
PDF issue: 2025-07-12

A Research on Enhancing Reconstructed
Frames in Video Codecs

PHAM DO, Kim Chi

(開始ページ / Start Page)
1

(終了ページ / End Page)
122

(発行年 / Year)
2022-09-15

(学位授与番号 / Degree Number)
32675甲第554号

(学位授与年月日 / Date of Granted)
2022-09-15

(学位名 / Degree Name)
博士（工学）

(学位授与機関 / Degree Grantor)
法政大学 (Hosei University)
(URL)
https://doi.org/10.15002/00025871

Doctoral Dissertation Reviewed by

Hosei University

A Research on Enhancing Reconstructed

Frames in Video Codecs

PHAM Do Kim Chi

Abstract

A series of video codecs, combining encoder and decoder, have been developed to im-

prove the human experience of video-on-demand: higher quality videos at lower bi-

trates. Despite being at the leading of the compression race, the High Efficiency Video

Coding (HEVC or H.265), the latest Versatile Video Coding (VVC) standard, and

compressive sensing (CS) are still suffering from lossy compression. Lossy compression

algorithms approximate input signals by smaller file size but degrade reconstructed

data, leaving space for further improvement. This work aims to develop hybrid codecs

taking advantage of both state-of-the-art video coding technologies and deep learning

techniques: traditional non-learning components will either be replaced or combined

with various deep learning models. Note that related studies have not made the most

of coding information, this work studies and utilizes more potential resources in both

encoder and decoder for further improving different codecs.

In the encoder, motion compensated prediction (MCP) is one of the key components

that bring high compression ratios to video codecs. For enhancing the MCP perfor-

mance, modern video codecs offer interpolation filters for fractional motions. However,

these handcrafted fractional interpolation filters are designed on ideal signals, which

limit the codecs in dealing with real-world video data. This proposal introduces a deep

learning approach for all Luma and Chroma fractional pixels, aiming for more accurate

motion compensation and coding efficiency.

One extraordinary feature of CS compared to other codecs is that CS can recover

multiple images at the decoder by applying various algorithms on the one and only

coded data. Note that the related works have not made use of this property, this

work enables a deep learning-based compressive sensing image enhancement framework

using multiple reconstructed signals. Learning to enhance from multiple reconstructed

images delivers a valuable mechanism for training deep neural networks while requiring

no additional transmitted data.

i

In the encoder and decoder of modern video coding standards, in-loop filters (ILF)

dedicate the most important role in producing the final reconstructed image quality

and compression rate. This work introduces a deep learning approach for improv-

ing the handcrafted ILF for modern video coding standards. We first utilize various

coding resources and present novel deep learning-based ILF. Related works perform

the rate-distortion-based ILF mode selection at the coding-tree-unit (CTU) level to

further enhance the deep learning-based ILF, and the corresponding bits are encoded

and transmitted to the decoder. In this work, we move towards a deeper approach: a

reinforcement-learning based autonomous ILF mode selection scheme is presented, en-

abling the ability to adapt to different coding unit (CU) levels. Using this approach, we

require no additional bits while ensuring the best image quality at local levels beyond

the CTU level.

While this research mainly targets improving the recent video coding standard VVC

and the sparse-based CS, it is also flexibly designed to adapt the previous and future

video coding standards with minor modifications.

ii

Acknowledgements

This dissertation presents the research conducted during the years of 2019-2022 at the

Graduate School of Science and Engineering, Hosei University. During the time of

carrying out this research, I have received great support from the beloved people I

would like to thank.

First and foremost, I would like to express my sincere gratitude to Professor Jinjia

Zhou for her enthusiasm supervising, and encouragement from day one. I am very

grateful and proud of the knowledge and skills I have learned from her. There is no

doubt that her scientific feedback and recommendations have brought my research to

a higher level. I also thank her for supporting and being at my side in many aspects

of life so that I could fully focus on the research.

I would like to thank Professor Koichi Ogawa and Professor Hitoshi Iyatomi for

the feedback they provided as part of my dissertation committee. Your suggestions

brought my dissertation to a higher level than it would have been.

I will forever be thankful to Professor Kazuo Yana. He is one of the most humble

and kind-hearted people I know and you never forget once you meet him. My research

and life in Japan would never be that nice without his kind help and support. I

would also thank the Graduate School Section of Hosei University, Koganei campus for

providing the quick answer and kind assistance.

I would also send my special thanks to my laboratory members and alumni: Muchen

Li (who is friendly, helpful and knowledgeable in video coding and Japanese life-related

stuff), Xu Jiayao (aka Yao, who is cute, warm-hearted and I am so proud of you for

the one you have become), Man M. Ho, Hoang M. Trinh, Xiao Mingjie and Ho Tan

Nguyen (friendly and funny friends who lighten my boring days), Thuy T. T. Tran and

Huyen T. T. Bui (my fashionable friends), Jian Yang, Sato and Morita (nice guys who

have always provide kind help and listen to my problems, good luck at research!).

I thank all of my friends (too many to be listed out but you are here) and special

iii

people who were so fun to be around: Mr. Quan (who is smart, gentle, and supports

me in everything), Ms. Vy (who always acts quickly when I need help, who is also

smart and has solid knowledge, so proud of her!), Ms. Tham and Mr. Duy (who have

sympathetic ears). Their wise counsel apparently motivate me a lot.

Last but not least, I thank my wonderful mom, dad, and sister for their uncondi-

tional and endless love. You are always the reason I keep going on every day. Special

thanks to my best friend, soul-mate and boyfriend Nam for being there all the way. I

could not make it without their backup. I am so blessed for being a child, a student,

and a friend of you!

iv

List of Publications

Journal papers

[1] Chi Do-Kim Pham, Jian Yang and Jinjia Zhou, “CSIE-M: Compressive Sensing

Image Enhancement Using Multiple Reconstructed Signals for Internet of Things

Surveillance Systems,” in IEEE Transactions on Industrial Informatics, vol. 18, no.

2, pp. 1271-1281, Feb. 2022, DOI: 10.1109/TII.2021.3082498.

[2] Chi Do-Kim Pham and Jinjia Zhou, “Deep Learning-Based Luma and Chroma

Fractional Interpolation in Video Coding,” in IEEE Access, vol. 7, pp. 112535-

112543, 2019, DOI: 10.1109/ACCESS.2019.2935378.

Conference papers

[1] Chi Do-Kim Pham, Chen Fu and Jinjia Zhou, “Deep Learning based Spatial-

Temporal In-loop filtering for Versatile Video Coding,” 2021 IEEE/CVF Conference

on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, pp.

1861-1865, DOI: 10.1109/CVPRW53098.2021.00206.

[2] Chi Do-Kim Pham, Jinjia Zhou, “A Convolutional Neural Network for Frac-

tional Interpolation in Video Coding,” The International Symposium on Artificial

Intelligence and Robotics (ISAIR 2019), Daegu, Korea, Aug. 2019.

[3] Thuy Thi Thu Tran, Jirayu Peetakul, Chi Do-Kim Pham, Jinjia Zhou, “Bi-

directional intra prediction based measurement coding for compressive sensing im-

ages”, 2020 IEEE 22nd International Workshop on Multimedia Signal Processing

(MMSP), DOI: 10.1109/MMSP48831.2020.9287074, Sep. 2020.

[4] Ho Tan Nguyen, Chi Do-Kim Pham, Jinjia Zhou, “SpeedDeblur: A Framework

to speed up CNN-based Deblurring for HEVC compressed video,” 2021 IEEE 23rd

v

International Workshop on Multimedia Signal Processing (MMSP).

[5] Jian Yang,Chi Do-Kim Pham, Jinjia Zhou, “JVCSR: Video Compressive Sensing

Reconstruction with Joint In-loop Reference Enhancement and Out-loop Super-

resolution,” The 28th International Conference on Multimedia Modeling (MMM),

Qui Nhon, Vietnam, April 2022.

[6] Jiayao Xu, Chi Do-Kim Pham, Chen Fu, Jinjia Zhou, “A 81.92Gpixels/S Fast

Reconstruction of Images from Compressively Sensed Measurements”, 2022 IEEE

International Symposium on Circuits & Systems (ISCAS).

vi

Contents

Abstract i

Acknowledgements iii

List of Publications v

1 Introduction 1

1.1 Motivations . 4

1.2 Objective and scope of the research . 8

1.3 Enhancing reconstructed frames in video codecs: the overall scheme . . 8

1.4 Main results and contributions . 11

1.4.1 Enhancing reference-frame interpolation for video encoder . . . 11

1.4.2 Compressive sensing image enhancement at video decoder . . . 12

1.4.3 In-loop filtering image enhancement for video encoder-decoder . 12

1.5 Dissertation outline . 13

2 Enhancing reference-frame interpolation for video encoder 15

2.1 Introduction . 15

2.2 Related works . 20

2.3 Methods . 21

2.3.1 Training set generation . 23

2.3.2 Network architecture . 26

2.3.3 Rate-distortion optimization (RDO)-based interpolation mode

selection . 28

2.4 Experiments . 29

2.4.1 Experimental settings and evaluation method 29

2.4.2 Experimental results . 31

2.4.3 RDO-based interpolation method selection result 31

vii

2.4.4 Comparison with existing works 33

2.4.5 Overall results . 34

2.5 Chapter conclusions . 39

3 Compressive sensing image enhancement at video decoder 41

3.1 Introduction . 41

3.2 Related Knowledge . 44

3.2.1 Compressive sensing . 44

3.2.2 Deep Learning-based distorted image enhancement 45

3.3 The proposed CSIE-M framework . 46

3.3.1 Overview of the CSIE-M framework 46

3.3.2 No-reference quality assessment module: Scorenet 47

3.3.3 Quality enhancement component: Multiple-input Residual Re-

current Network (MRRN) . 50

3.4 Experimental results and comparison 53

3.4.1 Experiment settings . 53

3.4.2 Ablation studies . 54

3.4.3 Overall results. 59

3.5 Chapter conclusion . 64

4 In-loop filtering image enhancement for video encoder-decoder 65

4.1 Introduction . 65

4.2 Related Works . 70

4.2.1 Deep learning-based In-Loop filtering for video coding 70

4.2.2 Deep learning-based mode decision in video coding 71

4.3 Spatial-Temporal In-loop Filtering with Auto-

nomous mode selection (STILF-AMS): the proposal 72

4.3.1 Overview the proposed STILF-AMS 72

viii

4.3.2 The proposed network set: STILF. 73

4.3.3 The proposed reinforcement learning-based autonomous mode

selection (AMS) . 79

4.3.4 State definition . 82

4.3.5 Reward . 84

4.3.6 Agent . 85

4.4 Experiments . 88

4.4.1 Parameter settings . 88

4.4.2 Study on network set . 89

4.4.3 Ablation Study . 92

4.4.4 Coding results . 96

4.5 Chapter conclusion . 98

5 Conclusion 106

List of Abbreviations 121

ix

List of Figures

1.1 Image and video coding and transmission scenario. 1

1.2 Coding performance comparison of different coding standards. 3

1.3 The proposals in video coding systems 9

2.1 The concept of motion compensated prediction. 16

2.2 Luma and Chroma subsamples in HEVC. 20

2.3 The proposed Luma and Chroma Fractional Interpolation. 22

2.4 Training data generation. 25

2.5 CNN architecture for Luma and Chroma fractional interpolation. . . . 26

2.6 Frame referencing in four main configurations. 30

2.7 Example on HEVC test sequences. 32

2.8 CU selection visualization of the proposed fractional interpolation. . . . 33

2.9 R-D curves of the proposed fractional interpolation. 38

3.1 The proposed CSIE-M in IoT surveillance system. 42

3.2 The proposed CSIE-M architecture. 46

3.3 The proposed Scorenet architecture. 49

3.4 PSNR and SSIM comparison with pretrained models. 58

3.5 RD-curves of CSIE-M and related works on sampling rates 0.125-0.75. . 62

3.6 Qualitative comparison between the proposed CSIE-M and SOTAs. . . 63

4.1 Motion compensation in inter coding 66

4.2 Quantization in video coding. 66

4.3 Integration of the proposed STILF-AMS to video coding VVC 74

4.4 Recurrent dense skip connection block architecture. 75

4.5 Self-enhancement CNN with CU map architecture 75

4.6 Reference-based enhancement CNN with optical flow architecture . . . 78

x

4.7 The proposed STILS-AMS . 81

4.8 A state in STILF-AMS . 83

4.9 the proposed STILF in VVC video coding 90

4.10 Selection ratio of different ILF modes guided by RDO-based mode se-

lection at CTU level. 91

4.11 Visual comparison with VVC . 92

4.12 Selection ratios of class D’s sequences over time step t. 93

4.13 PSNR curves performed by different mechanisms during training. . . . 93

4.14 PSNR fluctuations of VVC, STILF [1], and STILF-AMS 94

4.15 CU partition comparison between VVC and STILF-AMS. 95

4.16 Qualitative comparison of VVC [2], STILF [1], and STILF-AMS. 97

xi

List of Tables

2.1 Bjøtegaard-Delta bit-rate (BD)-rate reduction (%) of the replacing in-

terpolated frame by the original frame when encoding down-sampled

video compared to the anchor HEVC. 24

2.2 Hitting ratio (%) of two interpolation methods for Luma and Chroma

component under Low Delay P configuration. 33

2.3 BD-rate (%) comparison between CNN-based fractional interpolation

and our proposal under Low Delay P configuration. 34

2.4 Comparison of CNN-based half-pixel interpolation and our proposal un-

der Low Delay P configuration (anchor: HM 16.7). 35

2.5 BD-rate (%) of our proposal compared to HEVC under Low Delay P,

Low Delay B and Random Access configurations. 36

2.6 BD-rate (%) of our proposals in seperating models for U and V compared

to HEVC under Low Delay P configuration. 39

3.1 SROCC and PLCC comparison on TID2013 dataset 54

3.2 CSIE-M performance with and without Scorenet 55

3.3 CSIE-M performance on different CS reconstruction algorithms 56

3.4 Study on numbers of the recurrent iteration R 57

3.5 ∆PSNR and ∆SSIM×10−2 comparison to the state-of-the-arts. 60

4.1 Action definition. 86

4.2 BD-rate(%) performance under AI and RA configurations. 99

4.3 BD-rate(%) performance under LDP and LDB configurations. 100

4.4 BD-rate (%) results of the proposed STILF without self attention (SA)

mechanisms and CU map under LDP configurations. (Anchor: VTM

9.3) . 101

4.5 BD-rate (%) results on different mechanisms of the input state. 101

xii

4.6 Selection ratios of three ILF modes on average class C and class D. . . 101

4.7 Overall performance under AI, LDP, LDB, and RA configurations. . . . 102

4.8 Coding complexity of the proposed STILF-AMS. 103

4.9 BD-rate (%) comparison to related works under AI and RA configurations.104

4.10 BD-rate (%) comparison to related works under LDP and LDB config-

urations. 105

xiii

Chapter 1

Introduction

Since the late twentieth century, the world has witnessed a significant change in visual

communication. Video, one of the most costly multimedia data, is now occupying

82% internet traffic [3]. The most noticeable elements within a video sequence are

video frame rate and resolution. Video frame rates have been growing from 24 frames

per second (FPS) to up to 300 FPS performed by modern monitors. Video resolution

refers to the number of pixels on display, has been significantly increased from Standard

Definition (SD) to High Definition (HD). It is now reported that up to 8K resolution has

been widely supported by the modern displays. Along with the growth of frame rate

and display resolutions, modern visual communication systems require higher effective

video compression algorithms. Video codec, a computing technology comprised of

compression and decompression algorithms, offers a smaller data volume for storage

and transmission while delivering a same video quality of raw video (as shown in Fig.

1.1).

bitstream

transmission
1 0 1 0 1 1 0 1 1

0 1 1 1 0 1 1 0 0

. Encoder decoder

Source video display

An hour raw video 1075GB

transmit/upload @ typical

speed in 6 days

 1GB coded data

transmit/upload @ typical

speed in 9 minutes

Figure 1.1: Image and video coding and transmission scenario. Raw images and videos
sensed by cameras are encoded into smaller data files which are more friendly for
storage and transmission through the internet.

Following the success of image coding standard by the Joint Photographic Experts

Group (JPEG) [4] and JPEG 2000 [5], a series of video coding standards [2, 6–12]

has been established on both spatial and temporal compression. Common video cod-

1

ing standards and their performance have been shown in Fig. 1.2. Advanced Video

Coding (AVC, as also known as H.264 or MPEG-4 Part 10) [11], which was devel-

oped by the Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T Video

Coding Experts Group (VCEG) together with the ISO/IEC JTC1 Moving Picture

Experts Group (MPEG), is the commonly used video coding standard that can be

played on almost any device since 2003. AVC can provide a compression ratio up

to 2000:1, corresponding to 1Mbps after compressing a 2Gbps video. In 2013, High

Efficiency Video Coding (HEVC) [12], also known as H.265 and MPEG-H Part 2, is

standardized and achieves up to 50% better coding performance compared to its pre-

decessor H.264/AVC. Compared to AVC, remarkable changes and updates have been

made. In AVC, the processing units are macroblocks while they are coding tree units

(CTUs) and coding units (CU) in HEVC. In spatial-based coding, HEVC increases

intra-prediction modes to 35 [13] from nine modes supported by AVC. In temporal

coding, more complex inter-prediction has been proposed. The JCT-VC has improved

the fractional interpolation filters for 1/4 pixels, aiming for better motion compensa-

tion [14]. At the decoder, HEVC adopts Sample Adaptive Offset (SAO) [15] besides

the deblocking filters [16] inherited from AVC. Later on, Google developed VP9 [9]

and AV1 [10] relied on the VP8 [8], aiming to compete HEVC and supporting open-

source and royalty-free. Released in 2020, the video coding standard Versatile Video

Coding (H.266/VVC) [2] reduces the compressed file size of the HEVC by 50% at the

same image quality. This high coding efficiency comes from the following main im-

provements. First, the number of intra-prediction modes has now supported up to 81

direction modes [17]. Second, 1/16 pixel Luma motion vectors (MV) are supported,

compared to 1/4 MV in HEVC. Decoder-side MV refinement and Affine transform are

also applied for better inter-coding. In VVC in-loop filter, luma mapping with chroma

scaling (LCMS) and adaptive loop filtering (ALF) are additionally introduced beside

HEVC Deblocking filters and SAO [18].

2

1994 1999 2003 2012 2020 Year

16

8

4

2

[m
bi

t/
s]

MPEG-4
AS P / V I S U A L

MPEG-2 HEVC
High Efficiency

Video Coding

AVC
advanced

Video Coding

VVC
Versatile

Video Coding

VP9
THOR

VP8

dirac

AVS

XVID

DivX

AV1

Estimated bitrate for high quality FullHD (1080p) content

Figure 1.2: Coding performance comparison of different coding standards over the
years.

Although obtaining high coding efficiency, current video coding standards suffer

from high complexity, which mainly extends encoding speeds. In 2006, Donoho in-

troduced the term compressive sensing (CS) [19] based on sparsity and incoherence.

Building upon the fact the signals are sparse in some transformed or original domain,

CS can efficiently compress and approximate nearly original signals from a few non-

zero samples. CS simply performs matrix multiplications in the encoder, which is

computing-friendly to be integrated into low-resource devices. Sampling data from

the encoder, also known as measurements, is transmitted to the decoder with a much

lower amount than the original signal. In the decoder, reconstructing the input signal

is to solve the underdetermined problem, which requires very high computational com-

plexity. Investigating CS reconstruction algorithms is a continuing concern within the

field of signal processing. Current CS recovery strategies are mainly divided into three

approaches: greedy algorithms, convex optimization, and gradient-based algorithms.

Greedy algorithms solve the CS reconstruction problem by minimizing the least-square

error iteratively. Commonly used greedy algorithm-based CS recovery includes Or-

3

thogonal e Matching Pursuit (OMP) [20], Sparsity adaptive matching pursuit (SAMP)

[21], Compressive Sampling Matching Pursuit (CoSaMP) [22]. In the convex optimiza-

tion approach, ℓp-(quasi)-norm is relaxed with p≥0. The common implementations

for solving this problem includes Basis Pursuit [23], Basis Pursuit De-Noising (BPDN)

[23], modified BPDN [24], Least Absolute Shrinkage and Selection Operator (LASSO)

[25], L1 equality constraints via primal-dual algorithm (L1EQPD) [26] and Spectral

Projected-Gradient for L1 (SPGL1) [27].

1.1 Motivations

Despite the fact that coding standards and algorithms have been continuously en-

hanced, there is always space for further improving these lossy coding approaches. Deep

learning and its outstanding representative Convolutional Neural Network (CNN) have

been receiving significant attention in recent years. CNNs have been widely used and

obtained remarkable results in image and video processing. Convolutional Neural Net-

work (CNN), a most representative model of deep learning, well improves the perfor-

mance of the traditional method in high-level computer vision such as classification

[28], detection[29, 30] to low-level computer vision tasks like image denoising [31],

and super-resolution. SRCNN [32], a very first CNN model in learning-based super-

resolution, learns the mapping between an input of low resolution-image and output of

the high-resolution image, outperforms the traditional method bicubic. The work [33]

aims to learn image detail on a 20-layer CNN model VDSR to improve the quality of

low-resolution input. Following these successes of CNN-based image super-resolution,

Zhang et al. have demonstrated the effectiveness of CNN in common image restora-

tion tasks, including image denoising, enhancement, artifact removal [31]. Dong et

al. proposes four-layer Artifacts Reduction Convolutional Neural Network (ARCNN)

[34] for improving quality of JPEG images. In [35], the authors leverage JPEG coding

information to improve the reconstructed image in both pixel and transform domains.

4

Pointing out that PSNR does not fully reflect the performance of reconstructed images,

the work [36] proposes a one-to-many network trained by a combination of perceptual

loss, naturalness loss, and JPEG loss for producing a series of artifact-free candidates.

Current end-to-end deep video coding tools, where deep neural networks are used as

video coding frameworks [37, 38], are not widely used in visual applications. First, the

performance of deep coding tools mostly depends on training data. Second, the encoder

and decoder in video coding are very complicated and need to be well designed for tiny

blocks. The deep networks are insufficient to represent the complex encoding and de-

coding components. Finally, their coding performance cannot exceed the recent video

coding standards such as VVC and AV1 in various coding configurations/conditions.

Regarding to video codec components, deep learning technologies have been applied

to intra and inter predictions, probability prediction, transforming, and coding op-

timizations. Li et al. [39] predict the pattern of an N × N intra block given the

already reconstructed neighboring blocks. Cui et al. [40] propose a CNN architec-

ture for refining the HEVC intra-predicted block, obtaining 0.70% bitrate reduction

compared to HEVC. Referring to inter-coding, inter-predicted block refinement is also

one of the active topics. After motion compensated prediction (MCP), several CNN

architectures [41, 42] have been introduced for further improving the inter-predicted

blocks. In these works, the predicted blocks are input to the proposed networks with

the already reconstructed neighboring blocks, fully exploiting the spatial and temporal

information.

In video encoder, motion compensation is one of the key components that sig-

nificantly reduce the temporal redundancy during the inter-coding. In motion com-

pensation, fractional interpolation filters are introduced for enhancing the reference

frames for better predictions of the current frame. Several deep learning-based frac-

tional interpolations [43–49] have been proposed for enhancing the Discrete Cosine

Transform-based interpolation filters (DCTIF) in HEVC. To handle the problem of

5

changing integer pixel after convolution, [43] first proposes three CNN models CN-

NIF H, CNNIF V, and CNNIF D for horizontal, vertical, and diagonal half-pixel po-

sitions, respectively. By producing three half-pixel independently, they keep integer

pixels for the later process of HEVC. Later on, Zhang et al. introduces a CNN model

followed by a Constrained mask with different weights for the integer pixels and three

half pixels[44]. Similar to [43], Yan et al. trains 15 models for three half samples and

12 quarter samples in [47]. In [45], half and quarter pixels share nine convolution layers

and be separately produced in group variational transformation in GVTCNN. Simi-

larly, the work [49] designs switch mode based fractional interpolation to reduce the

drawback of the motion shift in [45]. Liu et al. implements GVCNN that supports sub-

pixel (half-pixel or quarter-pixel) under different QPs in a model [48]. Although prior

research generally confirms that CNN-based fractional interpolation improves coding

performance, there are some drawbacks that could be improved in these approaches:

only half-pixel are supported [43, 44], many models need to be trained for fractional po-

sitions [44], or predicting fractional pixel from integer pixel may not good because the

motion shift between integer and fractional pixel are not always stable [43, 45, 48, 49].

In video decoder, deep learning-based reconstructed image enhancement has re-

ceived much attention. Yang et al. propose Quality Enhancement Convolutional Neu-

ral Networks, including QE-CNN-I and QE-CNN-P [50] that are able to handle intra-

coding distortions and inter-coding distortions. Jin et al. propose a Multi-level Pro-

gressive Refinement Networks through an adversarial training approach (MPRGAN)

[51] that focuses on enhancing intra-coding frames. During feed-forward, MPRGAN

generates multi-level residual in a coarse-to-fine fashion, allowing adjustments to be

suitable for different resource-aware applications. In [52], Wand et al. propose Multi-

Scale Deep Decoder (MSDD), making use of multi-scale similarity from the decoder to

enhance the coding efficiency. He et al. [53] propose a partition-masked Convolution

Neural Network based on an attention learning scheme to guide to quality enhance-

6

ment process. The authors of [54] propose a residual-based video restoration network

(Residual- VRN) making use of the coded prediction residual to enhance the decoded

frames. Tsai et al. predict residuals between AVC compressed videos and original

videos. Huffman coding [55] is then applied for compressing the predicted residual in a

lossless manner. At the decoder, AVC reconstructed videos and decoded residuals are

combined for the final output video. Apart from the general video codecs, CS approx-

imates the original signal by a small number of non-zero entries. Decoding CS coded

data is to solve an underdetermined problem where a set of reconstructed signals can

be obtained given different algorithms. This property enables a potential resource in

training CNN models, pointed out by none of the existing works.

In improving video encoder and decoder, CNN-based in-loop is the most active

fields. It is reported that more challenges are required in designing ILF because refer-

ence frames are changed in-looply. Meng et al. [56] propose a multi-channel long-short-

term dependency residual network (MLSDRN) that builds upon the idea of informa-

tion storage and information update function of the human memory cell for improving

HEVC ILF. Kang et al. [57] introduce multi-modal/multi-scale convolutional neural

network (MMS-net) replacing the DBF and SAO in HEVC. In [58], the authors intro-

duce a practical convolutional neural network filter (CNNF) in which inputs are both

decoded frame and QP for intra-frame loop filter. In [59], two QP ranges of 20 to

29 and 30 to 39 are trained in different CNN models for replacing HEVC DBF and

SAO. In [60], a residual highway CNN (RHCNN) are trained in different QP ranges.

RHCNN is also trained for different frame types, including Intra (I), Predicted (P),

and Bidirectional predicted (B) frames trading off the quality enhancement perfor-

mance and training complexities. Although high-coding performance are recorded, the

existing deep learning-based ILF works do not make full use of spatial and temporal

information in the encoder and decoder, leaving rooms for further improvements.

