
PDF issue: 2025-07-01

Hybrid interconnection topologies for
high performance and low hardware cost
based on hypercube and k-ary n-tree

Li, Junhong

(出版者 / Publisher)
法政大学大学院情報科学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 情報科学研究科編

(巻 / Volume)
18

(開始ページ / Start Page)
1

(終了ページ / End Page)
6

(発行年 / Year)
2023-03-24

(URL)
https://doi.org/10.15002/00026294



Hybrid interconnection topologies for high performance and low hardware cost based
on hypercube and k-ary n-tree

Junhong Li∗
Graduate School of CIS

Hosei University
junhong.li.2k@stu.hosei.ac.jp

Abstract—The implementation of fat-tree interconnection
networks is prevalent in high-performance parallel com-
puting. However, the traditional fat-tree structure requires
a considerable amount of switches and links to connect
computing nodes, resulting in a significant increase in hard-
ware costs for large-scale high-performance systems. This
study proposes two innovative hybrid topologies, the k-ary
n-tree k-cube (KANTC) and the Mirrored k-ary n-tree
k-cube (MiKANTC), to address the aforementioned issue.
The proposed topologies merge the characteristics of the
hypercube and fat-tree structures. Instead of the traditional
direct connection of k computing nodes to an edge-level
switch, the edge-level switches in the fat-tree are substituted
with k-cubes. This results in the formation of kn−2 k-cubes
at the edge level, where each k-cube links k switches to
the upper level of the k-ary n-tree, while the remaining
switches link to the compute nodes. Hence, all the cubes are
capable of interconnecting k(2k−k) compute nodes. Shortest
path-based routing algorithms are proposed for these hybrid
topologies, and several link fault tolerant routing algorithms
are developed to enhance the fault tolerance of the entire
topology. The proposed hybrid topologies are then evaluated
in terms of path diversity, cost, and performance. The results
demonstrates that the proposed KANTC and MiKANTC
topologies exhibit improved performance, with up to 84%
reduction in the number of switches and 78% reduction in
links in large parallel systems when k = n = 8, compared
to the conventional fat-tree topology. Additionally, these
hybrid topologies display enhanced path diversity compared
to traditional fat-tree.

1. Introduction

The deployment of high-performance computing sys-
tems requires the integration of large-scale interconnection
networks. As the number of compute nodes in these sys-
tems increases with the advancements in distributed and
cloud computing technologies [1], it becomes imperative
to strike a balance between cost and performance. This
has led to the design of various interconnection networks
aimed at optimizing this trade-off. One of the most widely
used interconnect topologies in high-performance comput-
ing systems is the fat-tree [2], which is used in top500 su-
percomputers such as the Summit [3]. The fat-tree network
separates traffic between compute partitions and storage
subsystems, thus offering a more predictable application
performance. Furthermore, its high level of redundancy
and reconfigurability guarantee reliable performance even
in the event of network component failures [4]. In contrast

∗ Supervisor: Prof. Yamin Li

to traditional tree network topologies, where bandwidth
converges level by level, with the root having a smaller
bandwidth compared to the sum of all leaf bandwidths, the
fat-tree resembles a real tree with thicker branches closer
to the root. This prevents bandwidth convergence and
enables the support of non-blocking networks. However,
the scalability of the traditional fat-tree is limited by the
number of ports in the core layer switches, which poses a
hindrance to the long-term development of data centers.

To address this limitation, various fat-tree schemes
with multiple roots have been proposed, such as the k-ary
n-tree , represented by the acronym KANT, proposed by
Petrini and Vanneschi [5]. The value of k in this scheme
represents both the number of links to upper or lower
layers and the number of compute nodes connected to a
single leaf switch, while n represents the number of layers.
This structure allows for a fixed number of switch ports
regardless of the size, making it highly scalable. In their
studies [6], [7], Gómez et al. introduced the concept of
Reduced Unidirectional Fat-Tree (RUFT) structure, which
minimizes the number of switches required in the system
by implementing a unidirectional flow of packets from the
first-level switch to the last-level switch and onward to the
compute node. The utilization of unidirectional links in
RUFT has contributed to the reduction of hardware costs.
Ludovici et al. [8] demonstrated that for implementing
network-on-chip (NoC), RUFT is a more powerful solu-
tion than conventional butterfly. Wang et al. tackled the
issue of complicated floor plan design in fat-tree-based
NoC and presented an optimized solution. This solution
aimed to minimize the amount of intersection points and
the distance of links, and thus improve the efficiency of
the fat-tree design [9]. Li proposed the MiKANT topolo-
gies, a mirrored version of KANT, as a more hardware-
efficient alternative to bidirectional Clos network and fat-
tree [10]. MiKANT reduces hardware costs by connecting
a larger number of compute nodes to a smaller number
of switches and links and improves communication time
and performance by reducing the average distance. A link
fault-tolerant routing algorithm in the MiKANT network
was also presented by Wang in [11], and its performance
was evaluated through small-scaled simulation.

