法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-13

遷音速軸流タービン翼列の二次元流れ場の数 値解析 : 翼負荷分布と出口マッハ数の影響

HASEBE, Jun / 長谷部, 潤

(出版者 / Publisher)
法政大学大学院理工学研究科
(雑誌名 / Journal or Publication Title)
法政大学大学院紀要.理工学研究科編
(巻 / Volume)
64
(開始ページ / Start Page)
1
(終了ページ / End Page)
6
(発行年 / Year)
2023-03-24
(URL)
https://doi.org/10.15002/00026310

遷音速軸流タービン翼列の二次元流れ場の数値解析 —翼負荷分布と出口マッハ数の影響—

NUMERICAL ANALYSIS OF TWO-DIMENSIONAL FLOW FIELDS IN TRANSONIC AXIAL TURBINE CASCADE -EFFECTS OF BLADE LOADING DISTRIBUTION AND EXIT MACH NUMBER-

長谷部潤 Jun HASEBE 指導教員 辻田星歩

法政大学大学院理工学研究科機械工学専攻修士課程

To investigate the effects of blade loading distribution and exit Mach number on the profile loss in the transonic axial turbine cascade, numerical analyses were performed for the two-dimensional flow fields in three types of axial turbine cascades, which were different in axial-wise blade loading distribution, termed as the mid-loaded, the aft-loaded, and the front-loaded airfoil, respectively. The computed results showed the similar characteristic phenomena caused by the difference of the blade loading distribution to those in the experimental results. The mid-loaded one generated the impingement on the suction surface of the trailing-edge shock from the adjacent blade at lower exit Mach number than the others, and consequently increased the profile loss. On the other hand, the aft-loaded one exhibited the inverse phenomena to those of the mid-loaded one. *Key Words : Transonic, Turbine cascade, Numerical analysis*

1. 緒論

近年の地球温暖化や気候変動に対処するために、世界 各国が2050年カーボンニュートラルを目標に掲げ, 脱炭 素社会の実現に向けた取り組みを精力的に行っている. そのため、ガスタービンが中核的な役割を担う発電シス テムや航空機推進システムの分野においても、CO2の排 出量削減や回収技術に関する研究開発が進められている. ガスタービンの熱効率の向上には、その主要構成要素で ある圧縮機の圧力比の上昇が重要である. そのため, 圧 縮機を駆動するタービン段の回転数は上昇傾向にある. その結果、タービン翼列内の流れ場は遷音速状態に至り、 翼間流路幅の縮小や, 翼面の曲率に起因する局所的な流 れの加速により衝撃波が発生する.一般的な軸流タービ ンの遷音速状態の流れ場においては、両翼面の後縁付近 から衝撃波が発生する. 圧力面側の衝撃波は, 翼間流路 を横切って隣接翼の負圧面上に入射し、翼面境界層と干 渉することにより,境界層厚さとともに形状損失を著し く増加させることが知られている. 翼面の曲率は翼負荷 分布に影響を与え、衝撃波の形成状態を変化させる.ま た,出口マッハ数を増加させると,その入射位置が負圧 面上を後縁側へ移動するとともに、入射角度が変化する ことにより、出口マッハ数の増加に対する形状損失の増

加傾向が、一時的に減少する特性を生じることが、示唆 されている[1]. したがって、ガスタービンの熱効率を向 上させるには、翼負荷分布および出口マッハ数が衝撃波 の形成状態に与える影響を解明し、翼面境界層厚さおよ び形状損失の増加を抑制するための知見の収集が重要で ある.

本研究では、軸方向の翼負荷分布の異なる3種類の高 圧段軸流タービン翼列内の二次元遷音速流れ場の数値解 析を実施することにより、翼負荷分布および出ロマッハ 数が翼列内で発生する衝撃波の形成に与える影響と、そ の翼面境界層との干渉が形状損失の生成に与える影響に ついて調査した。

2. 供試翼列形状

本研究では、軸方向の翼負荷分布の異なる3種類の軸 流タービン翼を解析対象とした.それらの形状と仕様を それぞれ Fig.1 と Table 1 に示す.基準翼となる中央負荷 型の HS1A は Pratt & Whitney Canada で設計されており、 典型的な高圧タービンのミッドスパンでの形状を有して いる.他の2つのタービン翼[2]は HS1A に対して、前縁 翼角度 β_1 と後縁翼角度 β_2 を固定した状態で、負圧面の最 大曲率の軸方向位置が後縁側に移動し、翼後縁側で負荷

