法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-06

エルゴード的セルオートマトンCPGを用いた4 脚歩行ロボットについて

KOMAKI, Sho / 小牧, 礁

(出版者 / Publisher) 法政大学大学院理工学研究科 (雑誌名 / Journal or Publication Title) 法政大学大学院紀要.理工学研究科編 (巻 / Volume) 63 (開始ページ / Start Page) 1 (終了ページ / End Page) 5 (発行年 / Year) 2022-03-24 (URL) https://doi.org/10.15002/00025333

エルゴード的セルオートマトン CPG を用いた 4 脚歩行ロボットについて

An Ergodic cellular Automaton of Central Pattern Generator for Quadruped Robot

小牧礁 Sho KOMAKI 指導教員 鳥飼弘幸

法政大学大学院理工学研究科電気電子工学専攻博士前期課程

A novel ergodic cellular automaton (CA) oscillator and its theoretical analysis method are presented. Theoretical analyses reveal the oscillator is more suited to build a central pattern generator (CPG) compared to a standard non-ergodic CA oscillator. Further, it is shown the ergodic CA CPG can generate rhythmic signals suitable for realizing fundamental gaits of a quadruped robot. Then a prototype of the ergodic CA CPG is implemented by a field programmable gate array and experiments show it can realize the fundamental gaits of a physically implemented quadruped robot. Further, it is shown the ergodic CA CPG consumes much lower power and much fewer circuit resources compared to a typical conventional CPG implemented by a customized digital signal processor.

Key Words : Ergodic, Cellular automaton, Quadruped robot

1. はじめに

多くの動物は筋肉をリズミカルに動かし歩く, 飛ぶ, 泳 ぐなど様々な運動をしている.このようなリズミカルな 動きを指示する信号は脊髄にある Central Pattern Generator (CPG)から発生していると考えられる[1].図1はヤツメ ウナギの脊髄から発生している CPG である[2].

電気回路モデル用いた CPG をもとにしている動作コン トローラは多く設計されている.これまでのところ神経 補綴,神経支援やロボットのアプリケーションなどに用 いられている [3][4].多くの生体模倣電気回路は以下の 3 つのような構造になっている.(1)アナログ非線形動的 回路 [5][6],(2) 非線形スイッチトキャパシタ回路 [7],(3) デジタルシグナルプロセッサ[8][9].一方,私た ちは非同期シーケンシャルロジックを基に、以下のよう な数種類の生体模倣電気回路を開発している.

- 非同期シーケンシャルニューラルネットワークと ニューロン[10][11],
- 非同期シーケンシャル CPGs モデル[12][13],
- 非同期シーケンシャル蝸牛モデル [14],
- 非同期シーケンシャル遺伝子タンパク質ネットワ ーク [15].

これらの非同期シーケンシャルロジックに基づく生体 模倣電気回路はデジタルシグナルプロセッサに基づく生 体模倣電気回路に比べ,低消費電力で回路リソースを少 なくすることができる.

本研究の目的は図 2 のロボットを制御できる新しい非 同期シーケンシャルロジック CPG を提案することである. 1 つ目は,非同期シーケンシャルの解析とロボットの所定 の歩容を発生させるための発振器を設計するための体系 的な手法の提案. 2 つ目は, CPG に基づく動作コントロー ラを設計するための体系的な手法の提案. 目標の歩容を 発生させる適切なパラメータを探す方法の紹介. 3 つ目は, field programmable gate array (FPGA) で設計された発振 器モデルを実装し,4 脚歩行ロボットが目標の歩容を発生 するコントローラを実験で示す. さらにデジタルシグナ ルプロセッサ用いた CPG に基づく動作コントローラに比 べ提案モデルは低消費電力で回路リソースを少なくする こと示す. 本研究の結果以下のような新規性や重要性が 示される.

(a) 本紙では非同期シーケンシャルロジック CPG を用 いた 4 脚歩行ロボットコントローラを提案するのは初め てである.

(b) 提案モデルは低消費電力で回路リソースを少なく できるため、小型および低電力の埋め込み型神経補綴物 や補助装置、小型および低電力の生物模倣ロボットコン トローラなどアプリケーションシステムを開発するため の重要な構成要素として役立つ.

