
PDF issue: 2025-01-15

Analysis of Differential Conditioning of
Erogodic Cellular Automaton Neruon Model

ISHIKAWA, Masato

(出版者 / Publisher)
法政大学大学院理工学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 理工学研究科編

(巻 / Volume)
63

(開始ページ / Start Page)
1

(終了ページ / End Page)
5

(発行年 / Year)
2022-03-24

(URL)
https://doi.org/10.15002/00025314



Analysis of Differential Conditioning of
Erogodic Cellular Automaton Neruon Model

<Name: Masato ISHIKAWA>
<Major: Electrical and Electronic Engineering Major>,

Graduate School of Science and Engineering, Hosei Universit

<Supervisor: Hiroyuki Torikai>

Abstruct-A novel membrane potential model whose nonlinear dynamics is described by an ergodic discrete
difference equation is presented. Detailed analyses reveal that the ergodicity of the model plays an important role
to realize proper generations of action potentials. Then, using the ergodic membrane potential model, a novel
multi-compartment neuron model (soma-dendrite-synapse model) is presented. It is shown that the model can
exhibit various dendritic phenomena depending on parameter values. Based on detailed analyses of the dendritic
phenomena, a design procedure of the multi-compartment neuron model to realize conditioning functions is
proposed. Furthermore, the neuron model is implemented by a field programmable gate array and experiments
validate its conditioning functions. It is then shown that the proposed neuron model consumes much fewer hardware
resources and much lower power than a typical conventional multi-compartment neuron model.
Keyward: Multi-Compartment Neuron Model, Ergodic Sequential logic, STDP, Differential Conditioning, FPGA

Fig. 1. (a) Backward propagation of action potentials on den-
drite of a biological in vivo neuron [6]. (b) Multi-compartment
modeling method of neuron.

I. INTRODUCTION
A biological neuron typically consists of a soma, den-

drites, synapses, and axons as illustrated in Fig. 1(a). The
biological neuron exhibits a wide variety of dendritic phe-
nomena such as forward and backward propagations of
action potentials and their combinations [1]-[5], e.g., Fig.
1(a) shows a typical example of backward propagation of
action potentials on the dendrite of a biological in vivo
neuron [6]. It has been pointed out that the physical struc-
ture of the dendrite and corresponding dendritic propaga-
tion phenomena of action potentials play important roles in
information processing and learning of biological neuron
networks [4][5][7]-[10]. A major modeling method is the
multi-compartment modeling method [11]-[14], by which
the neuron is modeled as a coupled system of small com-
partments as illustrated in Fig. 1(b). There are some meth-
ods to mode electronic circuit multi-compartment soma-
dendrite model. One of the method is a ergodic discrete
difference equation (DDE) [15]. The ergodic DDE has a
continuous state transition time and discrete state space. A
model designed by this model can be implemented by a
sequential logic circuit driven by ergodic binary signals. It
has been shown that ergodic DDE neuromorphic circuits
have consumed much fewer hardware resources and much
lower power compared to digital-processor-based neuro-
morphic circuits [15]. In this paper, a multi-compartment

Fig. 2. Illustrations of differential classical conditioning and
extinction. (a) Before conditioning. (b) During the conditioning.
(c) After the conditioning. This phenomenon is called classical
conditioning. (d) If the animal can be conditioned by multiple
conditioned stimuli (e.g., bell and light) selectively, the animal is
said to realize differential classical conditioning.

soma-dendrite-synapse model based on the nonlinear dy-
namics of an ergodic DDE is presented. Using the model,
a typical classical conditioning function (i.e., differential
classical conditioning [16][17], see also Fig. 2) is real-
ized. In addition, the presented model is implemented by
a field programmable gate array. It is then shown that
the presented model consumes much fewer hardware re-
sources and much lower power than a typical conventional
multi-compartment neuron model [18].
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Fig. 3. Schematic diagrams of novel ergodic DDE membrane
potential model M𝑖 , synapse model S𝑖 , and conductance-type
coupling 𝐺𝑖 𝑗 . “LUT” represents “lookup table.”

II. Novel Ergodic DDE Membrane Potential Model
In this section, a novel discrete difference equation

(DDE) membrane potential model is presented. Fig. 3
shows a schematic diagram of the model denoted by M𝑖 ,
where 𝑖 is an integer index. The 𝑖-th membrane potential
model M𝑖 has two registers storing the following discrete
states.

Discrete membrane potential
𝑉𝑖 ∈ {0, 1, · · · , 𝑀 − 1} = 𝑴,

Discrete recovery variable
𝑈𝑖 ∈ {0, 1, · · · , 𝑁 − 1} = 𝑵.