The use of hypercube [12] structures in networking
is widespread due to its desirable topological properties
and its ability to emulate various other commonly utilized
networks. Despite its popularity, traditional hypercube
networks face a major disadvantage: The communication
links per node scale proportionally to the logarithm of
the number of nodes in the network, which impedes
the scalability of the network for large-scale systems.
To address this issue, Arai and Li proposed a variant
topology based on the hypercube called the Generalized-



200000 201000 202000

100000 101000 102000

210000 211000 212000

110000 111000 112000

220000 221000 222000

120000 121000 122000

000000

000001

000101

001010

000011

002111

010000

010001

010101

011010

010011

012111

020000

020001

020101

021010

020011

022111

010100 010110000100 000110 020100 020110

010001

Figure 1: A 3-ary 3-tree 3-cube

Star cube (GSC) [13], and presented a routing algorithm
for it. Additionally, Wang proposed a hybrid structure that
combines elements of hypercube and fat-tree [14], and
presented a method for evaluating path diversity in this
architecture.

To address the challenges faced by traditional hy-
percube networks in large-scale scaling, we present
two novel network topologies, namely the k-ary n-
tree k-cube (KANTC) and the Mirrored k-ary n-tree
k-cube (MiKANTC), that are based on a combination
of n-dimensional cube and fat-tree. The design of the
KANTC/MiKANTC topologies involves the use of hyper-
cubes to replace the edge-level switches of KANT, where
the value of k denotes the dimension of the hypercube
as well as the switch array. As a result, each switch in
the architecture is capable of maintaining 2k links. The
performance of KANTC and MiKANTC was evaluated in
terms of the number of compute nodes, links, switches,
and diameters, as well as cost ratio, cost performance,
and path diversity. The results indicate that KANTC and
MiKANTC exhibit higher path diversity and lower hard-
ware costs compared to traditional fat-tree topology.

2. KANTC and MiKANTC

This section describes how KANTC and MiKANTC
are encoded and their topological characteristics.

2.1. KANTC

The proposed topology, denoted as KANTC(k, n),
combines features of the hypercube as well as the KANT,
hence the name ”k-ary n-tree k-cube.” The parameter k
signifies the hypercube’s dimensionality and the array of
the KANT. The architecture of KANTC is composed of
two distinct sections: the top section, which comprises
of n − 1 layers of a KANT, and the bottom section,
which is comprised of kn−2 hypercubes. In contrast to
conventional KANT, where the switches at the edge level
directly connect to the k computing nodes, the edge-
level switches in KANTC are replaced by hypercubes.
Each hypercube has the capacity to support connections
to k(2k − k) computing nodes. We propose a hybrid en-
coding approach for the representation of KANTC(k, n),
which combines the properties of both the KANT and the
hypercube. Each switch in the KANTC(k, n) structure is
marked with a triplet ⟨L, T,C⟩, as illustrated in Fig. 1.

11000000 1101000 1102000

0100000 0101000 0102000

1110000 1111000 1112000

0110000 0111000 0112000

1120000 1121000 1122000

0120000 0121000 0122000

0000000

0000001

0000101

0001010

0000011

0002111

0010000

0010001

0010101

0011010

0010011

0012111

0020000

0020001

0020101

0021010

0020011

0022111

0010100 00101100000100 0000110 0020100 0020110

1002111

1000011

1000100

1000101

1000001

10010101000000

1000110

1012111

1010011

1010100

1010101

1010001

10110101010000

1010110

1022111

1020011

1020100

1020101

1020001

10210101020000

1020110

Figure 2: A Mirrored 3-ary 3-tree 3-cube

The binary encoding of the hypercube switch, represented
by C = Ck−1, Ck−2, ..., C1, C0, is expressed using k bits,
where each Ci is either 0 or 1.