7

1.2 Objective and scope of the research

The overall goal of this research is to study deep learning methods for enhancing

reconstructed frames, therefore, improving the performance of video codecs including

VVC [2], HEVC [12], and the sparsity-based coding CS [19]. Moving towards this goal,

this research conducts a comprehensive review and proposes improving video encoder

and decoder using different deep learning techniques. Our work focuses on improving

the quality of reconstructed images and minimizing the transmitted rates, uncovering

an intelligent encoder-decoder for modern visual-enabled applications.

1.3 Enhancing reconstructed frames in video

codecs: the overall scheme

Addressing problems in section 1.1, this work focuses on improving reconstructed

frames, including reference frames and the current frame generated by the modern

codecs, and solves remaining problems in related works, aiming for better coding effi-

ciency. In this dissertation, we propose a novel deep learning-based enhancing recon-

structed frames for video codecs. The proposal (Fig. 1.3) consists of three main parts,

and each is specifically designed for either encoder or decoder.

First, a deep learning-based fractional interpolation filter is proposed, aiming for

enhancing the reference frames in video encoders. Inter-coding techniques such as

motion estimation and motion compensation are the keys to reducing temporal redun-

dancy in video encoding. During encoding, they search and predict current frames

from already reconstructed frames in a list of reference frames. Since H.264, a series of

fractional interpolation filters were introduced to generate sub-sample positions from

the reference frames. These sub-sample positions are ideal candidates for predicting

current frames. Although more accurate motions can be obtained, the designed filters

8

Encoder

Res
idu

al

Orig
ina

l

cu
rre

nt
fra

me

record

Inv. Transform
&

Dequantization

Transform &
Quantization

Entropy coding

In-loop filter

Refe
ren

ce
 fra

mes

Buff
er Intra coding

DL-based ILF &
autonomous

mode selection

DL-based
fractional

interpolation
in motion

search
& motion

compensation
Pred

ict
ed

cu
rre

nt
fra

me

Decoder

Entropy
decoding

Inv. Transform
&

Dequantization

In-loop
filter

De
co

de
d

fra
m

es

Intra
prediction

DL-based ILF &
autonomous

mode selection

DL-based
fractional

interpolation
in motion

compensation

010001101010.....
10000011111...

Display

DL-based
image

enhancement

010001101010.....
10000011111...

Original flow

Proposed flow

transceiver

camera/
sensor

Figure 1.3: The proposals (in color) in video coding system includes three main parts.
First, a deep learning-based fractional interpolation (in pink) is proposed in video en-
coder, aiming to enhance the motion search and motion compensation of inter-coding.
Second, a deep learning-based in-loop filtering (in blue) with autonomous mode se-
lection is introduced to enhance the coding efficiency of both encoder and decoder.
Finally, a deep learning-based image enhancement (in green) is proposed for enhancing
reconstructed images in the decoder.

are restricted in the filtered area and limited in dealing with diverse signals. This work

introduces a CNN approach for both Luma and Chroma fractional interpolation, of-

fering high-quality sub-sample candidates for compensating the current frame in both

9

brightness and color space. In addition, a switch mode-based fractional interpolation

filters is proposed, optimizing rate and distortion to CU levels.

Second, we investigate deep into different CS reconstruction algorithms and propose

a deep learning approach for enhancing reconstructed frames in CS-decoder systems.

This proposal takes advantage of the CS sparsity feature: the ability to reconstruct

multiple signals given the same coded measurement. The diversity of reconstructed

images is a potential resource for CNN in generating higher quality images, addressed

by none of the current works. By this approach, this work is the first to fully use

the spatial information generated by different algorithms while maintaining the lowest

amount of data to be transmitted to the decoder.

Third, we introduce a deep learning-based in-loop filtering (ILF) enhancement for

improving the reconstructed image quality, hence, increasing coding performance in

the video encoder and decoder. The existing deep learning-based ILF enhancement

works mainly focus on learning the one-to-one mapping between the reconstructed

and the original video frame, ignoring the potential resources at encoder and decoder.

This work introduces a deep learning-based Spatial-Temporal In-Loop filtering (STILF)

that takes advantage of the coding information to improve VVC in-loop filtering. In

STILF, we propose a self-enhancement Convolutional neural network with coding unit

(CU) map (SECUM) and the reference-based enhancement CNN with the optical flow

(REOF). Besides minimizing the distortion, this research also targets optimizing the

rate during compression, bringing a comprehensive coding scheme for video coding stan-

dards in general and the latest video coding standard VVC in particular. A reinforce-

ment learning-based technique is proposed to further enhance reconstructed images to

the local levels, offering the optimal rates and distortion for storage and transmission.

10

1.4 Main results and contributions

This research focuses on enhancing reconstructed frames of the three most common

video codecs, including compressive sensing, HEVC, and VVC video coding. The

manuscript is comprised of three main proposals presented in the following chapters,

in which the contributions for each work are presented. The rest of this section gives

brief introductions and a summary of the contributions and results of each proposal.

1.4.1 Enhancing reference-frame interpolation for video en-

coder

Motion-compensated prediction is one of the essential methods to reduce temporal

redundancy in inter coding. In video encoder, the target of motion-compensated pre-

diction is to predict the current frame from the list of reference frames. Recent video

coding standards commonly use interpolation filters to generate sub-pixels of the ref-

erence frame. These sub-pixels are candidates for motion compensation. However, the

fixed filters are not flexible enough to adapt to the variety of natural video contents.

Inspired by the success of Convolutional Neural Network (CNN) in super-resolution,

we propose CNN-based fractional interpolation for Luminance (Luma) and Chromi-

nance (Chroma) components in motion-compensated prediction to improve the coding

efficiency. Moreover, two syntax elements indicate interpolation methods for the Lu-

minance and Chrominance components, have been added to bin-string and encoded by

CABAC using regular mode. As a result, our proposal gains 2.9%, 0.3%, 0.6% Y, U,

V BD-rate reduction, respectively, under low delay P configuration.

11

1.4.2 Compressive sensing image enhancement at video de-

coder

Artificial Intelligence of Things (AIoT) has brought artificial intelligence (AI) to the

cutting-edge Internet of Things (IoT). In recent years, Compressive sensing (CS), which

relies on sparsity, has been widely embedded and expected to bring more energy ef-

ficiency and a longer battery lifetime to IoT devices. Different from the other image

compression standards, CS can get various reconstructed images by applying differ-

ent reconstruction algorithms on coded data. Using this property, it is the first time

to propose a deep learning-based compressive sensing image enhancement framework

using multiple reconstructed signals (CSIE-M). Firstly, images are reconstructed by

different CS reconstruction algorithms. Secondly, reconstructed images are assessed

and sorted by a No-reference quality assessment module before being inputted to the

quality enhancement module by order of quality scores. Finally, a multiple-input re-

current dense residual network is designed to exploit and enrich useful information of

the reconstructed images. Experimental results show that CSIE-M obtains 1.88-8.07dB

PSNR improvement while the state-of-the-art works achieve a 1.69-6.69 dB PSNR im-

provement under sampling rates from 0.125 to 0.75. On the other hand, using multiple

reconstructed versions of the signal can improve 0.19-0.23 dB PSNR, and only 4%

reconstructing time is increasing compared to using a reconstructed signal.

1.4.3 In-loop filtering image enhancement for video encoder-

decoder

The existing deep learning-based in-loop filtering (ILF) enhancement works mainly

focus on learning to restore the original video frame from the reconstructed frame(s)

without utilizing various potential resources at encoder and decoder. This work pro-

poses a deep learning-based Spatial-Temporal In-Loop Filtering (STILF) that takes

12

advantage of the coding process to improve the performance of VVC in-loop filter-

ing with CTU precision. The CTU-adaptive STILF has three main functions: VVC

default in-loop filtering, self-enhancement with CU map (SECUM) for exploiting the

spatial information inside a frame, and the reference-based enhancement with the op-

tical flow (REOF) that extracts temporal information for enhancing the current frame.

Experimental results show that 3.78%, 6.34%, 6%, and 4.64% BD-rate reductions are

respectively obtained under common test conditions of All Intra, Low Delay P, Low

Delay B, and Random Access configurations.

Moreover, this work enhances the spatial-temporal in-loop filtering (STILF) using a

reinforcement-learningbased autonomous mode selection (AMS) that takes advantage

of the coding information to improve VVC in-loop filtering. STILF filters accurately

perform on the coding unit (CU) level, and the best filtering mode is selected by

calculating the corresponding rate-distortion costs. In order to avoid the extra bits

indicating the ILF mode of each CU, we further propose a reinforcement learning-based

autonomous mode selection (AMS) method. We formulate the ILF mode selection as a

decision-making problem. An agent network is proposed to predict a new CU partition

and ILF mode for each predicted CU. Our method relies on absolutely no bits for

ILF mode while offering more accurate pixel compensation. As a result, the proposed

STILF-AMS obtains 4.13%, 7.1%, 6.93%, and 5.5% bitrate saving under All Intra, Low

Delay P, Low Delay B, and Random Access configurations. Up to 18% bitrate saving

can be obtained compared to the state-of-the-art video coding standard VVC.

1.5 Dissertation outline

This dissertation is composed of four main chapters. Each chapter is a complete and

independent research that could be read separately by the readers. This chapter in-

troduces video coding and the related deep learning-based video coding improvements.

The key objective of this chapter is first to give readers a comprehensive review of

13

video coding, then an analysis of the drawbacks followed by the current related works

and SOTAs.

In Chapter 2, the research on deep learning-based fractional interpolation for en-

hancing video encoder is presented. Our filters are designed to complete hand-crafted

interpolation filters of video coding standards, extending the ability to deal with the

diversity of video content. In this work, only one model is trained for all the fractional

positions, enabling the flexibility to deal with any other video coding standard with

the least modifications.

Chapter 3 presents and discusses the proposed deep learning-based compressive

sensing enhancement using multiple reconstructed images for enhancing video decoder.

In this chapter, we analyze and use the feature of CS compared to other coding tech-

niques: to have multiple reconstructed images given the one and only compressed data.

Using this unique feature, we propose a novel CNN that effectively enhances the CS re-

constructed images without sending additional data, enabling the ability to reconstruct

higher-quality images.

Chapter 4 presents a deep learning-based framework for VVC in-loop filtering en-

hancement for video encoder and decoder. In this work, we first propose two deep CNN

architectures for enhancing VVC reconstructed images. Go over the switch mode-based

ILF selection at CTU level, we introduce a novel technique for splitting and enhancing

the coding efficiency of traditional video coding standards. Second, we propose an

autonomous mode selection for deciding ILF for each CU in the reconstructed image

using a deep reinforcement learning approach. This research uncovers a new mode

selection technique for state-of-the-art codecs without storing additional bits.

Chapter 5 presents the conclusion of this dissertation.

14

Chapter 2

Enhancing reference-frame interpo-

lation for video encoder

2.1 Introduction

H.265/High Efficiency Video Coding (HEVC) [61] had outperformed its predecessor

H.264/AVC [62] to become the state-of-the-art video coding standard. Compared to

H.264/AVC, H.265/HEVC has been improved its coding techniques and achieves a

25-50% better data compression at the same image quality [63]. One of the critical

technologies that significantly contributes to the high coding performance of HEVC is

motion compensated prediction (MCP). MCP (as shown in Fig. 2.1) aims to predict

the current frame from the reference frames which are previously reconstructed and

store the residual along with the motion vector between the corresponding blocks,

which benefits for reducing the temporal redundancy in inter coding. However, the

converting signals from the analog domain to the digital domain may omit some data,

which could make prediction worse. Therefore, if the best matching block does not

fall into integer samples, fractional pixels and fractional motion vector are required

for these movements. Widely used, MCP applies interpolation filters on the reference

frame, considered as integer samples, to obtain fractional samples. For interpolation

filters, H.265/HEVC offers 7-tap quarter and 8-tap half Discrete Cosine Transform

interpolation filters (DCTIF) for fractional interpolation while they are the 6-tap filter

for half-pixel and average filters for quarter-pixel interpolation in H.264/AVC.

Refer to fractional interpolation in video coding, there have been many works that

focus on improving fixed filters [14], or designing adaptive filters [64, 65], or hardware

15

Reference frame Current frame

Residual between the
interpolated block and

current block

(current block)

(reference block)

Motion vector

Motion
compensation

Interpolate (if needed)
to get fractional pixels

subtraction

Figure 2.1: The concept of motion compensated prediction. In modern video coding
standards, MCP first searches for the best matching of block from a list of reference
frames. Reference block then will be interpolated to get more accurate motion compen-
sation. Among the interpolated blocks, fractional motion which performs the smallest
sum of absolute difference (SAD) will be chosen. Finally, corresponding motion vector
and residual will be encoded and send to decoder.

design [66] for fractional interpolation. Due to the covered area is limited, the cor-

relation between neighboring pixels may not be fully exploited. Moreover, the input

signal is not always ideal and stable for these handcrafted filters. For these reasons,

designed filters may not be able to adapt to the diversity of natural video content. In

some aspects, fractional interpolation in MCP can be considered as a specific task of

super-resolution where a high-resolution image is reconstructed from a low-resolution

image (images).

Recently, deep learning-based methods have been widely used and obtained remark-

able results in image and video processing. Convolutional Neural Network (CNN), a

most representative model of deep learning, well improves the performance of the tra-

ditional method in high-level computer vision such as classification [28], detection[29,

16

30] to low-level computer vision tasks like image denoising [31], and mostly super-

resolution. SRCNN [32], a very first CNN model in learning-based super-resolution,

learns the mapping between an input of low resolution-image and output of the high-

resolution image, outperforms traditional method bicubic. The work [33] aims to learn

image detail on a 20-layer CNN model VDSR to improve the quality of low-resolution

input. Despite the robust of CNN in improving super-resolution, they can not be di-

rectly applied for fraction interpolation in video coding because of two main problems.

First, CNN-based super-resolution may change integer pixel after convolution. Second,

and more importantly, the training sets of super-resolution and fractional interpolation

in video coding are different. While the former aims to recover the high-resolution im-

age by enhancing quality of the low-resolution image, the latter focuses on producing

fractional samples that close to the current block to be encoded from the reference

frames.

Inspired by the contributions of deep learning in video coding, recent studies have

implemented diverse approaches to deep learning-based fractional interpolation works

to improve the performance of MCP. To handle the problem of changing integer pixel

after convolution, [43] first proposes three CNN models CNNIF H, CNNIF V, and

CNNIF D for horizontal, vertical, and diagonal half-pixel positions, respectively. By

producing three half pixel independently, they keep integer pixels for the later process

of HEVC. Later on, Zhang et al. introduces a CNN model followed by a Constrained

mask with different weights for the integer pixels and three half pixels[44]. Similar to

[43], Yan et al. trains 15 models for three half samples and 12 quarter samples in [47]. In

[45], half and quarter pixels share nine convolution layers and be separately produced in

group variational transformation in GVTCNN. Similarly, the work [49] designs switch

mode based fractional interpolation to reduce the drawback of the motion shift in [45].

Liu et al. implements GVCNN that supports sub-pixel (half-pixel or quarter-pixel)

under different QPs in a model [48].

17

For the second problem, besides the issue of different training sets, another difficulty

that needs to be solved is fractional pixel does not exist in the real image. Generally,

existing works assume integer and fractional pixels in the original frame, encode integer

video, and learn the mapping between the reconstructed integer and fractional pixels

[43, 45, 48, 49] or the mapping between the interpolated frame of the reconstructed ref-

erence frame and the original reference image [44]. Another way is encoding the original

video and extracting the inter-coding block and its reference block to be ground-truth

label and input of CNN [47].

Although prior research generally confirms that CNN-based fractional interpolation

improves coding performance, there are some drawbacks that could be improved in

these approaches: only half-pixel are supported [43, 44], many models are required for

fractional positions [47], or predicting fractional pixel from integer pixel may not good

because the motion shift between integer and fractional pixel are not always stable

[43, 45, 47, 48]. In paper [46], although the one models for all fractional samples

and the prepossessing helps to reduce the motion shift problem, Chroma components

are not well treated. In this work, we take the next step towards the CNN-based

fractional interpolation in video coding: all components can be processed by CNN. In

our proposal, the Y, U and V components of the reference frame is interpolated by the

Discrete Cosine Transform-based interpolation filter (DCTIF) before feeding into CNN

to avoid the motion shift problem. To take full advantage of CNN and DCTIF, we

implement a rate-distortion optimization (RDO)-based interpolation method selection

for each CU: Luma and Chroma components are interpolated by either DCTIF or

CNN. Note that U and V components share one model for all fractional interpolation.

For this selection, we encode two flags that indicate the interpolation method for Luma

and Chroma components. As a result, we archive 2.9%, 0.3%, 0.6% BD-rate reduction

compared to the anchor HEVC under low delay P configuration. Our work makes the

following three contributions:

18

1. We present two CNN models for Luma and Chroma fractional pixels interpolation

in video coding. A reconstructed frame is first interpolated by DCTIF to get 15

fractional samples. Our models take an input of a fractional sample and output

corresponding fractional sample. Only one model is trained for 15 fractional

samples at each QP. We use one model for Y component interpolation and a

shared Chroma model for U and V components interpolation. Totally, we train

eight models for four QPs in Luma and Chroma components.

2. We investigate a dataset generation method for our Y, U, V fractional interpo-

lation training. As commonly, we generate our training set by assuming integer

and fractional pixel in each video frame and encoding integer video. Each re-

constructed video frame is interpolated by DCTIF to be CNN input and the

fractional pixels extracted from the original frame are ground-truth labels for

CNN.

3. We implement an RDO-based selection for Luma and Chroma fractional interpo-

lation. In this selection, we define two new syntax elements to HEVC bin-string

and encode them under CABAC regular mode. Each syntax element indicates

the interpolation method for Luma or Chroma components for each CU that

chooses inter coding with the fractional motion vector.

The proposal can be integrated to the existing video coding standards that support

fractional motion search such as H.262, MPEG-4 Part 10 (as known as H.264/AVC),

H.265/HEVC, AV1, etc., to further improve the coding efficiency. Moreover, network

architecture also can be utilized for half and quarter-pixel interpolation for the coming

video coding standard VVC/H.266. Since the different coding standards provide dif-

ferent noises, re-train our network on other standards reconstructed frames is required.

The interpolation CNN output can replace the output of the interpolation filters in

motion compensation to further improve the prediction of interpolation filters.

19

(a) Luma sub-samples (b) Chroma sub-samples

Figure 2.2: Luma (a) and Chroma (b) sub-samples in HEVC. In (a) Luma sub-samples,
ai,j present for integer pixel, ci,j, ii,j,ki,j are the half pixels and others are quarter pixels.
Half and quarter pixels in the Luma component are interpolated by a 7-tap quarter and
an 8-tap half DCTIF. At (b) Chroma sub-samples, aai,j presents for integer samples
and other pixels are fractional samples which are interpolated by four-tap filters.

2.2 Related works

In HEVC, motion search searches for the best matching fractional Luma samples in the

list of previously reconstructed reference frames and stores the motion vector points

to the best fractional pixel. Fig. 2.2 presents the positions of integer and fractional

samples of Luma and Chroma components in HEVC. In Luma sub-samples, ai,j presents

integer pixels, ci,j, ii,j, and ki,j are half pixel, and others are quarter pixels. In Luma

fractional interpolation, HEVC applies horizontal filters on integer samples for bi,j, ci,j,

and di,j. For ei,j, ii,j, and mi,j, vertical filters are applied on integer samples. For the

other samples, the vertical filter of its row is applied on the fractional sample at its

column in the top row. For example, to obtain g0,0, vertical filter of e0,0 is applied on

c0,0.

HEVC supports fractional samples and motion vector for the Luma component up

to quarter accuracy for the common used YUV format 420. Chroma component, whose

20

resolution is equal to the half of the Luma component’s, holds a motion vector that

accurate to one-eighth samples. Therefore, eight samples are interpolated using 4-tap

filters [61] in motion compensation. Motion vector at Chroma component is calculated

as:

fracMVChroma =MV mod 8 (2.1)

Fig. 2.2 (b) presents fractional-sample in Chroma component. If the fractional MV

points to ab0,0, ab0,0 and abi,j are interpolated with the resolution is equal to Chroma

resolution of the current block to be encoded. In Luma and Chroma component frac-

tional interpolating, the applied area is restricted in the tap size of the interpolation

filters, which limits the predicted block quality.

Recently, a learning based method has been applied to fractional interpolation to

further improve the fractional interpolation filter of the video coding standard. Since

fractional pixels do not exist in the real image, existing works assume and extract them

from the original image and simulate the encoding method. A common method is to

learn the mapping between encoded integer pixel and the fractional pixels extracted

from the original image [43–45, 47–49]. Although they improve the encoding perfor-

mance, there are some drawback could be improved: directly learning the fractional

pixels from the integer pixels [43, 45, 48] may cause bad prediction since the motion

between them are not always stable, or only half-pixel are trained [43, 44], or one CNN

model for one fractional pixel [47] is not suitable for the real application.

2.3 Methods

As mentioned above, despite the fact that CNN-based techniques have acquired out-

standing performance compared to traditional super-resolution methods, they can not

be directly applied to fractional interpolation in video coding. In this work, we de-

21

Interpolated Y

by DCTIF

Interpolated Y

by CNN

CU Interpolation-

method selection

Reconstructed frames

Current CU B

B

Encode CU with 2

flags indicates the best

interpolation methods

Fractional

Interpolation in

Motion Compensation

Fractional

Interpolation in

Motion Estimation

B

B

B

Figure 2.3: Visualization of our proposal. In Motion Search, the Y component of
the reference frame is interpolated by DCTIF and CNN. In Motion compensation,
U and V components of the reconstructed frame are interpolated by both CNN and
DCTIF, and the Y component is interpolated by the method in motion search. The
residual between current CU B and predicted CU are calculated and encoded with 2 bits
indicate interpolation methods for Luma and Chroma components. Finally, an RDO-
based fractional interpolation selection is implemented to decide which interpolation
method should be used for Luma and Chroma fractional interpolation.

sign a training set and propose two Convolutional Neural Networks for Luma and

Chroma fractional interpolation in video coding. We offer a rate-distortion optimiza-

tion (RDO)-based selection for choosing interpolation mode of DCTIF and CNN for

both Luma and Chroma components of a CU. In Fig. 2.3, we present our proposal

in integrating CNN-based fractional interpolation and the interpolation method for

Luma and Chroma Components to HEVC. In searching for the best fractional pixels

at encoding, Y component of the reference frame is interpolated in both DCTIF and

CNN. At motion compensation, we interpolate Y component by the method used in

motion search, U and V components are separately interpolated by CNN and DCTIF.

At encoding residual and calculating RDO cost for CU that chooses inter coding with

a fractional motion vector, we also encode two flags indicating fractional interpolation

methods for Luma and Chroma components by choosing the smallest RDO cost be-

tween four possible interpolation methods: DCTIF and DCTIF, DCTIF and CNN,

CNN and CNN, and CNN and DCTIF for Luma and Chroma, respectively.

This section outlines our training set generation followed by our network architec-

22

ture and ends with Luma and Chroma interpolation selection.

2.3.1 Training set generation

In training any network, the training set plays a vital role for network behaviors. For

CNN-based super-resolution, a popular training set includes a low-resolution image as

input and the corresponding original high-resolution image as the ground-truth label.

The prevailing method for creating input of CNN is doing down-sample the original

image and up-sample the result for a low-resolution image [32, 33]. Due to the goal of

reducing bitrate, MCP predicts the current image from the fractional-pixel images of

the reference frames, which make training set of super-resolution could not be directly

applied for fractional interpolation tasks. Moreover, integer pixels could be changed

after convolution, and fractional pixels do not exist in the real image are also the main

problems in creating a training set for applying the idea CNN-based super-resolution

for fractional interpolation in video coding.

Frequently implemented, prior works encode the integer-position image and learn

the mapping between reconstructed integer-position video and the fractional-position

video. To solve the problem of integer pixel change after convolution, the work [44]

generates a double-resolution image including integer and half pixels and feeds it to

a very deep convolutional neural network for super-resolution (VDSR) followed by a

mask that restricts integer pixels. The works [43, 45, 47, 48] separately generate half

and quarter pixels based on integer pixels rather than generate double- or four-time-

resolution image that includes integer and fractional pixels and keeps the integer pixel

for MCP.

We implement an experiment to answer the question of what should be the ground-

truth label for our training set. The target of MCP is to predict the current block

to be encoded from the reference frames. However, the pair of the current block and

reference block are achieved only in the encoding process and could be changed under

23

Table 2.1: Bjøtegaard-Delta bit-rate (BD)-rate reduction (%) of the replacing interpo-
lated frame by the original frame when encoding down-sampled video compared to the
anchor HEVC.

Class Y U V

Average B -39.3 -16.2 -16.5

Average C -19.9 -8.4 -8.1

Average E -23.7 -5.5 -5.6

Average all sequences -27.6 -10.0 -10.0

different encoding configuration. Therefore, a training set of the current block and

reference block may be restricted. In testing for ground-truth, we assume and extract

integer and fractional pixels from the original video frames, do the encoding for integer

images and set fractional images extracted from the original image as the interpolated

image for encoding the down-sampled video. For this experiment, we test the first

five frames of every sequence in class B, C, and E. For sequences in class B and E;

the down-sampled videos do not fit the CU partition where HEVC cannot encode the

down-sampled video, we then duplicate some rows and columns at the original video

before downsampling. Experimental settings will be sufficiently described in 2.4.1. The

results in Table 2.1 shows our BD-rate compared to the anchor HM under low delay P

configuration.

Following the successful of our experiment in finding a training set for our CNN,

we create a training set that takes the reconstructed integer video as input and the

extracted fractional pixel as ground-truth, integer and fractional pixels are assumed

from the original image. The process of training set generating visualized in Fig. 2.4

can be described as follow:

1. We extract the integer and fractional-position video by assuming integer and

fractional pixels in every 4-by-4 non-overlapping blocks of each frame. Integer,

half and quarter positions are pixels at similar positions to fractional samples in

Fig. 2.2. We then obtain a low-resolution video of integer pixels (integer-position

24

(1)

(2) (3)

(4)

Extracted fractional

frames

Extracted fractional

frames

...

Half and quarter-

position video

Half and quarter-

position video

Interpolated fractional

frames

Interpolated fractional

frames

Reconstructed

Integer-position

video

Reconstructed

Integer-position

video

Integer-

position video

Integer-

position video
...

Original video

frames

Original video

frames

...

i = 0, j = 1 i = 0, j = 1

i = 3, j = 3 i = 3, j = 3

...
...

...

i = 0, j = 1 i = 0, j = 1

i = 3, j = 3 i = 3, j = 3

Figure 2.4: Our training set generation for learning fractional interpolation in video
coding.

video) and 15 low-resolution videos including three half- and 12 quarter-position

videos corresponding to 15 fractional samples.

2. Encode low-resolution video under low delay P configuration with QPs of 22, 27,

32 and 37 to get reconstructed down-sampled video.

3. Extract the Y component from reconstructed frames and interpolate them to 15

fractional samples by DCTIF. These 15 fractional samples are used as training

input for our CNN.

4. Extract the Y component from each fractional-position video frame to be the

CNN ground-truth label for training. Each pair of the fractional sample interpo-

lated by DCTIF and the fractional sample extracted from the original frame is

considered as a training sample.

