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Abstract— Recently, deep learning-based video compressive sensing reconstruction (VCSR) technologies have achieved
tremendous success in improving the quality of the reconstructed video. However, the reconstructed video quality
at low bit rates or high compression ratios still dissatisfies with the requirement in practice. In this paper, a video
compressive sensing reconstruction method with joint in-loop reference enhancement and out-loop super-resolution
(JVCSR) is proposed, which focuses on removing reconstruction noises, blocking artifacts and increase the resolution
simultaneously. As an in-loop part, the enhanced frame is utilized as a reference to improve the recovery performance of
current frame. Furthermore, it is the first work that realizes out-loop super-resolution for VCSR to obtain high quality
image at low bit rates. As a result, our JVCSR can improve average of 2.53 dB PSNR by comparing with state-of-the-art
compressive sensing methods at the similar bit rate.

Index Terms— Video compressive sensing reconstruction, low bit rate, super-resolution, reference enhancement

1. INTRODUCTION

Compressive sensing (CS) reconstructs the signal at the rate
that is lower than the Nyquist-Shannon Sampling Criterion
[1]. In the encoder, N -length signal x will be transformed
to a specific domain in which the transformation of x is a
sparse signal, and obtain M × 1 measurement y by multi-
plying measurement matrix. Such as binary matrix, random
matrix and structure matrix, numerous measurement matrices
are designed to play a crucial role in compressive sensing.
In the decoder, the signal x is reconstructed given the trans-
mitted measurement y and measurement matrix by different
reconstruction algorithms, e.g., OMP, SPGL and SAMP[2].
In a word, CS is an advantageous reconstruction method that
can achieve the comparable performance of full sampling by
using a few pieces of information. It is also gradually applied
in various practical fields such as surveillance camera sensor,
Magnetic Resonance Imaging (MRI), medical scanners, etc.

Suffer from the high computational complexity, tradi-
tional CS methods achieve acceptable reconstruction perfor-
mance but with high time consumption. Deep neural network
is well-known for its outstanding performance in feature ex-
tracting, learning and representation power when it comes to
image processing, and have also been applied to CS to en-
hance the visual quality or accelerate the reconstruction re-
cently. The authors of [3] propose an ISTA-Net for image
CS reconstruction. Nonlinear transform is used to solve the
proximal mapping associated with the sparsity-inducing reg-
ularizer and dramatically promotes the results of traditional
approaches while maintaining fast run time. Nevertheless,

image-based CS algorithms can be directly applied to video
tasks but fail to utilize the temporal and spatial correlation,
such as neighboring frames in video sequences. The research
[4] presents a novel recurrent convolutional neural network
(CNN) called CSVideoNet, which extracts spatial-temporal
correlation features, and proposes a synthesizing LSTM net-
work for motion estimation (ME). Compare with other iter-
ative algorithms, they can significantly improve the recovery
video quality. Huang et al.[5] introduce a learning-based CS
algorithm (CS-MCNet) with multi-hypothesis motion com-
pensation (MC) to extract correlation information, improves
the reconstruction performance by reusing the similarity be-
tween adjacent frames. However, some artifacts and noises
still remain in the reconstructed videos, resulting in an un-
pleasant visual effect, especially at low bit rates.

In order to further improve the quality of the reconstructed
video, we proposes a novel VCSR framework by employing
in-loop reference enhancement and out-loop super-resolution.
The contributions of our work can be described as follows:

• In this work, we realize degradation-aware super-
resolution for the video compressive sensing recon-
struction and obtain state-of-the-art performance.

• An in-loop reference enhancement is designed in this
work to remove the artifacts and noises before CS re-
constructed current frame is provided reference to the
next frame, which improves CS reconstruction perfor-
mance significantly.

• Our proposal improves the rate-distortion performance



Up-sample

High-resolution Videos

Low-resolution Videos

Reconstructed Videos

Transmission

Measurement
Random Matrix

CS Encoder

i
i+1

CS Decoder

Reference

Enhancement

Fig. 1. The concept of our proposal. Reference enhance-
ment improves the quality of reconstructed frame before it
is referred to next frame. Up-sample is Our out-loop super-
resolution, which utilized to obtain the final high-resolution
video.

of the existing compressive sensing algorithms in a
wide bit rate range after the out-loop super-resolution.

