
PDF issue: 2025-07-04

Adaptive Update of Reference Point Value
for Parallel and Distributed MOEA/D

Zhou, Xuan

(出版者 / Publisher)
法政大学大学院情報科学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 情報科学研究科編

(巻 / Volume)
18

(開始ページ / Start Page)
1

(終了ページ / End Page)
6

(発行年 / Year)
2023-03-24

(URL)
https://doi.org/10.15002/00026286

Adaptive Update of Reference Point Value
for Parallel and Distributed MOEA/D

Zhou Xuan
Graduate School of Computer and Information Sciences

Hosei University
Tokyo 184-8584, Japan
zhouxuan8417@gmail.com

Abstract—This paper proposes an updated method to determine
the reference point for acceleration based on Multi-Objective
Evolutionary Optimization Algorithm Parallel and Distributed
Decomposition (MOEA/D) to process a multi-core environment. A
method had been already proposed in switching update intervals
which is not only effective for decreasing sparse regions in the
initial stage, and improves multiformity and increases comparison
of HV value and virtual overlap region method. However, this
proposed method has limitations because the switching of the
update interval needs to be manually set to find an appropriate
switching value. In this paper, a method for automatically
switching the update interval is proposed, which can be applied to
various problems. Evaluating a newly proposed method, the
convergence and diversity were compared by using a single-core
MOEA/D and a parallel MOEA/D constrained knapsack matter,
and prove that with a small number of generations it is not only
effective for reducing the sparse regions up and also can improve
diversity and increase HV value.

Keywords— MOEA/D, Parallel and Distributed Processing,
Reference Points, Multi-Objective Evolutionary Algorithms；

Ⅰ. INTRODUCTION

In practical problems, there are usually multiple nonlinear
objectives in one model which need to be satisfied at the
same time. Although these objective functions need to be
optimized at the same time, they are normally conflict with
each other. Those problems are called multi-objective
programming issues. Decomposition is the basic tactics for
traditional multi-objective optimization. Many evolutionary
multi-objective optimization (EMO) algorithms had been
proposed to pareto optimal solution set is obtained
uniformly[1-3]. Ideally, Pareto optimal solutions should be
excellent in either divergence or convergence. In EMO
algorithms, in order to approximate the Pareto front line
with high precision, a sufficient population size should be
set. It has been studied that the parallelization of EMO
algorithm attention on speed, so that the main target is to set
the Pareto optimal solution in a shorter time than that of
using an only core, as well as no reduced solution research
accuracy [4, 5].

This study focuses on the distributed parallel processing
of the multi-objective evolutionary algorithm MOEA/D.
MOEA/D is a decomposition-based algorithm that uses
scalar functions as a very effective solution [2]. In order to
deal with this problem, two methods can be implemented.
The first one called "virtual overlap method", which tries to
accelerate MOEA/D in parallel from many core
environments, such as graphics processing unit (GPU),
without reducing the solution search accuracy [5]. This
virtual overlapping way would divide the original divide
into N partitions, and there are also overlapping parts
between each partition for information sharing. Migrating to
adjacent subgroups at specified intervals is the best
solutions in these overlapping areas. Compared with the
standard Island migration model, this method could

increases the HV value, improves the diversity and reduce
the sparse area. However, this method does not solve the
problem while there is no sparse region at the partition
boundary in the primary stage. The second method is to
switch the update interval is used to consider the progress of
the solution research to determine the reference point z*
and nadir point znad . As a result, this method effectively
solves the sparsity issues in the primary stage. However, the
change of the update interval proposed in this method is
artificially specified. In this paper, a method of
automatically changing the update interval was proposed,
which sets the update interval as a variable to change with
the change rate of z* and znad . Based on results, the basic
formula for the change of the update interval was defined.