For generating the training set of the Chroma component, we do the down-sampling to

one eighth for all components because Chroma components require one eighth fractional

25

Shared network architecture for all fractional pixels

DCTIF

h×w

h×w×64

3

3
3

3

h×w×64 h×w×64 h×w×64

DCTIF interpolated fractional frame
i=0,j=1, i,j ϵ [0,3], i × j ≠ 0

3
3

3
3

3
3

3
3

3
3

3
3

h×w×64 h×w×64 CNN interpolated fractional frame
i=0,j=1, i,j ϵ [0,3], i × j ≠ 0

Figure 2.5: Our CNN architecture for learning all the fractional samples in Luma and
Chroma components. For each feeding forward, one fractional sample is fed into our
CNN. 15 fractional Luma samples and 63 fractional samples are supported by this
architecture, respectively.

samples. All the processes for generating the Chroma training set are the same as the

Luma Y component, except we have 63 fractional positions for Chroma components.

Note that we use the default interpolation method DCTIF for the Y component when

we generate a training set for Chroma components and vice versa.

We note that training a deep network with a small training set can cause overfitting

which is not good for predicting test data. We then do the data augmentation for our

training set. During training, input and its corresponding ground-truth label can be

vertically, horizontally flipped, or none of them. We randomly rotated images to 0◦,

90◦, 180◦, or 270◦ to avoid training biases.

2.3.2 Network architecture

In inter coding, MCP interpolates reconstructed frames to fractional accuracy and finds

a fractional pixel that is closest to the current frame to be encoded. To further improve

the interpolation filter DCTIF in HEVC, in this work, we design two CNN models

for fractional pixel interpolation in Luma and Chroma components. As mentioned

above, despite the facts that both of super-resolution and fractional interpolation in

video coding need to increase the resolution of the input and CNN has remarkable

26

results in super resolution, we cannot directly apply CNN-based super resolution for

fractional interpolation in video coding. In this subsection, we introduce our network

architecture, inspired by the Very Deep Super Resolution VDSR[33] for Luma and

Chroma fractional interpolation. The network architecture (Fig. 2.5) includes 20

convolutional layers. Each layer does convolution by applying 64 3× 3 filters with the

stride of one. Padding is set as one to keep the size of the input image after convolution.

For each convolutional layer, we set a ReLU activation layer after convolution except

for the final layer. We set a learning rate that starts at 0.1 and decreases it by ten

after ten epochs. Training stops at 50 epochs with a batch size of 128.

At training, our network takes an input of interpolated fractional sample and an

ground-truth label of real fractional sample extracted from original frame, which are

described in 2.3.1. Given the reconstructed image x contains the integer pixels and the

fractional-position frames yj assumed and extracted from the original video frames, we

apply DCTIF on reconstructed image x to obtain x′j fractional samples where j is from

one to 15 in Luma and one to 63 in Chroma components.

Each interpolated image x′ by DCTIF are fed into CNN for the output y′. Our

network aims to learn the mapping between x′j and y
′
j by minimizing the loss function:

L(θ) = 1
2

n∑
i=1

||y′i − yi||2 (2.2)

where n is number of training samples obtained from training set generation 2.3.1. At

testing, reconstructed images are interpolated to 15 fractional-samples image in Luma

component and 63 fractional-samples in Chroma components before feeding into CNN.

27

2.3.3 Rate-distortion optimization (RDO)-based interpola-

tion mode selection

In video coding, selection between different encoding modes is an efficient tool to

improve the image quality, decrease bitrate, or reduce the computational complexity

of video coding standard such as HEVC. We note that DCTIF and CNN have the

abilities to deal with different signals. To take advantage of DCTIF and CNN, we

define two context models for a Luma and Chroma interpolation method selection.

Rate-distortion optimization (RDO) allows the encoder to find the best coding mode

for a coding level. HEVC defines the rate-distortion (RD) cost RDm for a block coded

in mode m as follows:

RDm = Dm + λRm (2.3)

where, Dm indicates the distortion between the predicted block generated by mode m

and the original block, λ is applicable weighting factor depends on configuration and

set by the video coding standards. Rm indicates the total rate to encode the current

block. Our selection is based on RDO cost and be described as follows. In motion

estimation, we do the interpolation for the Y component by DCTIF and CNN. For each

interpolation method, we choose the best fractional sample and send the best fractional

MV. In motion compensation, we then do the interpolation for all components by both

DCTIF and CNN. There are four possibilities: DCTIF and DCTIF, DCTIF and CNN,

CNN and DCTIF, CNN and CNN for Luma and Chroma component, respectively.

After calculating residual and encoding all parameters including two bits for Luma

and Chroma interpolation method flags, an RDO-based selection will choose among

four possibilities the interpolation methods for each CU coded with fractional motion

vector. Each and every sub-CU in the same CU, if coded with fractional motion vector,

share the same interpolation methods.

28

2.4 Experiments

2.4.1 Experimental settings and evaluation method

For our experiments, we focus on two main parts: training and coding. HEVC Test

Model (HM) version 16.18 is used for training set generation and demonstration of

CNN-based fractional interpolation in video coding. The format of all the test se-

quences is YUV 4:2:0.

In our training, we use PyTorch 1.0.0 with the support of the NVIDIA Tesla V100

GPU. As mentioned earlier, we have trained two models for Luma and Chroma com-

ponents for each quantization parameter (QP) value. Eight models have been trained

for four QPs: 22, 27, 32, and 37. Training set for QP 32 and 37 models are acquired

from three sequences Pedestrian, Traffic and PeopleOntheStreet [67]. For QP 22 and

27’s models, we produce training set from Traffic and PeopleOnTheStreet. These se-

quences are obtained from HEVC standard test sequences. For training set generation,

we encode our training sequences under Low Delay P configuration with full search is

enable and an Intra period of 16 for a stable training set. Other parameters are set

as default. We benefit from the residual training, which takes 10 hours to train Luma

and eight hours for Choma component models. In generating fractional pixels for the

Chroma component, some pixels are duplicated to match with the HM requirements.

For training, the input image and ground-truth label from 2.3.1 are split into 41x41

patches with a stride of 16.

Figure 2.6 illustrates the reference types of four difference configurations defined by

HEVC. Among the configurations, motion compensated prediction is not performed

on Intra configuration. Therefore, the following experiments will be conducted under

Low Delay P, Low Delay B and Random Access configurations. We set all parameters

to default except full search is enabled. Because Bitrate and Peak signal-to-noise

ratio (PSNR) are all need to be considered in evaluating our method, we use a well-

29

0 1 82 3 4 5 6 7

Intra configuration

Low Delay P configuration

Low Delay B configuration

Random Access configuration

A B

Blocks in B can refer blocks in A Intra frame P frame B frame

Picture order count:
Coding order: 0 1 82 3 4 5 6 7

0 1 82 3 4 5 6 7Picture order count:
Coding order: 0 1 82 3 4 5 6 7

0 1 82 3 4 5 6 7Picture order count:
Coding order: 0 1 82 3 4 5 6 7

0 1 82 3 4 5 6 7Picture order count:
Coding order: 0 4 13 5 2 7 6 8

Figure 2.6: Frame referencing in four main configurations.

30

known measuring metric, Bjøtegaard-Delta bit-rate (BD-rate) [68]. BD-rate takes at

least four samples from different video coding techniques and tells how many bits are

reduced between them at the same video quality. In our case, we compare our proposals

obtained from four QPs. Testing experiments are conducted on HEVC standard test

sequences shown in Fig. 2.7.

2.4.2 Experimental results

2.4.3 RDO-based interpolation method selection result

In our proposal, RDO cost-based interpolation-method selection for each CU has been

implemented in encoding. When a CU is coded with a motion vector that has the

fractional part, two bits indicate the flags for Luma and Chroma interpolation methods

are encoded. Fig. 2.8 shows our visualization on the first P frame of RaceHorseC

under the Low Delay P configuration. In our visualization, cyan blocks indicate CU

that choose DCTIF for interpolating all components, magenta blocks indicate CUs

that choose DCTIF for Y and CNN for UV components, yellow blocks indicate CUs

that choose CNN for Y and DCTIF for UV components, and red blocks indicate CUs

that choose CNN for interpolating all components. The rest parts are CUs coded

with integer motion vector or intra coding. As our visualizations, CUs at the static

background tend to choose DCTIF for fractional interpolation and CUs at moving

object tend to choose CNN for fractional interpolation.

On another hand, we measure the ratio of choosing interpolation methods for each

CU. In HEVC, CU size is variety, which makes the calculating hitting ratio should

be on the area than on count. Since these two flags are dependent, we calculate the

hitting ratio on two flags as one than separately counting. In Table 2.2, we show the

hitting ratio of using CNN and DCTIF for Luma and Chroma components at CU-

level. Class F, where Luma and Chroma components rarely choose CNN for fractional

interpolations, obtains the lowest bitrate saving compare to other classes.

31

Figure 2.7: Example on HEVC test sequences .

32

Figure 2.8: Visualization of our CU selection on RaceHorseC. In this figure, cyan, ma-
genta, yellow, and red blocks indicate CUs that choose DCTIF for YUV interpolation,
DCTIF for Y and CNN for UV interpolation, CNN for Y and DCTIF for UV inter-
polation, and CNN for YUV interpolation, respectively. The rest parts are CUs that
choose inter coding with integer motion vector or intra coding.

Table 2.2: Hitting ratio (%) of two interpolation methods for Luma and Chroma
component under Low Delay P configuration.

Class
DCTIFY DCTIFY CNNY CNNY

DCTIFUV CNNUV DCTIFUV CNNUV

B 54.51 0.51 44.36 0.62

C 53.18 0.78 45.07 0.97

D 57.75 0.47 41.34 0.44

E 64.18 0.32 34.71 0.79

F 71.84 1.51 26.14 0.51

All 60.29 0.72 38.32 0.67

2.4.4 Comparison with existing works

We also experiment to compare our proposal to existing CNN-based fractional inter-

polation works. For a fair comparison, we reimplement our proposal on HM 16.7 and

33

Table 2.3: BD-rate (%) comparison between CNN-based fractional interpolation and
our proposal under Low Delay P configuration.

Class [45] [49] Ours

Average B -3.0 -3.0 -3.8

Average C -1.7 -2.7 -3.0

Average D -1.5 -2.5 -3.5

Average E -1.9 -2.8 -4.6

Average all sequences -2.1 -2.8 -3.7

disable the CNN-based fractional interpolation and the context model for the Chroma

component. In this experiment, only Y component is interpolated by CNN, and DCTIF

is used for interpolating Chroma components. The selection of CNN/DCTIF fractional

interpolation is also implemented for the Y component, and the flag for the interpo-

lation method is encoded in CABAC regular mode. In this comparison, we use the

reimplemented results from paper [49].

The results (Table 2.3) shows that our proposal surpasses the GVTCNN [45] and

the switch mode-based fractional interpolation [49] on HM-16.7. In general, we achieve

a 3.7 BD-rate reduction on average and rank first all Classes from B to E.

We also compare our work with the works [43, 44]. In these works, only half pixels

are interpolated by CNN, quarter pixels are interpolated by DCTIF. In this compari-

son, we also re-implement our work on HM 16.7 and only half pixels are interpolated

by CNN. The results (Table 2.4) shows that our half-pixel interpolation outperforms

CNNIF[43] and Zhang ’s work [44] in average.

2.4.5 Overall results

Our experiments under Low Delay P, Low Delay B, and Random Access configurations

are shown in Table 2.5. Generally, we obtain the highest BD-rate reduction on Low

Delay P configuration and the lowest saving bitrate belongs to the test under Random

34

Table 2.4: Comparison of CNN-based half-pixel interpolation and our proposal under
Low Delay P configuration (anchor: HM 16.7).

Class Sequence
CNNIF Zhang et al. Ours Ours (half

[43] [44] (half) and quarter)

B

Kimono -1.1 - -4.4 -4.9

ParkScene -0.4 - -0.8 -0.1

Cactus -0.8 - -3.2 -4.6

BasketbalDrive -1.3 - -3.4 -3.7

BQterrace -3.2 - -3.9 -5.7

C

BasketballDrill -1.2 -0.9 -3.7 -4.8

BQMall -0.9 -0.3 -1.8 -2.5

PartyScene 0.2 -0.1 -1.2 -1.8

RacehorsesC -1.5 -0.4 -2.4 -3.0

D

BasketballPass -1.3 -1.2 -2.3 -3.5

BQSquare 1.2 0.3 -1.8 -3.9

BlowingBubbles -0.3 -0.2 -2.6 -3.1

RaceHorses -0.8 -0.7 -2.9 -3.7

E

FourPeople -1.3 -0.6 -3.8 -4.3

Johnny -1.2 -0.7 -4.7 -5.4

KristenAndSara -1.0 -0.4 -3.6 -3.9

F

BasketballDrillText -1.4 -0.4 -3.4 -4.2

ChinaSpeed -0.6 -0.6 -0.6 -0.8

SlideEditing 0.0 -0.0 -0.2 -0.1

SlideShow -0.7 -0.2 -0.2 -0.6

Average B -1.4 - -3.2 -3.8

Average C -0.9 -0.4 -2.3 -3.0

Average D -0.3 -0.5 -2.4 -3.5

Average E -1.2 -0.6 -4.0 -4.6

Average F -0.7 -0.3 -1.1 -1.4

Average all sequence(∗) -0.91 -0.44 -2.56 -3.22

(∗): Average calculated on numbers of existing sequences.

35

Table 2.5: BD-rate (%) of our proposal compared to HEVC under Low Delay P, Low
Delay B and Random Access configurations.

Class Sequence
Low Delay P Low Delay B Random Access

Y U V Y U V Y U V

B

Kimono -4.7 1.1 0.6 -1.1 1.3 0.6 -0.7 0.6 0.0

ParkScene -1.3 1.1 0.2 -0.4 0.7 0.4 -0.5 0.2 0.0

Cactus -4.2 -1.6 -1.9 -3.2 -1.1 -0.6 -2.3 -0.5 -0.9

BasketbalDrive -4.2 -1.6 -1.9 -1.4 0.1 -0.8 -1.7 -0.1 0.3

BQterrace -6.5 -2.1 -2.9 -2.5 -0.2 -0.6 -1.6 -0.2 -0.2

C

BasketballDrill -4.0 -0.2 -1.4 -3.1 0.5 -0.2 -1.5 -0.6 -0.9

BQMall -2.0 0.0 -0.3 -1.7 -0.1 -0.4 -0.9 -0.2 -0.4

PartyScene -1.8 -0.9 -0.6 -1.1 -0.2 -0.1 -0.6 -0.2 -0.5

RacehorsesC -2.6 -0.7 -0.3 -2.1 -0.1 -0.5 -1.6 -0.6 -1.5

D

BasketballPass -2.6 -0.8 -0.7 -2.2 -1.6 -1.8 -1.1 0.2 -0.2

BQSquare -4.2 -1.6 -1.3 -2.2 -0.7 -0.4 -0.9 0.4 0.1

BlowingBubbles -2.5 -0.5 -1.3 -2.7 -0.8 -0.6 -1.0 -0.9 0.1

RaceHorses -2.9 0.3 -1.0 -2.8 -0.1 -1.4 -1.4 -0.8 -0.9

E

FourPeople -4.3 -0.3 -0.4 -3.8 -0.2 -0.7 -2.9 -0.1 -0.4

Johnny -5.7 -2.3 -1.5 -2.6 -0.5 -0.5 -2.1 -0.1 -0.4

KristenAndSara -4.1 -0.9 -1.6 -3.4 -1.1 -0.8 -2.2 -0.3 -0.5

F

BasketballDrillText -3.3 1.1 -0.1 -3.0 0.7 0.4 -1.0 -0.5 -1.2

ChinaSpeed 1.2 1.6 1.4 -0.6 -0.2 -0.4 -1.0 -0.9 -0.8

SlideEditing 1.3 1.0 1.0 -0.2 -0.2 -0.2 0.2 0.4 0.2

SlideShow 1.0 0.1 1.6 -0.5 -1.6 -2.0 -0.4 0.2 4.7

Average B -4.3 -0.5 -1.1 -1.7 0.2 -0.2 -1.4 0.0 -0.2

Average C -2.6 -0.5 -0.6 -2.0 0.0 -0.3 -1.1 -0.4 -0.8

Average D -3.0 -0.6 -1.1 -2.5 -0.8 -1.0 -1.1 -0.3 -0.2

Average E -4.7 -1.1 -1.2 -3.3 -0.6 -0.7 -2.4 -0.2 -0.5

Average F 0.1 1.0 1.0 -1.1 -0.3 -0.5 -0.6 -0.2 0.7

Average all sequences -2.9 -0.3 -0.6 -2.0 -0.3 -0.5 -1.2 -0.2 -0.2

Access configuration.

36

We obtain a 2.9, 0.3, and 0.6 % Y, U, and V BD-rate saving compared to the original

HM under Low Delay P configuration and up to 6.5%, 2.1%, 2.9 % Y, U, V BD-rate

reduction on sequence BQTerrace. Results show that the proposal can deal with high-

resolution videos such as sequences in class A and E where average BD-rate reductions

for Y component are over 4%. We can obtain a high and stable BD-rate reduction

for all components of class E sequences where backgrounds are static. Although Y,

U, and V components are trained, and an RDO-based interpolation method selection

has been implemented, there is some space that our methods cannot improve. For

example, it can be seen that our proposal does not work well on screen-content sequence

ChinaSpeed, SlideEditing, and SlideShow under Low Delay P configuration since no

data for these content has been trained. The future work may include training for the

screen- content video data.

For Low Delay B configuration results, the best performance belongs to class E,

where 3.3%, 0.6%, and 0.7% Y, U, and V BD-rate reductions are obtained, respectively.

Although our models do not work well on screen-content videos of class F under Low

Delay P configuration, they acquire the average BD-rate reduction of 0.4%, 0.6%, and

0.8% on ChinaSpeed, SlideEditing, and SlideShow under Low Delay B configuration.

For Random Access configuration, we achieve 1.2%, 0.2%, and 0.2% BD-rate reduc-

tion on Y, U, and V components, respectively. This experiment obtains a Y BD-rate

reduction up to 2.9% at sequence FourPeople. Along with the configurations that we

do experiments, Random Access obtains the lowest bit rate saving at all components.

To further investigate the quality of our method compare to HEVC, we visualize

RD-curves (Fig. 2.9) of our method on Y, U, and V components of sequence BQTerrace.

It can be seen that our proposal can significantly increase the PSNR at the high bit

rates more than at lower bit rates.

We also experiment to figure the effect of the separate network on Chroma com-

ponent. In this experiment, we train four models for each Chroma component at the

37

Figure 2.9: R-D curves of sequence BQTerrace under Low Delay P configuration on
(a) Y component, (b) U component and (c) U component.

38

Table 2.6: BD-rate (%) of our proposals in seperating models for U and V compared
to HEVC under Low Delay P configuration.

Class
Combining models Separate models

Y (%) U (%) V (%) Y (%) U (%) V (%)

Average B -4.3 -0.5 -1.1 -4.3 -1.1 -3.2

Average C -2.6 -0.5 -0.6 -2.4 -0.2 -2.6

Average D -3.0 -0.6 -1.1 -3.0 -1.0 -3.0

Average E -4.7 -1.1 -1.2 -4.7 -1.2 -2.8

Average F 0.1 1.0 1.0 0.0 0.7 0.0

Average all sequences -2.9 -0.3 -0.6 -2.8 -0.6 -2.3

separate test. Eight models have been trained in the combining experiment, and twelve

models have been trained on the separate experiment. The result of testing training

models (Table 2.6) shows that our separate test archives better BD-rate reduction on U

and V components than the combining experiment. However, Y BD-rate is decreased

by 0.1% at separate models even models for Y component are the same. For more

detail, training separate models can archive up to 6.6% for Y, 3.0% for U, and 5.1%

for V BD-rate reduction in sequence BQTerrace.

2.5 Chapter conclusions

In this chapter, we present a deep learning-based method for fractional interpolation

in video coding and design a training set for our CNN models. In our proposal, Luma

and Chroma components are first interpolated by DCTIF before feeding to CNN. This

approach enables the ability to deal with any video codec regardless of how many

fractional samples are supported. Finally, an RDO cost-based interpolation method

selection is performed for choosing the best fractional interpolation method at CU level.

As a result, we obtain an average BD-rate reduction of 2.9%, 0.3%, and 0.6% on Y,

U, and V component, respectively, under low Delay P configuration. We also show the

39

effects of training the separate models or combining models for U and V components

and a comparison of our method compared to the existing works.

40

Chapter 3

Compressive sensing image enhance-

ment at video decoder

3.1 Introduction

Internet of Thing (IoT) interconnects numerous devices including sensors, cameras,

smart home products, and smart city products in an environment. It provides a fun-

damental way to communicate, store, transmit, and process sensed data, giving bet-

ter productivity and more efficient solutions for improving the quality of human life.

Surveillance systems have been pointed out as one of the most necessary but challeng-

ing solutions in urban developments due to large data storage requirements and the

high computational complexity in processing images and videos sensed by cameras.

Therefore, compression methods that can adapt the requirements of (1) saving the

power consumption and prolonging the battery lifetime of IoT devices, (2) securing

the data, and (3) balancing the traffic load when traveling throughout the network are

preferred in designing sensing devices for surveillance systems. Traditional Shannon-

Nyquist theorem states that signals need to be sampled at twice the bandwidth to

be recoverable. In IoT systems such as remote surveillance and astronomy satellites,

the Shannon Nyquist rate is costly, requires ample storage space and wide bandwidth

for transmission. Compressive sensing (CS), which requires only a few compressive

measurements to contain nearly all the useful information, breaks the limitation stated

by Shannon-Nyquist’s theory. CS has adapted the requirements and becomes one of

the effective lossy compression methods that are considered when designing devices

for IoT applications [69–71]. First, in the CS encoder, only matrices multiplication is

41

performed. The matrices multiplication is simple to be embedded in resource-limited

devices and ensures energy saving for IoT self-powered devices. Second, the mea-

surement matrix is only shared between the encoder and decoder makes the network

secure. Third, the amount of sent measurement is fixed throughout the time, ensuring

the traffic for transmission. Unlike the other compression standards, reconstructing CS

signals is to solve a nonlinear inverse problem [19]. Since different CS reconstruction

algorithms dissimilarly model the recovery solution, choosing a CS reconstruction al-

gorithm for an application is challenging. On the other hand, there is always space to

further improve the signals reconstructed by lossy compression methods. In this work,

a study on enhancing CS reconstructed images is proposed to improve the qualities of

CS reconstructed signals without changing the encoder and the decoder, keeping the

requirements of IoT solutions.

Surveillance cameras
 in smart cites

...

Display at end-user
devices

compressed
data

reconstructed
 images

decode
enhanced image

CSIE-M

Security monitors

Mobile devices

Signal
sensed by:

Surveillance
cameras in smart

homes

Decode and
enhance

image
qualities at

cloud

Compress
at camera

Figure 3.1: The proposed CSIE-M in IoT surveillance system.

Convolutional Neural Network (CNN) is well-known for learning complex functions

42

where the designed filters are not flexible enough to model. In recent years, CNN has

been widely applied and obtained remarkable results in image quality enhancement. In

this work, we take the next step towards an AIoT approach for enhancing CS recon-

structed images sensed by IoT devices (Figure 3.1). Images are sensed and encoded in

IoT cameras before being sent to the IoT cloud. Unlike the existing image enhance-

ment works, where enhancing the image relies on a single degraded image [31, 72–77] or

neighboring frames [78, 79], this work takes advantage of different CS reconstructed im-

ages with different qualities and introduces a deep learning-based compressive sensing

image enhancement framework using multiple reconstructed signals (CSIE-M). At IoT

cloud, compressed data are decoded by the commonly used CS reconstruction algo-

rithms: L1 equality constraints via primal-dual algorithm (L1EQPD) [26], Spectral

Projected-Gradient for L1 (SPGL1) [27], Orthogonal Matching Pursuit (OMP) [20],

and Sparsity Adaptive Matching Pursuit (SAMP) [21]. In learning multiple-to-one

mapping, it is necessary to decide which branch an image should be input. Therefore,

a No-reference quality assessment module, namely Scorenet, is proposed to score and

rank reconstructed images before feeding them to the quality enhancement network

by order of quality. In the quality enhancement module, a multiple-input residual

recurrent network (MRRN) is proposed for enhancing the reconstructed images by ex-

ploiting and enriching useful features via a recurrent mechanism. MRRN takes the

best-quality image, which will be added to the enhanced feature for the main branch.

The two lower-quality images are input to the supporting branches. Finally, enhanced

images at the IoT cloud are displayed in monitoring devices for surveillance solutions

or transfer to other image processing tasks such as recognition and detection. The

experimental result shows that CSIE-M improves 1.88 to 8.07 dB PSNR compared to

the main input image on various sampling rates from 0.125 to 0.75.

This work’s main contributions are summarized as follows. First, it is the first

time to design a compressive sensing image enhancement framework using multiple

43

reconstruction signals. In CSIE-M, a No-reference quality assessment module scores

and ranks reconstructed images before feeding them to the quality enhancement mod-

ule. Second, the proposal outperforms the state-of-the-art works in distorted image

enhancement. Finally, a study on the number of input images is also conducted to

show the effect of using multiple inputs on enhancing the reconstructed image quality.

3.2 Related Knowledge

3.2.1 Compressive sensing

Given sensed signal x that can be represented by a n× 1 sparse vector s in the domain

ψ, CS encoder simply calculates the m× 1 measurement y by:

y = Φx = Φψs (3.1)

where Φ is them×nmeasurement matrix fixed in the encoder and the decoder [19]. The

commonly designed measurement matrices include random matrices, binary matrices,

and structural matrices. The quotient of m and n defining the system’s compression

ratio, also known as sampling rate (SR), represents the amount of data sent to the

decoder. The process of decoder, on the other hand, is more complicated. In the

CS-based image compression, the decoder reconstructs the image x back into the pixel

domain by solving an underdetermined matrix equation where m < n. Therefore,

reconstructing x at the decoder is solving an ill-posed problem. There have been

many CS reconstructing algorithms include greedy algorithms, convex optimization,

and gradient-based algorithms. The proposal adopts L1 optimization include L1EQPD

[26] and SPGL1 [27], and greedy algorithms include OMP [20] and SAMP [21] for CS

image reconstruction.