図1 ヤツメウナギの脊髄から発生される筋肉を動か すパターン.

図2 (a) FPGA によって制御されている 4 脚歩行ロボ ット(Lynxmotion'sSQ3U). (b) 下から見た図.

2. 非同期セルオートマトンを用いた CPG

図3に非同期セルオートマトン CPG における発振器の 構成を示す.この章では、非同期セルオートマトン CPG における発振器の内部ダイナミクスと結合ダイナミクス について解説、非同期セルオートマトン CPG における発 振器のパラメータ解析および非同期セルオートマトン CPG を用いて4脚歩行ロボットに基本的な歩容をさせる ためにはどのように設計するのかは修士論文で説明する. 3.エルゴード的セルオートマトンを用いた CPG

図4にエルゴードセルオートマトン CPG における発振器の構成を示す. この節では,エルゴードセルオート マトン CPG における発振器の内部ダイナミクスについ て解説する.発振器には 離散状態変数 $X_i \ge Y_i \ge$ 離散 補助変数 $P_i \ge Q_i$ が定義され以下のようになってい る,

$$X_i \in \mathbf{Z}_N = \{0, \cdots, N-1\}, Y_i \in \mathbf{Z}_N$$
$$P_i \in \mathbf{Z}_M = \{0, \cdots, M-1\}, Q_i \in \mathbf{Z}_M$$

ここでN > 0とM > 0は整数であり、それぞれ { X_i, Y_i }と { P_i, Q_i }の解像度を特徴付け、変数はその可能な最小値と 最大値で飽和していることを示しています。発振器は以 下のような周期的なクロックになっている、

$$C_i(t) = \sum_{n=0}^{\infty} p(t - nT_{C_i})$$

図3 非同期セルオートマトン CPG における発振器の 構成.

図4 エルゴードセルオートマトン CPG における発 振器の構成.

ここでp(t)は瞬時パルスであり, t = 0ならばp(t) = 1となり, $t \neq 0$ ならばp(t) = 0となり, $T_{C_i} > 0$ ならば周期クロック $C_i(t)$ のように定義されている. さらに状態変数を遷移させる信号として $S_{X_i}(t) \in \{0,1\}, S_{Y_i}(t) \in \{0,1\}$ になっている.本研究では周期信号 $S_{X_i}(t), S_{Y_i}(t)$ は以下のようになっている,

$$S_{X_i}(t) = \sum_{n=0}^{\infty} q(t - nT_{X_i} - \phi_{X_i}, W_{X_i})$$

$$S_Y(t) = \sum_{n=0}^{\infty} q(t - nT_{Y_i} - \phi_{Y_i}, W_{Y_i})$$

ここでは, q(t, W)はパルスであり, $t \in [0, W]$ ならば $q(t) = 1, t \notin [0, W]$ ならばq(t) = 0となり $T_{X_i} > 0$ と $T_{X_i} >$ 0は周期である. $W_{X_i} \in [0, T_{X_i}] \geq W_{Y_i} \in [0, T_{Y_i}]$ はパルス持 続時間であり, $\phi_{X_i} \in [0, T_{X_i}) \geq \phi_{Y_i} \in [0, T_{Y_i})$ は初期位相で ある. クロック $C_i(t)$ は離散状態変数 $X_i \geq Y_i$ の遷移を誘発 します.

If $C_i(t) = 1$, then $X_i(t^+) = X_i(t) + S_{X_i}(t)\mathcal{F}_{X_i}(X_i(t), Y_i(t), P_i(t)),$ $Y_i(t^+) = Y_i(t) + S_{Y_i}(t)\mathcal{F}_{X_i}(X_i(t), Y_i(t), Q_i(t)),$ (1)

ここでは $t^+ \rightarrow \lim_{\epsilon \to 0} t + \epsilon \epsilon > 0$; $\mathcal{F}_X : \mathbb{Z}_N^2 \times \mathbb{Z}_M \rightarrow \{-1,0,1\}, \mathcal{F}_Y : \mathbb{Z}_N^2 \times \mathbb{Z}_M \rightarrow \{-1,0,1\}$ は発振器のベクトル場を決める離散関数である. CPG の構成要素として,発振器を使うために離散ベクトル場関数は以下のように設計

される.