To distribute the intermediate switches evenly, we em-
ploy a bitwise inverse approach. The encoding of the first
⌈k/2⌉ switches is determined by picking all zeros as the
first switch. The encoding for the subsequent switches is
then obtained by inverting the values from bit i to bit k−i
of the previous switch. The remaining ⌊k/2⌋ switches are
obtained by inverting the previously determined switches.
For instance, in the case of a four-dimensional hypercube,
the intermediate switches are represented by ⟨0, 0, 0, 0⟩,
⟨0, 1, 1, 0⟩, ⟨1, 0, 0, 1⟩, ⟨1, 0, 0, 1⟩ ⟨1, 1, 1, 1⟩. The part
⟨L, T ⟩ of the KANTC encoding is consistent with the
KANT, while the part ⟨C⟩ is determined by the hypercube.
In the higher layers of the KANT (n−1 to 1), ⟨C⟩ remains
all-zero, while the encoding in the lowest layer (0th layer)
is aligned with the hypercube.

In each 3-cube of the KANTC(3, 3) structure, there are
2k = 8 switches, including the intermediate switch. The
intermediate switches connect the 3-cube to the KANT,
while the other switches connect to the compute nodes,
with each switch connecting to three computational nodes.
Fig. 1 shows an example of a KANTC(3, 3) topology,
where the lower part consists of 3 3-cubes and the upper
part consists of the KANT ,there are 45 compute nodes
in total.

2.2. MiKANTC

A MiKANTC(k, n), a hybrid topology that merges the
properties of both a MiKANT and a hypercube, has been
devised. Each switch in the MiKANTC(k, n) is tagged
with a unique identifier made up of four elements: group
(G), level (L), switch ID within the k-ary n-tree of group
G (T ), and ID within the k-cube (C).

For instance, MiKANTC (3, 4) comprises of 18 3-
cubes and 270 compute nodes. The level 2 switches of
group 0 and group 1 form a KANTC (3, 4), and the level
2 switches of group 1 and group 0 form another KANTC
(3, 4).

The connections between switches in the MiKANTC
are determined based on the switch’s level and group. If



TABLE 1: ANALYSIS OF NETWORK TOPOLOGICAL CHARACTERISTICS

Parameters HC(k) k-ary n-tree MiKANT(k, n) KANTC(k, n) MiKANTC(k, n)

Nodes 2k kn 2kn (2k − k)kn−1 2(2k − k)kn−1

Switches 2k nkn−1 (2n− 2)kn−1 (n− 1)kn−1 + 2kkn−2 (2n− 4)kn−1 + 2k+1kn−2

Links k2k−1 nkn (2n− 1)kn
(n− 1)kn

+(2k−1 + 2k − k)kn−1
(2n− 3)kn

+(3× 2k − 2k)kn−1

Radix/Degree k 2k 2k 2k 2k

Diameter k 2n 2n 2n+ k 2n+ k

the level is less than n-2, the switch P represented by

⟨G,L, Tn−2, ..., TL+1, TL, TL−1, ..., T0, Ck−1, ..., C0⟩

links to switches in the next level with the same group,
but different switch encoding in TL+1. If the level is equal
to n − 2, the switch connects to switches in a different
group 〈

G,L, ∗′, Tn−3, ..., T1, T0, Ck−1, ..., C0

〉
where ∗′ takes any value within the interval of [0, k− 1].
In MiKANTC (3, 4), the switch P: ⟨0, 2, 1, 1, 0, 0, 0, 0⟩
is connected to switches ⟨1, 2, 0, 1, 0, 0, 0, 0⟩,
⟨1, 2, 1, 1, 0, 0, 0, 0⟩, and ⟨1, 2, 2, 1, 0, 0, 0, 0⟩, which
belong to distinct groups. If the present and destination
nodes belong to the identical group, MiKANTC operates
in the same manner as KANTC.

The topological characteristics of various topologies,
including the k-cube, KANT, MiKANT, KANTC, and
MiKANTC, are summarized in Table 1. The results
demonstrate that, in comparison to conventional KANT
and MiKANT, KANTC and MiKANTC demonstrate en-
hanced computational node connectivity, utilizing fewer
switches and links, with only a marginal increase in the
diameter of k. In the subsequent section, the performance
of the topology will be evaluated in detail.

