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Abstract—This paper proposes a speedup convolutional neu-
ral network (CNN)-based deblurring framework (SpeedDeblur)
for reconstructed blurry videos. First, we extract the coding
information and the reconstructed video from the compressed
data. Second, a CNN-based algorithm is used for deblurring
the first reconstructed frame. Pixels of the deblurred frames
are transferred to the subsequent frames guided by HEVC
decoded data. The transferring process is simple and faster than
applying a deblurring algorithm on all frames. However, passing
pixels throughout a long video propagates accumulated errors
and reduces the deblurring performance. To bridge this gap,
we design an adaptive reset strategy for deciding which frame
needs CNN-based deblur during the transfering process. Besides,
a data generation strategy simulating blurry real-world factors
such as camera shake and fast movement is proposed. Compared
to frame-by-frame deblurring approaches, our framework can
retain the same comparable results and boost the deblurring
processing by up to 4.0× and 99.4× on GPU and CPU, respec-
tively.

Index Terms—Accelerate, video compression, deep learning,
blurring, video deblurring.

I. INTRODUCTION

Video is the most common data that requires high transmis-
sion bandwidth and large storage devices. Video compression
techniques must be used to store and transmit video data
efficiently. One of the recent video coding standards is High-
Efficiency Video Coding (HEVC) [1], which achieves a com-
pression ratio of 1000:1 and an improvement of 50% bit-rate
reduction compared to its ancestor H.264/AVC - Advanced
Video Coding, has been widely used over the past decade.

Camera shake, object motion, and out-of-focus are ma-
jor causes of visual quality degradation in video recording.
Therefore, it is necessary to apply deblurring algorithms for
removing blur artifacts and restoring high-quality videos. In
video deblurring, two common approaches are applying a
deblurring algorithm to each frame and using information from
neighboring frames to improve the middle one(s). Recently,
CNN-based algorithms [2] [3] [5] [6] have brought remarkable
results in enhancing video qualities on both these approaches.
The development of the CNN architecture has enabled the
deblurring algorithms to achieve state-of-the-art performance.
However, when the CNN-based deblurring architecture is
getting complex, enhancing video quality usually involves a
high computational cost and time-consuming, especially in
long-length and high frame-rate videos.

Inspired by Free Adaptive Super-resolution via Transfer
(FAST) framework [4], this work takes advantage of the

temporal correlation from the HEVC coding information to
speed up the deblurring process on the reconstructed videos
(SpeedDeblur). In particular, we utilize the coded informa-
tion such as motion vectors, reference block positions, and
the residual between the current and the reference block to
enhance the current block. In SpeedDeblur, we perform a
CNN-based deblurring algorithm on the first frame of the
reconstructed video. The rest will refer to this deblurred
frame utilizing the HEVC coded information to reduce the
computational complexity. Different from FAST [4], this work
aims to accelerate the deblurring process on compressed
videos and focus on transferring pixels in a long distance.
Moreover, we conduct a study to establish an adaptive reset
strategy that efficiently drives the deblurring performance of
the SpeedDeblur framework. The main contributions of this
study are summarized as follows:

1) First, this paper proposes a framework that accelerating
any deblurring algorithm with less computational cost
by utilizing the available coded information from the
decoding process.

2) Second, we present a new scheme for blurry dataset
generation from uncompressed videos. Firstly, we use
optical flow estimation to detect the frames in the re-
constructed video that contain small motions. Following
that, we use a CNN-based interpolation algorithm to
generate a set of virtual frames based on these original
frames. The blurring frame is generated by averaging the
interpolated frames. Finally, we compress these blurry-
uncompressed videos using an HEVC encoder under
Low delay P configuration.

3) Third, we design an adaptive reset strategy for our
framework. This strategy benefits the transfer process
more efficiently when transferring pixels in a long
distance. In this strategy, we exploit quality fluctuation
in consecutive frames for selecting high-quality frames.
When the accumulated error is getting too large, we ap-
ply the deblurring process on these high-quality frames
to prevent the image quality reduction.

