法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-07-06

テラヘルツ帯におけるInSb球配列のFDTD解析

黒田, 匠真 / KURODA, Takuma

(出版者 / Publisher) 法政大学大学院理工学研究科 (雑誌名 / Journal or Publication Title) 法政大学大学院紀要.理工学研究科編 (巻 / Volume) 63 (開始ページ / Start Page) 1 (終了ページ / End Page) 2 (発行年 / Year) 2022-03-24 (URL) https://doi.org/10.15002/00025328

テラヘルツ帯における InSb 球配列の FDTD 解析

FDTD ANALYSIS OF AN INSB SPHERE ARRAY IN THE TERAHERTZ REGIME

黒田匠真

Takuma KURODA

指導教員 柴山純

法政大学大学院理工学研究科電気電子工学専攻修士課程

We investigate a periodic array of an InSb sphere on a substrate at terahertz frequencies using the three-dimensional finite-difference time-domain method. We evaluate the transmission characteristics, paying attention to the resonance frequency. It is shown that the guided mode and surface plasmon resonances occur at the frequency dips.

Key Words : Guided-mode resonance (GMR), Surface plasmon polariton (SPP), Terahertz (THz) wave, Finite-difference time-domain (FDTD) method

まえがき

光波帯において, 金属と誘電体の境界に表面プラズ モンポラリトン (SPP) の励起することが知られており, 様々なデバイスへの応用が検討されている.しかし, テ ラヘルツ (THz) 帯では電磁界の金属への界の染み込み が極めて少ないため, SPP が励起されない.他方, THz 帯において負の誘電率を有する半導体として, アンチ モン化インジウム (InSb) [1] が挙げられる.そこで, 我々は THz 帯において InSb でコートされた誘電体円 柱を解析し, 透過特性を評価した [2]. 導波モード共鳴 (GMR) 及び表面プラズモン共鳴 (SPR) が生じ,基板 内に界が結合することを明らかにした.しかしながら, 文献 [2] では 2 次元構造のみの検討で,3 次元構造にお ける具体的な検討には至っていなかった.

本稿では, THz 帯における誘電体基板上に InSb 球 を配置した周期構造の基本特性を調査する [3]-[12].

2. 本論

(1) 構造と計算手法

解析する構造を図 1 に示す. $x \ge y$ 方向に対する無限周期構造の 1 周期のみ ($\Lambda = 168 \ \mu m$)を示している.誘電体基板を SiO₂ に選び,比誘電率を 1.94² とする. なお,SiO₂ は THz 帯では僅かに損失性となるが,本稿では無損失の媒質として扱う.InSb 球の半径を $r = 28 \ \mu m$ に選び,基板の厚さを $t = 140 \ \mu m$ とする.分散性媒質となる InSb の比誘電率を Drude モデル[1]で表現し,温度を 300 K に選ぶ.解析には周期境界条件を適用した FDTD 法[13]を使用し,1 周期のみを取り扱う.構造上部より一様な振幅を持つ E_x 偏波を入射し,構造下部で透過波を観測する.空間の刻み幅を $\Delta x = \Delta y = \Delta z = 1.4 \ \mu m$ に設定する.

(2) 透過特性

図2に透過特性を示す.複数の透過ディップの生じる ことがわかる.ディップ周波数は0.997,1.04及び1.21 THz である.次にディップ周波数における界分布を調 査する.図3に E_x 成分の界分布を示す.0.997 THz の 場合,y-z断面において,入射された平面波が基板の 導波モードに結合し,基板の厚み方向に0次の形状を 持つ界となる.その際,y方向に定在波が観察される. 1.04 THz では,x-z断面において,入射波が基板内で 1次の形状を持つ界に結合する.この時,x方向に定 在波が生じる.1.21 THz ではx-z断面において InSb と空気の界面に強い SPR が生じ,界は基板内で垂直方 向に振動する.y-z断面では,GMR が生じ,基板内に 結合する界は1次モードである.