3. Routing Algorithm

This section presents the shortest path routing algo-
rithm for the KANTC(k, n) and MiKANTC(k, n) topol-
ogy, which is formulated as a deterministic process.

3.1. Algorithm for Routing in KANTC

In this section, we present the routing algorithm for
KANTC (k, n), which is a combination of traditional
KANT and hypercube. Firstly, we use a static method
to identify all intermediate switches and store their IDs
in a list, referred to as I . For the lower half of KANTC,
which is the hypercube part, if the source node and the
destination node belong to different cube’s switches, the
routing algorithm determines the shortest path to the in-
termediate switch. In the event of multiple shortest paths,
one is selected at random. If the source and destination
nodes are located within the same switch of a cube, the
packet will be transmitted directly from the source node
to the target node.

In the upper half of the KANTC topology. The algo-
rithm finds the Nearest Common Ancestor(NCA) between

the source intermediate switch(SIS) and the destination in-
termediate switch(DIS). The route from the source switch
to the target switch is divided into two parts: from the SIS
to the NCA, and from the NCA to the DIS. The process
of reaching the NCA may involve multiple paths, but the
path from the NCA to the DIS is determinate.

The algorithm for routing in KANTC is determined
by the identification of the present switch or node, repre-
sented as

P = ⟨LP , TPn−2, ..., TP1, TP0, CPk−1, ..., CP0⟩

and the destination node ID, represented as

D = ⟨LD, TDn−2, ..., TD1, TD0, CDk−1, ..., CD0⟩

If TPn−2, ..., TPLP ̸= TDn−2, ..., TDLD, it signifies that
the present switch/node has not yet reached the nearest
common ancestor, and the network data must be transmit-
ted to a higher layer switch through an intermediate switch
or upper interface. Once the present switch/node arrives at
the nearest common ancestor, the routing process enters
the downward phase and becomes deterministic, with
the packet being directed directly towards the destination
switch.

During the path to the NCA, a switch P in the LP

level:

P = ⟨LP , Pn−2, ..., PLP+1, PLP , DLP−1, ..., D0, C⟩

sends data to switch N, which is closer to D than P:

N = ⟨LN , Pn−2, ..., PLP+1, DLP , DLP−1, ..., D0, C⟩

with C representing Ck−1, ..., C0, PLP being changed to
DLP . In to downward phase, if the LP of P is equal to 0,
the present switch reached the same cube with destination
node, and the data is sent directly to the destination node
D.

3.2. Algorithm for Routing in MiKANTC

The routing algorithm of MiKANTC is comprised of a
combination of MiKANT and hypercube, with the present
switch and node encoding represented as

P = ⟨GP , LP , TPn−2, ..., TP1, TP0, CPk−1, ..., CP0⟩

and the encoding of the destination switch and node is
represented as

D = ⟨GD, LD, TDn−2, ..., TD1, TD0, CDk−1, ..., CD0⟩



200.0

250.0

300.0

350.0

400.0

450.0

500.0

550.0

600.0

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

P
a

c
k
e

t 
la

te
n

c
y
 (

c
y
c
le

s
)

Traffic load (packets/cycles/node)

KANTC(3,4) NB
KANTC(3,4) DB

MiKANTC(3,4) NB
MiKANTC(3,4) DB

Figure 3: packet latencies of KANTC(3, 4) and MiKANTC(3, 4)

In the case where the present switch and the destina-
tion switch are part of the same group, the routing protocol
of MiKANTC is equivalent to that of KANTC. Con-
versely, if the present switch and the destination switch
belong to different groups, the network data will first be
transferred to the n − 2 layer of the GD via the present
switch. Then, it will be passed along from the n−2 layer
of the GD to the destination switch, and ultimately to the
destination node.

3.3. Packet Latency

We performed a small-scale simulation of the rout-
ing algorithms to evaluate the average packet latency of
KANTC and MiKANTC. The simulation was performed
with a k-value of 3 and an n-value of 4 and was evaluated
in a uniform pattern per clock cycle. In the uniform
traffic scenario, the destination addresses of packets were
randomly assigned. The simulation only proceeded if there
were available buffers in the switch for the given packet,
otherwise, the packet would be delayed for a single clock
cycle. The simulation assumed normal buffer size (NB)
for all switches, as well as a double buffer size (DB) for
intermediate switches. The traffic load, represented by λ,
was varied in increments of 0.05 within the range of 0.05
and 1.00. In each clock cycle, λ×N computational nodes
will communicate with uniform specified destinations via
network datas, with N representing the quantity of nodes
present within the system. The simulation concluded once
each destination node received a mean of 200 packets.