$$\mathcal{F}_X(X,Y,P) = \begin{cases} 1 \text{ if } F_X(X,Y) \ge 0 \text{ and } P \ge |F_X(X,Y)|, \\ -1 \text{ if } F_X(X,Y) < 0 \text{ and } P \ge |F_X(X,Y)|, \\ 0 \text{ otherwise,} \end{cases}$$

$$\mathcal{F}_{Y}(X,Y,Q) = \begin{cases} 1 \text{ if } F_{Y}(X,Y) \ge 0 \text{ and } Q \ge |F_{Y}(X,Y)|, \\ -1 \text{ if } F_{Y}(X,Y) < 0 \text{ and } Q \ge |F_{Y}(X,Y)|, \\ 0 \text{ otherwise,} \end{cases}$$

ここで F_X : $Z_N^2 \times Z_M^{\pm} = \{-(M-1), -(M-2), \cdots, M-1\}$ $\geq F_Y$: $Z_N^2 \times Z_M^{\pm}$ は $F_X(X,Y) = [(\beta_X f_x(\alpha_{xx}(X - K), (\alpha_{xy}(Y - K))^{-1}], F_Y(X,Y) = [(\beta_y f_y(\alpha_{yx}(X - K), (\alpha_{yy}(Y - K))^{-1}], f_x(x,y) = \delta x - \omega y - x(x^2 + y^2), f_y(x,y) = \omega x + \delta y - y(x^2 + y^2), K = N/2$ によって離 散関数は与えられる; [.]はフロア関数である. $F_X \geq F_Y$ は $\pm (M-1)$ で飽和している. $\alpha_{xx}, \alpha_{yx}, \alpha_{xy}, \alpha_{yy}, \beta_x, \beta_y$ は 正のスケーリングパラメータである. そして $\delta \in \mathbb{R}$ と $\omega > 0$ は非線形性を特徴付けるパラメータである. 離散 補助変数 P_i , $\geq Q_i$ は次のように状態に依存する分周器 として機能する.

If
$$C_i(t) = 1$$
 and $S_{X_i}(t) = 1$, then
 $P_i(t^+) = \begin{cases} P_i(t) + 1 \text{ if } \mathcal{F}_X(X_i(t), Y_i(t), P_i(t)) = 0 \\ 0 \text{ otherwise} \end{cases}$
If $C_i(t) = 1$ and $S_{Y_i}(t) = 1$, then
 $Q_i(t^+) = \begin{cases} Q_i(t) + 1 \text{ if } \mathcal{F}_Y(X_i(t), Y_i(t), Q_i(t)) = 0 \\ 0 \text{ otherwise} \end{cases}$

図5にエルゴートセルオートマトン発振器における内 部ダイナミクスの状態遷移を表したグラフを示す.エル ゴートセルオートマトン発振器はクロック $C_i(t)$ とスイッ チ信号 $S_{X_i}(t)$ および $S_{Y_i}(t)$ の比が有理数比か無理数比によ って以下の2つの発振器に分類できる.

- エルゴードセルオートマトン発振器
- レギュラーセルオートマトン発振器

以上の2つの発振器を解析し、両方の特徴について議論 する.詳しくは修士論文で説明する.図2(a)は4脚方向 ロボットである. k 番目の脚にはそれぞれヒップヨー軸 θ_k^y とニーピッチ軸 θ_k^p を決める2つのサーボモータを 持っている.図6のエルゴートセルオートマトン CPG のネットワークを用いて4脚歩行ロボットに基本的な歩 容をさせる同 CPG を設計する.発振器を結合させるた めに以下のようなスイッチ信号を定義する.

$$S_{G_i}(t) = \sum_{n=0}^{\infty} q(t - nT_{G_i} - \phi_{G_i}, W_{G_i})$$

ここで $T_{G_i} > 0$ は周期である. $W_{G_i} \in [0, T_{G_i}]$ ははパルス持続時間であり, $\phi_{G_i} \in [0, T_{G_i})$ は初期位相である. さらに, 次の信号は式(1)の第1項と第2項に代数的に追加されます.

図5 エルゴートセルオートマトン発振器における内 部ダイナミクスの状態遷移.

