
PDF issue: 2025-07-01

Deep Learning Based Android Malware
detection with Android packer classifier

Wu, Junji

(出版者 / Publisher)
法政大学大学院理工学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 理工学研究科編

(巻 / Volume)
63

(開始ページ / Start Page)
1

(終了ページ / End Page)
3

(発行年 / Year)
2022-03-24

(URL)
https://doi.org/10.15002/00025358

Deep Learning Based Android Malware detection with Android packer classifier

Name: Wu Junji
Major: Applied Informatics Major, Graduate School of Science and Engineering,

Hosei University,
Supervisor: Atsushi Kanai

Abstract— Deep learning as well as machine learning are grown to be one of mainstream methods of malware

detections, including that on Android platforms. However, the impact of packer is often ignored in previous studies.
Packers is program that aims at protecting the original code from being analyzed. It could also influence the
efficiencies of selected features in machine learning. While some studies noticed this problem, the test and training
are made on re-obfuscated samples, which is not convincible. Under this background, we proposed an end to end
deep learning based Android malware detection method. The main idea of our method is that let the feature
extraction layer to learn features of malware and packers simultaneously from part of the input, which is realized
by multi-task learning. And this idea is partly inspired by the fact that unpacking is usually the first step in manual
analysis of malware. To avoid re-obfuscation, conventional method is used to get obfuscation labels. The results
show that our method averagely achieved 97.0%-99.8% accuracy on different datasets. The experiments also
suggest that the use of packer information in multi-tasking learning could help suppress the overfitting.

Keywords: Android Malware detection, Android packer, Deep learning, Machine learning

I. INTRODUCTION
There are numerous studies about utilizing machine

learning and deep learning in Android malware detection.
Arp el at. [1] developed hybrid Android malware analyze
system called Drebin using both traditional analysis and
machine learning. In their study, they achieved high
accuracy of 95.9%, which was a game changing
achievement at then. They also published their dataset as
benchmark. Fine-grained Deep learning is also frequently
used with the development of deep learning. For example,
Niall el at. [2] used only raw opcode sequences in the one-
hot format as feature and text-CNN as classifier. Although
only simple data transformation is used, their model still
achieved 80% to 87% of accuracies on large scale dataset
with high processing speed.

However, those studies didn’t analyze the impact of
packer. Bacci el at. [3] illustrated that packers reduce the
efficacy of static features. But static feature might still be
useful when the training dataset contains obfuscated apps.
Some studies tried to solve this problem. A representative
method is features ranking. Suarez-Tangil el at. [4] made
an obfuscated dataset and then passed all the listed features
to Extra Tree algorithm to rank them by mean decrease
impurity. The key idea of their study is that if a feature
ranks high on both original dataset and obfuscated dataset,
it is an obfuscation-invariant feature. Nevertheless, when
they trained on original dataset but tested on obfuscated
dataset, the accuracy dropped down significantly. Since the
malicious apps are almost obfuscated by author to hide
from analysis, the apps are re-obfuscated in their study,
which is not likely to appear in real world.

In our study, we firstly use a tool called APKiD [5],
which relies on conventional characteristic matching, to
get obfuscating labels of each app. Secondly, we force the

CNN layer to learn features of malware and packers in
multi-task learning from part of input. While other input
data are only used in malware classification. By
experiments, 97.0%-99.8% accuracies on different
datasets are obtained.

II. METHODS
A. Data selection

We make a hypothesis that if a kind of data is likely to
be influenced or modified by packer (e.g. Dalvik opcode),
then it carries information of both app itself and that of
packer. Others may only contain the information of app
itself. Hence, it’s logical to divide features into two
categories: obfuscate-variant and obfuscate-invariant. By
reviewing features that are used in promised method, we
choose required permissions as obfuscate-invariant feature
and Dalvik opcode as obfuscate-variant feature.

To use them into deep learning training, data
transformation is needed. The Dalvik opcodes are
represented by Dalvik machine code and are put into a one
dimensional sequence. As for the order, the opcodes
of .mainActivity (entry of custom code) are firstly
extracted. Secondly, the opcodes of the subclass of main
class are extracted. Thirdly, the opcode of classes in the
same folder of main class are extracted. If the length of
sequence is still not long enough (the input length of deep
learning model has to be fixed number), we fill in 0. And
the length is experimentally decided as 1600. As for the
permissions, they are represented by a one dimensional
vector in which the corresponding value is set to 1 if a
certain permission is found while the default value is 0.