本構造では,球により発生する空間高調波の一つが 基板の導波モードの伝搬定数と同期する場合に,界は 導波モードとして伝搬する.そのときの位相整合条件

は以下の式で表される.

$$\boldsymbol{\beta}_{\rm in} = \boldsymbol{\beta}_0 + p \frac{2\pi}{\Lambda} \boldsymbol{x} + q \frac{2\pi}{\Lambda} \boldsymbol{y}$$
(1)

ここで、 β_{in} は入射波の波数ベクトル、 β_0 は基板内の モードの波数ベクトルに近い値、 $p \ge q$ は回折次数、 $\frac{2\pi}{\Lambda}x \ge \frac{2\pi}{\Lambda}y$ はグレーティングベクトルである。垂直 入射の場合、 β_{in} は無視できるため、 $\beta_{in} = 0 \ge \tau$ る。 0.997 THz では基板内の界がx方向に伝搬しないため、 式 (1) においてx方向を無視する必要がある。したがっ て、式 (1) は

$$\boldsymbol{\beta}_0 + q \frac{2\pi}{\Lambda} \boldsymbol{y} = 0 \tag{2}$$

となる. ここで, $\beta_0 = \beta_0 y$ である. 0.997 THz と 1.21 THz では $q = \pm 1$ で式 (2) の位相整合条件が成立する. 1.04 THz では界は y 方向に伝搬せず, x 方向に伝搬す る. この場合,基板の 1 次モードの伝搬定数は x 方向 のグレーティングベクトルより小さくなる. しかしな がら,図 3(a) より,球の下に局在する SPP の影響に より伝搬定数の値が大きくなり,GMR が生じると考 えられる.

3. 結び

本稿では,THz帯における誘電体基板上に InSb 球 を配置した周期構造の基本特性を調査した.ディップ 周波数における界分布を評価し,入射波が基板の固有 モードに結合する様子を明らかにした.

参考文献

- Q. Wang, Q. Tang, D. Zhang, Z. Wang, and Y. Huang, "Tunable terahertz spectral filter based on temperature controlled subwavelength InSb grating," *Superlattice Microst.*, vol. 75, pp. 955-961, 2014.
- 2) J. Shibayama, S. Takahashi, J. Yamauchi, and H. Nakano, "Fundamental investigation of a grating consisting of InSb-coated dielectric cylinders on a substrate in the THz regime," *IEICE Trans. Electron.*, vol. E103-C, no. 11, pp. 567-574, 2020.
- 3) 柴山 純,黒田匠真,高橋澄玲,中野 純,山内潤治, 中野久松,"テラヘルツ帯における InSb コート誘電体 球配列の FDTD 解析,"信学総大,C-15-7,2020.
- 4) 柴山 純,黒田匠真,山内潤治,中野久松, "InSb コート誘電体球配列の THz センサへの応用," 信学ソ大, C-15-10, 2020.

- 5) 柴山 純,黒田匠真,山内潤治,中野久松, "InSb コート誘電体球配列に対する傾斜入射特性," 信学総大, C-15-18, 2021.
- 6) J. Shibayama, T. Iwamoto, T. Kuroda, J. Yamauchi and H. Nakano, "DCP-FDTD analysis of an InSbcoated dielectric cylinder array in the THz regime," 2021 International Applied Computational Electromagnetics Society Symposium, pp. 1-2, Hamilton, 2021.
- 岩本哲弥,柴山 純,黒田匠真,山内潤治,中野久松, "THz 帯における InSb コート誘電体円柱配列の DCP-FDTD 解析,"信学ソ大, CS-1-2, 2021.
- 8) T. Kuroda, J. Shibayama, J. Yamauchi, and H. Nakano, "Analysis of an InSb-coated dielectric sphere array in the THz region," in Proc. Progress in Electromagnetic Research Symposium, Hangzhou, 2021.
- 第田匠真,柴山 純,山内潤治,中野久松,"テラヘルツ 帯における誘電体基板上の InSb 球配列の FDTD 解析," 信学技報, vol. 121, no. 358, EST2021-92, pp. 173-177, 2022.
- 黒田匠真, 柴山 純, 山内潤治, 中野久松, "InSb 球球 配列における導波モード共鳴時のパワー評価," 信学総 大, C-15-10, 2022.
- 11) 柴山 純,竹谷和真,黒田匠真,山内潤治,中野久松, "偏波回転角を考慮したテラヘルツ帯における InSb 球 配列の FDTD 解析,"信学総大, C-1-6, 2022.
- 12) J. Shibayama, T. Kuroda, J. Yamauchi, and H. Nakano, "Analysis of an InSb sphere array on a dielectric substrate in the THz regime," *IEICE Trans. Electron.*, vol. E105-C, no. 4, 2022.
- 13) A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Norwood, MA: Artech House, 2005.