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Abstract— Deep learning as well as machine learning are grown to be one of mainstream methods of malware 

detections, including that on Android platforms. However, the impact of packer is often ignored in previous studies. 
Packers is program that aims at protecting the original code from being analyzed. It could also influence the 
efficiencies of selected features in machine learning. While some studies noticed this problem, the test and training 
are made on re-obfuscated samples, which is not convincible. Under this background, we proposed an end to end 
deep learning based Android malware detection method. The main idea of our method is that let the feature 
extraction layer to learn features of malware and packers simultaneously from part of the input, which is realized 
by multi-task learning. And this idea is partly inspired by the fact that unpacking is usually the first step in manual 
analysis of malware. To avoid re-obfuscation, conventional method is used to get obfuscation labels. The results 
show that our method averagely achieved 97.0%-99.8% accuracy on different datasets. The experiments also 
suggest that the use of packer information in multi-tasking learning could help suppress the overfitting. 
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I. INTRODUCTION 
There are numerous studies about utilizing machine 

learning and deep learning in Android malware detection. 
Arp el at. [1] developed hybrid Android malware analyze 
system called Drebin using both traditional analysis and 
machine learning. In their study, they achieved high 
accuracy of 95.9%, which was a game changing 
achievement at then. They also published their dataset as 
benchmark. Fine-grained Deep learning is also frequently 
used with the development of deep learning. For example, 
Niall el at. [2] used only raw opcode sequences in the one-
hot format as feature and text-CNN as classifier. Although 
only simple data transformation is used, their model still 
achieved 80% to 87% of accuracies on large scale dataset 
with high processing speed. 

However, those studies didn’t analyze the impact of 
packer. Bacci el at. [3] illustrated that packers reduce the 
efficacy of static features. But static feature might still be 
useful when the training dataset contains obfuscated apps. 
Some studies tried to solve this problem. A representative 
method is features ranking. Suarez-Tangil el at. [4] made 
an obfuscated dataset and then passed all the listed features 
to Extra Tree algorithm to rank them by mean decrease 
impurity. The key idea of their study is that if a feature 
ranks high on both original dataset and obfuscated dataset, 
it is an obfuscation-invariant feature. Nevertheless, when 
they trained on original dataset but tested on obfuscated 
dataset, the accuracy dropped down significantly. Since the 
malicious apps are almost obfuscated by author to hide 
from analysis, the apps are re-obfuscated in their study, 
which is not likely to appear in real world. 

In our study, we firstly use a tool called APKiD [5], 
which relies on conventional characteristic matching, to 
get obfuscating labels of each app. Secondly, we force the 

CNN layer to learn features of malware and packers in 
multi-task learning from part of input. While other input 
data are only used in malware classification. By 
experiments, 97.0%-99.8% accuracies on different 
datasets are obtained. 

II. METHODS 
A. Data selection 

We make a hypothesis that if a kind of data is likely to 
be influenced or modified by packer (e.g. Dalvik opcode), 
then it carries information of both app itself and that of 
packer. Others may only contain the information of app 
itself. Hence, it’s logical to divide features into two 
categories: obfuscate-variant and obfuscate-invariant. By 
reviewing features that are used in promised method, we 
choose required permissions as obfuscate-invariant feature 
and Dalvik opcode as obfuscate-variant feature.  

To use them into deep learning training, data 
transformation is needed. The Dalvik opcodes are 
represented by Dalvik machine code and are put into a one 
dimensional sequence. As for the order, the opcodes 
of .mainActivity (entry of custom code) are firstly 
extracted. Secondly, the opcodes of the subclass of main 
class are extracted. Thirdly, the opcode of classes in the 
same folder of main class are extracted. If the length of 
sequence is still not long enough (the input length of deep 
learning model has to be fixed number), we fill in 0. And 
the length is experimentally decided as 1600. As for the 
permissions, they are represented by a one dimensional 
vector in which the corresponding value is set to 1 if a 
certain permission is found while the default value is 0. 