2. RELATED TECHNOLOGIES

Image enhancement. The paper of [6] investigates three
compression architectures, including using super-resolution
(SR). Their experimental results demonstrate that super-
resolution can achieves superior rate-distortion performance
that compares to BPG compression images. In [7], the au-
thors present an end-to-end SR algorithm (CISRDCNN) for
JPEG images that improves image resolution and reduces
compression artifacts jointly. Plenty of researches indicate
that it is beneficial to exploit super-resolution methods with
compressed images or videos. Nevertheless, there are not
many researches conduct super-resolution base on compres-
sive sensing. On the other hand, such as transform and quan-
tization in HEVC, AVC, and limited measurements in CS, all
of them split the image into non-overlapping blocks and each
block is performed by lossy compression. Images can not be
fully reconstructed and lead to signal distortion. Therefore,
to recover the original signal, it requires a method to achieve
quality enhancement with fewer artifacts and clearer struc-
tures. In the past few years, several CNN-based algorithms
present powerful potentiality of denoising and artifacts re-
moval [8], [9]. Dong [8] demonstrate that their 3-layer convo-
lutional neural network is efficient in reducing various com-
pression artifacts. They also mention that reusing shallow fea-
tures can help learn deeper models for artifact removal. Simi-
lar to other compression methods, some blocking artifacts and
blurs are generated after compressive sensing reconstructing,

especially at low sampling rates.
Pixel Downsample-based Coding. Due to the limited

bandwidth and storage capacity, videos and images are down-
sampled at the encoder and upsampled at the decoder, which
can be an effective strategy to save data in storing and trans-
mission. On the other hand, super-resolution, where high-
resolution images are obtained given the low-resolution ones,
offers higher resolution for images and videos that are cap-
tured and recorded in the low-resolution. With the rapid
development of CNN methods recently, not only the al-
gorithms for normal image super-resolution, but also some
CNN-based compressed image super-resolution methods are
also proposed. For the compressed images or videos, directly
performing super-resolution would magnify the artifacts and
noises simultaneously. To address this issue, the authors in
[10] and [11] present a restoration-reconstruction deep neural
network (RR-DnCNN), which solves degradation from down-
sample and compression by using degradation-aware method.
The technique of degradation-aware consists of restoration
and reconstruction. Restoration is to remove the compres-
sion artifacts, and reconstruction leverages up-sampled fea-
tures from restoration to generate high resolution video.

3. PROPOSED JVCSR

3.1. Overall Framework

The concept of our proposal is shown in Fig. 1. Low-
resolution videos are sampled by the CS encoder and up-
sample after decoding. Low-resolution videos have lower bit
rate in transmission, and high-resolution videos are acquired
after up-sampling by our network. Our reference enhance-
ment is added to optimize the restored frame, and thus im-
proves the MC performance and final CS reconstruction.

Our proposed framework consists of three parts: Com-
pressive sensing with motion compensation (CS-MC), in-loop
reference enhancement (I-RE) and out-loop super-resolution
(O-SR). The overall architecture is shown in Fig. 2. As the
input of CS-MC, the measurement is acquired by multiplying
the pixels of low-resolution videos with a random measure-
ment matrix. After a frame is reconstructed, a buffer is used
to store reconstructed results of the current frame and provide
a reference for the next frame. It is noteworthy that the im-
ages restored through CS-MC would generate black spots in
some specific cases, which are caused by block-based MC. To
address this problem, we design an I-RE module to realize op-
timization for the reference frame. By this module, noises and
artifacts of the recovery frame are removed effectively. The
recovery frame with higher quality is both utilized for mo-
tion compensation of CS decoder to reconstruct better next
frame cyclically, and also as the input of super-resolution.
After in-loop section, an out-loop super-resolution module is
presented to increase the resolution of sequences to achieve
pleasant visual results and compare performance with orig-



𝑯×𝑾 Videos

𝟐𝑯 × 𝟐𝑾 Videos

Out-loop Super-resolution
(O-SR)

X X

Random Measurement Matrix

Measurement

CS-MC

Reconstructed Frame

…

In-loop Reference Enhancement
(I-RE)

Preliminary Reconstruction

Motion Compensation Residual

Fig. 2. The overall architecture of our framework is divided into three parts. Low-resolution Video is firstly to do the compres-
sive sensing by CS-MC. After a frame is reconstructed, it will be enhanced by our I-RE before being provided as a reference
for the next frame. The final enhanced video frame will be fed to our O-SR to obtain the high-resolution video.

inal videos. Details of our architecture are discussed in the
following sections.