II. RELATED WORK

In recent years, Convolutional Neural Network has made
a breakthrough results on single frame and multiple frames
deblurring [2] [3] [5] [6]. Tao et al. [2] proposed using a
multi-scale CNN to recover undistorted images in a coarse-
to-fine manner. Li et al. [3] proposed a feedback mechanism
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Fig. 1: Overview of SpeedDeblur. We apply a CNN-based deblurring algorithm to the first frame. The subsequent frames
choose between adaptive transferring or adaptive resetting for deblurring. In adaptive transferring, inter-blocks copy deblurred
pixels from their reference frames given coded information. The adaptive reset module decides to do CNN-based deblurring
to a particular frame.
to enhance feature expression. Later, DeBlurNet [5] has been
proposed for learning how to accumulate information across
frames. Most recently, Kupyn et al. [6] proposed Feature
Pyramid Network and conditional generative adversarial net-
work (GAN) for image deblurring. These innovational net-
work architectures achieve the state-of-the-art results. When
the recent network architectures are getting more complex,
performing CNN on even CPUs and GPUs still cause the delay
which is unacceptable for mordern video-enable applications
such as video streaming. For example, SRN-Deblur [2] adapts
an encoder-decoder ResBlocks structure in each scale, this
network could take a massive number of parameters (3.76M)
for training and testing. SRFBN [3] has few parameters but
huge Mult-Adds because of the recursive mechanism. Hence,
it is necessary to conduct researches on accelerating the
deblurring process.

Deblurring for the compressed video is a challenging task.
The compressed videos must severely suffer degradation from
the lossy compression and the blur artifacts. Our goal is to
restore the lost information from the compression process and
suppress the blur artifacts available in the video’s content.
To the best of our knowledge, there exists no work for
accelerating the deblurring process on compressed video. The
nearest region is [4], which uses structure information to speed
up the super-resolution algorithm for compressed video.

III. PROPOSALS

A. Overview the SpeedDeblur framework

Figure 1 illustrates our proposed pipeline. Our framework
aims to speed up any deblurring algorithm and maintain
the PSNR performance of the deblurring. We extract the
syntax elements such as the residual, motion vectors, and
reconstructed videos from compressed data. Reconstructed
videos suffer from both blur artifacts and lossy compression
degradations. We use a CNN-based method to deblur the first
frame of the video. Later frames can be deblurred by adaptive
resetting or adaptive transferring.

Adaptive transfering. Current frame obtains the deblurred
inter blocks from its reference frames guided by syntax
elements. The adaptive transfer module chooses to transfer
reference block pixels to the current block if the mean residual
is less than or equal to 10. For blocks with mean residuals
greater than 10, the transfer is disabled, and the reconstructed
pixels are kept. This pixel transfer approach has a low comput-
ing cost compared to applying CNN-based deblurring to every
video frame. However, we observe that transferring pixels in a
long-distance can cause visual quality degradation, as shown
in Figure 2. This issue can be explained by the accumulated
errors when transferring pixels across many frames. To bridge
this gap, we propose an adaptive strategy to prevent the PSNR
drop.



Fig. 2: Transferring pixels over the frames causes the accu-
mulated error and decreasing PSNR.
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Fig. 3: There exists a quality fluctuation across the frames.
We can exploit the high-quality frame (Peak Quality Frame -
PQF) to enhance the low-quality frame (Valley Quality Frames
- VQF).

Adaptive resetting. This strategy decides when to apply
the CNN-based deblurring on a particular frame. By this ap-
proach, SpeedDeblur accelerates the deblurring process while
maintaining the same visual-quality results. Transferring pixels
across many frames causes a significant accumulated error. At
this point, frames that meet the following conditions will be
deblurred by CNN-based algorithms:

• The accumulated error at this frame exceeds a threshold
of one.

• This frame must be a peek quality frame (PQF).
The cumulative error of the current frame can be calculated

by adding the cumulative error of the previous frame to the
Laplacian of the residual between the current and the previous
frames. It is critical to choose the PQF to be reset. If we
do deblurring on the low-quality frames, transferring such
pixels will result in poor performance for the other frames,
especially the high-quality ones. Yang et al. [15] prove that
using peak quality frame on PSNR distribution (as shown
in Fig. 3) can further improve the enhancing performance.
However, there is no uncompressed video at the decoder,
PSNR and other reference-based image quality assessment
(IQA) can not be employed. In this work, we simulate the
PSNR distribution by using mean residual, Laplacian residual,
and the no-reference IQA methods: Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) [19] and Natural Image
Quality Evaluator (NIQE) [20].