B. Architecture of deep learning model 
The architecture of our method is shown in Fig. 1. 



 

Fig 1. Architecture of deep learning model 

The special part of this model is that the output of CNN 
layer is copied in to two branches for multi-task learning. 
This design is based on the key hypothesis of this study: 
learning features of malware and packer simultaneously 
could filter useless packer information and help suppress 
overfitting (caused by packers). It also could be the case 
that malware classifier learns the connection of both kinds 
of features and become more adaptive to packers. Hence, 
the obfuscate-variant features are input to the feature 
extraction layer (1-D CNN in this study) connected with 
both kinds of classifier. Meanwhile, in backpropagation, 
coefficients p1 and p2 are multiplied to the gradients, in 
order the control the influence of malware classifier and 
obfuscation classifier. For the reason that the report from 
APKiD is not 100% correct (almost impossible for 
conventional tools), which provides some noise labels, we 
keep the value of p2 small to reduce the negative impact. 
Moreover, it is inferred that information of packer is easier 
to be extracted for the fact that packer detection is easier 
than that of malware. In our study, we assume that p1 and 
p2 satisfy: 

𝑝𝑝1 + 𝑝𝑝2 = 1 

Required permissions are used as obfuscate-invariant 
feature to enhance the robustness of malware classifier.  

As for loss functions, the malware classifiers use binary 
cross entropy in mini-batch training while the obfuscation 
classifier uses mean squared error. 

C. Dataset  
  We randomly choose 3000 apps from AMD datasets [6] 
and mix them with 3000 benign apps downloaded from 
pureapk [7]. The mixed dataset is marked as Dataset I. In 
our study, we use Dataset I for training in 10-fold cross 
validation. In order to verify the generalization ability of 
the model, we randomly choose another 4000 apps 
(exclude that in Dataset I) from AMD dataset and mark it 
as Dataset II. Mover, to evaluate the robustness, samples 
from other data source is needed. Hence, we select all 426 
malicious app from CICAndMalware2017 dataset [8] to 
be Dataset III. 

III. RESULTS 
The experiment is realized by Pytorch in Ubuntu 

system and accelerated by a GEFORCE RTX 2080 Ti 
GPU. In each fold of cross validation, the trained model is 

tested with Dataset II and Dataset III. After all cross 
validations finished, the results are averaged. The average 
time consumed in 10-fold cross validation (including time 
of testing) is 1 minute and 29 seconds. 

The experiment results are listed in Table 1.  

Table 1. Experiment results 

P1 P2 Dataset 
I 

Dataset 
II 

Dataset 
III 

1 0 97.4% 99.4% 92.8% 

0.95 0.05 96.9% 98.9% 92.4% 

0.9 0.1 96.3% 99.1% 95.8% 

0.8 0.2 96.5% 99.8% 97.0% 

0.7 0.3 96.1% 97.1% 94.3% 

 

IV. DISCUSSION 
As we can see from Table 1, the best results are obtained 

when p1=0.8 and p2=0.2. And when the value of p2 is 
very small, the obfuscation classifier helps in negative 
ways. Obvious overfitting is observed when p2=0, in 
which case the model degenerates to single task model. 
Note that in experiments the result is sensitive to the 
hyperparameters, which suggest that maybe more samples 
are needed to evaluate the robustness. 

V. CONCLUSION 
  In this paper, we proposed a deep learning based 
malware detection model. Both malware classifier and 
obfuscation classifier are used in multi-task learning, in 
order to force feature extraction layer to learn both kinds 
of features simultaneously. The required permissions are 
used as obfuscation-invariant feature and opcode 
sequences are used as obfuscation-variant features which 
are input to feature extraction layer. In order to get 
obfuscation labels, conventional detection technology is 
used. Hence, no re-obfuscation is needed, which is closer 
to real situation. Coefficients p1 and p2 are multiplied to 
gradients to control the influence of two different kinds of 
classifier. 

By experiment, it is found that when p1=0.8 and p2=0.2 
the best results are obtained on both Dataset II (99.8%) 
and Dataset III (97.0%). And obvious overfitting is 
observed when p1=1, which verifies the negative impact 
of packer on efficiency of static features. 
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