3.2. Network Architectures

In-loop Reference Enhancement (I-RE): In Huang’s work
[5], they design a buffer to store reconstructed results of the
current frame and provides a reference for the recovery to the
next frame. There are still some artifacts and noises that re-
main in the reconstructed image, especially in high CR. In our
work, low-resolution video sequences are sampled by CS en-
coder instead of original high resolution videos. Therefore,
it is more significant to conduct enhancement. As shown
in Fig. 3, we design our architecture base on the work of
[9], which demonstrates that combining residual learning and
batch normalization can achieve the outstanding visual per-
formance of denoise models. As we mentioned before, sam-
pling rates, also well-known as compression ratio (CR) is de-
fined as CR = M

N . Since smaller CR indicates fewer signals
are sampled, a deep neural network can not completely play
its role. To simplify the network and reduce the size of param-
eters, we appropriately delete some hidden layers when CR is
set to small. For hidden layers, we use 64 filters of size 3 ×
3 × 64 to get feature maps, and batch normalization is also
connected after each convolution layer. Except for the last
layer, all convolutional layers are followed by rectified linear
units (ReLU) layers. Experiments demonstrate that fewer lay-
ers of our enhancement can achieve acceptable performance
with fewer network parameters.

Out-loop Super-resolution (O-SR): In [12], The authors
introduce a convolutional block attention module (CBAM),
which is extensively applied in various learning-based tasks
such as image recognition and classification. This attention
module has two parts: The channel attention module uti-
lizes both average-pool and max-pool synchronously to im-

……
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Fig. 3. The architecture of our enhancement module. The
number of hidden layers depends on the value of CR. En-
hanced images will be obtained after subtracting the learning
result from the reconstructed image since it is residual learn-
ing.

prove the representation power of the network. On the other
hand, the spatial attention module works to find an informa-
tive part to supplement channel attention. It is worth noting
that this attention module also performs well in our task. [13]
(SRFBN) proposes a novel feedback block module, which ef-
fectively reuses feature and feedback information to achieves
state-of-the-art SR performance. Therefore, a CNN-based
super-resolution module is presented in our work to obtain the
ultimate high quality high-resolution video after enhancing
the reconstructed ones. The architecture is shown in Fig. 4.
CBAM is connected in each feedback block for adaptive fea-
ture refinement.

4. EXPERIMENTAL RESULTS

4.1. Experimental settings

Training dataset: We use Ultra Video Group (UVG)[14] to
build the training dataset of training super-resolution. UVG is



composed of 16 versatile 4K (3840 * 2160) video sequences
and commonly used in video-based works. These natural se-
quences were captured either at 50 or 120 frames per sec-
ond (fps) and stored online in different formats. We choose
videos from UVG dataset and get around 1050 pairs of images
for training and validation in total. For training compressive
sensing model, as there is not standard dataset designed for
video CS, we randomly pick 15% UCF-101 dataset with 100
frames for training. All the video sequences are converted to
one channel and only extracted luminance signal.

Testing dataset: It is difficult for humans to distin-
guish quality difference between two video sequences of the
same content when they have the close compressed ratio.
The MCL-JCV dataset[15] is designed to measure this phe-
nomenon for each test subject. Since surveillance is ubiqui-
tous in practical and requires high resolution videos, we also
use the VIART dataset [16] to test the robustness of our meth-
ods.

Training setting: The experiments of our framework
are implemented with Pytorch 1.2.0 on Ubuntu 16.04, and
NVIDIA GeForce RTX2080Ti GPUs are supported for our
training. Adam optimization is used to refine the parame-
ters while training. We separate the training into three mod-
ules, a super-resolution module, an enhancement module, and
a compressive sensing module but finally connect them to an
end-to-end trainable network. In order to demonstrate the ro-
bustness of our framework, four models are trained for each
module with different compression ration video (0.125, 0.25,
0.5 and 0.75).

In the training of super-resolution, the scale factor is set to
2. We initialize the learning rate to 1×10−4, and multiplies by
1
2 every 250 epochs with total 1000 epochs. For training the
enhancement module, as we mentioned before, the network
depth depends on compression. The model of largest CR we
used (0.75) has 17 hidden layers (as shown in Fig. 3) and CR
= 0.5 has 16 layers, etc. For compressive sensing, training for
200 epochs with a batch size of 400 and 0.01 learning rate
yield best reconstruction performance in our case.