4. Link Fault Tolerance

Link Fault Tolerance is an algorithm that ensures that
in case of link fault in interconnection network topologies,
the routing algorithm still ensures that the packets can
reach the destination node. Many link fault tolerant routing
algorithms have been developed to improve the reliability
of the network, such as link backup, multipath routing.
The method of link backup is to pre-configure multiple
paths between nodes in case of emergencies such as link
fault or congestion. When a link fault happens, the backup
path will be used to replace the fault path to ensure timely
arrival of data packets.

For larger-scale interconnection networks such as fat-
tree, using link backups can significantly increase the

Algorithm 1: MiKANTC Link Fault Tolerance
Input: packet = ⟨D, data⟩,linklist =

⟨Lm, ..., L0⟩
if packet in defferent group or cube then

send network data to SIS via LinkP ;
if LinkP is faulty then

use multipath of hypercube via LinkT ;
if LinkT is faulty then

failed routing;
end

else
send network data to D+

LP via LinkP ;
if LinkP is faulty then

use Go-Neighbor to PN via LinkT ;
if LinkT is faulty then

use X-Turns to N(D+
LP ) via

LinkT ;
if LinkT is faulty then

failed routing;
end

end
else

send network data to D−
LP via LinkP ;

if LinkP is faulty then
use Go-Down to PD via LinkT ;

end
end

end
else

send network data to D via LinkP ;
if LinkP is faulty then

use multipath of hypercube via LinkT ;
else

failed routing;
end

end

hardware cost. Therefore, we focus on multipath algo-
rithms for two topologies. We divided the link fault toler-
ant routing algorithms into two parts: hypercube and k-ary
n-tree (Mirrored k-ary n-tree). The Hypercube architec-
ture provides a high degree of interconnectivity between
its nodes, so we can simply use the rerouting algorithm
to re-search other paths from the present switch to the
target switch when a link failure occurs. For the link fault
tolerance algorithms of KANT and MiKANT, Wang and
Li [11] proposed four algorithms for different cases. In
order to achieve the better efficiency, we combine these
different algorithms together to be able to switch different
paths quickly for different link fault situations, which
can ensure uninterrupted data transmission in the actual
routing and thus achieve the purpose of traffic protection.

Algorithm 1 gives the routing algorithm of MiKANTC
link fault tolerance, when a packet arrives at a switch, the
algorithm will first route according to the normal algo-
rithm given before, and then route according to different
situations when a link fault is detected. Where D is the
destination switch, P is the present switch, SIS is the
intermediate switch to the destination switch,the link will
be routed to the intermediate switch through the shortest
path if no link fault occurs, and will be routed to other
paths and then to SIS when a fault occurs. D+

LP is the



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00.10.20.30.40.50.60.70.80.91.0

S
u

c
c
e

s
s
fu

l 
ro

u
ti
n

g
 r

a
ti
o

Link faulty rate

Shorest path
Multipath of Hypercube

Go-Neighbor-Switch
Go-Neighbor-Switch and X-Turns

Combined Algorithm

Figure 4: Successful routing ratio on MiKANTC(3, 3) link fault tolerance

0.1

0.3

0.5

0.7

0.9

1.1

3 4 5 6 7 8 9

C
o

s
t 

R
a

ti
o

s

k

k-ary n-tree base line
Switches, KANTC

Links, KANTC
Switches, MiKANTC

Links, MiKANTC

Figure 5: Cost ratios of switches and links to KANT(k, n)

label assigned to the port of switch P that connects to
switches with the level equal to LP +1 (increased level).
Similarly, D−

LP connects to LP −1 (decreased level) level
switches. PN means the neighbor switch of P, PD means
the down-level switch of P, N(D+

LP ) means the another
array of switches on the level LP +1 of the same group,
reaching the destination switch by folding back(X). If a
fault occurs, the Go-Neighbour Switch, X-Turns Routing
Algorithm will be performed during the rise phase and the
Go-Down-Level Algorithm will be performed during the
fall phase, depending on the link fault.