B. Blurry-image generation strategy

One typical blurry-image generation approach adopted in
[10], [11] is to capture the high frame-rate video and aver-
age these frames. When the number of captured frames is
inadequate, averaging video frames produce blur artifacts far
from the real-world blurs. The works [12], [13] use frame
interpolation techniques to increase video frame rate and
average them to obtain the natural blurs. However, when there
are large-motion blurs between frames, simply averaging them
can cause ghost effects. This work focuses on determining
video frames with small motions for generating blurry images.
Averaging these frames can avoid ghost effects on target video
frames. Particularly, we describe our blur generation strategy
as follows:

Frame selection. Frames with small motions are selected
for generating blurry images. To identify these frames, we first
calculate motion vectors between two adjacent raw frames.
We define vectors with magnitudes larger than 10 can be
considered large-motion vectors, which should not be selected
for blurry data generation.

Frame interpolation and frame averaging. Inspired by
[13], we apply frame interpolation method in [17] to raise
the frame rate. During frame interpolation, each blurry frame
Iblur(t) is generated by:

Iblur(t) =
1

4N

N∑
i=0

(IIt−1
i + IIt+1

i ) +
1

2
Iraw(t) (1)

Where Iraw(t) is the undistorted frame at time t and N
denotes the number of interpolated frames between two undis-
torted frames. We set N to 45 by experiments. Given a pair of
adjacent frames, the interpolated frame IIt+1 can be defined
as:

IIt = F (IIt−1, IIt+1) (2)

where function F denotes the frame interpolation method.
Note that the II = Iraw at the beginning of frame interpola-
tion. Additionally, the boundary frames will be omitted since
there are no neighboring frames before or after these frames.
Finally, blurry video frames are obtained.

IV. EXPERIMENTS

A. Experimental settings

Different from previous blur datasets [2], [5], [12], uncom-
pressed videos from Xiph.org [18] and JCT-VC [19] are used
for generating our training and testing sets. Our dataset is
divided into 59 videos for training and 16 videos from HEVC
common test sequences for testing. Videos are first blurred
using the proposed blurry-image generation strategy. Later, we
use the reference software HEVC Test Model (HM) version
11.0 to encode these blurry uncompressed videos under the
Low Delay P configuration. For running time comparison, we
evaluate the implementation of our framework on Matlab with
a 2.30Hz Xeon CPU - 31 processors. Figure 4 visualizes an
example of our dataset and the degradation types. We evaluate



Fig. 4: Visualization of the our dataset and the degradation
types.

Fig. 5: Visualizing distributions of PSNR and other methods
for finding the peak quality frames. It can be seen that mean
residual obtains the highest correlation to PSNR compared to
the others.

our framework on two CNN-based deblurring methods SRN-
Deblur [2], SRFBN [3]. The goal of deblurring methods is to
restore the information from lossy compression and remove
the blur artifacts. Hence, our total loss Ltotal is defined as:

Ltotal = Llossy compression + Lblur artifacts (3)

B. Ablation study

Study on adaptive resetting methods. The Laplacian of the
residual and the mean of the residual have been used in the re-
lated work [4]. Besides, we use two common no-reference IQA
methods BRISQUE [19] and NIQE [20] for judging the image
quality and then highlight the PQF. We conduct a comparison
to determine which among these methods provides the best
performance. Figure 5 illustrates the correlation between these
methods and PSNR. It can be seen that the mean residual has
the highest correlation to PSNR. On the other hand, using the
mean residual for the adaptive resetting obtain the best image
quality (observed from Table I). The following experiments
use mean residual for adaptive resetting.

Study on reset strategy. For evaluating the performance
reduced when transfering in long-distance, we implement
SpeedDeblur with various settings: SpeedDeblur without adap-
tive reset strategy, SpeedDeblur with fixed Group of picture

TABLE I: The effectiveness of no-reference image quality
assessment methods in SpeedDeblur.