44

3.2.2 Deep Learning-based distorted image enhancement

Image enhancement is one of the essential components in image processing and image-

display applications [80, 81]. Concerning deep learning-based distorted image enhance-

ment, single image enhancement [31, 72–77], and the multi-frame enhancement [78, 79]

are mainly focused in removing compression artifacts and denoising. Zhang et al. in-

troduce a denoising convolutional neural network (DnCNN) [31] that can deal with

different Gaussian noise levels, single image super-resolution, and JPEG image arti-

facts caused by different quality factors. For denoising real-noisy images, Anwar et al.

introduce a novel single-stage blind Real image denoising network (RIDNet) [73]. In

RIDNet, local skip connections, short skip connections, and long skip connections are

utilized to exploit low-frequency information over the feed-forward. Jia et al. intro-

duce a content-aware loop filtering scheme based on multiple CNN models (CACNN)

[72] for improving the performance of the High Efficiency Video Coding (HEVC) by

enhancing the quality of decoded frames. In [74], the authors introduce attention-

guided denoising convolutional neural network (ADNet). ADNet combines dilated

convolutions, standard convolutions, and an attention mechanism for real-noisy image

denoising and blind denoising. In [75], both noise removal and noise generation tasks

are trained in a Bayesian network that learns the joint distribution of the pairs of

the clean and distorted images. The authors [76] propose a Block artifact removing

convolutional neural networks (BARCNN) for JPEG image enhancement. BARCNN

can be integrated to the receiver side to enhance image quality without any additional

cost on the IoT node ends. Building upon on DnCNN, the authors [77] propose a

theoretically-grounded blind and universal deep learning image denoiser, namely Blind

Universal Image Fusion Denoiser (BUIFD), for additive Gaussian noise removal. Re-

cent approaches [78, 79] take advantage of the temporal correlation between adjacent

frames to enhance the low-quality image by using its neighboring high-quality video

frames. Apart from these works, this work proposes a deep network that enriches

45

Quality
Assessment
(scorenet)

L1EQPD

SAMP

OMP

CS reconstructed
 images by:

scoreL1EP

scoreSAMP

scoreOMP

best-quality
image

measurement

Convolution layer PReLU layer

Recurrent dense skip connections block

Quality Enhancement module: MRRN

2nd best-quality
image

3nd best-quality
image

sensor/camera

CS
 encoder

CS
 decoder

SPGL1

Enhanced
image

scoreSPGL

Figure 3.2: The proposed CSIE-M architecture. Sensed signal is compressed by CS in
cameras. At the decoder, compressed data (measurement) is recovered by different CS
reconstruction algorithms. Reconstructed images are judged by the No-reference qual-
ity assessment module Scorenet and fed to the quality enhancement network MRRN
by order of quality scores for producing the enhanced image.

and synthesizes useful information via a recurrent mechanism performing on extracted

features of CS decoded images.

3.3 The proposed CSIE-M framework

3.3.1 Overview of the CSIE-M framework

As mentioned above, there have been many approaches for solving the nonlinear in-

verse problem at CS decoder. Different CS reconstruction methods model the solution

differently, resulting images recovered with different qualities. Using different CS re-

constructed images provides more representations for CNN to exploit and enhance

the performance in recovering the original signals. To make full use of this property,

we propose a deep learning-based compressive sensing image enhancement framework

using multiple reconstructed signals that learns a multiple-to-one mapping from the

reconstructed images to the original one (shown in Figure 3.2).

First, a sensed signal is encoded by CS in sensors or cameras. At the decoder,

different CS reconstruction algorithms perform on the compressed data to obtain dif-

46

ferent reconstructed images. Let X = {xalg, alg ∈ {L1EQPD, SPGL, OMP, SAMP}}

indicate the images reconstructed by the four algorithms L1EQPD, SPGL, OMP, and

SAMP. In CSIE-M, the highest-quality reconstructed image takes the highest respon-

sibility in generating the enhanced image. The other inputs are considered additional

features generated by designed filters: CS reconstruction algorithms. We propose a No-

reference quality ranking module including a Deep Learning-based No-reference image

quality assessment (IQA) Scorenet for scoring and ranking CS reconstructed images.

Scorenet predicts the quality score zalg of image xalg as:

zalg = fscorenet(xalg) (3.2)

Images in list X are sorted based on the corresponding quality scores in list Z. The

best quality image x1, the second best-quality image x2, and the third best-quality

image x3 are fed to MRRN denoted as fMRRN , and the enhanced image Ie can be

formulated as:

Ie = fMRRN(x1, x2, x3) (3.3)

3.3.2 No-reference quality assessment module: Scorenet

In reality, the original image does not always exist. Therefore, full-reference met-

rics PNSR and SSIM cannot be used for assessing the distorted image quality. In this

work, we propose a Deep Learning-based no-reference quality assessment module, called

Scorenet, to guide the enhancement module. Our Scorenet simulates full-reference IQA

metrics: estimating the difference between the distorted image and the reference image.

Scorenet (shown in Figure 3.3) includes two main components: the Reference genera-

tive net G for generating the pseudo-original image and the Quality-score prediction

network S predicting the quality score of the distorted image.

Given the distorted image x, our objective is to infer the quality score z. In full-

47

reference IQA tasks, quality scores can be calculated by comparing the distorted im-

age and the reference image. Scorenet simulates the full-reference IQA by estimate

the pseudo-original image y′ = fθG(x) where fθG(x) indicates the learnt mapping of

Reference generative net G . Predicting score z of an image x can be formulated as:

z′ = fscorenet(x) = fθS(x, fθG(x)) (3.4)

where θG and θS denote the learnt parameters of G and S, respectively. In general,

the Reference generative net G has the same purpose of the Quality Enhancement

module MRRN: to generate undistorted images. We design the Reference generative

net and the Quality Enhancement module to share some architectures and the loss

function. The difference between the Reference generative net architecture and MRRN

architecture is the number of inputs, where the prior takes one, the latter takes three.

We define the basic convolution layer in our network as Conv(k, s) with k kernels

size s× s. For the Reference generative net G, the distorted image is first fed into two

convolution groups, each group is defined as Conv(32, 3) → PReLU → Conv(32, 3) →

PReLU . In Reference generative net G, PReLU activation function follows all the

convolution layers except the final one. We set stride and padding to one during

convolution. The main part of the Reference generative net G is the Recurrent dense

skip connection block (explained in section 3.3.3), also used in MRRN. Feature maps

outputted from the Recurrent dense skip connection block are synthesized in the final

Conv(32, 3) producing an enhanced feature. This enhanced feature is added onto the

distorted image x for a pseudo-original image y′.

In the quality-score prediction net S, ReLU activation function follows all the

convolution layer Conv(32, 3). Our network, inspired by the VGG16 model [82], aiming

to infer the quality score given the pair of a distorted image and the corresponding

pseudo-original image. Image is first split into 224×224 patches with a stride of 40.

A pair of 224×224 patches from the distorted image x and pseudo-original image

48

pseudo-original
 image

Distorted
image

Convolution layer

PReLU layer

ReLU layer

Pooling layer

...

...

Fully-connected layer

Predicted
MOS score

 Siamese
Conv. layer

Reference generative net

Quality-score prediction net
patches

Recurrent dense skip connections block

patches

Figure 3.3: The proposed Scorenet architecture. A distorted image is inputted to the
Reference generative net G for the corresponding pseudo-original image. Distorted
image and the pseudo-original image are then split into 224×224 patches by a stride
of 40 before being fed to Quality-score prediction net S. The final predicted score of
the input image is the average score of all patches.

y′ are fed to a group of Siamese convolution layer includes Conv(32, 3) → ReLU →

Conv(32, 3) → ReLU . We use a Siamese convolution on both the distorted and pseudo-

original images to extract comparable feature maps. The rest of the net then focuses

on finding the difference between these feature maps. Feature maps after Siamese

convolutional layer will be pooled by a Pooling layer with a window of 2× 2 to the size

of 112×112. Pooled feature maps from two inputs will be concatenated before feeding

into the network. The output from the final fully connected layer is the predicted Mean

Opinion Score (MOS) score of a patch. The score of the entire image is the average

score of all patches. L2 has been chosen as the loss function. Training S on N training

49

samples becomes minimizing loss function LS:

LS =
1

2N

N∑
i=1

(zi − fθS(xi, y
′
i))

2 (3.5)

3.3.3 Quality enhancement component: Multiple-input

Residual Recurrent Network (MRRN)

Recently, Li et al. introduce a recurrent neural network SRFBN [83] which has achieved

outstanding results in image super-resolution tasks. Inspired by [83], this work intro-

duces a feedback mechanism for enhancing the quality of input images. Our network

architecture MRRN (Figure 3.2) includes the main branch, two supporting branches,

a recurrent dense skip connections block, and a global skip connection for residual

learning. x1, x2, and x3 respectively denote the best, the second-best, and the third-

best-quality images by order of the predicted MOS scores. The original image before

CS encoding is denoted as y. The goal of our Quality Enhancement module is to learn

the mapping fMRRN between the input images x1, x2, x3 and the target enhanced

image y′:

y′ = fMRRN(x1, x2, x3; Θ) (3.6)

Input images are fed into a group of Conv(nf , 3) → PReLU → Conv(nf , 3) → PReLU

in each branch. In the quality-score prediction net S, the first convolution group

extracts the same features from the distorted image and the pseudo-original image.

The rest of the network S aims to find the differences between these features. MRRN,

on the other hand, aims to keep the diversity of extracted features from different input

images. Therefore, convolution layers for each input are preferred over a Siamese

convolution layer. We formulate the output feature map f at convolution layer lth at

50

branch k as:

fk
l = PReLU(fk

l−1 ∗ wk
l + bkl) (3.7)

where wk
l and bkl is respectively the learnt weight and bias of convolution layer lth in

branch k and fk
0 is {xk, k = 1, 2, 3}. After the first two convolution layers, nf feature

maps in each branch will be concatenated to a convolution layer f3:

f3 = PReLU(cat(f 1
2 , f

2
2 , f

3
2) ∗ w3 + b3) (3.8)

where cat(f1, f2, ...fn) denotes the concatenate operation for the list of the feature maps

f1, f2, ...fn on channel dimension. Later, the output from the 4th convolution layer f4

is input to the Recurrent dense skip connections block. Stride for every convolution

layer is set as one. To keep the size of input image through doing convolution, all the

paddings are set as (s− 1)/2.

Feedback mechanism. We introduce the Recurrent Dense skip connections block

(RDBlock) that integrates the two elements: depth and skip connections. In RDBlock,

no information is omitted: the extracted low-level features F r
in are reused in each loop

and inside the RDBlock, and the high-level features F r−1
out are also used to fine-tune the

low-level feature input F r
in of RDBlock. RDBlock does recurrence for R times, each

r = {1, 2, ..., R} corresponds to an output ŷr of the network. In the loop rth, RDBlock

returns an output of F r
out given a pair of F r

in and F r−1
out :

F r
out = RDBlock(F r

in, F
r−1
out) (3.9)

F r−1
out at r = 1 is set as F r

in. For r ≥ 2, the output feature maps F r
out are stored

and be concatenated with the F r
in for the next loop until r = R. In training recurrent

neural network, the feedback mechanism receives the information from previous loop

(r− 1)th to further improve the input of the recurrent mechanism. We denote g0 is the

51

input of the RDBlock:

g0 = cat(F r
in, F

r−1
out) (3.10)

Our RDBlock is built from nine convolution layers and dense skip connections. In each

loop rth, the input g0 and feature maps from the lower-level layers are concatenated and

fed to the higher-level ones. Let gj,j∈[1,9] denote output from convolution layer jth. In

our RDBlock, all layers jth, excluding the final one, synthesize information from (j−1)

previous layers and the input g0. The final layer g9 takes only feature maps outputted

by convolution layer g8. The output of each convolution layer at layer jth, j < 9 in the

RDBlock defined as:

gj = PReLU(cat(g0, g1, ..., gj−1) ∗ wj + bj) (3.11)

Convolution layer jth with j ∈ [1, 8] in RDBlock takes an input of (j+1)×nf concate-

nated feature maps and outputs nf feature maps. In this work, we set the value of nf to

32 for all convolution layer in RDBlock and the number of loop R is set as four. There

is no PReLU activation for the final convolution of MRRN. The enhanced feature from

each loop will be added onto the best-quality image input x1 for the output ŷr. There

is only one ground-truth label y0 for R outputs of the network. In testing, only output

from the final loop yR is considered the result of the network. However, all the outputs

ŷr are used to calculate the loss function:

L(Θ) =
1

M.R

M∑
i=1

R∑
r=1

Ir ∥ yi0 − ŷir ∥1 (3.12)

where M is the number of training samples, and Θ denotes the learned network pa-

rameters. L1 loss is used to optimize the network parameters. Ir is the importance of

output r in the outputs list. Following [83], we set Ir to 1 for all the outputs.

52

3.4 Experimental results and comparison

3.4.1 Experiment settings

MRRN settings. For training MRRN, we use images with different sizes from DIV2K

[84] for the training set and images BSD500 training set [85] for evaluating during

training. Set 5 [86], Set 14 [87], Urban100 [88] and 200 images from the testing set

of BSD500 [85] are used for testing. The Inverse Fast Walsh-Hadamard transform

and binary Hadamard matrix are applied for transforming and measuring the input

images. The other CS reconstruction algorithms and other matrices can replace the

reconstruction algorithms and measurement matrix used in CSIE-M. Images in the

training and testing sets are fed to the Scorenet to get the ranking scores and then fed

to the Quality Enhancement module MRRN by order of quality scores.

Scorenet settings. For training Scorenet, we mostly focus on the dataset TID2013

[89], which is commonly used for learning no-reference IQA tasks. TID2013 contains

a total of 3000 images generated by 24 types of distortions. We randomly divide

reference images into 80% for training and 20% for testing as the no-reference IQA

works have done [90]. Distorted images will go to the set that its reference image

belongs to, ensuring no overlap between the training and testing sets. In testing,

20% images in the testing set are used for evaluating our Scorenet. Like the other

IQA work [90], we evaluate the efficiency of our Scorenet via Spearman’s Rank Order

Correlation Coefficient (SROCC) and the Linear Correlation Coefficient (LCC). The

higher SROCC and LCC represent the higher correlation between the predicted scores

and the human-ranked MOS scores.

Training settings. Our experiments on the CSIE-M framework are conducted on

Pytorch 1.0.0 with NVIDIA Tesla V100 GPUs’ support. Adam optimization is used

in training all the networks in CSIE-M. In training MRRN, the learning rate starts

at 0.0001 and is divided by two every 300 epochs. The commonly used Peek-signal-to-

53

noise (PSNR) and Structural Similarity Index (SSIM) metrics are applied for evaluating

quality enhancement results. For these metrics, the higher value indicates a better

result. Four models for four sampling rates (SR) of 0.125, 0.25, 0.5, and 0.75 are

trained and converged in different training epochs.

3.4.2 Ablation studies

Study on Scorenet. Table 3.1 presents the ten-time average of SROCC and PLCC

metrics of our Scorenet compared to the widely used Full-reference IQA metrics PSNR

and SSIM. Observe from Table 3.1, our Scorenet performs closer prediction to the hu-

man eyes (presented in MOS score) than the Full-reference IQA metrics PSNR and

SSIM. In detail, we obtain SROCC relative improvements of 28.02% and 21.02% com-

pared to PSNR and SSIM metrics, respectively. In the PLCC metric, improvements of

30.52% and 21.88% are achieved compared to PSNR and SSIM metrics. These results

show an adequate ability of Scorenet to guide MRRN on enhancing the reconstructed

image quality.

Table 3.1: SROCC and PLCC comparison on TID2013 dataset of our Scorenet com-
pared to the widely used metric PSNR and SSIM. Note that Blue indicates the best
result.

Metric PSNR SSIM Scorenet (Ours)

SROCC 0.571 0.604 0.731

PLCC 0.593 0.635 0.774

To verify the effectiveness of the proposed Scorenet, Scorenet has been replaced by

a random-based input ranking. We perform a ten-time random-based input ranking

and average these results for comparison. Table 3.2 shows the quality comparison of

using random-based ranking and Scorenet-based ranking. As observed from Table 3.2,

applying Scorenet can gain up to 1.127 dB and 4.8 ×10−3 on average PSNR and SSIM

54

improvements compared to randomly setting the input images of MRRN when it comes

to three-input MRRN. On the other hand, CSIE-M with multiple-input images and

Scorenet can significantly improve the reconstructed image quality compared to using

one input image or randomly set the order for multiple input images.

Table 3.2: PSNR and SSIM×10−2 comparison of the entire proposal with and without
Scorenet in N-input MRRN at sampling rate of 0.5.

Number of
MRRN
inputs

Max quality diff.
between inputs

Random-based
input ranking

Scorenet-based
input ranking

∆PSNR / ∆SSIM PSNR / SSIM PSNR / SSIM

1 0.23 / 0.21 31.647 / 94.862 32.772 / 95.207

2 0.218 / 0.21 31.747 / 94.882 32.964 / 95.36

3 0.33 / 0.22 31.882 / 94.94 33.000 / 95.387

4 0.33 / 0.21 31.871 / 94.946 32.978 / 95.384

Study on the number of input images. This experiment validates the effect

of the number of input images on the performance of enhancing CS reconstructed

images. We train our dataset on single-input, two-input, three-input, and four-input

MRRN. The N-input MRRN takes N images ranked by the No-reference quality rank-

ing module. To fully evaluate the performance of N-input MRRN, reconstructing time

is also considered besides PSNR and SSIM. Table 3.2 shows the PSNR and SSIM of

N -input network, N ∈ {1, 2, 3, 4}. We choose a sampling rate of 0.5 for validating this

experiment. Obtain from Table 3.2, the three-input MRRN obtains the highest perfor-

mance compared to the other N-input MRRNs. From single-input MRRN to two-input

MRRN, average PSNR and SSIM have significantly increased by 0.19 dB and 0.002, re-

spectively. It is well-known in learning deep networks that the more representations are

obtained, the better results can be achieved. In learning to enhance CS reconstructed

images, other supporting images x2 and x3 can be considered the representations ob-

tained from special filters: CS reconstruction algorithms. Moreover, the reconstructing

time increases the amount of five milliseconds from single-input MRRN to two-input

55

Table 3.3: CSIE-M performance in terms of PSNR and SSIM comparison on difference
combinations on CS reconstruction algorithms.

SR
CSIE-M CSIE-M* CSIE-M**

PSNR SSIM PSNR SSIM PSNR SSIM

0.125 26.824 0.825 26.815 0.813 26.811 0.786

0.25 27.747 0.864 27.612 0.849 27.691 0.849

0.5 33.000 0.953 32.924 0.949 32.951 0.948

0.75 38.240 0.984 38.193 0.982 38.186 0.982

SR
CSIE-M*** CSIE-M**** CSIE-M*****

PSNR SSIM PSNR SSIM PSNR SSIM

0.125 26.823 0.814 26.781 0.813 26.823 0.814

0.25 27.665 0.849 27.707 0.853 27.746 0.853

0.5 32.905 0.949 32.982 0.949 32.981 0.949

0.75 38.198 0.982 38.201 0.982 38.164 0.982

Note: Blue indicates the best result and orange indicates the second best result.
Reconstruction algorithms for inputs: CSIE-M: L1EQPD, SPGL, OMP, and SAMP.
CSIE-M*:TwIST, StOMP, GroupBP, and CoSaMP. CSIE-M**: SAMP, OMP,
CoSaMP, and StOMP. CSIE-M***: GroupBP, SPGL, L1EQPD, and TwIST. CSIE-
M****: SAMP, OMP, TwIST, and GroupBP. CSIE-M*****: CoSaMP, L1EQPD,
SPGL, and StOMP.

MRRN. That has shown the advantage of multiple-input MRRN compared to single-

input MRRN: the image quality is significantly improved, and the running time slightly

increases. We report the small differences in performance of multiple-input CSIE-M

networks, and the best performance, over the test images, belongs to the three-input

MRRN.

Performance on other CS reconstruction algorithms. We present the CSIE-

M performance on different CS reconstruction algorithms in Table 3.3. In this exper-

iment, four other CS reconstruction algorithms from convex optimization algorithms

include Two-step iterative shrinkage/thresholding (TwIST) [91] and Group-sparse ba-

sis pursuit (GroupBP) [92], and from greedy algorithms include Compressive Sam-

pling Matching Pursuit (CoSaMP) [22] and Stagewise Orthogonal Matching Pursuit

56

Table 3.4: Study on numbers of the recurrent iteration R of the network under PSNR
and SSIM ×10−2 at sampling rate 0.5.

Dataset
R = 1 R = 2 R = 3

PSNR SSIM PSNR SSIM PSNR SSIM

Set 5 37.485 97.160 37.552 97.173 37.559 97.177

Set14 33.657 94.920 33.673 94.920 33.668 94.940

BSD500 33.278 95.429 33.318 95.452 33.371 95.493

Urban100 31.544 94.893 31.632 94.945 31.773 95.056

Average 32.817 95.266 32.871 95.297 32.949 95.358

Dataset
R = 4 R = 5 R = 6

PSNR SSIM PSNR SSIM M PSNR SSIM

Set5 37.596 97.19 37.582 97.196 37.601 97.198

Set14 33.740 94.927 33.767 94.948 33.765 94.953

BSD500 33.403 95.509 33.421 95.525 33.424 95.521

Urban100 31.860 95.115 31.923 95.155 31.932 95.145

Average 33.000 95.387 33.032 95.410 33.036 95.400

Note: Average are calculated over the number of images. Blue indicates the best
result and orange indicates the second best result.

(StOMP) [93] have been used. Over the testing sets, quality difference between im-

ages reconstructed by the above algorithms is up to 1.5 dB, 2.07 dB, 3.22 dB, 2.79 dB

PSNR, while the CS reconstruction algorithms used in the original proposal is up to

0.04 dB, 0.07 dB, 0.33 dB, and 0.2 dB PSNR at sampling rates of 0.125, 0.25, 0.5, and

0.75, respectively.

Table 3.3 illustrates the quantitive results (PSNR and SSIM) comparison among

the combinations of CS reconstruction algorithms: the proposed CSIE-M, the combi-

nation of the other four CS reconstruction algorithms (CSIE-M*), the combination of

the greedy algorithms (CSIE-M**), the combination of convex optimization algorithms

(CSIE-M***), the other combination of CSIE-M used greedy algorithms and other con-

vex optimization algorithms (CSIE-M****), the combination of CSIE-M used convex

57

0.80

0.85

0.90

0.95

1.00

0 0.25 0.5 0.75
25

30

35

40

0 0.25 0.5 0.75

Sampling rate

P
S

N
R

 (
d

B
)

Sampling rate

Pretrained

DnCNN

Pretrained

RIDNet

Pretrained

ADNet

Pretrained

BUIFD

CSIE-M

(Ours)

Pretrained

CSIE-M (Ours)

S
S

IM

Figure 3.4: PSNR and SSIM comparison to the pretrained state-of-the-art in distorted
image enhancement under sampling rates of 0.125-0.75.

optimization algorithms and the other greedy algorithms (CSIE-M*****). It can be

seen that CS reconstruction algorithms used in CSIE-M obtain the highest quality in

terms of PSNR and SSIM over all the sampling rates. Generally, the other combina-

tions reduce the quality of the enhanced images up to an amount of 0.136 dB PSNR

and 3.8×10−2 SSIM on average. Also, note that even though two CS reconstruction

algorithms are shared between some groups, the results are different since the input

images fed to the network are different. For example, OMP, SAMP, and L1EQPD re-

constructed images of foreman (Set14) have been fed into MRRN as the best-quality,

the second-best quality, and the third-best quality image, respectively. Meanwhile, the

feeding order in CSIE-M** is respectively StOMP, OMP, and SAMP reconstructed

images. It concludes that choosing top-three CS reconstruction algorithms and the

order of input images of MRRN take a high responsibility on generating high-quality

images.

Study on numbers of iteration R of the Recurrent dense skip connections

block. In this experiment, we find the correlation between R and network performance.

The investigation is conducted on the three-input network under the sampling rate of

0.5. We separately train five CSIE-M models in which the recurrent iteration R is set

as 1, 2, 3, 4, 5, and 6. In Table 3.4, a clear trend is performed: the larger R, the better

quality image. At R = 1, the network is considered a traditional neural network. It

obtains the lowest image quality compared to using the recurrent neural network where

58

R ≥ 2. The reconstructing time between different Rs is about four ms if the number of

loops is increased by one. This experiment will consider the performance and training

time of different Rs. For R = 1, the network takes 45 hours to converge. For recurrent

network R ≥ 2, it takes about three days for training the network whose recurrent

iteration is 2, 3, and 4. For R = 5, it takes more than three days to converge on the

DIV2K dataset. Observe from Table 3.4, the network with R = 5, 6 shows the best

performance; however, on the other hand, the training time increases. The recurrent

iteration of four has average performance while the complexity is in the middle. The

following experiments take a feedback iteration of four for analysis.

3.4.3 Overall results.

Table 3.5 shows our results in ∆PSNR and ∆SSIM×10−2 of our proposal CSIE-M com-

pared to the main input x1 since x1 takes the highest responsibility in generating the

enhanced image. Generally, CSIE-M strongly improves the quality of CS reconstructed

images. In the PSNR evaluation metric, the best and the lowest improvements belong

to the sampling rate of 0.75 and 0.25, respectively. In words, CSIE-M improves an

average PSNR of 2.01 dB, 1.88 dB, 3.89 dB, and 8.07 dB for the sampling rates of

0.125, 0.25, 0.5, and 0.75, respectively. Under the SSIM evaluation, the best and the

lowest improvements belong to the sampling rate of 0.125 and 0.25, respectively. No-

tably, CSIE-M shows outstanding results on dataset Urban100 which contains aliasing

edges and complex scene structures. We obtain improvements of 4.71 dB PSNR and

7.04×10−2 SSIM average all the sampling rates on Urban100.

Comparison to the State-of-the-art: For a fair comparison, we retrain the

related work models DnCNN [31], RIDNet [73], CACNN [72], ADNet [74] and BUIFD

[77] on our training set. For the image denoising works [31, 73, 74, 77], we set the

CS reconstructed images as the noisy input image, and the original image is set as

the clean ground-truth. For enhancing the decoded image by HEVC [72], we assign

59

Table 3.5: ∆PSNR and ∆SSIM×10−2 comparison to the state-of-the-arts.

Set SR

RIDNet CACNN ADNet BUIFD CSIE-M

ICCV’19 [73] TIP’19 [72] N.N. ’20 [74] TIP’20 [77] (ours)

∆P ∆S ∆P ∆S ∆P ∆S ∆P ∆S ∆P ∆S

Set5

1/8 3.23 6.72 3.06 5.94 3.37 6.44 3.38 6.31 3.71 6.76

1/4 3.02 4.96 2.61 4.09 3.01 4.91 3.02 4.59 3.46 5.14

1/2 4.30 2.85 4.65 2.82 4.79 2.86 4.42 2.74 5.05 3.04

3/4 5.86 2.86 7.31 2.99 5.80 2.77 7.11 2.90 8.59 3.28

Set14

1/8 2.08 5.72 2.00 5.26 2.14 5.75 2.14 5.50 2.32 5.96

1/4 1.90 3.86 1.63 3.34 1.83 3.77 1.85 3.62 2.08 4.18

1/2 3.18 3.66 3.37 3.58 3.45 3.67 3.13 3.49 3.62 3.82

3/4 5.15 4.09 6.48 4.45 4.88 3.91 6.61 4.55 7.75 4.87

BSD500

1/8 1.45 4.93 1.41 4.64 1.50 4.97 1.51 4.93 1.65 5.3

1/4 1.24 3.12 1.13 2.80 1.26 3.12 1.24 3.11 1.46 3.57

1/2 2.81 3.95 3.03 3.80 3.15 4.14 2.91 3.77 3.40 4.15

3/4 5.37 4.69 6.57 4.80 5.01 4.44 6.40 4.70 7.73 5.19

Urban
100

1/8 2.10 7.37 2.07 6.88 2.24 7.73 2.14 7.18 2.60 8.40

1/4 2.09 5.71 1.82 4.80 2.09 5.71 1.91 5.19 2.61 6.65

1/2 3.59 5.37 4.04 5.52 4.32 5.98 3.57 5.15 4.86 6.16

3/4 5.53 5.81 6.77 6.15 5.36 5.63 7.27 6.26 8.78 6.95

Average

1/8 1.71 5.76 1.67 5.39 1.79 5.89 1.77 5.68 2.01 6.32

1/4 1.56 4.00 1.39 3.47 1.57 3.99 1.51 3.81 1.88 4.59

1/2 3.09 4.36 3.38 4.31 3.56 4.67 3.15 4.18 3.89 4.75

3/4 5.42 4.99 6.64 5.18 5.13 4.76 6.69 5.16 8.07 5.70

Note: Blue indicates the best result and orange indicates the second best result.

the network to take an input and a ground truth of reconstructed images and the

corresponding original image, respectively. All the settings are default. No noise or

preprocessing is added to the training data of these related works. Since MRRN and

related works’ inputs are from different CS reconstruction algorithms, it is better to

compare how much quality improvements each approach can obtain. In this comparison

60

experiment, we assume the highest quality image in PSNR for the related works. While

the difference in image quality of the related works’ input and CSIE-M main input x1

is 0.02dB PSNR, the proposal significantly improves the image quality in PSNR and

SSIM. In other words, the related works increase 1.39 dB to 6.69 dB, where ours is

1.88 dB to 8.07 dB in average PSNR improvement over the testing images. In terms of

SSIM, our improvement is 4.59×10−2 to 6.32×10−2 while the others are from 1.45×10−2

to 5.68×10−2 on average. Our proposal shows significant improvements compared to

the related works in a high sampling rate of 0.75 and complex structures such as edge

and aliasing in the test set Urban100. At a sampling rate of 0.75, CSIE-M scores an

improvement of 8.07 dB and 5.7 ×10−2 in terms of PSNR and SSIM, where the related

works are up to 6.69 dB PSNR and 5.16 ×10−2 SSIM improvement in average.