図6 エルゴートセルオートマトン CPG のネットワ ーク

 $S_{G_i}(t)g_i(\mathbf{X}(t),V_i(t)), S_{G_i}(t)g_i(\mathbf{Y}(t),U_i(t))$

ここで $g_X: Z_N^8 \times Z_M \rightarrow \{-1,0,1\}$ は離散結合関数である. $X = (X_1, \dots, X_8)$ と $Y = (Y_1, \dots, Y_8)$ は離散変数をベクト ルで表したものであり、 $V_i \in Z_M \ge U_i \in Z_M$ は発振器の結 合させるための離散結合変数である.その関数 g_i は以 下のように設計される.

$$\mathcal{G}_i(\mathbf{X}, V) = \begin{cases} 1 \text{ if } G_i(\mathbf{X}) \ge 0 \text{ and } V \ge |G_i(\mathbf{X})|, \\ -1 \text{ if } G_i(\mathbf{X}) < 0 \text{ and } V \ge |G_i(\mathbf{X})|, \\ 0 \text{ otherwise,} \end{cases}$$

ここで
$$G_i: \mathbf{Z}_N^8 imes \mathbf{Z}_M^\pm$$
 は以下のように与えられる

$$G_i(X) = \left[(\sigma \sum_{j=1}^8 w_{ij} (X_j - N/2))^{-1} \right]$$

ここでσはスケーリングのための正パラメータであ

る. w_{ij} は結合行列である. この結合行列を調整するこ とで4脚歩行ロボットは様々な歩容をさせることができ る. 離散補助変数 V_i , と U_i は次のように状態依存の分 周器として機能する.

If $C_i(t) = 1$ and $S_{G_i}(t) = 1$, then $V_i(t^+) = \begin{cases} V_i(t) + 1 \text{ if } \mathcal{G}_X(\mathbf{X}(t), V_i(t)) = 0 \\ 0 \text{ otherwise} \end{cases}$ If $C_i(t) = 1$ and $S_{G_i}(t) = 1$, then $U_i(t^+) = \begin{cases} U_i(t) + 1 \text{ if } \mathcal{G}_X(\mathbf{Y}(t), U_i(t)) = 0 \\ 0 \text{ otherwise} \end{cases}$

4.実装

エルゴード セルオートマトン CPG を用いて, Xilinx 社 の design suite Vivado 2020.1 でコンパイルし Xilinx's の FPGA (Field Programmable Gate Array) デバイス XC7A100T-1CSG324C の実装した.比較対象として Hopf CPG モデルを採用した.両方とも同じように4 脚歩行ロ ボットが歩くこと条件に Hopf CPG およびエルゴート的 セルオートマトン CPG を実装した.表1に比較結果を まとめたものを示す.この表からエルゴート的セルオー トマトン CPG は Hopf CPG の約40%消費電力の低減お よび回路素子を削減できたことがわかる.また4脚歩行 ロボット前進する画像を図7に示す.詳しいパラメータ やほかの歩容に関しては修士論文で説明する.

5. 結論

本研究では、非同期セルオートトン CPG およびエル ゴートセルオートマトン CPG の提案をした.そして非 同期セルオートトン CPG のパラメータ解析や設定をし た. さらに目標とする歩容をさせるための結合行列のパ ラメータ探索は学習アルゴリズムを用いて求めた.また エルゴートセルオートマトン CPG においてはクロック 信号とスイッチ信号の比による2つの発振器の理論解析 をして、その2つの発振器の特徴の違いなどを説明し た. そしてエルゴートセルオートマトン CPG を FPGA に実装させ、4脚歩行ロボットを基本的な歩容をさせる ことができた. コスト比較は従来の CPG モデル Hopf CPG と比較して、エルゴートセルオートマトン CPG は 低消費電力で回路素子数を少なくすることができた. 今 後の課題としては以下のようなことが挙げられる.(a) エルゴートセルオートマトン CPG を用いたニューラル アシスト機器や神経補綴装置の実装. (b)4 脚歩行ロボッ トに様々な歩容の実装.