Fig.1 Test Cascades

Table 1 Specification of Cascades					
Parameter	Symbol	Unit	HS1A	HS1C	HS1D
Chord length	С	mm	41.2	40.4	43.3
Axial chord length	C _{ax}	mm	37.3	37.3	37.3
Blade pitch	S	mm	29.14	29.14	29.14
LE metal angle	β ₁	degree	50.5	50.5	50.5
TE metal angle	β ₂	degree	59.0	59.0	59.0

が高くなる後半負荷型(HS1C),反対に翼前縁側で負荷が 高くなる前半負荷型(HS1D)の設計仕様となっている.こ れらの翼列に対しては高速風洞により詳細な空力特性の 測定が行われており,実験データとともに翼形状の座標 が公開されている[2][3].なお,Fig.1中のPS,SS,LE, TEはそれぞれ翼圧力面,翼負圧面,翼前縁,翼後縁を示 している.

3. 数值解析法

(1)計算方法

本研究では,汎用 CFD コードの Ansys CFX R1 を用い, 3 種類のタービン翼列内の 2 次元流れ場を,定常圧縮性 流れを仮定して解析を行った.乱流モデルには低レイノ ルズ数型の SST *k-w* モデルを用いた.また,収束判定は, 全ての支配方程式の残差が 1.0×10⁵以下となった場合と した.

(2)計算格子と境界条件

解析領域と境界条件の設定位置を **Fig.2** に示す.本研 究では,解析モデルの入口境界と出口境界位置を *Z/Cax*=-1.5 および 6.0 にそれぞれ設定して計算格子を作成した. ここで,*Z/Cax*とは翼前縁を 0.0,翼後縁を 1.0 とした軸方 向無次元距離を指す.解析に用いた翼面周りの計算格子 を,HS1A を例に **Fig.3** に示す.スパン方向には 3 セルの

Fig.3 Grid Arrangement around Blade

格子を配置して、対称境界条件を課すことにより、2次 元流れ場の数値解析を実施した.全ての翼列に対して、 計算格子の総セル数は約16万である.また、翼面からの 第一格子点は、そこにおける無次元距離 y⁺の値が1.0以 下になるように全て配置した.

遷音速状態の流れ場の解析を行うために,翼列出口境 界における等エントロピーマッハ数 M_{2is}を 0.70 から 1.30 までの間で,32 種類の条件に設定し,それぞれ 3 種類の タービン翼列に対して解析を実施した.特に,出口マッ ハ数の増加に対して形状損失の増減が特徴的な傾向を示 す M_{2is}=0.95 から 1.20 の間を 0.01 間隔で細かく変化させ て条件を設定した.入口境界条件として,入口境界に標 準大気圧と標準温度をそれぞれ全圧と全温として一様に 与え,軸方向に対する流入角 α₁を設計流入角の 46 deg.に 設定した.また,出口境界条件として,出口境界に各等 エントロピー出口マッハ数 M_{2is}に対応する出口静圧を与 えた.ピッチ方向の周期境界には周期境界条件を課した.

4. 境界層パラメータの算出方法

遷音速軸流タービン翼列の翼負荷分布が,形状損失に 与える影響を調査した結果[1],圧力面側から発生した後 縁衝撃波が隣接翼のSSに入射する位置がM2ixの増加とと もに下流側へ移動し,それと同時にSSに対するその入射

Fig.4 Location for Boundary Layer Assessment

角度の変化に伴い翼面境界層との干渉に変化を生じ,形 状損失の生成に影響を与えることが示唆された.本研究 では,SS上の境界層パラメータにより,翼面境界層と衝 撃波の干渉の強さを評価した.Fig.4に境界層パラメータ を算出した断面を赤線で示す.各断面のSS上の起点の軸 方向位置を,衝撃波の入射範囲を考慮して,Z/Cax=0.50 ~0.99の範囲にZ/Cax=0.01間隔で設定した.また,各断 面の翼面に対する垂直方向距離は3mmとした.各断面 において等間隔に設定した100点での流速の分布から, 境界層の排除厚さと運動量厚さを算出し,その比で定義 される境界層の形状係数Hを求めた.