We also make a comparison to the pre-trained related works (Figure 3.4). In this

experiment, we compare our models using training from scratch and using the pre-

trained model with the related works [31, 73, 74, 77]. Noisy images from DIV2K

and Flickr2K created by BUIFD [18] at noise levels of 10, 15, and 20 are first used for

training MRRN. After convergence, the pre-trained model is used as initialized network

weights for training on our dataset. Pertaining to applying transfer learning to MRRN,

it has been recorded that image quality improvements have been increased by averages

of 0.13dB PSNR and 4×10−3 SSIM compared to training from scratch. Compared to

the related works, both pre-trained and training-from-scratch CSIE-Ms obtain 0.3 dB -

2.9 dB PSNR and 0.8×10−2 to 2.3×10−2 SSIM improvements compared to the related

works.

We perform the Rate-distortion (RD) curves to visualize the coding performance of

CSIE-M compared to the related works (Figure 3.5). In these charts, the horizontal axis

and vertical axis indicate the four sampling rates and the corresponding PSNR of the

images refines by CNN. We randomly pick images from Set5, BSD500 testing set, and

Urban100. It can be seen that at each sampling rate, our proposal CSIE-M exceeds the

61

30

35

40

45

0 0.25 0.5 0.75

30

35

40

45

0 0.25 0.5 0.75

P
S

N
R

 (
d

B
)

35049 (BSD500 test set) Baby (Set 5)

Sampling rate

20

25

30

35

40

0 0.25 0.5 0.75

DnCNN

RIDNet

ADNet

BUIFD

CSIE-M (Ours)

CACNN

Img_041 (Urban100)

P
S

N
R

 (
d
B

)

Figure 3.5: RD-curves of CSIE-M and related works on sampling rates 0.125-0.75.

related works in the PSNR metric. Generally, the RD curves of CSIE-M and the related

approaches are distinct. In the complex scene of img 004 and img 041 of Urban100,

there are significant improvements compared to the related works. Moreover, the

improvement of CSIE-M is more stable than related works. In img 041, BUIFD shows

third place in terms of PSNR at sampling rates of 0.125 and 0.25, sixth place at

sampling rate 0.5, and second place at sampling rate 0.75.

Figure 3.6 visualizes the CS enhanced images by CSIE-M and the related works

under sampling rates of 0.125-0.75. From top to down, every two rows are images

reconstructed from sampling rates of 0.75 to 0.125. Observe from figure 3.6, CSIE-

M returns the enhanced image with sharper edges than the related works. CSIE-M

removes compression artifacts such as ringings and aliasing. At the low sampling rates

62

32.88/0.9633.11/0.97 34.31/0.97 6103432.89/0.96 33.39/0.96 32.72/0.96

RIDNetDnCNN
CSIE-M

(ours)
Ground truth Entire frameADNet CACNN BUIFD

25.94/0.9127.27/0.92 28.35/0.94 Butterfly27.17/0.92 26.74/0.92 27.34/0.93

27.68/0.9526.56/0.94 30.08/0.9727.76/0.95 27.60/0.94 27.72/0.96

32.6/0.9432.00/0.94 33.51/0.94 img_08232.97/0.94 32.3/0.94 32.51/0.94

29.44/0.9529.72/0.96 31.31/0.9730.39/0.96 29.66/0.96 30.46/0.96

24.62/0.8224.21/0.81 24.78/0.8324.47/0.82 23.99/0.81 24.04/0.81

31.52/0.9630.88/0.95 33.24/0.9731.90/0.96 30.88/0.95 31.84/0.96

29.29/0.8229.05/0.82 29.45/0.8429.39/0.83 29.15/0.82 29.34/0.82

img_097

img_030

img_029

249021

img_024PSNR/SSIM

PSNR/SSIM

PSNR/SSIM

PSNR/SSIM

PSNR/SSIM

PSNR/SSIM

PSNR/SSIM

PSNR/SSIM

Figure 3.6: Visualizations of reconstructed images enhanced by DnCNN [31], RIDNet
[73], CACNN [72], ADNet [74], BUIFD [77], CSIE-M (ours) under the sampling rates
of 0.125-0.75, and the ground-truth label.

63

of 0.125 and 0.25, CSIE-M sharpens the local details such as blurring edges and aliasing.

At high sampling rates of 0.5 and 0.75, where more information is sent to the decoder,

CSIE-M tends to produce better structures in the enhanced images.

3.5 Chapter conclusion

Different from the other image compression standards, such as JPEG and JPEG2000,

CS can reconstruct many images with different qualities. Using this property, this is

the first time to propose a deep learning-based compressive sensing image enhancement

framework using multiple reconstructed signals. In the decoder, reconstructed images

are scored and ranked by a No-reference quality ranking module before feeding to the

quality enhancement module. In the quality enhancement module, low-level and high-

level features extracted from CS reconstructed images are exploited and enriched by

the proposed Recurrent dense skip connections block. As a result, 1.88-8.07dB PSNR

improvements under the sampling rates of 0.125-0.75 have been obtained. We further

experimented on the effectiveness of CSIE-M with and without the No-reference quality

ranking module. The result shows that 1.127 dB PSNR can be improved when using

the No-reference Quality enhancement module. Moreover, our framework CSIE-M,

which utilizes multiple-input images to enhance the reconstructed image quality, has

outperformed the one-to-one learning networks. The proposal can be integrated into

IoT imaging systems to enhance the CS reconstructed images, giving better visual

quality for end-users and a promising approach for designing AIoT systems.

64

Chapter 4

In-loop filtering image enhancement

for video encoder-decoder

4.1 Introduction

Common video coding standards divide input video into different levels for prediction.

Input video is first split into group of pictures, each group could consist of intra frame

(I frame), and predictive coded picture (P frame) or bipredictive coded picture (B

frame). For more accurate compensation, common video coding standards perform

either intra or inter coding on current frame to be encoded. In inter coding, motion

compensated prediction (MCP) first searches for the best matching block among the

already reconstructed frames in the first reference picture list (List 0) and the second

reference picture list (List 1). Fig. 4.1 demonstrates the motion search video coding.

MCP aims to predict the current frame from the reference frames which are previ-

ously reconstructed and store the residual along with the motion vector between the

corresponding blocks, which benefits for reducing the temporal redundancy in inter

coding. Since converting signals from the analog domain to the digital domain may

omit some data, there is no perfect matching block for compensating the current block.

Although multiple coding modes such as fractional interpolation [14] and affine motion

estimation [94, 95] have been proposed for better inter block prediction, there is rarely

a complete fit for this data.

Beside MCP, lossy compression technique quantization is another main factor caus-

ing the discontinuities on reconstructed images. Fig. 4.2 illustrates the process of

quantization and dequantization in both encoder and decoder. After transform and

65

Reference frame

Frame-to-be-encoded
(current frame)

(current block)

(reference block)

Motion vector

Motion
compensation

Figure 4.1: Motion compensation in inter coding. Block-based inter coding increases
the discontinuities on reconstructed images.

Quantizer

DCT
Coefficient

Quantized DCT
block

Transform

Dequantize
& inverse
transform

Residual

Reconstructed residual
Reconstructed block

Original block

Predicted block

Figure 4.2: Lossy compression technique, quantization, reduces the possibility for fully
reconstructing current block.

quantization, signals can not be fully reconstructed, leaving artifacts on reconstructed

images due to the loss of high frequency information.

The upcoming video coding standard Versatile Video Coding (VVC) [2] has outper-

formed its predecessor High Efficiency Video Coding (HEVC or H.265 [12]). Although

66

gaining 30-50% bitrates saving over HEVC, VVC coding performance is still affected by

block-based coding and lossy compression that causes the missing information and cod-

ing distortions such as edges, blurring, ringing artifacts on the reconstructed images.

The Joint Video Team (JVT) of ITU-T investigates in-loop filtering (ILF) includes

deblocking filter (DBF), sample adaptive offset (SAO), and adaptive loop filter (ALF)

to reduce these artifacts. Compared to its predecessor, the previous state-of-the-art

(SOTA) High Efficiency Video Coding (HEVC or H.265) [12], VVC can perform up

to 50% bitrate reduction at the same reconstructed image quality. Although remark-

able coding performances have been obtained, these modern video coding standards

still suffer from undesirable blocking, noisy, and blurry artifacts on final reconstructed

frames. Therefore, in-loop filtering (ILF) has been introduced to remove the coding

artifacts of reconstructed images. In Advanced Video Coding (AVC or H.264) [11], the

prior video coding standard to HEVC, ILF adopts deblocking filter (DBF) for removing

blocking artifacts. In HEVC ILF, sample adaptive offset (SAO) [15] is exploited after

DBF. Later on, luma mapping with chroma scaling (LMCS) and adaptive loop filter

(ALF) [96] are introduced besides DBF and SAO in the ILF of VVC. These ongoing

developments demonstrate that there is always a space to improve further the designed

ILF presented in lossy video coding standards.

In recent years, deep learning (DL) and its notable representative convolutional

neural network (CNN) have become prominent approaches to reconstructed image

enhancement. Dong et al. [34] first introduced an end-to-end deep convolution neural

network for compression artifact removal, uncovering the ability of CNN in removing

compression artifacts and enhancing reconstructed images. Later on, different CNN

architectures are used for further improving the coding efficiency of modern video

coding standards [60, 97–100]. For more accurate pixel compensation, recent researches

[72, 101–104] have introduced DL-based ILF enhancement at the coding tree unit

(CTU) level, aiming to refine the reconstructed image to local levels compared to

67

the entire frame. At each CTU, the rate-distortion (RD) costs for each ILF mode

are calculated for the default ILF of VVC and the DL-based filters. The chosen mode,

whose RD-cost is the lowest among the candidate modes, is used for filtering the current

CTU. For signaling the decoder about the ILF mode of current CTU, bit(s) indicates

the ILF mode is compressed under a syntax element defined in Context-adaptive binary

arithmetic coding (CABAC) mode. It is apparent that current studies have not made

the most of coding information, leaving space for further improvements.

In this work, we take advantage of the encoder and decoder resources to enhance

the VVC reconstructed images from the local regions, thus improving the entire image

quality. This work first introduces the Spatial-Temporal In-loop filtering (STILF) [1]

for VVC: the default ILF of VVC, our Self-enhancement CNN with CU map (SECUM),

and our Reference-based enhancement CNN with Optical Flows (REOF). Besides a

VVC reconstructed image, SECUM takes the CU partition information in the encoder

as one of the inputs. In [104], the authors proposed Reference Frame Selector (RFS)

for multi-frame enhancement. In this work, we take a different approach to defining

REOF. Reference picture sets including List 0 and List 1 defined by VVC are used

as references to avoid the extra computations and keep the references specified by the

coding standards. Compared to the related works, we explore and utilizemore potential

resources at the encoder and the decoder. These resources include reference picture sets,

List 0 and List 1, reference pictures, and their picture order count (POC) defined by the

video coding standards. After filtering, instead of performing RD cost-based ILF mode

selection, this work exploits and performs the autonomous mode selection (AMS) using

a reinforcement learning approach (STILF-AMS). Our agent is trained to predict the

ILF mode of each and every CU in the CU partition. Besides, we adopt split actions on

CUs, allowing us to exploit deeper coding unit levels. By these designed filtering and

split actions, STILF-AMS can refine the pixel value to the local levels that are smaller

than the CU partition of VVC without storing any bits for indicating ILF mode, thus

68

optimizing both rate and distortion. As a result, we outperform VVC and the state-

of-the-art in deep learning-based ILF enhancement. Remarkably, up to 18% and an

average of 5.9% bitrate savings have been obtained under all configurations. The main

contributions of this work are summarized as follows:

• This work utilizes various coding information and presents an adaptive Spatial-

Temporal ILF for the SOTA video coding standard VVC. Besides the ILF from

VVC, STILF-AMS proposes a set of ILFs: SECUM network exploring the spa-

tial information within the frame, and REOF network exploiting the temporal

correlations among frames.

• We propose a reinforcement learning-based autonomous ILF mode selection

(AMS) scheme, enabling the ability to adapt to different coding levels. Our

agent network is trained to predict the new CU partition and the ILF mode

for each CU. By predicting the ILF mode, we cost zero bit for signaling the

decoder. Exploring ILF at CU levels, STILF-AMS has gone over the CTU-wise

ILF selection presented in the existing works.

• STILF-AMS gives a state-of-the-art performance compared to other deep

learning-based ILF enhancements for modern video coding standards. Moreover,

our STILF-AMS is CU size-independent and requires absolutely no additional

design to adapt to different video coding standards.

The rest of this paper is organized as follows. Section 4.2 provides a brief overview of

the deep learning-based ILF for current video coding standards. Section 4.3 presents

the proposed STILF-AMS in details. Finally, we report the experimental results in

Section 4.4 and conclusion in Section 4.5.

69

4.2 Related Works

4.2.1 Deep learning-based In-Loop filtering for video coding

Besides the built-in ILF, deep learning approaches are widely used in enhancing recon-

structed images by video coding standards. Recent research targets designing deeper

and more complex networks for better quality compensation. In [99], divergence and

second derivative of the input image are used as the attention mechanisms in enhanc-

ing VVC reconstructed video frames. The works [97, 98] adopt global skip connections

for enhancing VVC reconstructed images. In [60], a residual highway convolutional

neural network (RHCNN), structured from residual highway units and convolutional

layers, is proposed to improve the performance of HEVC. However, directly replacing

or integrating ILF on top of video coding standards might not take full advantage

of different in-loop filters. Switch mode-based ILF strengthens the conventional ILF

with deep learning-based filters. In [101], Squeeze-and-Excitation Filtering CNN (SE-

FCNN) consists of Feature EXtracting subnet and Feature ENhancing subnet, objects

to enhancing the default ILF in HEVC. To reduce the performance loss of a single

CNN, Jia et al. propose a content-aware CNN [72] with a switch-mode at CTU level

to improve the adaptability of ILF. Huang et al. propose an adaptive reinforcement

learning-based ILF (ALRF) [103] for improving the ILF of VVC. Although a network

selection is performed, a final RD cost-based CTU-wise ILF mode selection following

the filters selection eventually increases the bitrate. In the work [104], the authors

introduce multi-frame ILF with a switch-mode selection for reducing compression ar-

tifacts, thus improving coding efficiency. The coding mode is chosen from the default

ILF, the single frame enhancement, or the multi-frame enhancement. For multi-frame

enhancement, reconstructed frames are selected by the reference frame selector (RFS)

before being used for enhancing the current image. Since the latest video coding stan-

dard VVC on its developed, there have been many studies on enhancing the in-loop

70

filters [97–100, 105, 106]. In [97, 98], global skip connection is used for learning the

residual between the image distorted by VVC encoding and the raw video frame. In

[100, 106], skip connections have play viral role in designing the dense residual con-

volutional neural network based in-loop filter (DRNLF) [100] and dense residual con-

volutional neural network (DRN) [106] for VTM reconstructed image enhancement.

The authors of [105] designed an Attention-based Dual-scale CNN (ADCNN) to im-

prove the quality of luminance and chrominance components for VVC decoded images.

During the feedforward, encoding information such as Coding Unit (CU) map and

quantization parameter (QP) have been used as the attention mechanisms. Dai et al.

[107] proposed Variable-filter-size Residue-learning CNN (VRCNN) that replace HEVC

Deblocking filter and SAO.

Although distortion is well handled at the CTU level, the switch mode-based ap-

proach falls to two main drawbacks. First, the existing works can only perform on

CTU level, which is fixed to 64 × 64 in HEVC and 128 × 128 in VVC while blocking

artifacts mainly appear on CU level. Second, to adapt to smaller levels than CTU,

such as coding unit (CU), bits for indicating ILF modes are required. Eventually, this

approach is not bitrate-friendly. A possible solution for deciding an ILF mode at local

levels is to train a network to predict the best ILF mode given reconstructed pixel val-

ues. The following Section will summarize some related works on deep learning-based

mode decisions in video coding.

4.2.2 Deep learning-based mode decision in video coding

Mode decision is one of the key components that bring high coding efficiency to the

video coding standards. It is apparent that the more modes presented, the more pos-

sibility that a coding unit is better predicted. However, this coding efficiency is traded

by very high computational complexity. CNN-based intra-mode predictions [108, 109]

have been presented for replacing the conventional 35 intra-coding modes in HEVC:

71

33 angular intra prediction modes, the DC mode, and the planar mode. To reduce the

complexity of attempting different coding modes, Chen et al. propose a low-complex

shallow asymmetric-kernel CNN (AK-CNN) [110] for both fast CU partition and fast

intra-mode decision. In [111], a modified ResNet18-CNN structure name CtuNet is

modified for reducing the computational complexity of HEVC intra-prediction mode.

Xu et al. introduce deep learning approaches for predicting CU partition, aiming to

reduce the HEVC complexity in intra and inter-mode search [112, 113]. Kuanar et al.

[114] predicts the CU size in HEVC by CNN-based region-wise feature learning and

classification. Even though such approaches significantly reduce video coding com-

plexity, they suffer from low coding efficiency. In this work, we combine and solve

the problems of low coding efficiency in DL-based mode decision [108–114] and rate

increase problem [1, 60, 72, 97–101, 103, 104] when performing ILF mode prediction

on deeper CU levels.

4.3 Spatial-Temporal In-loop Filtering with Auto-

nomous mode selection (STILF-AMS): the pro-

posal

4.3.1 Overview the proposed STILF-AMS

Fig. 4.3 illustrates the overview of the proposed STILF-AMS integrated into the VVC

video coding framework. Blue arrows and color blocks indicate our implementations

integrated into the original VVC presented in black arrows and white blocks. VVC

reconstructed frame is first filtered by the default ILF before feedforward to our self-

enhancement CNN with CU map (SECUM) and the Reference-based enhancement

CNN with optical flows (REOF). Different from other multi-ILF mode selection works,

STILF-AMS performs no RD-cost and stores no bit for different filtered images. In-

72

stead, we present a reinforcement learning-based autonomous mode selection (AMS)

for predicting the ILF mode of each and every CU in the reconstructed image. After

filtering by three ILF in the network set, images will be fed to the agent network. A

proposed agent network decides which CU partition the image should be split and how

to filter these CUs, allowing ILF to run on CU level without storing ILF bits. Moving

towards this goal, we additionally introduce a set of splitting besides filtering, allowing

images to be filtered to the smallest possible CU level.

4.3.2 The proposed network set: STILF.

In this Section, we briefly introduce the two proposed networks in the filter set. A feed-

back mechanism, namely recurrent dense skip connection block (RDSCB), is proposed

for SECUM and REOF to fully exploit the information from reconstructed images.

This Section will first introduce the shared RDSCB architecture and then detail the

specific designs for SECUM and REOF architectures.

Feedback mechanism: Recurrent dense skip connection block

In this work, a shared architecture named Recurrent dense skip connection is intro-

duced. Recent researches have shown the strength of deep networks in enhancing the

quality of the compressed images and videos [60, 72]. However, the deeper network

requires a larger number of parameters. To overcome this drawback, [83, 115] introduce

recurrent neural networks for single image super-resolution. The studies on recurrent

neural networks have shown outstanding results while maintaining the number of net-

work parameters. Inspired by these works, we propose a feedback mechanism where

high-level features are used for refining the low-level features. Moreover, dense skip

connections are also investigated inside the recurrent mechanism for passing rich spa-

tial information from low to higher-level layers. Our RDSCB (as shown in Fig. 4.4)

includes n convolutional layers, layer lth takes (l+1)× nf feature maps including out-

73

REOF-
based

ILF

Mo�on
compensa�on

Mo�on
es�ma�on

In-Loop Filtering
(ILF)

Dequan�za�on &
Inverse Transform

Entropy coding

Coder control

Transform & Quan�za�on

Intra predic�on

CU map
generator

SECUM-
based

ILF

List0 and List1 images + OFs

Reference frames

bitstream
00111000111
0000...101

Mo�on
es�ma�on

Mo�on
compensa�on

Intra predic�on

x y w h
0 0 64 64
80 0 32 64
0 64 64 64
...

Agent
network

ILF mode selec�on
 at CU level

CU par��on CU par��on map

Figure 4.3: Integration of the proposed Spatial-Temporal In-Loop Filtering (STILF-
AMS) to video coding VVC. STILF-AMS includes two main components: the filter
set and the agent network. First, reconstructed images are sequentially filtered by the
proposed ILF set consisting of the default ILF, the SECUM network, and the REOF
network [1]. After filtering, the agent network performs and predicts the new CU
partition and ILF mode of each CU.

puts from l − 1 prior convolution layers and 2×nf feature maps from RDSCB input.

This holds true for all layers except the final one which takes only nf feature maps as

the input. During feedforward, RDSCB does the feedback for R times. The output

F r
out at loop r

th, r ∈ {1, ..., R} of RDSCB is concatenated with input Fin feature maps

to be the input for the next loop (r + 1)th. The first loop r = 1 has no feedback F r
out,

we then duplicate input feature maps to be RDSCB block input.

74

Convolution layer

PReLU layer

...

Recurrent dense skip connection block

Figure 4.4: Recurrent dense skip connection block architecture.

cat

VVC reconstructed image

Self-enhanced image

maxpool FC1 FC2

avg pool

maxpool

avg pool

C(1,7,3)

channel attention spatial attention

Recurrent dense skip connection block

Convolution feature maps

PReLU feature maps

Figure 4.5: Self-enhancement CNN with CU map architecture (SECUM). Our SECUM
includes three main components: channel attention, spatial attention, and a recurrent
dense skip connection block which contains n convolution layers. Coding unit (CU)
map produced from the VVC encoder is also input to the network for signaling the
area where blocking artifacts usually appear. C(k, s, p) indicates the convolution layer
with k kernels do the convolution with s× s window and a padding of p. Our RDSCB
block does recurrent for R times, output at time r ∈ R are concatenated with the input
Fin for the next loop r + 1.

75

Self-enhancement with CU Map (SECUM)

Our SECUM network is visualized in Fig. 4.5. Let C(k, s, p) denotes the convolution

layer, which has k kernels size s× s and padding of p. At first, two convolution layers,

each followed by the PReLU layers, sequentially extract the feature maps from the in-

put image. We use three self-attention mechanisms during the feeding forward: channel

and spatial mechanisms for emphasizing useful information and a feedback mechanism

to take full advantage of the low-level and the high-level features. The channel and spa-

tial attentions [116] then emphasize information from the second convolution layer for

more useful representations of the input image. In our channel attention, max-pooling

(MP) and average pooling (AP) first extract different information of the input features

before being processed by the siamese one-hidden-layer perceptron f . An element-

wise summation merges these representations before passing to the sigmoid function

σ. The highlighted information of input feature maps Fin after channel attention can

be calculated by:

Fc = σ (f(AP(Fin) + f(MP(Fin)))⊗ Fin (4.1)

where ⊗ denotes the element-wise multiplication operation. On the other hand, the

spatial attention layer learns informative areas from the input feature maps. Let fC(1,7,3)

denotes the convolution layer has one kernel size 7×7 does convolution with the padding

of three, the output feature maps Fs of our spatial attention, given the input feature

maps Fc, are computed by:

Fs = σ(fC(1,7,3)([AP(Fc);MP(Fc)])⊗ Fc (4.2)

Since blocking artifacts usually appear on CU borders, we then input CU partition

map to SECUM as an attention mechanism. By using the CU partition map, we

highlight the parts to which the network should pay attention to to learn better artifact

removal. The CU partition map can be visualized as a binary matrix where elements

76

at the borders between CUs are one, and the other areas are zeros. We introduce

an additional branch whose output of convolution layer is concatenated with spatial

attention feature map Fs. All the information are synthesize in a convolution layer

C(128, 3, 1) before input to RDSCB. Final convolution layers after RDSCB block are

C(64, 3, 1) → C(1, 3, 1). Other the convolution layers are C(64, 3, 1), and the network

does recurrent R of four times. During training, we minimize the L1 loss between the

ground-truth y and each network output ŷr:

L(Θ) =
1

N.R

N∑
i=1

R∑
r=1

Ir ∥ yi0 − ŷir ∥1 (4.3)

where N is the number of training samples, and Θ denotes for the learned network

parameters. Ir is the weight of the output ŷr, with rth, (r ≤ R) indicates the loop

order of RDSCB. Follow [83], we set Ir to one for all the outputs.

Reference-based enhancement CNN with Optical Flows (REOF)

The existing CNN-based in-loop filterings for VVC [97–100, 105, 106] have mainly

focused on enhancing the quality of the reconstructed image given itself. In our

reference-based enhancement CNN (REOF), neighboring frames are used for improv-

ing the quality of the current video frame to be encoded. Fig. 4.6 shows the unfolding

Reference-based enhancement CNN architecture. Our hypothesis is that if there is an

optical flow between the current reconstructed image and the reconstructed reference

image, there is also the optical flow between the enhanced current image and the en-

hanced reference image. Given the optical flow OFi between the reference image and

the current reconstructed image, the enhanced reference image ERr, which are in the

reference picture sets List 0 and List 1 defined by VVC, are remaped with the optical

flow OFr and then, fed to the network at a loop rth, r ∈ {1, .., R− 1}. Warped images

ERr + OFr, r ∈ {1, .., R − 1} are input to the network by the order of picture order

77

RDSC
Block

Enhanced	image

RDSC
Block

Enhanced	image

RDSC
Block

Enhanced	image

RDSC
Block

Enhanced	image

RDSC
Block

VVC	
reconstructed	image

Enhanced	image

Warp	OF	and	image
	enhanced	reference	image	

Convolution	layer	kernel	size	 	
Optical	flow	between	reference	image	 	and	current	image

Figure 4.6: Reference-based enhancement CNN with optical flow (REOF) architecture
after unfolding. ERr + OFr is the warped image of the enhanced reference rth and
the optical flow calculated from the current and the reference image. The order r of
reference image input to the REOF is the from the long-term to short-term, POC after
to before the current image in the reference picture sets List 0 and List 1.

count (POC) long to short term, and POC after to before the current picture. The

enhanced current image which is produced by REOF is input to the final loop r = R.