Ⅱ. BACKGROUND AND RELATED WORKS

A. Conventional Parallel and Distributed MOEA/D

In order to obtain a high accuracy approximation of PF,
the population size should be set sufficiently. Moreover, as
the population size increases, the computational complexity
required to find POS increases exponentially. Therefore,
execution time may be an issue when applying this
approach to practical applications. In this paper, the
Tchebycheff function (gte) was used to handle
parallelization of MOEA/D to minimize:

gte(x, λ) = i∈(1,...,m)
maxλi|zi

∗ − fi(x)| (1)

where x is a feasible solution, λ = (λ1 , …, λm) is a
positive weight vector, and z∗ = (z1

∗ , . . . , zm
∗) is a reference

point.

Currently, the simplest implementation of MOEA/D
parallel acceleration is using master-slave mode, but the
data transmission time between the master and slave PU
would slows down the master and slave systems. Hence,
this method is not suitable for large-scale parallel
acceleration.

Fig. 1: Conceptual diagram of two objectives optimization
problem.

B. Virtual Overlap Method

mailto:zhouxuan8417@gmail.com

A massively parallel MOEA/D method suitable for GPU
and other multi-core architectures was proposed [5]. Figure
2 shows the partition image assigned to each PU group.

In this approach, a virtual overlap region at the partition
boundary was defined and evaluated exclusivity. Each
partition has weight vectors and individual information,
which performs well MOEA/D in parallel. Importantly, this
approach defined a virtual overlap region at the partition
boundary and evaluated exclusivity within the overlap
region. For example, in Figure 2, the default region for
partition 3 is P3A to P3B, P2BB to P3AA, and P4AA to
P3BB are defined as virtual overlap regions.

Fig. 2 The concept of the partition and the virtual
overlapping zone for parallel MOEA/D. [5]

Fig. 3 The conceptual diagram of exclusively evaluating
weight vectors near the boundary [5].

Figure 3 shows the concept map of shared weight vector
near the boundary of two adjacent partitions in the virtual
overlapping region when the size of T-neighbor is 2, where
the evaluation range of SM1 is the weight vector λ1 to λ5 ,
the individuals x1 to x4 and x4

5 , and the evaluation range of
SM2 is the weight vector λ4 to λ9 , the individuals x5 to x9

and x5
4 . Here, xti is a special individual in the overlapping

region adjacent to T's neighbor Ne(t), evaluated using the
weight vector λi . At appropriate intervals, perform a

migration to copy x4
5 belonging to SM1 to SM2 and x5

4

belonging to SM2 to SM1.

C. Toggle update interval method

Another method was proposed to update datum and nadir
according to the rate of variation. According to the step one
of this essay, it has been investigated and discussed that
when the change rate of z* and znad decreases, the
efficiency may be increased by increasing the update period
of z* and znad . As shown in figure 5, the update interval of
z* was reduced at the initial phase of solution search due to
the large change rate of z* and znad at this time. This
prevented sparse solution distribution problem between
partitions. After the change rate of z* and znad slows down,
a longer update interval was set for z* and znad to save the
time needed for those of updating. By taking this approach,
i seek to accelerate and improve the diversity of solution
distribution.

Fig. 4 Relationships between the number of generations and
z*,znad values.

Fig. 5 The concept of update interval for reference points
and nadir points.

The results show that, at the initial solution stage of
search, this method not only reduces sparse areas, but also

improved the diversity of the common best prospects,
increased the diversity compared to MOEA/D on a single
core. However, the change of z* update interval still needs
to be manually specified in this method, which is very
inconvenient in practical application. Therefore, this paper
proposed a design method of the update interval is
automatically set according to the convergence status. I
expect that the issues of sparse solution distribution between
partitions can be effectively prevented and the whole
process can be accelerated with the use of automatic update
interval.

Ⅲ. ADAPTIVE RESEARCH METHODS

A. Update interval change method

Here is an adaptive method used in this research. First of
all, the interval at where our Z* and Znad point values are
updated must be related to the speed at which Z* and Znad

change. In order to predict the change of Z* and Znad

accurately, an equation similar to the change curve of Z*
was used.