表1 比較結果

モデル	エルゴード的 セルオートマトンCPG	Hopf CPG
#Slice	2278	3150
#LUT	7365	12618
#FFs	507	289
消費電力[W]	0.327	0.567
発振周波数[Hz]	0.5	0.5

図7 4脚歩行ロボットが前進している画像

参考文献

- 1) E. Kandel, et. al, Principles of Neural Science.
- J. Yu, et al., "A survey on CPG-Inspired control model and system implementation," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 3, pp 441-456, 2014.
- Y. Wang, et. al. "Control of Lower Limb Rehabilitation Exoskeleton Robot Based on CPG Neural Network*,"Proc. Internat. Conf. Ubiquitous Robots, pp. 678-682, 2019.
- Y. Uchiyama, C. Nagai, and G. Obinata, "Simulation of human walking with powered orthosis for designing practical assistive device," Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 4816--4819, 2012.
- 5) K. Nakada, T. Asai, and Y. Amemiya, "An Analog CMOS central pattern generator for interlimb coodination in quadruped locomotion," IEEE Trans. Neural Netw. Learn. Syst., vol. 14, no.5, pp. 1356-1365, 2003.
- K. Nakada, et. al., "Analog curret-mode CMOS implementation of central pattern generator for robot locomotion," Proc. Int. Joint Conf. Neural Netw., pp. 639-644, 2005.
- L. Minati, et. al., "Versatile Locomotion Control of a Hexpod Robot Using a Hierrchical Network of Nonlinear Oscillator Circuits," IEEE Access, vol. 6, pp. 8042-8065, 2018.
- 8) U. Hu, J. Liang, and T.Wang, "Parameter Synthesis of Coupled Nonlinear Oscillators for CPG-Based Robotic Locomotion," IEEE Trans Ind Electron., vol. 61, no. 11, pp. 6183-6191, Nov. 2014.
- A. Kamimura. Et. l., "Automatic locomotion design and experiments for a Modular robotic system," IEEE ASME Trans. Mechatron., vol. 10, no. 3, pp. 314-325, 2005.
- 10) K. Takeda and H. Torikai, "A Novel Asynchronous CA Neuron Model: Design of Neuron-like Nonlinear Responses based on Novel Bifurcation Theory of Asynchronous Sequential Logic Circuit," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 6, pp. 1989-2001, 2020.

- T. Noguchi and H. Hiroyuki, "Ghost Stochastic Resonance from Asynchronous Cellular Automaton Neuron Model", IEEE Trans. Circuits Syst. 2, Exp. Briefs, vol. 60, no. 2, pp.111-115, 2013.
- 12) K. Takeda and H. Torikai, "A novel haedware-efficient CPG model for a hexapod robot base on nonlinear dynamics of coupled asynchronous cellular automaton oscillators," Proc. Int. Joint Conf. Neural Netw., pp. 1-8, 2019.
- 13) K. Takeda and H. Torikai, "A Novel Hardware-Efficient Cental Pattern Generator Model Based on Asynchronous Cellular Automaton Dynamics for Controlling Hexapod Robot" IEEE Access, 2020.
- 14) K. Takeda and H. Torikai, "A Novel Hardware-Efficient Gene Network Model based on Asynchronous Cellular Automaton Dynamics: Theoretical Analysis and FPGA Implementation," IEEE Trans. Circuits Syst. 2, Exp. Briefs, vol. 64, no. 9, pp.1107-1111, 2017.
- 15) T. Yoshimoto and H. Torikai, "A Novel Hardware-Efficient Gene Network Model based on Asynchronous Cellular Automaton Dynamics, NOLTA, IEICE, vol. 8, no. 4, pp. 302-318, 2017.
- 16) 非同期セルオートマトン CPG を用いた 4 脚歩行ロボ ットについて,信学技報, vol. 119, no. 485, CCS2019-34, pp. 1-4, 2020
- 17)小牧 礁, 鳥飼 弘幸 非同期セルオートマトン CPG を用いた 4 脚歩行ロボットについて, the 2020 IEICE Society Conference, 2020.
- 18) S. Komaki, H. Torikai, An Ergodic Cellular Automaton Model of CPG, NOLTA2020
- 19) S. Komaki, K. Takeda and H. Torikai, "A Novel Ergodic Discrete Difference Equation Model of Central Pattern Generator: Theoretical Analysis and Efficient Implementation," in IEEE Transactions on Circuits and Systems II: Express Briefs.