5. 計算結果および考察

(1) 解析結果の検証

本解析結果の妥当性を検証するために、本解析結果と 実験結果[2][3]を比較する. Fig.5 に M_{2is} =1.05 付近の条件 における翼面等エントロピーマッハ数 M_{is} 分布の解析結 果と実験結果の比較を示す. Fig.6 には Z/C_{ax} =1.5 におけ る翼列出ロマッハ数 M_2 に対する形状損失 Yの解析結果と 実験結果の比較を示す. Yは次式により定義した.

$$Y = \frac{p_{01,ma} - p_{02,mo}}{p_{02,mo} - p_{2,mo}} \tag{1}$$

ここで、 p_{01} と p_{02} はそれぞれ入口全圧と出口全圧、 p_{2} は 出口静圧であり、添え字の ma は質量平均値、mo は混合 平均値を表している. Fig.5 の翼面 M_{is} 分布において、3種 類の翼形状に起因する特徴は、SS 上において顕著に表れ ている. 翼間前半部において、中央負荷型の HS1A では LE から $Z/C_{ax}=0.1$ まで急激に上昇し音速付近で一定とな り、 $Z/C_{ax}=0.4$ から再び上昇し超音速に達した後、 $Z/C_{ax}=0.6$ でピークを示している. これに対して後半負荷 型の HS1C では、LE から $Z/C_{ax}=0.6$ 付近までほぼ線形に 上昇し、 $Z/C_{ax}=0.4$ 付近で音速に達しており、前縁付近で の負荷が HS1A より低下していることを示している. 一

Fig.5 Isentropic Mach Number Distribution on Blade Surface

方,前半負荷型の HS1D では,LE から急激に上昇し, Z/Cax=0.08 付近で音速に達し,SS の最大曲率が存在する Z/Cax=0.2 付近まで上昇した後,わずかに減少傾向を示し ている.翼間後半部においては,全ての翼列に対して Z/Cax=0.8 付近に M_{is}の上昇と急激な低下がみられる.こ れは隣接翼の圧力面側の後縁衝撃波(以下 SWTP)の SS 上への入射を表している.その M_{is}の低下の度合いは SWTP の SS 上での強度に対応しており,両結果ともに HS1A において SWTPが最も強くなっていることから,本 解析結果は実験結果を精度良く捉えていると云える.以 上のことから,翼面の曲率に起因する3種類のタービン 翼の翼面 M_{is}分布の特徴は,実験および解析結果の双方 で同様の傾向を示しており,また,衝撃波の強度および 存在位置についても,本解析結果は精度良く予測してい ることが分かる.

Fig.6 に示す形状損失 Y の M2 に対する変化の傾向につ

いては、Corriveauら[4]が結論付けているように、後半負 荷型の HS1C は設計点の M_{2is}=1.05 付近で基準翼の HS1A より著しく Yが減少するが、設計点以上のM₂の増加に対 しては迅速に Y が増加し性能が低下している.また、前 半負荷型の HS1D は他の翼列より形状損失が減少する M₂ の領域はほぼ存在しないことが分かる.この傾向は解析 結果においても同様に確認できるが、定量的には差を生 じており、負圧面境界層の発達およびその衝撃波との干 渉を CFD により精度良く捉えることの困難さを示唆して いると云える.

以上,実験値との比較により本解析結果の精度を検証 した結果,定量的に差を生じている部分も見られたが, 翼負荷分布の異なる翼形状の違いおよび SWrPの SS 上へ の入射に起因する現象については,少なくとも定性的に は精度良く捕獲していることを確認した.したがって, 本解析結果により翼負荷分布が衝撃波の形成および形状 損失に与える影響を調査することは妥当であると考える. (2)衝撃波の負圧面境界層との干渉の挙動

