実験には既報³⁾に従って均一沈殿法で MgAl-LDHを作製した。次に0.1 mol/L HClとエタノール を用いて層間の CO₃²⁻を Cl-に変換した。その Cl-MgAl-LDH とポリスルフィド[S_x]²⁻(x=2, 3, 4)を窒素雰囲気下、 メタノール溶媒中で反応させ、乾燥後、[S_x]²⁻が含まれる MgAl-LDH 粉末([S₃]²⁻処理の試料を S₃LDH と表記)を得た。 2.2 B 吸着実験

Na₂B₄O₇・10H₂O を用いて 10-250 ppm の B 溶液を調 製し、この溶液 20 mL に MgAl-LDH, CaAl-LDH, CaAl -LDH-500, MgAl-LDH-500 を各 0.2 g ずつ添加して 24h 攪拌した。また B 溶液に Na₂SO₄ を SO₄²濃度が 1000 ppm になるように添加し同様のバッチ吸着実験を行った。 2.3 Hg の吸着実験

Hg 標準液を用いて Hg²⁺濃度 10-400 ppm の溶液を調製 し、これらの溶液 20 mL に S₃LDH を 0.01 g 添加し 12h 攪拌した。また、Mn と Fe を 100 ppm 含有した Hg 溶液 も調製し同様のバッチ吸着実験を行った。

固体の評価は粉末 X 線回折装置(XRD)、ラマン分光装置、走査型電子顕微鏡と付属のエネルギー分散型 X 線分析装置(SEM-EDX)で行った。溶液中の B と Hg 濃度は誘

導結合プラズマ発光分光分析装置(ICP-AES)で測定した。

3. 結果と考察

3.1 B 吸着実験

Fig.1(A)に Na₂B₄O₇水溶液の B 吸着等温線と、Fig.1(B) に Na₂B₄O₇+Na₂SO₄水溶液の B 吸着等温線を示す。CaAl-LDH-500 は B 単独吸着実験時の B 除去率(57%)よりも、 SO₄²⁻が共存時の方が高い B 除去率(96%)が達成された。 また、初期 B 濃度が 250 ppm までの溶液は排水基準値 10 ppm 以下に低減された。一方、CaAl-LDH, MgAl-LDH と MgAl-LDH-500 は Na₂B₄O₇水溶液の B 吸着量と比較して、 Na₂SO₄ が共存する溶液中の B 吸着量は低下した。これ は選択性の高い SO₄²⁻が B の層間への吸着を阻害するた めだと考えられる。CaAl-LDH-500 の吸着量が増加した 理由を検討するため、Fig.2 に Na₂SO₄含有溶液中の B 吸 着実験前後の各 LDH の XRD 結果を示す。

Fig.1 Boron adsorption isotherms of (A) Na₂B₄O₇ aqueous solution and (B) Na₂B₄O₇ + Na₂SO₄ aqueous solution: ▲:
CaAl-LDH, ●: CaAl-LDH-500, ■: MgAl-LDH, ◆: MgAl-LDH -500.The numeric values in parentheses are boron removal ratio.

Fig.2 XRD patterns of each adsorbent, [left] (a) CaAl-LDH,
(b) CaAl-LDH after treatment of SO4²⁻1000ppm+B250ppm,
(c) CaAl-LDH-500, (d) CaAl-LDH-500 after same treatment,
[right] (e) MgAl-LDH, (f) MgAl-LDH-500 after treatment of SO4²⁻1000ppm+B250ppm, (g) MgAl-LDH-500 and (h) MgAl-LDH-500 after same treatment (●: hydrocalumite ▲: CaO
★:ettringite ■: hydrotalcite ◆:MgO)

Fig.2 の XRD の結果から MgAl-LDH, MgAl-LDH-500, CaAl-LDH は LDH のピークが残存しているのに対し CaAl-LDH-500 はエトリンガイト (Ca₆Al₂(SO₄)₃ (OH)₁₂・ 26H₂O)のピークが見られた。また、吸着後の試料の SEM 像ではエトリンガイトに特徴的な棒状の結晶が見ら れた。エトリンガイトは B(OH)₄を吸着する ⁴⁾ため、 CaAl-LDH-500 は SO₄²溶液中の B を多量に吸着したと考 えられる。

3.2 Hg 吸着実験

Fig.3 に Hg 吸着実験で作製した試料のラマンスペクト ルを示す。(a) Cl⁻MgAl-LDH は 153, 551 cm⁻¹に LDH 由来 のピーク、(b) Na₂S₃は S-S 由来の 201, 446, 467 cm⁻¹のピー クが観測され、(c) S₃LDH にはそれらのピークが共に観 測された。S₃LDH は層間に[S₃]²-イオンを有する複合体 が形成されたと考えられる。そして、Hg 吸着後の試料 (d)では S-S のバンドは消失し、その試料の XRD パター ンには HgS の構造を示すピークが観測された。

Fig.3 Raman spectra of (a) Cl⁻MgAl-LDH, (b) Na₂S₃, (c) S₃LDH and (d) S₃LDH after Hg adsorption experiment

Fig.4 に Hg 吸着等温線を示す。S₃LDH による Hg 吸着 はラングミュア型であり、Hg のみ含まれる溶液では最 大吸着量 1.84 mmol/g、Mn と Fe を含む溶液中の Hg 最大 吸着量は 1.27 mmol/g であった。また、10 ppm Hg を含有 する溶液の吸着実験において、Hg のみ含まれる溶液で 分配係数は 8.0×10^4 mL/g であり、Mn と Fe を含む溶液 の分配係数は 1.9×10^7 mL/g であった。ICP-AES の結果 から Mn と Fe の濃度に変化はほぼ無かったため排水中の Hg を選択的に吸着できたと考えられる。SEM-EDX のマ ッピングデータから LDH 上に Hg が検出され、LDH 上 に Hg が吸着されたことを確認した。

Fig.4 Hg adsorption isotherms for S₃LDH(□,■) and Cl⁻ MgAl-LDH (○). Open symbols are experiments in Hg-only solutions, and solid symbols are experiments in Mn,Fe and Hg coexisting solutions.

4. 結言

排水中の B、Hg の除去材として LDH を検討した。高 濃度の SO4²と B が溶解している排水では、CaAl-LDH-500 を用いることによりエトリンガイトとして安定的に B を除去できることが明らかとなった。また、Mn や Fe が含まれる排水中の微量 Hg²⁺についてはポリスルフィド 基を層間に導入した MgAl-LDH により選択的に除去する ことが可能となった。

参考文献

- 1) Shulan Ma et al., J.Mater.Chem.A, 2014, 2, 10280-10289
- 2) S.Kagaya et al., J.Hazard.Mater., 2009, 175, 1113-1115
- 3) K,Tamura et al., ACS.Appl.Mater.Interfaces, 2019, 11, 27954–27963
- 4) 和田洋六ら,表面技術,2016,67,111-117