Method BRISQUE [19] NIQE [20]
∆PSNR Speed up ∆PSNR Speed up

SRN deblur (CPU) -0.24 25.96× -0.21 23.67×
SRFBN (GPU) -0.26 3.07× -0.23 3.22×

Method Mean Laplacian Mean residual
∆PSNR Speed up ∆PSNR Speed up

SRN deblur (CPU) -0.19 21.38× -0.14 20.73×
SRFBN (GPU) -0.21 2.91× -0.16 2.87×

(GOP) resetting, and the proposed SpeedDeblur with adaptive
reset strategy. In SpeedDeblur without adaptive reset strategy,
no CNN-based deblurring algorithm has been used for frames
after the first frame. SpeedDeblur with fixed Group of picture
(GOP) resetting does CNN-based deblurring on the first frame
of each GOP. Table II shows the comparison of SpeedDeblur
with different settings. In each setting, the first column in-
dicates the performance compared to CNN-based frame-by-
frame deblurring. The second column indicates the speedup
ratio compared to frame-by-frame deblurring. Speedup ratio
Rspeedup is calculated by:

Rspeedup =
1

N

N∑
i=0

Tdeblurring(i)

Ttransfering(i)
(4)

where N is the number of reconstructed frames. Tdeblurring(i)
denotes deblurring time on frame ith. Ttransfering(i) indicates
transfer time on frame ith. It can be seen that SpeedDeblur
with adaptive resetting obtains the best performance with only
0.16dB PSNR has been reduced compared to frame-by-frame
deblurring.

C. Experimental results

Overall results. Table III shows the performance of Speed-
Deblur on two different CNN-based deblurring methods: SRN-
deblur and SRFBN. In each method, the first column indicates
deblurring performance in a frame-by-frame manner. The
second column indicates the performance of SpeedDeblur.
The third column shows the speedup ratio of our frame-
work compared to frame-by-frame deblurring. For using GPU,
SpeedDeblur boosts SRN-Deblur and SRFBN up to 3.7× and
4.0× respectively, with only 0.4% PSNR drop.

Tables IV shows the speedup ratio of applying our frame-
work on SRNdeblur using both GPU and CPU. SpeedDeblur
accelerates the deblurring process significantly up to 99.4×
when running on CPU.

Subjective quality comparison. We show the visual quality
comparison between HEVC, frame-by-frame deblurring using
SRFBN, and our SpeedDeblur using SRFBN. It can be seen
that our SpeedDeblur obtains comparable visual quality to
frame-by-frame deblurring methods and better image quality
compared to HEVC.

V. CONCLUSION

This work proposes SpeedDeblur to speed up CNN-based
deblurring for HEVC compressed video. To the best of our



TABLE II: The proposed SpeedDeblur with various settings.

Method SpeedDeblur w/o adaptive reset SpeedDeblur with fixed GOP resetting SpeedDeblur with adaptive reset
∆PSNR Speed up ∆PSNR Speed up ∆PSNR Speed up

SRN deblur + Ours (CPU) -0.33 91.43× -0.21 25.17 -0.14 20.73×
SRFBN + Ours (GPU) -0.36 3.83× -0.23 3.23× -0.16 2.87×

TABLE III: PSNR (dB) and Speedup Ratio comparison on the frame-by-frame deblurring manner (Deblurring) and our proposed
SpeedDeblur on SRN-Deblur and SRFBN networks.

SRN-Deblur SRFBN
Class Sequence name Size Deblurring SpeedDeblur Speed Deblurring SpeedDeblur Speed

PSNR PSNR Up PSNR PSNR Up
Kimono 31.39 31.13 4.0× 31.44 31.20 5.2×

ParkScene 31.04 30.95 4.1× 31 30.92 5.5×
B Cactus 1920x1072 30.89 30.78 4.2× 31.06 30.93 4.7×

BasketballDrive 30.01 29.87 4.9× 29.95 29.83 6.3×
BQTerrace 29.98 29.92 4.0× 30.15 30.08 5.6×

BasketballDrill 30.08 29.9 4.5× 30.23 30.05 3.4×
C BQMall 832x480 30.24 30.08 5.2× 30.41 30.25 3.8×

PartyScene 27.15 27.01 3.1× 27.32 27.15 2.6×
RaceHorsesC 24.03 23.87 3.5× 23.85 23.76 2.8×