Figure 4 shows the algorithm’s routing success rate
for link failures between 0% and 100%. We have tested
its performance in a small interconnected network, for
each algorithm we tested thousands of times. Combined
algorithms, which is Algorithm 1 mentioned earlier in this
paper, shows better performance.

5. Performance Evaluation

In this section, numerical simulations are performed
to assess the hardware reduction, effectiveness, and path
diversity of KANTC and MiKANTC.

5.1. Cost Ratio

We evaluate the cost of KANTC and MiKANTC rela-
tive to KANT and MiKANT, respectively. The cost of the
topologies is characterized by the cost ratio of switch and

0.1

0.3

0.5

0.7

0.9

1.1

1.3

1.5

3 4 5 6 7 8 9

C
o

s
t 

R
a

ti
o

s

k

MiKANT base line
Switches, KANTC

Links, KANTC
Switches, MiKANTC

Links, MiKANTC

Figure 6: Cost ratios of switches and links to MiKANT(k, n)

link. Fig. 5 and fig. 6, show the cost ratio of switch and
link, respectively, when n = k. The results demonstrate
that, for the cases where n = k ≥ 4, compared to KANT
and MiKANT, both KANTC and MiKANTC provide a
reduced cost ratio for hardware cost. When we set all
parameters to 8, KANTC has a 84.27% reduction in
switches and a 78.23% reduction in links compared to the
KANT, and a 82.03% reduction in switches and a 76.77%
reduction in links compared to MiKANT(k, n). Similarly,
MiKANTC has a 84.68% reduction in switches and a
78.% reduction in links compared to the KANT, and with
comparison to the MiKANT, the number of switches was
reduced by 82.49% and the number of links by 76.99%.

5.2. Relative Cost Performance

The relative cost performance (RCP) of KANTC and
MiKANTC has been defined to achieve an optimal balance
between cost and performance, as follows:

RCP1 = 2k× (2n+k)(log2 N1/p+p)× (log2 N1/p+2)

RCP2 = 2k× (2n+k)(log2 N2/p+p)× (log2 N2/p+2)

The RCP of KANTC (k, n) and MiKANTC (k, n) are
defined as RCP1 and RCP2, respectively. The RCP is
influenced by factors such as the radix, diameter, size,
and the number of ports in the router. The results are
shown in Figures 7 and fig. 8, respectively, for the case
of 2 ≤ n ≤ 7 and p = 1. The results of the simula-
tion demonstrated that lower values in the performance
curves correspond to more efficient utilization of hardware
resources. A value less than 1 suggests that the system
outperforms the hypercube in terms of performance. For
a system of 5412096 nodes with MiKANTC(6, 7), for
example, the RCP is 0.421. The results allow us to choose
appropriate values of k and n for a given system size so
that the RCP is minimised.

5.3. Path Diversities

Path diversity is a critical aspect of network topology
that has a significant impact on the fault tolerance of the
system. In this study, we define path diversity (PD) as
the ratio of the mean of the shortest paths (P̃ ) to total
number of nodes (N ) in the topology, calculated as

PD =
P̃

N



0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

2
5

2
10

2
15

2
20

2
25

R
e

la
ti
v
e

 C
o

s
t 

P
e

rf
o

rm
a

n
c
e

The number of computing entities present in the network

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

Figure 7: KANTC RCP performance

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

2
5

2
10

2
15

2
20

2
25

R
e

la
ti
v
e

 C
o

s
t 

P
e

rf
o

rm
a

n
c
e

The number of computing entities present in the network

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

Figure 8: MiKANTC RCP performance

To assess the diversity of paths across various net-
work configurations, a comparison of the k-cube, KANT,
MiKANT, KANTC, and MiKANTC is depicted in Fig. 9,
with n fixed at 8. The results demonstrate that the link
diversity of KANTC and MiKANTC is superior to that of
other topologies, as evidenced by the increased number
of paths. This suggests that these two proposed networks
exhibit improved routing performance and a higher level
of fault tolerance compared to other existing network
topologies.

6. Conclusions

Our research indicates that the KANTC and
MiKANTC networks achieve a high performance-to-cost
ratio and offer a higher level of path diversity compared to
traditional fat-tree networks. Our future work will focus
on developing algorithms with even better performance,
which will be evaluated through simulations in a more
realistic, large-scale network environment.