一般的に軸流タービン翼列の遷音速領域の形状損失 Y は、等エントロピー出口マッハ数 M_{2is}の増加とともに、 衝撃波の発生および成長などにより増加するが, Fig.6の 全ての翼列において M2=1.0 付近で Y が局所的に減少する 領域が存在する. Kibsey ら[3]はこの現象は M2is の増加と ともに、SS に入射した SWTP が翼後縁を通過する際に生 じることを確認している. Tsujita ら[5]は転向角の大きい 超高負荷軸流タービン翼列に対しても同様の現象を確認 しており, 翼負圧面と後縁ウェーク間の空気力学的スロ ート部で発生する SS 上に脚を持つ衝撃波(以下 SWss) が, 翼後縁を通過する際に生じると結論付けている. こ れらの結果は、Yの減少はSS上から衝撃波が離脱するこ とにより境界層との干渉が消滅することが原因であるこ とを示している. Fig.6 において Yの局所的な減少が生じ ている M2=1.0 付近の領域での, 翼間マッハ数分布を Fig.7 に示す. Yが局所的な減少を開始する M2isは, Fig.6 から HS1A では 1.05, HS1C では 0.95, HS1D では 1.03 と 翼列によって異なっている. Fig.7 において衝撃波 SWss の挙動に着目し、M2is=0.95 において翼列間で比較すると、 HS1A では翼後縁に位置し SS から離脱しかけており、 HS1D においてもほぼ翼後縁に達している.これに対し て、HS1Cでは明確にSS上に位置していることが分かる. また, HS1C においては M2is がさらに増加すると, SWss のSS上の脚が翼後縁に達するとともに離脱しており、翼 面境界層とSS上の衝撃波の干渉が低減していることが分 かる. したがって、HS1Cにおける M_{2is}の増加に対する Y の局所的な減少は、文献[5]と同様に、SS 上から SWss が 離脱することによる境界層との干渉の消滅に起因するも のと推察される.

つぎに, HS1AとHS1Dにおいて *M*_{2is}の増加に対する *Y* の局所的減少が生じる原因について考察する. **Fig.7**より, 両翼の局所的な *Y* の減少が生じる *M*_{2is} が 1.0 を超える条

(a) HS1A

(b) HS1C

(c) HS1D Fig.7 Mach Number Distribution

件において、SW_{SS}のSS上の脚の位置は両翼ともに翼後 縁から既に離脱していることから、SW_{SS}の挙動は無関係 と考えられる.一方、SW_{TP}については、両翼ともに隣接 翼のSS上に存在し、M_{2is}の増加に伴って増強しながら後

Fig.8 Shape Factor and Static Pressure Distributions on Suction Surface

縁側へ移動しているが、翼後縁には達することなくSS上 に存続している.ここで、SWTPのSSに対する翼面近傍 における入射角度に着目すると、Yが局所的な減少を開 始する M_{2is} =1.05 (HS1A)と1.03 (HS1D)まではほぼ垂 直であるのに対して、それ以降は傾斜していることが分 かる.したがって、HS1AとHS1Dの M_{2is} の増加に対す る Yの局所的減少は、SWTPのSSへの入射角度の変化に 伴う、翼面境界層との干渉の強さの違いに起因するもの と推察される.

(3) 衝撃波と負圧面境界層との干渉の定量的評価

HS1A と HS1D において見られた SWrpの SS 上の入射 角度の垂直から傾斜への変化が、境界層との干渉の強さ にもたらす影響について定量的に評価する.衝撃波と翼 面境界層の干渉の強さに関係づけられる物理現象として は、境界層の発達と衝撃波の強さを表す圧力上昇と考え られる.Fig.4 に示す各評価断面において算出した境界層 の発達の指標となる形状係数 H(上段)と、同領域にお ける SS 上の静圧係数 C_{ps}(下段)の軸方向分布を Fig.8 に 示す.同図に示す結果は Fig.7 に示した M_{2is}の条件に対応 している.また、C_{ps}は次式により定義した.

$$C_{ps} = \frac{p}{p_{02,ma} - p_{2,ma}}$$
(2)

ここで、p は静圧である. **Fig.8** の C_{ps} 分布において、 Z/ C_{ax} =0.8 付近の青色の点線で挟まれた領域内で C_{ps} が減 少後に急上昇しており、SW_{TP}の SS 上への入射を表して いる. また、Z/ C_{ax} =1.0 付近の上昇は、SW_{SS} の存在に起 因するものと考えられる.また, C_{ps}の上昇の程度は衝撃 波のSS上での強度に対応するため、3種類の翼列間で両 衝撃波によるそれらの程度を比較すると、HS1Aでは SW_{TP}の方が強く、HS1CではSW_{SS}の方が強いことが分 かる.一方、HS1Dにおいては、SW_{TP}とSW_{SS}が同程度 の強さで表れている.C_{ps}が上昇する衝撃波の存在する領 域において、Hがピーク値を取っていることが分かる. この現象はSW_{TP}とSS上の境界層との干渉により、境界 層が発達していることを示している.また、Fig.8(b)か らHS1CにおいてはSW_{SS}による後縁付近の圧力上昇とH が、SW_{TP}のものよりいずれも大きくなっており、それが 後縁に達しSS上を離脱する挙動が、Yの局所的減少を引 き起こす主な原因であることを裏付けている.