BasketballPass 30.24 30.14 3.0× 30.57 30.44 2.1×
D BQSquare 416x240 28.61 28.47 3.0× 28.94 28.75 2.4×

BlowingBubbles 28.87 28.77 2.8× 29.01 28.90 1.9×
RaceHorses 24.5 24.29 2.2× 24.41 24.26 1.7×
FourPeople 34.98 34.91 3.1× 35.36 35.27 5.2×

E Johnny 1280x720 36.42 36.4 3.4× 36.79 36.74 4.4×
KristenAndSara 36.16 36.1 3.4× 36.55 36.48 5.1×

Average B 30.66 30.53 4.3× 30.71 30.59 5.5×
Average C 27.88 27.71 4.0× 27.95 27.80 4.1×
Average D 28.06 27.92 2.8× 28.23 28.09 2.7×
Average E 35.85 35.80 3.3× 36.23 36.16 2.8×
Average 30.29 30.16 3.7× 30.44 30.31 4.0×

Ground-truth Blur + Compressed SRFBN SpeedDeblur

Fig. 6: Visual quality comparison between HEVC reconstructed frames, frame-by-frame deblurring using SRFBN, and our
SpeedDeblur using SRFBN.



TABLE IV: Running time comparison of SpeedDeblur using
GPU and CPU.

Class Deblurring on GPU Deblurring on CPU
B 4.3× 104.1×
C 4.0× 95.1×
D 2.8× 65.8×
E 3.3× 142.2×

Average 3.7× 99.4×

knowledge, this is the first time that compressed information
is used for enhancing the reconstructed blurry video frames.
Moreover, we propose a blurry-image generation method that
simulates real-world blur artifacts for training CNN-based
deblurring algorithms. As a result, SpeedDeblur obtains 4×
on GPU and 99× on CPU faster while maintaining the
same image quality compared to CNN-based frame-by-frame
deblurring. The proposed SpeedDeblur can work with any
state-of-the-art CNN-based deblurring algorithms to speed up
the processing time while ensuring high performance in real-
time applications.

REFERENCES

[1] “High-Efficiency Video Coding (HEVC) — JCT-VC,” 27-Nov 2018.
Available: https://hevc.hhi.fraunhofer.de/.

[2] S. Nah, T. Hyun Kim, and K. Mu Lee, “Deep multi-scale convolutional
neural network for dynamic scene deblurring,” in CVPR, 2017.

[3] Z. Li, J. Yang, Z. Liu, X. Yang, G. Jeon and W. Wu, ”Feedback Network
for Image Super-Resolution,” 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[4] Z. Zhang and V. Sze, ”FAST: A Framework to Accelerate Super-
Resolution Processing on Compressed Videos,” 2017 IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW),
2017

[5] S. Su, M. Delbracio, J. Wang, G. Sapiro, W. Heidrich, and O. Wang,
“Deep video deblurring for hand-held cameras,” in CVPR, 2017.

[6] O. Kupyn, T. Martyniuk, J. Wu, and Z. Wang, “Deblurgan-v2: Deblur-
ring (orders-of-magnitude) faster and better,” in ICCV, 2019.

[7] N. Ahn, B. Kang, and K. A. Sohn, “Fast, accurate, and lightweight super-
resolution with cascading residual network,” in Proc. ECCV, 2018

[8] J. Zhang, J. Pan, J. S. J. Ren, Y. Song, L. Bao, R. W. H. Lau, and
M. Yang, “Dynamic scene deblurring using spatially variant recurrent
neural networks,” in CVPR, 2018.

[9] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep multi-scale
convolutional neural network for dynamic scene deblurring. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July
2017

[10] Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo Sapiro, Wolf-
gang Heidrich, and Oliver Wang. Deep video deblurring for hand-
held cameras. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017

[11] T. Brooks and J. T. Barron, “Learning to synthesize motion blur,” in
CVPR, 2019.

[12] S. Nah et al., ”NTIRE 2019 Challenge on Video Deblurring and Super-
Resolution: Dataset and Study,” Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), 2019

[13] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional
network for image superresolution,” in IEEE European Conference on
Computer Vision (ECCV), 2014.

[14] Ren Yang, Mai Xu, Zulin Wang, Tianyi Li; Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2018
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