B. Architecture of deep learning model
The architecture of our method is shown in Fig. 1.

Fig 1. Architecture of deep learning model

The special part of this model is that the output of CNN
layer is copied in to two branches for multi-task learning.
This design is based on the key hypothesis of this study:
learning features of malware and packer simultaneously
could filter useless packer information and help suppress
overfitting (caused by packers). It also could be the case
that malware classifier learns the connection of both kinds
of features and become more adaptive to packers. Hence,
the obfuscate-variant features are input to the feature
extraction layer (1-D CNN in this study) connected with
both kinds of classifier. Meanwhile, in backpropagation,
coefficients p1 and p2 are multiplied to the gradients, in
order the control the influence of malware classifier and
obfuscation classifier. For the reason that the report from
APKiD is not 100% correct (almost impossible for
conventional tools), which provides some noise labels, we
keep the value of p2 small to reduce the negative impact.
Moreover, it is inferred that information of packer is easier
to be extracted for the fact that packer detection is easier
than that of malware. In our study, we assume that p1 and
p2 satisfy:

𝑝𝑝1 + 𝑝𝑝2 = 1

Required permissions are used as obfuscate-invariant
feature to enhance the robustness of malware classifier.

As for loss functions, the malware classifiers use binary
cross entropy in mini-batch training while the obfuscation
classifier uses mean squared error.

C. Dataset
 We randomly choose 3000 apps from AMD datasets [6]
and mix them with 3000 benign apps downloaded from
pureapk [7]. The mixed dataset is marked as Dataset I. In
our study, we use Dataset I for training in 10-fold cross
validation. In order to verify the generalization ability of
the model, we randomly choose another 4000 apps
(exclude that in Dataset I) from AMD dataset and mark it
as Dataset II. Mover, to evaluate the robustness, samples
from other data source is needed. Hence, we select all 426
malicious app from CICAndMalware2017 dataset [8] to
be Dataset III.

III. RESULTS
The experiment is realized by Pytorch in Ubuntu

system and accelerated by a GEFORCE RTX 2080 Ti
GPU. In each fold of cross validation, the trained model is

tested with Dataset II and Dataset III. After all cross
validations finished, the results are averaged. The average
time consumed in 10-fold cross validation (including time
of testing) is 1 minute and 29 seconds.

The experiment results are listed in Table 1.

Table 1. Experiment results

P1 P2 Dataset
I

Dataset
II

Dataset
III

1 0 97.4% 99.4% 92.8%

0.95 0.05 96.9% 98.9% 92.4%

0.9 0.1 96.3% 99.1% 95.8%

0.8 0.2 96.5% 99.8% 97.0%

0.7 0.3 96.1% 97.1% 94.3%

IV. DISCUSSION
As we can see from Table 1, the best results are obtained

when p1=0.8 and p2=0.2. And when the value of p2 is
very small, the obfuscation classifier helps in negative
ways. Obvious overfitting is observed when p2=0, in
which case the model degenerates to single task model.
Note that in experiments the result is sensitive to the
hyperparameters, which suggest that maybe more samples
are needed to evaluate the robustness.

V. CONCLUSION
 In this paper, we proposed a deep learning based
malware detection model. Both malware classifier and
obfuscation classifier are used in multi-task learning, in
order to force feature extraction layer to learn both kinds
of features simultaneously. The required permissions are
used as obfuscation-invariant feature and opcode
sequences are used as obfuscation-variant features which
are input to feature extraction layer. In order to get
obfuscation labels, conventional detection technology is
used. Hence, no re-obfuscation is needed, which is closer
to real situation. Coefficients p1 and p2 are multiplied to
gradients to control the influence of two different kinds of
classifier.

By experiment, it is found that when p1=0.8 and p2=0.2
the best results are obtained on both Dataset II (99.8%)
and Dataset III (97.0%). And obvious overfitting is
observed when p1=1, which verifies the negative impact
of packer on efficiency of static features.

ACKNOWLEDGEMENT
Thanks to Professor Kanai’s guidance, I can

successfully finish this research. Also thanks to the other
staffs of Hosei University. Their kind help provide an
amazingly good environment for study. Finally, thanks to
my formal tutor Morita who graduated in spring 2021 for
helping me manually download large number of apps.

REFERENCES
[1] Arp, Daniel, et al. "Drebin: Effective and explainable

detection of android malware in your pocket." Ndss. Vol.
14. 2014.

[2] McLaughlin, Niall, et al. "Deep android malware
detection." Proceedings of the seventh ACM on conference
on data and application security and privacy. 2017.

[3] Bacci, Alessandro, et al. "Impact of Code Obfuscation on
Android Malware Detection based on Static and Dynamic
Analysis." ICISSP. 2018.

[4] Suarez-Tangil, Guillermo, et al. "Droidsieve: Fast and
accurate classification of obfuscated android malware."
Proceedings of the Seventh ACM on Conference on Data
and Application Security and Privacy. 2017.

[5] https://github.com/rednaga/APKiD
[6] Li, Yuping, et al. "Android malware clustering through

malicious payload mining." International symposium on
research in attacks, intrusions, and defenses. Springer,
Cham, 2017.

[7] https://apkpure.com/apk-install.html
[8] Shiravi, Ali, et al. "Toward developing a systematic

approach to generate benchmark datasets for intrusion
detection." computers & security 31.3 (2012): 357-374.

	I. INTRODUCTION
	II. METHODS
	A. Data selection
	B. Architecture of deep learning model
	C. Dataset

	III. RESULTS
	IV. DISCUSSION
	V. CONCLUSION
	ACKNOWLEDGEMENT
	References