つぎに、SWTPのSS上での強さと、それとの干渉による境界層の発達の相関を調べるために、Fig.8の Z/Cax=0.80付近の青色の点線で挟まれた領域でのSWTPの 影響による C_{ps} の上昇幅として定義される ΔC_{ps} と、SWTP の影響による Hの局所的なピーク値として定義される H_{max} の M_{2is} に対する変化をFig.9に重ねて示す。同図から、全ての翼列において、 ΔC_{ps} と H_{max} の間に相関がある ことが分かる。先に述べたSWTPのSS近傍での入射角度 が垂直を維持する M_{2is} の限界はHSIAでは1.05、HSIDで は1.03であり、そこで H_{max} が局所的なピークを示し、そ の後低下している。この現象は、SWTPのSS近傍での入 射角度が垂直から傾斜に転じる際に、SWTPの強さが低減 することにより、それとの干渉に伴うSS上の境界層の発 達が低下することを示している。

Fig.9 Static Pressure Rise of Shock Wave and Maximum Shape Factor on Suction Surface

最後に、衝撃波の増強と負圧面境界層との干渉に伴う 境界層の発達が形状損失に与える影響を調べるために、 Yと H_{max}の M_{2is}に対する変化を Fig.10 に重ねて示す.同 図から、全ての翼列において Yと H_{max}には相関があり、 HS1Aと HS1D ではそれぞれ M_{2is}が 1.05 と 1.03 を境にし て Yと H_{max}がともに増加から減少に転じていることが分 かる.したがって、HS1Aと HS1D における M_{2is}の増加 に対する Yの局所的な減少は、SW_{TP}の SS 上での入射角 度の垂直から傾斜への変化が、それぞれ M_{2is}が 1.05 と 1.03 において生じることにより、SW_{TP}の強さが減少に転 じ、その結果、負圧面境界層との干渉の強さも低減する ことに起因していると考えられる.

6. 結論

本研究により,以下の結論を得た.

- 本解析結果により翼負荷分布と翼列出口マッハ数が、 形状損失の生成に影響を与える特徴的な現象を予測 することができた。
- 後縁圧力面側衝撃波の隣接翼の負圧面上への入射に よる圧力上昇,境界層の形状係数および形状損失の 間には相関がある.
- 後縁圧力面側衝撃波の隣接翼の負圧面への入射角度 の垂直から傾斜への変化は、圧力上昇を低下させる ことにより負圧面境界層との干渉を弱め、形状損失 の生成を抑制する。
- 4. 後半負荷型の翼列では,翼負圧面と後縁ウェーク間の空気力学的スロート部で発生する負圧面に脚を持つ衝撃波が,出口マッハ数の増加に伴い翼後縁を離脱する際に,負圧面境界層との干渉が消滅することにより,形状損失が一時的に減少する.
- 5. 中央負荷型および前半負荷型の翼列では、圧力面側 後縁衝撃波の隣接翼負圧面への入射角度が出口マッ ハ数の増加により垂直から傾斜に変化する際に、負 圧面境界層との干渉が低下することにより、形状損 失が一時的に減少する.

参考文献

- 1)長谷部潤, 辻田星歩:遷音速軸流タービン翼列の翼負荷分布が形状損失に与える影響,第49回日本ガスタービン学会定期講演会, B-20, 2021.
- Corriveau, D. : Influence of loading distribution on the performance of high-pressure turbine blades, PhD thesis, Carleton University, 2005.
- 3) Kibsey, M. D., Sjolander, S. A. : Influence of Mach Number on Profile Loss of Axial-Flow Gas Turbine Blades, Proceedings of ASME Turbo Expo 2016, GT2016-56410, 2016.
- Corriveau, D., Sjolander, S. A. : Influence of loading distribution on the performance of transonic HP turbine blades, Proceedings of ASME Turbo Expo 2003, GT2003-38079, 2003.
- 5) Tsujita, H., Kaneko, M. : Profile loss of Ultra-Highly loaded turbine cascade at transonic flow condition, Proceedings of ASME Turbo Expo 2019, GT2019-91264, 2019.