If any reference images are not activated, the enhanced image of REOF will take that

input position instead.

In our reference-based enhancement CNN (REOF), neighboring frames are used for

improving the quality of the current video frame to be encoded. Our hypothesis is that

78

if there is an optical flow between the current reconstructed image and the reconstructed

reference image, there is also the optical flow between the enhanced current image and

the enhanced reference image. Given the optical flow OFi between the reference image

and the current reconstructed image, the enhanced reference image ERr, which are

in the reference picture sets List 0 and List 1 defined by VVC, are remaped with the

optical flow OFr and then, fed to the network at a loop rth, r ∈ {1, .., R− 1}. Warped

images ERr + OFr, r ∈ {1, .., R − 1} are input to the network by the order of picture

order count (POC) long to short term, and POC after to before the current picture.

The enhanced current image which is produced by REOF is input to the final loop

r = R. In several coding configurations, some reference images are inactivated. For

these cases, we replace these input ERr with SECUM enhanced image.

For SECUM, information within the VVC reconstructed image and its CU partition

map are used as the input. For REOF, CU partition map, and the self-attention

layers such as channel attention and spatial attention are eliminated. Instead, two

CNN branches are added. The first branch is described as C(64, 3, 1) → C(64, 5, 2)

and the second branch can be described as C(64, 3, 1). These output feature maps

are concatenated and input to a convolution C(64, 3, 1) before feeding forward to the

RDSCB block. We set the number of convolution layers in RDSCB block n = 9 for

REOF. Including the current picture to be enhanced, there are four reference pictures in

the reference picture sets List 0 and List 1. Therefore, R is set as 5 for reference-based

enhancement CNN. The loss function can also be written as in equation 4.3.

4.3.3 The proposed reinforcement learning-based autonomous

mode selection (AMS)

As mentioned before, current deep learning-based ILF improvement works [1, 60, 72,

101, 103, 104] with the selection controlled by RD-cost suffers from bits required for

signaling the decoder when exploiting to deeper levels than CTU level. On the other

79

hand, designing a syntax element for these signaling bits is tactful work. Insufficient

design of syntax elements would cause worse coding results in future frames. This work

approaches a reinforcement learning method for autonomous ILF mode selection at the

CU level to overcome these drawbacks. By predicting the new ILF mode required for

each CU, we can omit the storing bits in the final bitstream while maintaining the

effectiveness of multi-mode coding.

Let Iilf , Isecum, Ireof , and LCU denote VVC reconstructed image, SECUM re-

constructed image, REOF reconstructed image, and CU partition of VVC, respec-

tively. Our target is to train an agent to predict a new CU partition L̂CU and an

appropriate in-loop filter F (CUi) for each CUi in the new partition where F (CUi) ∈

{ILF, SECUM, REOF}. Predicted ILF mode is then performed on the corresponding

CUi, resulting in an enhanced image Ie:

ICUi
e =

ICUi
secum if F (CUi) = SECUM,

ICUi
reof if F (CUi) = REOF,

ICUi
ilf otherwise.

(4.4)

Moreover, an action set is introduced, enabling the ability to deal with local areas

over the CU level, addressed by none existing works. After filtering, only output image

Ie is used. CU partition L̂CU output by the STILF-AMS framework will only be freed

without changing the CU partition in the VVC encoder and decoder.

80

Sh
ar

ed
 fe

at
ur

e
 e

xt
ra

ct
io

n
la

ye
rs

A
g

en
t

n
et

w
or

k

up
da

te
 c

ur
re

nt
 s

ta
te

,
 ,

Ex
ec

ut
e

ac
tio

n

 o
n

 C
U

C
ur

re
nt

 s
ta

te

:
(1
) V

VC
 re

co
ns

tru
ct

ed
 im

ag
e

,
(2
) S

EC
U

M
 re

co
ns

tru
ct

ed
 im

ag
e

,
(3
) R

EO
F

re
co

ns
tru

ct
ed

 im
ag

e
,

(4
) F

ilt
er

ed
 m

ap

,
(5
) C

U
 p

ar
tit

io
n

m
ap

)

M
PV

 a
ct

io
n

m
ap

Ac
tio

n
m

ap

,

VV
C

 re
co

ns
tru

ct
ed

 im
ag

e
Fi

lte
re

d
m

ap

C
U

 p
ar

tit
io

n
m

ap

(1
)

(2
)

(3
)

(4
)

(5
)

D
o

no
th

in
g

S
EC

U
M

R
EO

F

H
or

iz
on

ta
l s

pl
it

Ve
rt

ic
al

 s
pl

it

Q
ua

rt
er

 s
pl

it

Po
lic

y
es

tim
at

io
n

Va
lu

e
es

tim
at

io
n

Po
lic

y

π

R
ew

ar
d

m
ap

A
ct

io
n

se
t

So
ftm

ax

D
ila

te
d

co
nv

ol
ut

io
n

C
on

vo
lu

tio
n

Va
lu

e

F
ig
u
re

4.
7:

S
im

u
la
ti
on

of
th
e
re
in
fo
rc
em

en
t
le
ar
n
in
g-
b
as
ed

IL
F
-m

o
d
e
se
le
ct
io
n
fo
r
V
V
C

v
id
eo

co
d
in
g
at

th
e
C
U

le
ve
l
(S
T
IL
F
-

A
M
S
).
T
h
e
ag
en
t
n
et
w
or
k
it
er
at
iv
el
y
re
ce
iv
es

an
d
p
ro
ce
ss
es

a
st
at
e
s(

t)
of

V
V
C

re
co
n
st
ru
ct
ed

im
ag
e
I
(t
)

il
f
,
S
E
C
U
M

re
co
n
st
ru
ct
ed

im
ag
e
I s

ec
u
m
,
R
E
O
F
re
co
n
st
ru
ct
ed

im
ag
e
I r

eo
f
,
fi
lt
er
ed

m
ap

M
(t
)

F
M
,
an

d
C
U
p
ar
ti
ti
on

m
ap

M
(t
)

cu
.
O
u
tp
u
t
ac
ti
on

m
ap

A
M

(t
)
p
re
se
n
t

ac
ti
on

to
b
e
p
er
fo
rm

ed
on

ea
ch

p
ix
el
p i
.
In

ea
ch

C
U
,
ac
ti
on

w
it
h
m
a
jo
ri
ty

vo
te
s
is

th
en

se
t
as

th
e
ac
ti
on

of
th
e
C
U
,
re
su
lt
in
g

in
th
e
m
os
t
p
ro
b
ab

le
va
lu
e
ac
ti
on

m
ap

m
A
M

(t
) .

V
V
C

re
co
n
st
ru
ct
ed

im
ag
e,

fi
lt
er
ed

m
ap

,
an

d
th
e
C
U

p
ar
ti
ti
on

m
ap

ar
e
th
en

u
p
d
at
ed

ac
co
rd
in
g
to

th
e
ch
os
en

ac
ti
on

s.
A
ge
n
t
n
et
w
or
k
co
n
ti
n
u
es

th
e
p
ro
ce
ss

u
n
ti
l
th
e
cu
rr
en
t
ti
m
e
st
ep

t
re
ac
h
es

th
e
p
re
se
t

m
ax

ti
m
e
st
ep

T
.

81

We model the task of selecting ILF for each CU as a sequential decision-making

process. At each time step t, our agent observes a state s(t) from the environment and

performs an action a(t) predefined in the action set A following its policy π. After

taking action a(t), the agent generates a new observation s(t+1) and receives a feedback

reward r(t). The agent iterates this process until either two conditions are satisfied:

time step t reaches the Tmax steps, or the estimated action values are negative. In this

section, we present the reinforcement learning-based predicting ILF mode for VVC

reconstructed images following asynchronous advantage actor-critic (A3C) approach

[117]. The following sections introduce three main components of the proposed AMS:

state, agent, and reward.

4.3.4 State definition

In existing RL-based image enhancement works [118–120], a distorted image and its

reinforced images at time step t are considered state s(t). In designing RL-based ILF

mode selection, we take advantage of coding property for state definition. Each state

s(t) is composed of filtered images, filtered map, and CU partition map (as shown in

Fig. 4.8). The designation details are as follows.

Filtered images. Similar to other deep learning-based switchable ILF works [1,

60, 72, 101, 103, 104], this work brings up a bank of filters consisting of the default ILF

by VVC and the learning filters introduced in 4.3.2. In [1], the default ILF of VVC,

our SECUM and REOF are selected at CTU level given their rate-distortion costs. Let

I
(t)
ilf be the ILF image at state t and also the output Ie when t = Tmax. Each and every

CUi in I
(t)
ilf will be changed according to the predicted action a(t) at time step t. At the

end of the episode, CUs that do not choose a filter action in any step t < T will keep

the original pixel values from VVC reconstructed image.

Filtered map. During feedforward, it is essential to detect which CU has chosen

a filtered rather than the default filter. We then introduce an attention mechanism

82

VVC reconstructed
image

VVC CU partition Filtered map

REOF reconstructed
image

SECUM
reconstructed image

Figure 4.8: Illustration of a state in STILF-AMS framework. The state consists of
reconstructed images filtered by the default ILF of VVC, SECUM, and REOF [1], and
attention mechanisms including CU partition map and filtered map.

named filtered map to guide the agent. At state t = 0, the filtered map M
(t)
FM is

initialized as a zero matrix whose dimensions are equivalent to the spatial dimensions

of filtered images. During feeding forward, if an ith CU chooses a filter action, all of

its elements in the filtered map will be set to one. The action types will be clarified in

section 4.3.6.

CU partition map. One of the keys leading to the success of modern video coding

standards is the ability to adapt to different video content presented in different sizes.

The latest video coding standard VVC supports different CU sizes from 128×128 to

4×4. Going over the CU level in ILF tasks, we take into account of lower level than

CU size, allow CU to be split by our agent, and support up to the size of 2×2. Given

CU partition list output by VVC encoder, a CU partition map can be visualized by

a matrix whose elements at CU borders are ones, and the rest are zeros. During the

ILF-mode prediction process, if a CU chooses split action, it will be split into two or

four equal CUs.

83

4.3.5 Reward

By receiving incentive rewards from the environment, the agent evaluates the quality of

the taken action a(t). Originally, distortion and rate should be considered in multi-mode

selection. For our approach, since both the ILF mode decision and the reconstructed

image compensation are autonomously performed by the agent, no additional bits are

needed for signaling the decoder. Therefore, we can safely remove the rate out of the

reward design. In STILF-AMS, each CU is considered an agent and performs an action

predicted by the agent network. At time step t, the reward r(t) is calculated after every

CU cu ∈M
(t)
cu take action a

(t)
cu , showing how good the action a

(t)
cu is:

r(t) = ∥Iraw − I
(t)
ilf∥2 − ∥Iraw − I

(t+1)
ilf ∥2 (4.5)

where Iraw is the raw video frame input to the video coding standard. As the agent

performs action a(t) affecting the future states and actions, cumulative future rewards

should be considered:

R(t) = r(t) + γV (s(t+1)) (4.6)

where the discount factor γ ∈ (0; 1] indicates the impact of future reward on the current

reward. Note that reward r(t) is a 2D matrix containing rewards at each pixel of state

t. Although STILF-AMS performs on the CU level, convolution is operated on the

pixel level. The chosen action on each pixel affects not only itself but neighboring

pixels, which also affects the results of the neighboring CUs. Inspired by the proposed

reward map convolution in [119], we reformulate our discounted sum of rewards R(t)

in equation 4.6 as follows:

R(t) = r(t) + γ

m,m∑
i,j=1,1

V (s
(t+1)
i,j) (4.7)

where m×m is the size of receptive field whose center is the current pixel.

84

4.3.6 Agent

There have been many works in deep learning-based coding mode prediction [108], or

CU partition decision [109, 113] in video coding standards. These CU size-dependent

approaches have a drawback: specific designs are required for different video coding

standards with various CU sizes. Recent researches in denoising [118, 119] have studied

pixel-wise classification, in which pixels are improved by a preset filter. Intuitively, each

pixel has the best ILF mode for improving itself. Considering the fact that neighboring

pixels in the same CU are commonly coded in similar coding modes, our agent predicts

an ILF mode in the set of filters {ILF, SECUM, REOF} for every pixel in the same CU,

maintaining the high correlations between them. Inspired by [118, 119], we reformulate

the classification on pixel-level to CU-level to adapt with ILF mode selection task.

Action set A. Our action set includes three types of actions: do nothing, filter

actions, and split actions as shown in Table 4.1. All pixels in the same CU would

perform the action with the most probable value predicted by the agent network.

Suppose there is more than one action that has the same majority vote. In that case,

priority is applied, biasing for the action with lower complexity. If a CU chooses do

nothing, regardless of which action has been performed at time t − 1, all of its pixel

values are kept, and the corresponding elements in the filtered map are set as one. Let

f denotes the filter actions f ∈ {SECUM, REOF} for enhancing the image inside the

boundary of a CU: SECUM and REOF, respectively. For CU chooses filter actions,

pixels within its boundary in the current restored image I
(t)
ilf would be changed by

ISECUM or Ireof values.

Practically, do nothing and filter actions are similar to Rate-distortion (RD)-based

coding mode decision. When it comes to reconstructed image quality, simply training

the agent to choose which filter enhances a particular CU is not efficient enough. We

then design split actions, enabling the ability to exploit deeper local areas smaller than

the CU level. If horizontal (or vertical) split actions are selected, the corresponding

85

vertical (or horizontal) edges are divided. Both vertical and horizontal splits are per-

formed for the four-quadrant split action, resulting in four equal CUs. To avoid the

invalid CU size and high complexity, we limit the minimum CU edge size to be split

as four. Consequently, the smallest supportive ILF unit is a 2 × 2 CU, allowing more

accurate pixel compensation.

Table 4.1: List of actions, changes on current state s(t), and priorities of actions in the
case number of votes in the same CU are equivalent.

Type Actions at t Changes in state s(t+1) Priority

Do nothing Keep pixel values Filtered map M
(t)
FM 1st

Filter

SECUM filtering
Current image I

(t)
ilf

Filtered map M
(t)
FM

2nd

REOF filtering
Current image I

(t)
ilf

Filtered map M
(t)
FM

3rd

Split

Horizontal split CU partition M
(t)
CU 4th

Vertical split CU partition M
(t)
CU 5th

Four-quadrant split CU partition M
(t)
CU 6th

Agent network architecture. Our agent network iteratively takes a state s(t) =

(I
(t)
ilf , Isecum, Ireof ,M

(t)
CU ,M

(t)
FM) as an input, and outputs both action probabilities AM (t)

and the expected reward V (s(t)) on each pixels. After prediction, pixels in a same CU

vote for the most probable value as the action to perform on that CU, resulting in a

action map mAM (t) at CU level. CU is then filtered or split according to the predicted

actions in mAM (t). After T loops, reconstructed image I
(T)
ilf is used as compensated

result of ILF mode selection. Inspired by recent advantages on deep reinforcement

learning-based image denoising works [118, 119], our agent network combines policy and

value network in a single architecture by sharing the first four feature extraction layers

86

(as shown in Fig. 4.7). These sharing layers allow agent network to be trained more

efficient and tested with lower complexity. Our agent network fθ learns to estimate the

policy π(a(t)|s(t), θ) and approximate the value function V (s(t), θ):

π(a(t)|s(t)), V (s(t)) = fθ(s
(t)) (4.8)

where θ Let C(k) and D(k, l) indicate convolution layer with k kernels and dilated

convolution layer with k kernels and a dilated factor of l, respectively. Stride is set

to one for all layers. Padding is set to one for convolution layers and l for dilated

convolution layers during feedforward. We set the number of kernels k to 64 for all

layers except the final convolution layer in each branch. In the policy branch, k is set as

the number of actions |A| while it is one in the value branch. Policy branch ends with a

Softmax policy, outputting the probabilities that pixel pi chooses action a
(t)
pi , a

(t)
pi ∈ A.

Meanwhile, the value branch outputs approximately the expected reward judging the

quality of input state s(t). By forming the policy and value function into action map

AM (t) and reward map V (s
(t)
(pi)

) to the pixel level, our work is independent of CU sizes,

enabling an ability to deal with any modern video coding standards. During training,

the agent network aims to find the optimal policy π∗:

π∗ = argmax
π

Eπ

(
∞∑
t=0

γr̄(t)

)
(4.9)

where r̄(t) indicates the mean of reward map V (s(t)). Gradients for backward policy

branch dθπ and value branch dθv are defined as follows:

dθπ = −▽θπ

1

h× w

h,w∑
i,j=1,1

log π(a
(t)
i,j |s(t))A(a

(t)
i,j , s

(t)) (4.10)

dθv = ▽θv

1

h× w

h,w∑
i,j=1,1

(
A(a

(t)
i,j , s

(t))
)2

(4.11)

87

where h, w are respectively height and width of the input image and A(a
(t)
i,j , s

(t)) is the

advantage function calculated by:

A
(
a
(t)
i,j , s

(t)
)
= R(t) − V (s(t)) (4.12)

4.4 Experiments

4.4.1 Parameter settings

Training ILF networks. We randomly choose 30 videos from Derf’s Test Media

Collection [121] for training. It is noteworthy mentioning that chosen sequences are

not in the VVC common test sequences. We encode these sequences under the Low

Delay P configuration and subsampled frames by a factor of three. We take the first

50 reconstructed frames and theirs CU partitions for training. We randomly chose

30 frames from the rest of the encoded frames for validating. Images are split into

64 × 64 patches, and a batch size of 64 is used for training. For reference-based

enhancement CNN, optical flows between the reference and the current frames are

acquired by Lucas–Kanade method. The network parameters of SECUM and REOF

are 1.7 ×106 and 7×105, respectively. The networks are trained on NVIDIA Tesla

V100 using PyTorch [122].

Training STILF-AMS agent network. In training, images are cropped into

128× 128 patches whose size is the coding tree unit (CTU) size in VVC. Note that the

exact CTU is adopted to keep the full CU partition input to the agent network. We set

a batch size of 32 and the discount factor γ to 0.95. We set the learning rate starting at

10−3 and a step size of one. In each step size, learning rate is cumulatively multiplied by(
1− current episode

max episode

)0.9
. We adopt a transfer learning scheme for transferring knowledge

from the pre-trained image denoising model pixelRL [119] to ILF mode selection at

CU level. We randomly select 20 videos from [121], which are not overlapped with

88

datasets in training ILF networks and testing sequences. We acquired the training and

validating set by a similar method to generating datasets of ILF networks, except we

subsampled chosen frames by a factor of 5. SECUM and REOF first processed training

and validating sets to be the input of the agent network. Agent network was trained

in 6000 episodes in which a length of six is set for each. ADAM optimizer [123] is used

for training. STILF-AMS is implemented using public frameworks Chainer [124] and

ChainerRL [125] on NVIDIA Tesla V100.

Video coding testing and evaluation metric. For our testing experiments,

we use Bjøtegaard Delta-Rate (BD-rate) [126] with an anchor of the VVC test model

(VTM) 9.3 for comparison. For BD-rate, the lower negative number indicates the

better result. Four quantization parameters are used: 22, 27, 32, and 37 for calculating

BD-rate results. VVC standard test sequences in the common test conditions (CTC)

[127] are encoded under using All Intra (AI), Low Delay P (LDP), Low Delay B (LDB),

and Random Access (RA) configurations. All the coding parameters are set to default,

in which the built-in ILF is enabled.

4.4.2 Study on network set

Results on deep learning-based ILF improvement without autonomous

mode selection. In this experiment, we demonstrate the efficiency of the proposed

networks SECUM and REOF (STILF). Figure 4.9 shows the proposed STILF (blue

arrows) integrated to VVC with RDO-guided mode selection at CTU level. The

reconstructed video frame is first filtered by VVC ILF before feeding to SECUM

and REOF. A mode selection is performed to select the best in-loop filter at CTU

level, which should be decided base on the distortion of the reconstructed image in

comparison to the original image. However, adding the new bits for signaling the

decoder also affect the total bits, we then check the Rate-Distortion (RD) cost of the

enhanced image and additional bits for each coding in-loop filter. In our selection,

89

REOF-
based

ILF

Mo�on
compensa�on

Mo�on
es�ma�on

In-Loop Filtering
(ILF)

Dequan�za�on &
Inverse Transform

Entropy coding

Coder control

Transform & Quan�za�on

Intra predic�on

CU map
generator

SECUM-
based

ILF

List0 and List1 images + OFs

Reference frames

bitstream
00111000111
0000...101

Mo�on
es�ma�on

Mo�on
compensa�on

Intra predic�on

x y w h
0 0 64 64
80 0 32 64
0 64 64 64
...

ILF mode selec�on
 at CU level

CU par��on CU par��on map

Figure 4.9: Illustration of the proposed STILF (blue arrows) integrated to VVC.

CTU is filtered by three different options, for each option, two bits indicates the

filter index will also be simulatively added to the bitstream, and a CABAC estimator

calculates how many bits need for compressing this CTU. The RD-cost then bases on

the distortion of the image enhanced by the filter and the bits to be encoded of that

CTU.

Table 4.2 and 4.3 show the overall performance of the proposed STILF compared to

VVC test model VTM 9.3. The work mainly focuses on enhancing the Y component, so

the BD-rate of the U and V components slightly increases for some sequences. Table 4.7

90

VVC IN-Loop Filtering

.

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
All Intra

A1 A1 A2 B C D E A1 A2 B C D E A1A2 B C D E

Low Delay P Low Delay B Random Access
SECUM REOF

A2 B C D E

Figure 4.10: Selection ratio of different ILF modes guided by RDO-based mode selec-
tion at CTU level.

shows the overall performance of the proposed STILF on the common test conditions

recommended by JVET. The work mainly focuses on enhancing the Y component, so

the BD-rate of the U and V components slightly increases for some sequences. In AI

configuration, since there is no reference assigned by VVC, the warped image is replaced

by the VVC reconstructed image. We obtain the Y BD-rate reduction of 3.78%, 6.34%,

6%, and 4.64% on the AI, LDP, LDB, and RA configurations. Besides, we recorded an

encoding time of 1.31-1.84 and a decoding time of 8.69-73.03 on average of CTC. The

ratio of choosing VVC ILF, our self-enhancement CNN (SECUM), and our reference-

based enhancement CNN (REOF) are illustrated in Fig. 4.10. Blue, pink, and yellow

bars indicate respectively for the selected ratio of VVC In-loop filtering, SECUM, and

REOF. On average, the ratio of choosing VVC In-loop filtering, REOF, and REOF are

33.82%, 44.44%, and 21.74%, respectively.

Study on self-attention mechanism. We perform an ablation study on attention

91

mechanisms, including self-attention (SA) and CU map (Table 4.4). The results show

coding performances have been reduced when cutting these mechanisms.

Figure 4.11 illustrates the visual quality comparison of STILF without AMS and the

anchor VTM 9.3. Our STILF better improves the details such as the sweater (yellow

outlined area) and forehead (red outlined area) than VTM 9.3 in KristenAndSara. For

BQTerrace, the road maker on the bridge reconstructed by ours is perceived superior

to VTM’s.

VTM 9.3 Ours Raw video frame

31.65 dB @ 1544 bits 31.85 @ 1461 bits BQTerrace, POC 33

35.67 dB @1312 bits 35.98 dB @ 1241 bits KristenAndSara, POC 575

Figure 4.11: Visual comparison of STILF without AMS to VVC (anchor VTM 9.3).
From top-down, KristenAndSara POC 575 and BQTerrace POC 33 encoded under Low
Delay P with QP 37 are chosen for illustration.

4.4.3 Ablation Study

Action analysis. Fig. 4.12 illustrates the chosen actions on pixels level at each time

step t. It is apparent from this figure that the agent network tends to choose split

actions at the first several steps and filter actions at the latter steps. At the end of the

episode, REOF and do nothing are the most chosen actions. We come to a conclusion

that agents have learned a strategy of first splitting and then filtering the reconstructed

images.

Study on input state s(t). To select ILF modes for all CUs in the CU partition,

92

Time step
1 2 3 4 5 6

Se
le

ct
io

n
ra

tio
 (%

)
Action set

Do nothing

SECUM

REOF

Horizontal split

Vertical split
Four-quadrant
split

Figure 4.12: Selection ratios of class D’s sequences over time step t.

33.3

33.4

33.5

33.6

33.7

33.8

33.9

34

1 1000 2000 3000 4000 5000 6000

Episode

P
SN

R
 (

d
B

)

Without Filtered map and CU partition map

Without CU partition map

Without Filtered map

With CU partition map and Filtered map

Figure 4.13: Average PSNR on the validation set with different mechanisms disabled
for state s(t).

it is essential and meaningful to have ILF, SECUM, and REOF reconstructed images

in the input state s(t). In this experiment, we evaluate the effectiveness of two other

additional components of input state: CU partition map M
(t)
cu and filtered map M

(t)
fm.

We first experiment on training the agent network with and without these maps (as

shown in Fig. 4.13). For visualization, we pick 60 from 6000 training episodes by a

factor of 100. The PSNR lines suggest that the network trained with CU partition map

93

27.5

28.5

29.5

30.5

31.5

32.5

0 10 20 30 40

BQSquare

31

31.5

32

32.5

33

0 10 20 30 40

BQTerrace

P
SN

R
 (

d
B

)

frame frame

VVC STILF STILF-AMS RD-based ILF mode selection at VVC CU partition

Figure 4.14: PSNR fluctuations of BQSquare and BQTerrace performed by VVC,
STILF [1], and STILF-AMS (ours), and the ground-truth RD-based mode selection on

VVC CU partition M
(t=T)
cu .

and Filtered map is more stable and obtains the highest PSNR on the validation set.

For further verifying the effectiveness of these maps, we perform BD-rates of STILF-

AMS with and without these additional components. Results in Table 4.5 have shown

that higher bitrate savings can be obtained using both two additional components.

Without these components, a 0.2% BD-rate reduction is reduced on average of class C

and class D sequences.

PSNR results of different ILF approaches. Fig. 4.14 shows the PSNR fluc-

tuations on different ILF mode: VVC default ILF, our STILF [1], the proposed ILF

mode prediction at predicted CU partition (STILF-AMS), and the ground-truth using

RD cost-based ILF mode selection at VVC CU partition. It can be seen that STILF-

AMS can compensate the reconstructed image closer to the PSNR performed by RD

cost-based mode selection. While RD cost-based ILF mode selection on CU level is

not practical due to additional bits, STILF-AMS requires no additional bits and offers

comparable image quality.

CU partition comparison. For verifying STILF-AMS prediction, we also visual-

ize the CU partition output by VVC and ours in Fig. 4.15. In this visual comparison,

the 9th frame of RaceHorseC coded under QP of 37, and RA configuration is chosen for

94

VVC

STILF-AMS
Figure 4.15: Visualizations of CU partitions output by VVC and our STILF-AMS.
Blue, red, and yellow rectangles indicate CU that chooses VVC default ILF, SECUM,
and REOF, respectively.

visualizing. It can be seen that STILF-AMS tends to split and filter CUs with more

details by SECUM and REOF. On the contrary, CUs with less information are simply

kept pixels output by VVC default ILF.