4.2. Experimental results

The results of experiments are evaluated by two standards,
signal-to-noise ratio (PSNR) and structural similarity (SSIM).
Visual performance is also shown in the following sections.

Results on in-loop reference enhancement: Before up-
sampling of this work, higher quality images are generated
since we have the enhancement for compressive sensing. We
show some visual examples of reconstructed images and en-
hanced results in Fig. 5. It can be easily seen the effect of
our enhancement, a number of noises are removed success-
fully. Table. 1 lists the average PSNR/SSIM results of our
test dataset, and demonstrates that our enhancement performs
meaningful effect, especially under high compression ratio.

Results on out-loop super-resolution: To perform the
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Fig. 4. The architecture of out-loop super-resolution. CBAM
is connected in each feedback block for adaptive feature re-
finement. The final output high-resolution image is obtained
by adding the upsampled low-resolution image and learning
results. Upsample kernel is set to bicubic here.

superiority of each module in our work, we conduct the com-
parison as follow: 1) Delete I-RE and O-SR module then
directly up-sample the images by bicubic interpolation. 2)
Delete O-SR module then up-sample the images by bicubic
interpolation. 3) Replaced O-SR module with SRCNN[17].
4) Replaced O-SR module with DRRN[18]. 5) Replaced O-
SR module with DBPN[19]. 6) Both I-RE and O-SR are uti-
lized. As shown in the Table. 2, it is easy to judge our work
achieves superior performance by these ablation experiments.

Overall bit-rate reduction and comparison: To per-
form the coding advantage of our proposal, Fig. 6 shows
the rate-distortion results at different bit rates obtained by
the test dataset. We compare with SAMP, ISTA-Net[3] and
CS-MCNet[5], the curves demonstrate that our proposal out-
performs other compressive sensing algorithms over a wide
range of bit rates. Moreover, Fig. 7 shows the visual results
of some examples under the same bit rate, to further show the
superiority of our framework. As we can see, our proposal
retains the most details, suffers minimal block effect, and re-
moves noises significantly. PSNR and SSIM results of some
test examples (10 sequences from VIRAT and 9 sequences
from MCL-JCV) at two bit rates comparison with different
compressive sensing algorithms are shown in Table. 3.

5. CONCLUSIONS

In this paper, we propose a video compressive sensing re-
construction framework with joint in-loop reference enhance-
ment and out-loop super-resolution (JVCSR). First, an in-
loop enhancement module is designed to enhance the pixel in-
formation and realize the optimization of the reference frame
for CS. Experimental results show that the artifacts and noises
are removed effectively, leading to better CS recovery re-
sults. Furthermore, adopt the concept of downsampling-based
video coding, we propose an out-loop super-resolution mod-
ule to increase resolution for the low-resolution videos with



Table 1. Average PSNR and SSIM performance comparison
of I-RE under different CRs on our test dataset.

CR Metric Reconstructed Enhanced
0.125 PSNR 24.16 26.42

SSIM 0.6837 0.7790
0.25 PSNR 25.96 29.01

SSIM 0.7932 0.8744
0.5 PSNR 27.15 31.63

SSIM 0.8719 0.9281
0.75 PSNR 28.99 33.35

SSIM 0.9099 0.9535

Ground Truth

PSNR / SSIM

Without I-RE

27.78 / 0.8683

With I-RE

31.87 / 0.8827

Ground Truth

PSNR / SSIM

Without I-RE

26.81 / 0.9210

With I-RE

31.96 / 0.9475

Ground Truth

PSNR / SSIM

Without I-RE

26.27 / 0.9102

With I-RE

30.70 / 0.9364

Fig. 5. The enhancement visual results. Noises and artifacts
reconstructed by compressive sensing are removed by our I-
RE module effectively. Please zoom in for better views and
comparisons.

different compression ratio. By comparing to other state-of-
the-art algorithms, our proposal achieves better performance
relatively. Moreover, to show the advantage of our framework
in low bit rate video coding, we obtain better rate-distortion
performance in a wide range than other CS algorithms. To the
best of knowledge, it is the first work to propose degradation-
aware super-resolution for video compressive sensing recon-
struction. Regarding to the future work, we tend to achieve
better performance of CS by enhancing measurement directly
instead of pixel.
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blue color.
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