In figure 4, it is clear that the relationship between Z2
∗ and

generation number G is when G approaches infinity, Z2
∗ is

close to 8000. Therefore, I can assume the change
relationship equation of Z2

∗ and G is:

Z = Ae−G + B G ∈ [0, + ∞] (2)

In formula (2), Z was used to represent Z2
∗ , and G to

represent the generation number G. As shown in figure 4,
when G=+∞, Z=8000. So B=8000 in formula (2). A point
was taken according to the value of B in figure 5. When
G=0, Z=11729. I set G=0, Z=11729, B=8000 in formula (2),
and then got A=3729.

In summary, the change relationship equation of Z2
∗ and G

is:

Z = 3729e−G + 8000 G ∈ [0, + ∞] (3)

I made different calculus using the formula (3) to obtain
the change relationship equation between the slope Z’ and
generation number of G:

Z’ =− 3729e−G (4)

As shown in figure 4 and figure 5, i can know when the
slope Z' increases, the update interval x decreases, and when
the slope Z' decreases, the update interval x increases.
Therefore, i can assume that the relationship function
between the slope Z' and the update interval x is an inverse
proportional function. The specific equation is below:

x =
C
Z' + D (5)

i substituted formula (4) into formula (5) to get:

x =
C

−3729e−G + D (6)

Because of the update interval x ≥ 1, when Z' approaches
infinity, x=1, then D=1. So while substituting D=1 into the
formula (5)。

Regarding to the determination of the value C, i can use
experimental results in the paper named Inconstant Update

of Reference Point Value For Parallel and Distributed
MOEA/D by Mr. Sato to estimate the range of value C. In
this experimental result, when the generations number
G<30, the update interval x=15, and when the generations
number G>30, the update interval x=1000. Therefore, i can
substitute G=2, x=15, and G=30, x=1000 into Formula (6)
to obtain the value range of C. The calculated result is:

C ∈ （ − 7368， − 5 × 10−9）

Based on the value range of C, the appropriate C value
can be selected by doing comparative experiments. Since
the update interval x in formula (6) grows exponentially
when the generation number gradually increases, the update
interval x would increase as fast as result. So i set the
update interval x=1000 in the program when the update
interval x>1000. Finally, i compare C=-0.1/-1/-100/-3000
with constant (200) to find the most suitable C value.

Substituting D=1 and different C values into formula (6)
can obtain Figure 6 and Figure 7.

Fig. 6 Comparison of different C values and the HV value
obtained by constant 200

Fig.7 Comparison of different C values and the
Undominated Count value obtained by constant200.

According to figure 6 and figure 7, it could be seen that
when C=-1, best result will be got, so i selected C=-1 to
continue the following experiment. Finally, the relationship
between the update interval x and the generation number G
in formula (6) can be rewritten below:

x =
−1

−3729e−G + 1 (7)

B. Algorithmic Flow

According to the formula (7), the process of judging
whether to update some algorithms is below:

Input:
x: the current update interval (x=1)
G:The current updated generation number.
1. for 0<G<5000,G++ do;
2. if(x>1000)
3. x=1000;
4. end
5. if (x != 1)
6. Not updating;
7. x--;
8. else
9. Update;
10. x = −1

−3729e−G + 1；
11. end
12. end

IV. EVALUATION

A. Experimental Methods
As a feasibility study, a multi-core processor was used to

verify the accuracy of the solution search. Each partition is
assigned a CPU core, and each core holds individual
information on its own. Communication between tasks
provides the ability to report solutions in areas of partial
overlap.

The constrained knapsack problem described below is
used to evaluate two objective optimization problems.

In consideration, The evaluation used in this problem
takes time, the average island model has too many design
variables, i performed a comparative evaluation of three
events: partitioning, extraordinary introduction, and sparsity
between execution time.

In the case of standard MOEA/D(conventional virtual
overlap method) execution on a single CPU(single-core
standard MOEA/D), parallel MOEA/D with standard
migration and MOEA/D parallel execution using the
proposed method(modified virtual overlap method).