Selection ratios. During the coding process, ILF mode selection is performed by

the proposed STILF-AMS. To further verify the result of mode selection, we measure

the ratio of choosing different ILF modes of the STILF-AMS. Since the mode selection

95

is performed on CU levels, the ratio should be calculated on the chosen areas than

hitting ratios. Given M CUs that choose ILF mode m, m ∈ {ILF, SECUM, REOF}

over the total CUs N , selection ratio for mode m is calculated as follows:

Ratio(m) =

M∑
i=0

A
(m)
i

N∑
c=0

Ac

(4.13)

where A
(m)
i and Ac denote the area of CUs that choose ILF mode m and the area of

all CUs, respectively. Mode selection ratios performed on sequences of class C and

class D are shown in Table 4.6. Specifically, we observe that REOF, in which reference

frames are used for enhancing the current frame, is the most chosen mode among the

ILF modes introduced in STILF-AMS.

4.4.4 Coding results

Overall performance. Our results compared to VVC with different coding config-

urations are summarized in Table 4.7. The results show that our proposal can sig-

nificantly improve the coding efficiency compared to the state-of-the-art video coding

standard VVC on CTC sequences. Since STILF-AMS is performing on the Y compo-

nent, chrominance results for AI configuration do not change, resulting in U and V BD

rates being all zeros. We can obtain coding improvements on all components for other

configurations where inter-coding is performed. We report a BD-rate reduction result

up to 18.65% at the same image quality compared to VVC at sequence BQSquare.

On average, STILF-AMS obtains bit-rate savings of 4.13%, 7.1%, 6.93%, and 5.5%

compared to VVC under AI, LDP, LDB, and RA configurations, respectively.

Qualitative comparisons. Fig. 4.16 presents the reconstructed frames by VVC

[2], STILF [1], and the proposed STILF-AMS. Cactus POC 14 and BasketballDrive

POC 45 are used for visualization for this qualitative comparison. Although STILF [1]

96

VVC STILF-AMSSTILFGroundtruth

14th frame of Cactus

45th frame of BasketballDrive

1920 1080

32.36 dB @

5632 bits
32.48 dB @

5379 bits
32.55 dB @

5232 bits

33.51 dB @

22984 bits

33.69 dB @

22313 bits

33.76 dB @

22120 bits

Figure 4.16: Qualitative comparison of VVC [2], STILF [1], and STILF-AMS (ours) at
QP of 37. Cactus POC 14 and BasketballDrive POC 45 coded under LDP configura-
tion.

can remove the blurry from VVC, there are areas such as the diffuse diamond in Cactus

or unclear birth-mark in BasketballDrive could be improved further. In conclusion,

STILF-AMS performs a better PSNR with crisper details at lower bits than VVC, and

STILF [1], especially in inter-coding configurations.

Comparison with state-of-the-art (SOTA) deep learning-based ILF for

VVC. In order to verify the effectiveness of STILF-AMS, a coding comparison to

related works on deep learning-based ILF enhancement for VVC has been conducted.

For a fair comparison, we re-implement STILF-AMS and STILF [1] on VTM 6.0. As

shown in Table 4.9 and Table 4.10, the proposed STILF-AMS outperforms related

researches on learning-based ILF enhancement on all the configurations. Specifically,

up to 2.1%, 4.55%, 4.5%, and 3.36% BD-rate reductions are obtained compared to

related works [1, 102, 103] under AI, LDP, LDB, and RA configurations, respectively.

Coding complexity analysis. Most of the CNN-based video coding technologies

suffer from high computational complexity problems. Table 4.8 provides the computa-

tional complexity of the proposed method on GPU compared to VVC. When it comes to

encoding complexity, STILF-AMS requires averages of 107% and 133% on AI and inter-

coding configurations, respectively. With high-quality compensation, STILF-AMS can

97

boost the encoder’s performance, decreasing the encoding complexity of class D. Note

that our STILF-AMS framework is an internal library to VTM, in which each time

performs ILF mode selection requires a constructor to load the SECUM, REOF, and

STILF-AMS for prediction. Encoding time and decoding time could be significantly

reduced by directly integrating the deep learning toolbox into the VVC framework.

4.5 Chapter conclusion

This chapter presents Spatial-Temporal in-loop filtering with autonomous mode selec-

tion (STILF-AMS) for the state-of-the-art video coding standard VVC. In this work,

we first propose a group of Spatial-Temporal ILFs (STILF) on CU level, including

VVC default ILF, the self-enhancement CNN with CU map, and the reference-based

enhancement CNN with optical flows for improving the reconstructed image quality. To

further improve the coding efficiency, this work is the first to propose a reinforcement

learning-based autonomous mode selection (AMS) approach. Our agent is trained to

predict the trend of splitting and filtering mode in each CU. By predicting ILF mode

and allowing CU to be split more, STILF-AMS requires zero extra bit while ensuring

the quality of reconstructed images. As a result, we outperform VVC and the state-of-

the-art deep learning-based ILF enhancement. Remarkably, up to 18% and an average

of 5.9% bitrate savings have been obtained under all configurations.

98

Table 4.2: BD-rate(%) of STILF without AMS compared to VVC under AI and RA
configurations. (Anchor: VTM 9.3)

Class Sequence
All Intra Random Access

Y U V Y U V

A1

Tango2 -2.39 0.13 0.13 -2.82 0.55 0.84

FoodMarket4 -4.04 0.11 0.11 -2.86 0.26 0.53

Campfire -1.89 0.06 0.08 -2.54 -0.04 0

A2

CatRobot1 -2.89 0.05 0.05 -4.03 -0.69 0.18

DaylightRoad2 -2.26 0.03 0.03 -4.73 0.29 -0.2

ParkRunning3 -1.47 0.02 0.02 -1.76 0 -0.14

B

MarketPlace -2.23 0.12 0.12 -2.83 1.04 0.75

RitualDance -4.05 0.28 0.27 -3.09 0.21 0.27

Cactus -2.93 0.08 0.07 -3.85 0.5 0.57

BasketballDrive -3.39 0.24 0.24 -4.21 -0.09 -0.09

BQTerrace -2.89 0.03 0.03 -5.8 0.56 0.34

C

BasketballDrill -6.98 0.51 0.52 -6.01 -0.19 0.37

BQMall -4.61 0.31 0.31 -6.04 -0.19 -0.15

PartyScene -3.59 0.12 0.12 -4.81 0.09 0.36

RaceHorses -1.91 0.56 0.57 -3.07 -1 0.75

D

BasketballPass -5.48 0.93 0.94 -5.76 -0.62 0.86

BQSquare -7.08 0.53 0.53 -10.9 -0.63 -0.43

BlowingBubbles -3.92 1.07 1.06 -5.05 -0.02 -0.3

RaceHorses -3.4 1.55 1.54 -3.99 -0.61 0.06

E

FourPeople -5.14 0.2 0.2 -5.75 0.38 0.34

Johnny -5.68 0.25 0.27 -7.46 -0.03 -0.23

KristenAndSara -4.92 0.49 0.5 -4.64 0.02 0.4

Average A1 -2.78 0.1 0.11 -2.74 0.26 0.46

Average A2 -2.2 0.03 0.03 -3.51 -0.13 -0.05

Average B -3.1 0.15 0.15 -3.95 0.45 0.37

Average C -4.27 0.38 0.38 -4.98 -0.32 0.33

Average D -4.97 1.02 1.02 -6.42 -0.47 0.05

Average E -5.25 0.31 0.32 -5.95 0.13 0.17

Average all sequences -3.78 0.35 0.35 -4.64 -0.01 0.23

99

Table 4.3: BD-rate(%) of STILF without AMS compared to VVC under LDP and LDB
configurations. (Anchor: VTM 9.3)

Class Sequence
Low Delay P Low Delay B

Y U V Y U V

A1

Tango2 -3.93 -0.54 0.24 -3.23 -0.45 -0.32

FoodMarket4 -3.67 -0.19 -0.34 -3.24 -0.11 0.01

Campfire -4.84 -0.16 -0.09 -2.39 -0.09 -0.31

A2

CatRobot1 -4.05 0.63 -0.12 -4.18 -0.14 -0.12

DaylightRoad2 -4.31 0.25 0.26 -4 0.59 0.65

ParkRunning3 -1.78 -0.2 -0.21 -1.76 -0.07 -0.12

B

MarketPlace -3.37 -0.46 1.17 -3.26 0.59 -0.64

RitualDance -3.57 -0.09 0.22 -3.59 0.42 -0.34

Cactus -5.38 -0.64 -0.79 -7.33 -2.84 -2.72

BasketballDrive -5.34 -0.3 -0.2 -5.26 -0.01 0.35

BQTerrace -8.41 -0.98 -0.95 -6.9 -0.12 -0.51

C

BasketballDrill -8.03 -0.32 -0.6 -7.67 0.05 0.92

BQMall -8.46 -2 -1.05 -8.25 -0.96 -1.61

PartyScene -7.11 -0.55 -0.65 -6.81 -0.92 -1.51

RaceHorses -3.58 -0.66 0.42 -3.41 -0.32 0.07

D

BasketballPass -9 -0.15 -1.04 -8.69 0.27 -1.2

BQSquare -18.24 -2.55 -1.33 -17.66 -3.32 -2.24

BlowingBubbles -6.65 -0.03 0.42 -6.09 -0.47 -0.62

RaceHorses -5.36 -0.42 -0.18 -5.3 -0.68 -0.2

E

FourPeople -7.46 -0.69 -0.44 -7.07 -0.22 0.35

Johnny -9.75 1.72 -1.57 -9.15 -2.24 -1.53

KristenAndSara -7.23 0.81 -0.4 -6.77 0.85 1.07

Average A1 -4.15 -0.29 -0.06 -2.95 -0.22 -0.21

Average A2 -3.38 0.23 -0.02 -3.31 0.12 0.13

Average B -5.21 -0.5 -0.11 -5.27 -0.39 -0.77

Average C -6.79 -0.88 -0.47 -6.53 -0.54 -0.53

Average D -9.81 -0.79 -0.53 -9.44 -1.05 -1.07

Average E -8.14 0.61 -0.8 -7.66 -0.54 -0.04

Average all sequences -6.34 -0.34 -0.33 -6 -0.46 -0.48

100

Table 4.4: BD-rate (%) results of the proposed STILF without self attention (SA)
mechanisms and CU map under LDP configurations. (Anchor: VTM 9.3)

Class
STILF
w/o SA

STILF
w/o CU map

STILF
w/o SA & CU map STILF

B -4.95 -5.15 -4.71 -5.21
C -6.68 -6.75 -6.12 -6.79
D -9.75 -9.79 -8.77 -9.81
E -7.81 -7.58 -6.92 -8.14

Table 4.5: BD-rate (%) results on different mechanisms of the input state (anchor
VVC). Results are calculated on the proposal with and without CU partition map

M
(t)
cu and filtered map M

(t)
fm in the input state s(t).

Sequence
w/o M

(t)
fm

w/o M
(t)
cu w/o M

(t)
fm

with M
(t)
fm

and M
(t)
cu and M

(t)
cu

BasketballDrill -8.69 -8.73 -8.77 -8.9

BQMall -8.9 -8.99 -9.06 -9.15

PartyScene -7.39 -7.46 -7.51 -7.59

RaceHorses -3.62 -3.71 -3.76 -3.85

BasketballPass -9.66 -9.69 -9.72 -9.83

BQSquare -18.51 -18.55 -18.59 -18.65

BlowingBubbles -7.23 -7.32 -7.34 -7.44

RaceHorses -5.7 -5.75 -5.82 -5.9

Average -8.71 -8.78 -8.82 -8.91

Table 4.6: Selection ratios of three ILF modes on average class C and class D.

QP VVC ILF SECUM REOF

22 30.12 13.74 56.14

27 22.14 33.69 44.17

32 17.42 42.41 40.17

37 22.24 52.49 25.27

Average 22.98 35.58 41.44

101

Table 4.7: BD-rate (%) measurement of the proposed STILF-AMS compared to the
anchor VVC under AI, LDP, LDB, and RA configurations.

Class-Sequence
AI LDP LDB RA

Y Y U V Y U V Y U V

A1-Tango2 -2.92 -4.98 0.67 0.4 -4.87 -0.61 -0.47 -4.67 -0.81 -0.72

A1-FoodMarket4 -4.51 -4.64 -0.61 -0.64 -4.66 -0.21 -0.68 -4.25 -0.29 -0.26

A1-Campfire -2.81 -3.63 -0.33 -0.18 -3.15 -0.1 -0.17 -3.47 -0.01 -0.17

A2-CatRobot1 -3.04 -4.91 -0.02 -0.35 -4.89 -0.32 -0.17 -5.12 -0.67 -0.37

A2-DaylightRoad2 -2.2 -5.17 -0.09 -0.45 -5.06 -0.21 0.27 -5.34 0.16 -0.28

A2-ParkRunning3 -1.65 -2.21 -0.21 -0.4 -2.03 -0.2 -0.22 -2 -0.09 -0.3

B-MarketPlace -3.06 -6.86 -0.95 -0.83 -6.79 -0.55 -1.73 -5.5 0.57 -0.06

B-RitualDance -4.43 -4.36 -0.22 0.16 -4.29 0.43 -0.68 -3.89 -0.39 -0.07

B-Cactus -3.27 -5.85 -0.58 -0.65 -8.24 -3.4 -2.48 -4.93 0.01 0.01

B-BasketballDrive -3.69 -5.65 -1.34 -0.79 -5.82 -0.41 -0.23 -5.08 -0.48 -0.46

B-BQTerrace -2.98 -9.01 -1.08 -1.58 -7.41 -1.22 -1 -6.12 0.23 0.36

C-BasketballDrill -7.25 -8.9 -1.53 -1.22 -8.33 0.18 0.62 -6.55 -0.39 0.87

C-BQMall -4.92 -9.15 -2.35 -0.89 -9 -0.57 -1.92 -6.8 -0.02 -0.27

C-PartyScene -3.77 -7.59 -0.63 -0.79 -7.21 -0.91 -1.33 -5.15 0.43 0.38

C-RaceHorses -2.06 -3.85 0.01 0.17 -3.7 -0.73 0.31 -3.28 -0.73 0.11

D-BasketballPass -5.81 -9.83 -1.02 -0.58 -9.29 -0.55 -0.88 -6.47 -1.19 0.62

D-BQSquare -7.34 -18.65 -3.26 -2.81 -18.62 -3.92 -3.04 -11.66 -0.93 -1.03

D-BlowingBubbles -4.25 -7.44 -0.8 0.27 -6.88 -0.6 -0.34 -5.64 0.36 -0.07

D-RaceHorses -3.73 -5.9 -0.63 -0.61 -5.58 0.38 -0.37 -4.46 -0.24 0.54

E-FourPeople -5.63 -8.57 -1.43 -1.41 -8.55 -0.57 -0.25 -7.04 -0.01 -0.05

E-Johnny -6.04 -10.15 -1.09 -2.31 -10.07 -2.88 -2.82 -8.05 -0.29 -0.75

E-KristenAndSara -5.4 -8.92 1.08 0.29 -8.12 -0.32 0.73 -5.62 -0.18 0.46

Average A1 -3.41 -4.42 -0.09 -0.14 -2.95 -0.22 -0.21 -2.74 0.26 0.46

Average A2 -2.3 -4.1 -0.11 -0.4 -3.31 0.12 0.13 -3.51 -0.13 -0.05

Average B -3.49 -6.35 -0.83 -0.74 -5.27 -0.39 -0.77 -3.95 0.45 0.37

Average C -4.5 -7.37 -1.13 -0.68 -6.53 -0.54 -0.53 -4.98 -0.32 0.33

Average D -5.28 -10.45 -1.43 -0.93 -9.44 -1.05 -1.07 -6.42 -0.47 0.05

Average E -5.69 -9.21 -0.48 -1.14 -7.66 -0.54 -0.04 -5.95 0.13 0.17

Average sequences -4.13 -7.1 -0.75 -0.72 -6.93 -0.79 -0.77 -5.5 -0.23 -0.07

102

Table 4.8: Encoding time (ET) and decoding time (DT) compared to VVC under AI
and average of inter coding configurations.

Class
AI LDP, LDB, and RA

ET (%) DT (%) ET (%) DT (%)

A1 111 14132 128 19238

A2 110 12808 134 17434

B 109 11290 111 3153

C 102 3323 96 1271

D 104 31746 173 12957

E 106 19144 155 7834

Avg. 107 15407 133 10315

103

Table 4.9: Y BD-rate (%) comparison between STILF-AMS and SOTA deep learning-
based Inloop filtering works (anchor VTM 6.0) on AI and RA configurations.

Sequence

All Intra Random Access

VCNN ALRF STILF STILF VCNN ALRF STILF STILF

[102] [103] [1] -AMS [102] [103] [1] -AMS

A1-Tango2 -1.74 -0.58 -2.7 -3.02 -2.45 -1.15 -3.83 -4.13

A1-FoodMarket4 -1.54 -0.46 -3.97 -4.21 -3.95 -2.67 -3.49 -4.65

A1-Campfire -1.62 -0.45 -2.11 -2.61 -2.31 -1.51 -2.43 -3.67

A2-CatRobot1 -3.48 -1.98 -3 -2.84 -4.09 -2.09 -4.98 -5.22

A2-DaylightRoad2 -2.22 -0.32 -2.23 -2.1 -5.77 -2.4 -5.38 -5.84

A2-ParkRunning3 -2.56 -1.17 -1.22 -1.75 -1.77 -0.91 -1.86 -2.2

B-MarketPlace -5.58 -3.48 -2.42 -3.26 -3.97 -3.42 -3.32 -6

B-RitualDance -2.63 -1.13 -4.38 -4.53 -2.68 -1.46 -3.48 -4.19

B-Cactus -1.39 -1.23 -3.29 -3.37 -1.85 -2.54 -5.02 -5.03

B-BasketballDrive -1.17 -0.03 -3.48 -3.69 -3.71 -1.26 -5.01 -5.08

B-BQTerrace -2.26 -0.6 -3.38 -3.08 -3.52 -2.24 -7 -6.32

C-BasketballDrill -6.99 -3.77 -7.17 -7.25 -4.22 -2.42 -7.22 -6.85

C-BQMall -4.97 -2.85 -4.81 -4.52 -3.68 -3.08 -7.13 -7.3

C-PartyScene -3.38 -2.18 -3.7 -3.67 -2.77 -2.61 -5.09 -5.35

C-RaceHorses -2.26 -0.78 -3.11 -1.76 -2.4 -1.25 -3.27 -3.78

D-BasketballPass -6.3 -3.88 -5.3 -5.81 -2.55 -2.11 -6.42 -6.57

D-BQSquare -4.52 -3.01 -7.3 -7.64 -3.49 -2.19 -11.55 -12.26

D-BlowingBubbles -6.18 -3.45 -3.96 -4.25 -6.83 -4.29 -5.85 -5.64

D-RaceHorses -5.14 -3.89 -3.87 -3.73 -4.16 -2.51 -4.6 -4.86

E-FourPeople -5.6 -3.89 -5.26 -5.73 -4.93 -4.12 -7.12 -7.44

E-Johnny -4.14 -2.45 -5.73 -5.84 -3.77 -3.6 -9.5 -8.55

E-KristenAndSara -4.3 -2.42 -5.33 -5.6 -3.56 -2.83 -5.75 -5.62

Average A1 -1.63 -2 -2.93 -3.28 -2.9 -1.95 -3.25 -4.15

Average A2 -2.75 -1.16 -2.15 -2.23 -3.88 -1.8 -4.07 -4.42

Average B -2.61 -1.29 -3.39 -3.59 -3.15 -2.18 -4.77 -5.32

Average C -4.4 -2.4 -4.7 -4.3 -3.27 -2.34 -5.68 -5.82

Average D -5.53 -3.56 -5.11 -5.36 -4.26 -2.78 -7.1 -7.33

Average E -4.68 -2.92 -5.44 -5.72 -4.09 -3.52 -7.46 -7.2

Average All -3.63 -2 -3.99 -4.1 -3.57 -2.39 -5.42 -5.75

104

Table 4.10: Y BD-rate (%) comparison between STILF-AMS and SOTA deep learning-
based Inloop filtering works (anchor VTM 6.0) on Low Delay configurations.

Sequence

Low Delay P Low Delay B

ALRF STILF
STILF-AMS

ALRF STILF
STILF-AMS

[103] [1] [103] [1]

A1-Tango2 -0.73 -4.02 -5.08 -0.76 -3.62 -4.87

A1-FoodMarket4 -2.15 -3.29 -4.64 -2.17 -3.39 -4.46

A1-Campfire -1.68 -2.26 -3.43 -1.51 -2.46 -3.15

A2-CatRobot1 -2.02 -4.81 -4.91 -2.09 -5.31 -5.09

A2-DaylightRoad2 -2.53 -4.89 -5.27 -2.4 -5.09 -4.96

A2-ParkRunning3 -0.9 -1.78 -2.21 -0.91 -1.98 -2.33

B-MarketPlace -3.5 -3.61 -6.66 -3.42 -3.91 -6.69

B-RitualDance -1.37 -4.44 -3.96 -1.46 -4.44 -4.49

B-Cactus -2.21 -5.42 -6.15 -2.14 -5.72 -8.44

B-BasketballDrive -0.61 -5.04 -5.95 -0.63 -5.34 -5.72

B-BQTerrace -3.07 -7.76 -8.81 -2.48 -7.46 -7.41

C-BasketballDrill -3.05 -7.97 -8.6 -2.91 -8.07 -8.23

C-BQMall -3.26 -8.96 -9.15 -3.16 -8.86 -9.1

C-PartyScene -2.85 -6.84 -7.79 -2.8 -7.14 -7.11

C-RaceHorses -0.91 -3.92 -3.75 -0.91 -4.12 -3.8

D-BasketballPass -2.73 -8.17 -9.83 -2.25 -8.77 -9.39

D-BQSquare -2.43 -16.42 -18.65 -2.49 -16.32 -18.42

D-BlowingBubbles -4.61 -6.64 -7.34 -4.38 -6.44 -6.88

D-RaceHorses -2.48 -6.21 -5.9 -2.42 -6.21 -5.58

E-FourPeople -4.66 -8.72 -8.57 -4.43 -8.52 -8.15

E-Johnny -4.28 -10.87 -10.35 -3.67 -11.17 -9.97

E-KristenAndSara -3.57 -7.75 -8.72 -3.99 -8.35 -8.12

Average A1 -2.53 -3.19 -4.38 -1.84 -3.16 -4.16

Average A2 -1.82 -3.83 -4.13 -1.8 -4.13 -4.12

Average B -2.15 -5.25 -6.31 -2.03 -5.37 -6.55

Average C -2.52 -6.92 -7.32 -2.45 -7.05 -7.06

Average D -3.06 -9.36 -10.43 -2.89 -9.44 -10.07

Average E -4.17 -9.11 -9.21 -4.03 -9.35 -8.74

Average All -2.53 -6.35 -7.08 -2.43 -6.49 -6.92

105

Chapter 5

Conclusion

In this work, deep learning approaches for enhancing reconstructed frames in various

codecs have been introduced. This dissertation includes three main proposals, each con-

tributes in either encoder or decoder, adapting bandwidth and resolution requirements

as well as minimizing the transmitted rates for modern visual-enabled applications.

In improving reference frames of video encoder, we propose a deep learning-based

method for fractional interpolation. We also solve two main problems of applying

CNN-based techniques for fractional interpolation in video coding: CNN may change

integer pixels after convolution and the lack of training set for fractional interpolation

in video coding since fractional samples do not really exist. To solve the first problem,

we generate fractional pixels from integer pixel rather than an interpolated image that

contains integer and fractional samples. To deal with training set problem, we assume

and extract integer and fractional samples in an image and learn a mapping between

interpolated integer pixels and fractional samples to avoid the motion shift problem. To

further improve coding performance, an RDO-based fractional interpolation selection

is implemented at CU level. As a result, we obtain an average BD-rate reduction of

1.2%-2.9% under low various coding configurations.

In improving CS decoders, a deep learning-based image enhancement approach is

proposed using multiple reconstructed signals. We take advantage of CS underdeter-

mined problem: be able to recover multiple Cs reconstructed images. CS reconstructed

images are then scored and ranked by a No-reference quality ranking module before

feeding to the quality enhancement module. In the quality enhancement module, low-

level and high-level features extracted from CS reconstructed images are exploited

and enriched by the proposed Recurrent dense skip connections block. As a result,

106

1.88-8.07dB PSNR improvements under the sampling rates of 0.125-0.75 have been

obtained. We further experimented on the effectiveness of CSIE-M with and without

the No-reference quality ranking module. The result shows that 1.127 dB PSNR can

be improved when using the No-reference Quality enhancement module. The proposal

can be integrated into IoT imaging systems to enhance the CS reconstructed images,

giving better visual quality for end-users and a promising approach for designing AIoT

systems.

In improving video codecs, we take into account more coding resources at the

encoder and the decoder for improving the in-loop filter by VVC. After being decoded

by VVC, reconstructed frames area enhanced by the self-enhancement Convolutional

neural network (CNN) with CU map (SECUM) and the reference-based enhancement

CNN with the optical flow (REOF). The proposed SECUM and REOF are developed

using VVC encoder and decoder coding information, which are well studied in the

series of the longest establishing standards. Using this information ensures that spatial

and temporal correlations are precisely exploited. To further improve the proposed

deep learning-based ILFs for VVC standard, we propose a reinforcement learning-

based autonomous mode selection. Note that the ILF mode selection increases the

bitrate for each CTU, we define an agent that splits and filters images automatically.

By formulating the acts of splitting and filtering as a decision-making problem, this

work is the first to propose a reinforcement learning-based autonomous mode selection

(AMS) approach. Predicting ILF mode and allowing CU to be split more, STILF-AMS

requires zero extra bit while ensuring the quality of reconstructed images. As a result,

we outperform VVC and the state-of-the-art deep learning-based ILF enhancement.

Remarkably, up to 18% and an average of 5.9% bitrate savings have been obtained

under all configurations.

107

Bibliography

[1] C. D. K. Pham, C. Fu, and J. Zhou, “Deep Learning based Spatial-Temporal In-loop filtering

for Versatile Video Coding,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), 2021, pp. 1861–1865.

[2] B. Bross, J. Chen, S. Liu, and Y.-K. Wang, “Versatile Video Coding (Draft 10),” document

Rep. JVET-S2001, Teleconference, Apr. 2020.

[3] C. Evans, I. Julian, and F. Simon, “The sustainable future of video entertainment from creation

to consumption,” Futuresource Consulting Ltd.: Hertfordshire, UK, pp. 1–34, 2020.

[4] G. K. Wallace, “The JPEG still picture compression standard,” IEEE transactions on consumer

electronics, vol. 38, no. 1, pp. xviii–xxxiv, 1992.

[5] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG2000 still image compression stan-

dard,” IEEE Signal Processing Magazine, vol. 18, no. 5, pp. 36–58, 2001.

[6] P. Tudor, “MPEG-2 video compression,” Electronics & communication engineering journal,

vol. 7, no. 6, pp. 257–264, 1995.

[7] W. Gao, C. Reader, F. Wu, Y. He, L. Yu, H. Lu, S. Yang, T. Huang, and X. Pan, “Avs-the

chinese next-generation video coding standard,” National association of broadcasters, Las Vegas,

2004.