References

[1] W. Zheng, “Research trend of large-scale supercomputers and
applications from the top500 and gordon bell prize,” Science China
Information Sciences, vol. 63, no. 7, pp. 1–14, 2020.

[2] C. E. Leiserson, “Fat-trees: universal networks for hardware-
efficient supercomputing,” IEEE transactions on Computers, vol.
100, no. 10, pp. 892–901, 1985.

0.0

0.1

1.0

10.0

100.0

3 4 5 6 7 8 9

P
a

th
 D

iv
e

rs
it
ie

s

k

hypercube
KANT

MiKANT
KANTC

MiKANTC

Figure 9: Path diversities

[3] J. Wells, B. Bland, J. Nichols, J. Hack, F. Foertter, G. Hagen,
T. Maier, M. Ashfaq, B. Messer, and S. Parete-Koon, “Announcing
supercomputer summit,” Oak Ridge National Lab.(ORNL), Oak
Ridge, TN (United States), Tech. Rep., 2016.

[4] C. B. Stunkel, R. L. Graham, G. Shainer, M. Kagan, S. Sharkawi,
B. Rosenburg, and G. Chochia, “The high-speed networks of the
summit and sierra supercomputers,” IBM Journal of Research and
Development, vol. 64, no. 3/4, pp. 3–1, 2020.

[5] F. Petrini and M. Vanneschi, “k-ary n-trees: High performance
networks for massively parallel architectures,” in Proceedings 11th
international parallel processing symposium. IEEE, 1997, pp. 87–
93.

[6] C. G. Requena, F. G. Villamón, M. E. G. Requena, P. J. L.
Rodrı́guez, and J. D. Marı́n, “Ruft: Simplifying the fat-tree topol-
ogy,” in 2008 14th IEEE International Conference on Parallel and
Distributed Systems. IEEE, 2008, pp. 153–160.

[7] D. F. B. Garzón, C. G. Requena, M. E. Gómez, P. López, and
J. Duato, “A family of fault-tolerant efficient indirect topologies,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27,
no. 4, pp. 927–940, 2015.

[8] D. Ludovici, F. Gilabert, C. Requena, M. Gmez, P. Lpez, G. Gay-
dadjiev, and J. Duato, “Butterfly vs. unidirectional fat-trees for
networks-on-chip: Not a mere permutation of outputs,” in Proc.
3rd Workshop Interconnection Netw. Archit. On-Chip Multi-Chip.
Citeseer, 2009.

[9] Z. Wang, J. Xu, X. Wu, Y. Ye, W. Zhang, M. Nikdast, X. Wang, and
Z. Wang, “Floorplan optimization of fat-tree-based networks-on-
chip for chip multiprocessors,” IEEE Transactions on Computers,
vol. 63, no. 6, pp. 1446–1459, 2012.

[10] Y. Li and W. Chu, “Mikant: A mirrored k-ary n-tree for
reducing hardware cost and packet latency of fat-tree and
clos networks,” in 2018 IEEE SmartWorld, Ubiquitous Intel-
ligence & Computing, Advanced & Trusted Computing, Scal-
able Computing & Communications, Cloud & Big Data Com-
puting, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2018, pp.
1643–1650.

[11] Y. Wang and Y. Li, “Link fault tolerant routing algorithms in
mirrored k-ary n-tree interconnection networks,” in 2020 Eighth In-
ternational Symposium on Computing and Networking Workshops
(CANDARW). IEEE, 2020, pp. 237–241.

[12] Y. Saad and M. H. Schultz, “Topological properties of hypercubes,”
IEEE Transactions on computers, vol. 37, no. 7, pp. 867–872, 1988.

[13] D. Arai and Y. Li, “Generalized-star cube: A new class of in-
terconnection topology for massively parallel systems,” in 2015
Third International Symposium on Computing and Networking
(CANDAR). IEEE, 2015, pp. 68–74.

[14] Y. Wang and Y. Li, “Hybrid interconnection networks for reducing
hardware cost and improving path diversity based on fat-trees and
hypercubes,” in 2021 Ninth International Symposium on Comput-
ing and Networking Workshops (CANDARW). IEEE, 2021, pp.
254–260.