In order to constrain multi-objective optimization
problems, i focused on mk-KPs [7]. The mk-KPs are
defined in as follows.

Maximize fj(x) =
i=1

n

pij × xj(j = 1,2, . . . , m)�

Subject to
i=1

n

wil × xi ≤ cl(l = 1,2, . . . , k)�

(8)

This is a 0-1 knapsack problem, in which there are n
items and k knapsacks, each item i has m profit pij(j =
1,2, . . . m) and k weight wil (l = 1,2, . . . , k) task is to find a
set of x to maximize the total profit m and cannot exceed k
knapsack capacitycl. The knapsacks capacity cl is defined as
follows:

cl = φ
i=1

n

wil(l = 1,2, . . . , k)� (9)

φ represents the feasibility ratio of each knapsack
(constraint), and the strictness of the constraint can be
controlled by changing the φ . In this problem, the number

of targets m and knapsack k can be determined
independently.

The parameters used in the experiment and the execution
environment are summarized in table 1 respectively.

Table I. TEST EXECUTION ENVIROMENT
CPU Intel Core i7-10875H CPU, 2.3 GH

Memory 16.0 GB

OS 64-bit OS, x64-based processor

Compiler Visual Studio 2019 (ISO C++ 17.0)

B. Experimental Results and Discussion
As an evaluation of the solution searched in the initial

phase, figure 8-10 shows a comparison of the proposed
method with the 5000 generation comparisons of the single-
core standard MOEA/D. To be more specific, when
parallelism increases, the total number of individuals is set
to 200, using 2-8 cores. When searching for solutions, the
single core standard MOEA/D is added to 5000 stage to
compare the convergence.

Fig. 8 Adaptive method 2 core and traditional single core
results

Fig. 9 Adaptive method 4 core and traditional single core
results

Fig. 10 Adaptive method 8 core and traditional single core
results

Fig. 11 Run time using adaptive method or single core

According to Figure 8-10, compared to traditional and
single-core standard MOEA / D, the proposed way is not
inferior to the traditional single-core method in the accuracy
performance of the PF solution set, but the proposed method
can get the PF solution set faster in terms of the speed of
solving the problem. Subsequently, the traditional virtual
overlap method was compared with the improved virtual
overlap method. Different from the traditional virtual
overlap method, the update intervals of reference point Z*
and nadir znad are used, with fixed intervals of 100,200 and
1000.

For about the modified virtual overlap method, it toggles
the update interval to determine the progress of the search
by considering the solution. The reference points and lowest
points show an improvement in sparsity between partitions

during the initial phase of solution searching. Similar trends
are used to show this contribution when other core
assessments are used.

According to the comparison chart below, it can be
clearly seen that the PF obtained by the method proposed in
this paper is more diverse than the traditional results
obtained by using fixed intervals of 100 and 200. At the
same time, the adaptive method is faster. The previously
proposed parallelization technology, the traditional virtual
overlap method, performs updates at fixed time intervals,
which helps to accelerate. Compared with the execution
time of the single-core standard MOEA/D, the proposed
technology could be about four times faster.

From Figure 12, i can know that compared with the
traditional method constant (100/200), the proposed
adaptive method is not only helpful to obtain more uniform
solution distribution in early solution search, but also
improves the diversity of PF and improves the HV value. In
addition, i can know from Figure 13 that the execution time
of the adaptive method is also shorter. However, compared
with the constant (1000), the adaptive method has better
performance only when there are 8 cores. Next, I did a
comparative experiment between the results of the constant
(1000) method and the adaptive method when the number
of generations is different. The test results are shown in
Figure 14.

Fig. 12 The comparison between constant (100/200/1000) and adaptive mode Pareto frontier in the case of different core
numbers.

Fig. 13 Run time comparison between adaptive method and
constant methods.

Fig. 14 Pareto frontier comparison in different generation
with 8 core.

Fig. 15 The relation between HV value and generations in
different methods.