[8] J. Bankoski, J. Koleszar, L. Quillio, J. Salonen, P. Wilkins, and Y. Xu, “VP8 data format and

decoding guide,” in RFC 6386, 2011.

[9] A. Grange, P. De Rivaz, and J. Hunt, “VP9 bitstream & decoding process specification,” Version

0.6, March, 2016.

[10] P. de Rivaz and J. Haughton, “AV1 bitstream & decoding process specification,” The Alliance

for Open Media, p. 182, 2018.

[11] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video

coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13,

no. 7, pp. 560–576, 2003.

108

[12] G. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the High Efficiency Video Coding

(HEVC) standard,” IEEE Transactions on circuits and systems for video technology, vol. 22,

no. 12, pp. 1649–1668, 2012.

[13] J. Lainema, F. Bossen, W.-J. Han, J. Min, and K. Ugur, “Intra coding of the HEVC standard,”

IEEE transactions on circuits and systems for video technology, vol. 22, no. 12, pp. 1792–1801,

2012.

[14] H. Lakshman, B. Bross, H. Schwarz, and T. Wiegand, “Fractional-sample motion compensation

using generalized interpolation,” in 28th Picture Coding Symposium. IEEE, 2010, pp. 530–533.

[15] C.-M. Fu, C.-Y. Chen, Y.-W. Huang, and S. Lei, “Sample adaptive offset for hevc,” in 2011

IEEE 13th International Workshop on Multimedia Signal Processing, 2011, pp. 1–5.

[16] A. Norkin, G. Bjontegaard, A. Fuldseth, M. Narroschke, M. Ikeda, K. Andersson, M. Zhou, and

G. Van der Auwera, “Hevc deblocking filter,” IEEE Transactions on Circuits and Systems for

Video Technology, vol. 22, no. 12, pp. 1746–1754, 2012.

[17] J. Pfaff, A. Filippov, S. Liu, X. Zhao, J. Chen, S. De-Luxán-Hernández, T. Wiegand, V. Rufit-

skiy, A. K. Ramasubramonian, and G. Van der Auwera, “Intra prediction and mode coding in

VVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 10, pp.

3834–3847, 2021.

[18] M. Karczewicz, N. Hu, J. Taquet, C.-Y. Chen, K. Misra, K. Andersson, P. Yin, T. Lu,

E. François, and J. Chen, “Vvc in-loop filters,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 31, no. 10, pp. 3907–3925, 2021.

[19] D. L. Donoho et al., “Compressed sensing,” IEEE Transactions on information theory, vol. 52,

no. 4, pp. 1289–1306, 2006.

[20] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal

matching pursuit,” IEEE Transactions on information theory, vol. 53, no. 12, pp. 4655–4666,

2007.

[21] T. T. Do, L. Gan, N. Nguyen, and T. D. Tran, “Sparsity adaptive matching pursuit algorithm

for practical compressed sensing,” in 2008 42nd Asilomar Conference on Signals, Systems and

Computers. IEEE, 2008, pp. 581–587.

109

[22] D. Needell and J. A. Tropp, “Cosamp: Iterative signal recovery from incomplete and inaccurate

samples,” Applied and computational harmonic analysis, vol. 26, no. 3, pp. 301–321, 2009.

[23] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM

review, vol. 43, no. 1, pp. 129–159, 2001.

[24] W. Lu and N. Vaswani, “Modified basis pursuit denoising (modified-bpdn) for noisy compressive

sensing with partially known support,” in 2010 IEEE International Conference on Acoustics,

Speech and Signal Processing. IEEE, 2010, pp. 3926–3929.

[25] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical

Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[26] E. Candes and J. Romberg, “l1-magic: Recovery of sparse signals via convex programming,”

URL: www. acm. caltech. edu/l1magic/downloads/l1magic. pdf, vol. 4, p. 14, 2005.

[27] E. Van Den Berg and M. P. Friedlander, “Probing the pareto frontier for basis pursuit solutions,”

SIAM Journal on Scientific Computing, vol. 31, no. 2, pp. 890–912, 2008.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[29] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object detection using deep neural

networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

2014, pp. 2147–2154.

[30] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with

region proposal networks,” in Advances in neural information processing systems, 2015, pp.

91–99.

[31] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser: Residual

learning of deep cnn for image denoising,” IEEE Transactions on Image Processing, vol. 26,

no. 7, pp. 3142–3155, 2017.

[32] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional network for image

super-resolution,” in European conference on computer vision. Springer, 2014, pp. 184–199.

[33] J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution using very deep con-

volutional networks,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 1646–1654.

110

[34] C. Dong, Y. Deng, C. C. Loy, and X. Tang, “Compression artifacts reduction by a deep convo-

lutional network,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015,

pp. 576–584.

[35] Z. Wang, D. Liu, S. Chang, Q. Ling, Y. Yang, and T. S. Huang, “D3: Deep dual-domain

based fast restoration of JPEG-compressed images,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2016, pp. 2764–2772.

[36] J. Guo and H. Chao, “One-to-many network for visually pleasing compression artifacts reduc-

tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2017, pp. 3038–3047.

[37] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, “Dvc: An end-to-end deep video

compression framework,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2019, pp. 11 006–11 015.

[38] G. Lu, X. Zhang, W. Ouyang, L. Chen, Z. Gao, and D. Xu, “An end-to-end learning framework

for video compression,” IEEE transactions on pattern analysis and machine intelligence, 2020.

[39] J. Li, B. Li, J. Xu, R. Xiong, and W. Gao, “Fully connected network-based intra prediction for

image coding,” IEEE Transactions on Image Processing, vol. 27, no. 7, pp. 3236–3247, 2018.

[40] W. Cui, T. Zhang, S. Zhang, F. Jiang, W. Zuo, Z. Wan, and D. Zhao, “Convolutional neural

networks based intra prediction for hevc,” in 2017 Data Compression Conference (DCC), 2017,

pp. 436–436.

[41] Y. Wang, X. Fan, C. Jia, D. Zhao, and W. Gao, “Neural network based inter prediction for

hevc,” in 2018 IEEE International Conference on Multimedia and Expo (ICME), 2018, pp. 1–6.

[42] Y. Wang, X. Fan, R. Xiong, D. Zhao, and W. Gao, “Neural network-based enhancement to inter

prediction for video coding,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 32, no. 2, pp. 826–838, 2022.

[43] N. Yan, D. Liu, H. Li, and F. Wu, “A convolutional neural network approach for half-pel

interpolation in video coding,” in 2017 IEEE international symposium on circuits and systems

(ISCAS). IEEE, 2017, pp. 1–4.

111

[44] H. Zhang, L. Song, Z. Luo, and X. Yang, “Learning a convolutional neural network for fractional

interpolation in hevc inter coding,” in 2017 IEEE Visual Communications and Image Processing

(VCIP). IEEE, 2017, pp. 1–4.

[45] S. Xia, W. Yang, Y. Hu, S. Ma, and J. Liu, “A group variational transformation neural network

for fractional interpolation of video coding,” in 2018 Data Compression Conference. IEEE,

2018, pp. 127–136.

[46] C. Pham and J. Zhou, “icnn: A convolutional neural network for fractional interpolation in

video coding,” in International Symposium on Artificial Intelligence and Robotics, 2019.

[47] N. Yan, D. Liu, H. Li, B. Li, L. Li, and F. Wu, “Convolutional neural network-based fractional-

pixel motion compensation,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 29, no. 3, pp. 840–853, 2019.

[48] J. Liu, S. Xia, W. Yang, M. Li, and D. Liu, “One-for-all: Grouped variation network-based

fractional interpolation in video coding,” IEEE Transactions on Image Processing, vol. 28,

no. 5, pp. 2140–2151, 2018.

[49] S. Xia, W. Yang, Y. Hu, W.-H. Cheng, and J. Liu, “Switch mode based deep fractional in-

terpolation in video coding,” in 2019 IEEE International Symposium on Circuits and Systems

(ISCAS). IEEE, 2019, pp. 1–5.

[50] R. Yang, M. Xu, T. Liu, Z. Wang, and Z. Guan, “Enhancing quality for hevc compressed

videos,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 7, pp.

2039–2054, 2018.

[51] Z. Jin, P. An, C. Yang, and L. Shen, “Quality enhancement for intra frame coding via cnns: An

adversarial approach,” in 2018 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2018, pp. 1368–1372.

[52] T. Wang, W. Xiao, M. Chen, and H. Chao, “The multi-scale deep decoder for the standard hevc

bitstreams,” in 2018 Data Compression Conference, 2018, pp. 197–206.

[53] X. He, Q. Hu, X. Zhang, C. Zhang, W. Lin, and X. Han, “Enhancing hevc compressed videos

with a partition-masked convolutional neural network,” in 2018 25th IEEE International Con-

ference on Image Processing (ICIP). IEEE, 2018, pp. 216–220.

112

[54] L. Ma, Y. Tian, and T. Huang, “Residual-based video restoration for hevc intra coding,” in

2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM). IEEE, 2018,

pp. 1–7.

[55] D. E. Knuth, “Dynamic huffman coding,” Journal of algorithms, vol. 6, no. 2, pp. 163–180,

1985.

[56] X. Meng, C. Chen, S. Zhu, and B. Zeng, “A new hevc in-loop filter based on multi-channel

long-short-term dependency residual networks,” in 2018 Data Compression Conference, 2018,

pp. 187–196.

[57] J. Kang, S. Kim, and K. M. Lee, “Multi-modal/multi-scale convolutional neural network based

in-loop filter design for next generation video codec,” in 2017 IEEE International Conference

on Image Processing (ICIP), 2017, pp. 26–30.

[58] X. Song, J. Yao, L. Zhou, L. Wang, X. Wu, D. Xie, and S. Pu, “A practical convolutional neural

network as loop filter for intra frame,” in 2018 25th IEEE International Conference on Image

Processing (ICIP). IEEE, 2018, pp. 1133–1137.

[59] W.-S. Park and M. Kim, “Cnn-based in-loop filtering for coding efficiency improvement,” in

2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP).

IEEE, 2016, pp. 1–5.

[60] Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network for image super-

resolution,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2018, pp. 2472–2481.

[61] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency

video coding (hevc) standard,” IEEE Transactions on circuits and systems for video technology,

vol. 22, no. 12, pp. 1649–1668, 2012.

[62] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the h. 264/avc video

coding standard,” IEEE Transactions on circuits and systems for video technology, vol. 13, no. 7,

pp. 560–576, 2003.

[63] J.-R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Comparison of the cod-

ing efficiency of video coding standards—including high efficiency video coding (hevc).” IEEE

Transactions on circuits and systems for video technology, pp. 1669–1684., 22.12 (2012).

113

[64] Y. Ye, G. Motta, and M. Karczewicz, “Enhanced adaptive interpolation filters for video coding,”

in 2010 Data Compression Conference. IEEE, 2010, pp. 435–444.

[65] S. Wittmann and T. Wedi, “Separable adaptive interpolation filter for video coding,” in 2008

15th IEEE International Conference on Image Processing. IEEE, 2008, pp. 2500–2503.

[66] Z. Guo, D. Zhou, and S. Goto, “An optimized mc interpolation architecture for hevc,” in 2012

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2012, pp. 1117–1120.

[67] F. Bossen, “Common test conditions and software reference configurations,” Joint Collaborative

Team on Video Coding (JCT-VC) of ITUT SG16 WP3 and ISO/IEC JTC1/SC29/WG11, Doc.

JCTVC-J1100, Stockholm, Sweden, July 2012.

[68] G. Bjontegaard, “Calculation of average psnr differences between rd-curves,” VCEG-M33, 2001.

[69] Y. Zhang, P. Wang, H. Huang, Y. Zhu, D. Xiao, and Y. Xiang, “Privacy-assured fogcs: Chaotic

compressive sensing for secure industrial big image data processing in fog computing,” IEEE

Transactions on Industrial Informatics, 2020.

[70] Y. Zhang, Q. He, G. Chen, X. Zhang, and Y. Xiang, “A low-overhead, confidentiality-assured,

and authenticated data acquisition framework for iot,” IEEE Transactions on Industrial Infor-

matics, vol. 16, no. 12, pp. 7566–7578, 2020.

[71] Y. Zhang, P. Wang, L. Fang, X. He, H. Han, and B. Chen, “Secure transmission of compressed

sampling data using edge clouds,” IEEE Transactions on Industrial Informatics, vol. 16, no. 10,

pp. 6641–6651, 2020.

[72] C. Jia, S. Wang, X. Zhang, S. Wang, J. Liu, S. Pu, and S. Ma, “Content-aware convolutional

neural network for in-loop filtering in high efficiency video coding,” IEEE Transactions on Image

Processing, vol. 28, no. 7, pp. 3343–3356, 2019.

[73] S. Anwar and N. Barnes, “Real image denoising with feature attention,” IEEE International

Conference on Computer Vision (ICCV-Oral), 2019.

[74] C. Tian, Y. Xu, Z. Li, W. Zuo, L. Fei, and H. Liu, “Attention-guided cnn for image denoising,”

Neural Networks, vol. 124, pp. 117–129, 2020.

114

[75] Z. Yue, Q. Zhao, L. Zhang, and D. Meng, “Dual adversarial network: Toward real-world noise

removal and noise generation,” in European Conference on Computer Vision. Springer, 2020,

pp. 41–58.

[76] H. Qiu, Q. Zheng, G. Memmi, J. Lu, M. Qiu, and B. Thuraisingham, “Deep residual learning-

based enhanced jpeg compression in the internet of things,” IEEE Transactions on Industrial

Informatics, vol. 17, no. 3, pp. 2124–2133, 2020.

[77] M. El Helou and S. Süsstrunk, “Blind universal Bayesian image denoising with Gaussian noise

level learning,” IEEE Transactions on Image Processing, vol. 29, pp. 4885–4897, 2020.

[78] Z. Guan, Q. Xing, M. Xu, R. Yang, T. Liu, and Z. Wang, “Mfqe 2.0: A new approach for multi-

frame quality enhancement on compressed video,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, pp. 1–1, 2019.

[79] R. Yang, M. Xu, Z. Wang, and T. Li, “Multi-frame quality enhancement for compressed video,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.

6664–6673.

[80] D. Vijayalakshmi, M. K. Nath, and O. P. Acharya, “A comprehensive survey on image contrast

enhancement techniques in spatial domain,” Sensing and Imaging, vol. 21, no. 1, pp. 1–40, 2020.

[81] D. Po lap, “An adaptive genetic algorithm as a supporting mechanism for microscopy image

analysis in a cascade of convolution neural networks,” Applied Soft Computing, vol. 97, p.

106824, 2020.

[82] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recog-

nition,” arXiv preprint arXiv:1409.1556, 2014.

[83] Z. Li, J. Yang, Z. Liu, X. Yang, G. Jeon, and W. Wu, “Feedback network for image super-

resolution,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2019.

[84] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image super-resolution: Dataset

and study,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

Workshops, July 2017.

[85] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural images

and its application to evaluating segmentation algorithms and measuring ecological statistics,”

115

in Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2,

2001, pp. 416–423 vol.2.

[86] M. Bevilacqua, A. Roumy, C. Guillemot, and M. line Alberi Morel, “Low-complexity single-

image super-resolution based on nonnegative neighbor embedding,” in Proceedings of the British

Machine Vision Conference. BMVA Press, 2012, pp. 135.1–135.10.

[87] R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using sparse-representations,” in

International conference on curves and surfaces. Springer, 2010, pp. 711–730.

[88] J.-B. Huang, A. Singh, and N. Ahuja, “Single image super-resolution from transformed self-

exemplars,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, 2015, pp. 5197–5206.

[89] N. Ponomarenko, L. Jin, O. Ieremeiev, V. Lukin, K. Egiazarian, J. Astola, B. Vozel, K. Chehdi,

M. Carli, F. Battisti et al., “Image database tid2013: Peculiarities, results and perspectives,”

Signal Processing: Image Communication, vol. 30, pp. 57–77, 2015.

[90] X. Liu, J. van de Weijer, and A. D. Bagdanov, “Rankiqa: Learning from rankings for no-

reference image quality assessment,” in Proceedings of the IEEE International Conference on

Computer Vision, 2017, pp. 1040–1049.

[91] J. M. Bioucas-Dias and M. A. Figueiredo, “A new twist: Two-step iterative shrink-

age/thresholding algorithms for image restoration,” IEEE Transactions on Image processing,

vol. 16, no. 12, pp. 2992–3004, 2007.

[92] W. Deng, W. Yin, and Y. Zhang, “Group sparse optimization by alternating direction method,”

in Wavelets and Sparsity XV, vol. 8858. International Society for Optics and Photonics, 2013,

p. 88580R.

[93] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse solution of underdetermined systems

of linear equations by stagewise orthogonal matching pursuit,” IEEE transactions on Informa-

tion Theory, vol. 58, no. 2, pp. 1094–1121, 2012.

[94] L. Li, H. Li, D. Liu, Z. Li, H. Yang, S. Lin, H. Chen, and F. Wu, “An efficient four-parameter

affine motion model for video coding,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 28, no. 8, pp. 1934–1948, 2018.

116

[95] K. Zhang, Y.-W. Chen, L. Zhang, W.-J. Chien, and M. Karczewicz, “An improved framework of

affine motion compensation in video coding,” IEEE Transactions on Image Processing, vol. 28,

no. 3, pp. 1456–1469, 2019.

[96] C.-Y. Tsai, C.-Y. Chen, T. Yamakage, I. S. Chong, Y.-W. Huang, C.-M. Fu, T. Itoh, T. Watan-

abe, T. Chujoh, M. Karczewicz, and S.-M. Lei, “Adaptive loop filtering for video coding,” IEEE

Journal of Selected Topics in Signal Processing, vol. 7, no. 6, pp. 934–945, 2013.

[97] Y. Dai, D. Liu, Y. Li, and F. Wu, “AHG9: CNN-based in-loop filter proposed by USTC,” in

document JVET-M0510, 13th JVET meeting, 2019.

[98] S. N. K. Kawamura, “A result of convolutional neural network filter,” document Rep. JVET-

M0872, Marrakech, MA, USA, Jan. 2019.

[99] Z. Huang, Y. Li, and J. Sun, “Multi-Gradient Convolutional Neural Network Based In-Loop

Filter For VVC,” in 2020 IEEE International Conference on Multimedia and Expo (ICME).

IEEE, 2020, pp. 1–6.

[100] Y. Li, L. Zhao, S. Liu, Y. Wang, Z. Chen, and X. Li, “Test results of dense residual convolutional

neural network based in-loop filter,” document Rep. JVET-M0508, Marrakech, MA, USA, Jan.

2019.

[101] D. Ding, L. Kong, G. Chen, Z. Liu, and Y. Fang, “A switchable deep learning approach for

in-loop filtering in video coding,” IEEE Transactions on Circuits and Systems for Video Tech-

nology, vol. 30, no. 7, pp. 1871–1887, 2019.

[102] Z. Huang, J. Sun, X. Guo, and M. Shang, “One-for-all: An efficient variable convolution neu-

ral network for in-loop filter of vvc,” IEEE Transactions on Circuits and Systems for Video

Technology, pp. 1–1, 2021.

[103] ——, “Adaptive deep reinforcement learning based in-loop filter for vvc,” IEEE Transactions

on Image Processing, vol. 30, pp. 5439–5451, 2021.

[104] T. Li, M. Xu, C. Zhu, R. Yang, Z. Wang, and Z. Guan, “A deep learning approach for multi-

frame in-loop filter of hevc,” IEEE Transactions on Image Processing, vol. 28, no. 11, pp.

5663–5678, 2019.

[105] M. Wang, S. Wan, H. Gong, and M. Ma, “Attention-based dual-scale CNN in-loop filter for

Versatile Video Coding,” IEEE Access, vol. 7, pp. 145 214–145 226, 2019.

117

[106] S. Chen, Z. Chen, Y. Wang, and S. Liu, “In-loop filter with dense residual convolutional neu-

ral network for VVC,” in 2020 IEEE Conference on Multimedia Information Processing and

Retrieval (MIPR). IEEE, 2020, pp. 149–152.

[107] Y. Dai, D. Liu, and F. Wu, “A convolutional neural network approach for post-processing in

HEVC intra coding,” in International Conference on Multimedia Modeling. Springer, 2017, pp.

28–39.

[108] T. Laude and J. Ostermann, “Deep learning-based intra prediction mode decision for hevc,” in

2016 Picture Coding Symposium (PCS). IEEE, 2016, pp. 1–5.

[109] Z. Liu, X. Yu, Y. Gao, S. Chen, X. Ji, and D. Wang, “Cu Partition Mode Decision for HEVC

Hardwired Intra Encoder using Convolution Neural Network,” IEEE Transactions on Image

Processing, vol. 25, no. 11, pp. 5088–5103, 2016.

[110] Z. Chen, J. Shi, and W. Li, “Learned fast hevc intra coding,” IEEE Transactions on Image

Processing, vol. 29, pp. 5431–5446, 2020.

[111] F. Zaki, A. E. Mohamed, and S. G. Sayed, “Ctunet: A deep learning-based framework for fast

ctu partitioning of h265/hevc intra-coding,” Ain Shams Engineering Journal, vol. 12, no. 2, pp.

1859–1866, 2021.

[112] M. Xu, T. Li, Z. Wang, X. Deng, R. Yang, and Z. Guan, “Reducing Complexity of HEVC:

A Deep Learning Approach,” IEEE Transactions on Image Processing, vol. 27, no. 10, pp.

5044–5059, 2018.

[113] T. Li, M. Xu, and X. Deng, “A deep convolutional neural network approach for complexity

reduction on intra-mode hevc,” in 2017 IEEE International Conference on Multimedia and

Expo (ICME), 2017, pp. 1255–1260.

[114] S. Kuanar, K. Rao, M. Bilas, and J. Bredow, “Adaptive cu mode selection in hevc intra predic-

tion: A deep learning approach,” Circuits, Systems, and Signal Processing, vol. 38, no. 11, pp.

5081–5102, 2019.

[115] W. Han, S. Chang, D. Liu, M. Yu, M. Witbrock, and T. Huang, “Image super-resolution via

dual-state recurrent networks,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2018, pp. 1654–1663.

118

[116] S. Woo, J. Park, J. Lee, and I. So Kweon, “Cbam: Convolutional block attention module,” in

Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3–19.

[117] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in International

conference on machine learning. PMLR, 2016, pp. 1928–1937.

[118] R. Furuta, N. Inoue, and T. Yamasaki, “Fully convolutional network with multi-step reinforce-

ment learning for image processing,” in AAAI Conference on Artificial Intelligence (AAAI),

2019.

[119] ——, “Pixelrl: Fully convolutional network with reinforcement learning for image processing,”

IEEE Transactions on Multimedia (TMM), vol. 22, no. 7, pp. 1704–1719, 2020.

[120] K. Yu, C. Dong, L. Lin, and C. C. Loy, “Crafting a toolchain for image restoration by deep

reinforcement learning,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2018, pp. 2443–2452.

[121] C. Montgomery et al., “Xiph. org Video Test Media (Derf’s collection), the xiph open source

community, 1994,” Online, https://media.xiph.org/video/derf.

[122] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer, “Automatic differentiation in PyTorch,” in NIPS Autodiff Workshop,

2017.

[123] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[124] S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki, K. Uenishi, B. Vogel,

and H. Yamazaki Vincent, “Chainer: A deep learning framework for accelerating the research

cycle,” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Dis-

covery & Data Mining. ACM, 2019, pp. 2002–2011.

[125] Y. Fujita, P. Nagarajan, T. Kataoka, and T. Ishikawa, “ChainerRL: A Deep Reinforcement

Learning Library,” Journal of Machine Learning Research, vol. 22, no. 77, pp. 1–14, 2021.

[Online]. Available: http://jmlr.org/papers/v22/20-376.html

[126] G. Bjontegaard, “Calculation of Average PSNR Differences Between RD-Curves,” document

ITU-T Q. 6/SG16 VCEG, 15th Meeting, Austin, TX, USA, 2001.

119

http://jmlr.org/papers/v22/20-376.html

[127] J. Boyce, K. Suehring, X. Li, and V. Seregin, “JVET common test conditions and software

reference configurations,” document Rep. JVET-J1010, San Diego, USA, 2018.

120

List of Abbreviations

A3C Asynchronous advantage actor-critic

AI All Intra

AIoT Artificial Intelligence of Things

ALF Adaptive loop filter

AP Average pooling

AVC Advanced Video Coding

BD-rate Bjontegaard Delta-Rate

CABAC Context-adaptive binary arithmetic coding

CNN Convolutional Neural Network

CPU Central processing unit

CS Compressive sensing

CTU Coding Tree Unit

CU Coding Unit

DBF Deblocking filter

DL Deep Learning

FPS Frame Per Second

GPU Graphics processing unit

HD High Definition

HEVC High Efficiency Video Coding

ILF In-loop filtering

IoT Internet of Things

JPEG Joint Photographic Experts Group

JVET Joint Video Exploration Team

LCC Linear Correlation Coefficient

LDB Low Delay B

121

LDP Low Delay P

MOS Mean opinion score

MP Max pooling

MPEG Moving Picture Experts Group

POC Picture order count

PReLU Parametric Rectified Linear Unit

PSNR Peak Signal-to-Noise Ratio

QP Quantization Parameter

RA Random Access

RD Rate-Distortion

ReLU Rectified Linear Unit

RL Reinforcement learning

SAD Sum of absolute difference

SAO Sample adaptive offset

SD Standard Definition

SOTA State-of-the-art

SR Sampling rate

SROCC Spearman’s Rank Order Correlation Coefficient

SSIM Structural Similarity Index

VTM VVC Test Model

VVC Versatile Video Coding

122

	Abstract
	Acknowledgements
	List of Publications
	Introduction
	Motivations
	Objective and scope of the research
	Enhancing reconstructed frames in video codecs: the overall scheme
	Main results and contributions
	Enhancing reference-frame interpolation for video encoder
	Compressive sensing image enhancement at video decoder
	In-loop filtering image enhancement for video encoder-decoder

	Dissertation outline

	Enhancing reference-frame interpolation for video encoder
	Introduction
	Related works
	Methods
	Training set generation
	Network architecture
	Rate-distortion optimization (RDO)-based interpolation mode selection

	Experiments
	Experimental settings and evaluation method
	Experimental results
	RDO-based interpolation method selection result
	Comparison with existing works
	Overall results

	Chapter conclusions

	Compressive sensing image enhancement at video decoder
	Introduction
	Related Knowledge
	Compressive sensing
	Deep Learning-based distorted image enhancement

	The proposed CSIE-M framework
	Overview of the CSIE-M framework
	No-reference quality assessment module: Scorenet
	Quality enhancement component: Multiple-input Residual Recurrent Network (MRRN)

	Experimental results and comparison
	Experiment settings
	Ablation studies
	Overall results.

	Chapter conclusion

	In-loop filtering image enhancement for video encoder-decoder
	Introduction
	Related Works
	Deep learning-based In-Loop filtering for video coding
	Deep learning-based mode decision in video coding

	Spatial-Temporal In-loop Filtering with Auto-nomous mode selection (STILF-AMS): the proposal
	Overview the proposed STILF-AMS
	The proposed network set: STILF.
	The proposed reinforcement learning-based autonomous mode selection (AMS)
	State definition
	Reward
	Agent

	Experiments
	Parameter settings
	Study on network set
	Ablation Study
	Coding results

	Chapter conclusion

	Conclusion
	List of Abbreviations