Through the experimental results in Figure 14, i find that
the adaptive method performs better when the current
number is low. In order to verify this result, I continued to
do experiments with the number of generations
500/1000/1500/2000/3000/7000/9000 using 8 cores. A
comparison chart of the HV values obtained by different
generations was made, as shown in Figure 15. In Figure 15,
although the HV value of the 2000 generation constant
(1000) is very similar to the HV value of the adaptive mode,
in Fig. 15 In the Pareto frontier results of 14, i can clearly
show that the results of the adaptive method are
significantly better. In the 500th and 1000th generations,
although neither the adaptive method nor the constant (1000)
can get enough effective update points, the results can still
be seen that the performance of the adaptive method is still
better. Therefore, through the comparison results of Figure
15 and Figure 14, it could be seen that when the current
number was low, the performance of the adaptive method
was better than that of the constant method.

V. CONCLUSION

This paper proposed a new method to automatically
change the ideal point update interval in the already
proposed virtual overlap method, targeting MOEA/D, which
is one of the effective evolutionary multi-objective
optimization algorithms. In the evaluation experiments, I
investigated the convergence and diversity of the solution
distribution, in the case of dividing into multiple partitions
and updating the ideal points at constant migration intervals,
and in the case of executing his MOEA/D on a single CPU
without partitioning. Using the constrained knapsack
problem, two-objective optimization problems were
evaluated in terms of performance, and diversity of the
Pareto optimal front. As a result, it was shown that the
proposed method is effective in improving the diversity of
the solution distribution compared to running on a single
CPU. In addition, a comparison with the virtual overlap
method in which migration is performed at regular intervals
shows that the proposed method is more effective in
improving the diversity of the solution distribution than the
method in which migration is frequently performed at
regular intervals. This paper showed that it is more effective
in improving convergence and diversity with a smaller
number of generations than the interval migration method.

VI. ACKNOWLEDGEMENTS

During the completion of this thesis I would like to thank
Prof. Yuji Sato and Prof. Mikiko Sato in particular. Under
the guidance of the two professors, I found the appropriate
update method and the deficiencies in the thesis writing
process. In addition, I also need to thank senior Mads
Midtlyng for his patience in helping me solve many
problems I encountered in program modification and
compilation. Without them I might not have been able to
complete this thesis myself, so I would like to express my
deep gratitude to them.

REFERENCES
[1] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A

fast and elitist multiobjective genetic algorithm:NSGA-
II，“IEEE Transactions on Evolutionary Computation,
vol. 6, no. 2, pp. 182–197, Apr 2002.

[2] Q. Zhang, H. Li., "MOEA/D: A Multiobjective
Evolutionary Algorithm Based on Decomposition" in
IEEE Transactions on Evolutionary Computation,
Volume 11, Issue 6, pp. 712-731,2007.

[3] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2:
Improving the strength pareto evolutionary algorithm
for multiobjective optimization,” in Proceedings of the
EURO-GEN 2001 Conference, 2001.

[4] Y. Sato, M. Sato, and M. Miyakawa, “Distributed
NSGA-II Sharing Extreme Non-dominated Solutions
for Improving Accuracy and Achieving Speed-up,” in
Proceedings. of 2019 IEEE Congress on Evolutionary
Computation (CEC),pp. 3087-3094, 2019.

[5] Y. Sato, M. Sato, M. Midtlyng and M. Miyakawa,
"Parallel and Distributed MOEA/D with Exclusively
Evaluated Mating and Migration," in Proceedings. of
2020 IEEE Congress on Evolutionary Computation
(CEC), pp. 1-8,2020.

[6] M. Sato, Y. Sato, M. Midtlyng and M. Miyakawa,
"Inconstant Update of Reference Point Value for
Parallel and Distributed MOEA/D" in Proceedings. of
2021 IEEE Congress on Evolutionary Computation
(CEC), pp. 1495-1502,2021.

[7] D. P. Hans Kellerer, Ulrich Pferschy, Knapsack
Problems. Springer, 2004.