(1)

The membrane potential model M𝑖 has a periodic clock

𝐶𝑖 (𝑡) =
∞∑
𝑛=0

𝑝(𝑡 − 𝑛𝑇𝐶𝑖), (2)

where 𝑝(𝑡) represents an instantaneous pulse defined by
𝑝(𝑡) = 1 if 𝑡 = 0 and 𝑝(𝑡) = 0 if 𝑡 ≠ 0, and 𝑇𝐶𝑖 > 0 is a
period of 𝐶𝑖 (𝑡). The membrane potential model M𝑖 also
has the following three binary switch signals.

𝑆𝑉 𝑖 (𝑡) =
∞∑
𝑛=0

𝑞(𝑡 − 𝑛𝑇𝑉 𝑖 −Φ𝑉 𝑖 , 𝑄𝑉 𝑖),

𝑆𝑈𝑖 (𝑡) =
∞∑
𝑛=0

𝑞(𝑡 − 𝑛𝑇𝑈𝑖 −Φ𝑈𝑖 , 𝑄𝑈𝑖),

𝑆𝐺𝑖 (𝑡) =
∞∑
𝑛=0

𝑞(𝑡 − 𝑛𝑇𝐺𝑖 −Φ𝐺𝑖 , 𝑄𝐺𝑖),

(3)

where 𝑞(𝑡, 𝑄) represents a pulse defined by

𝑞(𝑡) =
{

1 if 𝑡 ∈ (0, 𝑄],
0 if 𝑡 ∉ (0, 𝑄], (4)

𝑇𝑉 𝑖 > 0,𝑇𝑈𝑖 > 0, and𝑇𝐺𝑖 > 0 are periods;𝑄𝑉 𝑖 ∈ [0, 𝑇𝑉 𝑖],
𝑄𝑈𝑖 ∈ [0, 𝑇𝑈𝑖], and 𝑄𝐺𝑖 ∈ [0, 𝑇𝐺𝑖] are pulse durations;
and Φ𝑉 𝑖 ∈ [0, 𝑇𝑉 𝑖), Φ𝑈𝑖 ∈ [0, 𝑇𝑈𝑖), and Φ𝐺𝑖 ∈ [0, 𝑇𝐺𝑖)

Fig. 4. State transitions of the ergodic DDE membrane potential
model M𝑖 .

are initial phases. The internal clock 𝐶𝑖 (𝑡) triggers the
following transitions of the discrete states 𝑉𝑖 and 𝑈𝑖 (see
also Fig. 3):

If 𝐶𝑖 (𝑡) = 1, then
𝑉𝑖 (𝑡+) = 𝑉𝑖 (𝑡) + 𝑆𝑉 𝑖 (𝑡)𝐷𝑉 (𝑉𝑖 (𝑡),𝑈𝑖 (𝑡)) + 𝑁𝑖 (𝑡)

+𝑅𝑖 (𝑉𝑖 (𝑡))𝑊𝑖 𝐼𝑖 (𝑡)
+𝑆𝐺𝑖 (𝑡)𝐺𝑖 𝑗 (𝑉 𝑗 (𝑡) −𝑉𝑖 (𝑡)),

𝑈𝑖 (𝑡+) = 𝑈𝑖 (𝑡) + 𝑆𝑈𝑖 (𝑡)𝐷𝑈 (𝑉𝑖 (𝑡),𝑈𝑖 (𝑡)),
(5)

where 𝑡+ = lim𝜖→+0 𝑡 + 𝜖 . Additionally, 𝑉𝑖 (𝑈𝑖) is assumed
to be saturated at 0 and𝑀−1 (0 and 𝑁−1) and is assumed to
exist in its range 𝑴 (range 𝑵). The function 𝑅𝑖 (𝑉𝑖) ∈ {0, 1}
represents refractoriness of a neuron and is defined by

𝑅𝑖 (𝑉𝑖) =
{

0 if 𝑉 > 𝑉𝑟 ,
1 otherwise. (6)

The state transitions in Eq. (5) consist of the following four
types of transitions.
(1) Transition by vector field: In Eq. (5), 𝐷𝑉 (𝑉𝑖 ,𝑈𝑖) :
𝑴×𝑵 → {−1, 0, 1} and𝐷𝑈 (𝑉𝑖 ,𝑈𝑖) : 𝑴×𝑵 → {−1, 0, 1}
are discrete functions, which determine the nonlinear vec-
tor field of the membrane potential model M𝑖 . Hence 𝐷𝑉

and 𝐷𝑈 are referred to as discrete vector field functions.
The discrete vector field functions 𝐷𝑉 and 𝐷𝑈 are im-
plemented by logic gates or lookup tables. In this paper,
to realize various dendritic phenomena, the discrete vector
field functions 𝐷𝑉 and 𝐷𝑈 are designed as follows:

𝐷𝑉 (𝑉𝑖 ,𝑈𝑖) =


1 if (𝑉𝑖 ,𝑈𝑖) ∈ S++
𝑖 ∪ S+−

𝑖 ,

−1 if (𝑉𝑖 ,𝑈𝑖) ∈ S−+
𝑖 ∪ S−−

𝑖 ,

0 if (𝑉𝑖 ,𝑈𝑖) ∈ S0
𝑖 ,

(7)

𝐷𝑈 (𝑉𝑖 ,𝑈𝑖) =


1 if (𝑉𝑖 ,𝑈𝑖) ∈ S++
𝑖 ∪ S−+

𝑖 ,

−1 if (𝑉𝑖 ,𝑈𝑖) ∈ S+−
𝑖 ∪ S−−

𝑖 ,

0 if (𝑉𝑖 ,𝑈𝑖) ∈ S0
𝑖 ,

(8)
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S++
𝑖 ≡ {(𝑉𝑖 ,𝑈𝑖) |𝑈𝑖 < 𝑓𝑉 (𝑉𝑖),𝑈𝑖 ≤ 𝑓𝑈 (𝑉𝑖)},

S−+
𝑖 ≡ {(𝑉𝑖 ,𝑈𝑖) |𝑈𝑖 ≥ 𝑓𝑉 (𝑉𝑖),𝑈𝑖 < 𝑓𝑈 (𝑉𝑖)},

S+−
𝑖 ≡ {(𝑉𝑖 ,𝑈𝑖) |𝑈𝑖 ≤ 𝑓𝑉 (𝑉𝑖),𝑈𝑖 > 𝑓𝑈 (𝑉𝑖)},

S−−
𝑖 ≡ {(𝑉𝑖 ,𝑈𝑖) |𝑈𝑖 > 𝑓𝑉 (𝑉𝑖),𝑈𝑖 ≥ 𝑓𝑈 (𝑉𝑖)},

S0
𝑖 ≡ {(𝑉𝑖 ,𝑈𝑖) | (𝑉𝑖 ,𝑈𝑖) ∉ S++

𝑖 ∪ S+−
𝑖 ∪ S−+

𝑖 ∪ S−−
𝑖 },

(9)

𝑓𝑉 (𝑉𝑖) = ⌊𝑘1 (𝑉𝑖)2 + 𝑘2𝑉𝑖 + 𝑘3⌋, 𝑓𝑈 (𝑉𝑖) = ⌊𝑘4𝑉𝑖 + 𝑘5⌋,
𝑘1 = 𝑓1𝑀/𝑁2, 𝑘2 = −2𝑘1⌊ 𝑓2𝑁⌋, 𝑘3 = 𝑘1 (⌊ 𝑓2𝑁⌋)2 +
⌊ 𝑓3𝑀⌋, 𝑘4 = 𝑓4𝑀/𝑁, 𝑘5 = ⌊ 𝑓5𝑀⌋, and ⌊·⌋ is the floor
function. In Fig. 3, the discrete states 𝑉𝑖 and 𝑈𝑖 are
transited by the vector field functions 𝐷𝑉 and 𝐷𝑈 at the
moments 𝑡 = 𝑡𝑎 and 𝑡𝑏 when the clock 𝐶𝑖 = 1 arrives,
respectively.
(2) Transition by stimulation: As shown in Fig. 3, the

membrane potential model M𝑖 receives a discrete synaptic
weight 𝑊𝑖 ∈ {0, 1, · · · ,𝑊𝑚𝑎𝑥} if a synapse model S𝑖 is
connected. The synapse model S𝑖 receives a pulse stimu-
lation

𝐼𝑖 (𝑡) =
∞∑
𝑛=1

𝑞(𝑡 − 𝑡𝐼 𝑖 (𝑛), 𝑄𝐼 𝑖), (10)

where 𝑡𝐼 𝑖 (𝑛) represents the 𝑛-th pulse timing of 𝐼𝑖 (𝑡). In
Fig. 4, the discrete state 𝑉𝑖 is transited by the weighted
stimulation 𝑊𝑖 𝐼𝑖 (𝑡) at the moment 𝑡 = 𝑡𝑐 when the clock
𝐶𝑖 = 1 arrives.
(3) Transition by noise: As shown in Fig. 3, the membrane
potential model M𝑖 receives a pulse noise

𝑁𝑖 (𝑡) =
∞∑
𝑛=1

𝑞(𝑡 − 𝑡𝑁𝑖 (𝑛), 𝑄𝑁𝑖), (11)

where 𝑡𝑁𝑖 (𝑛) represents the 𝑛-th pulse timing of 𝑁𝑖 (𝑡). In
Fig. 4, the discrete state 𝑉𝑖 is transited by the noise 𝑁𝑖 (𝑡)
at the moment 𝑡 = 𝑡𝑑 when the clock 𝐶𝑖 = 1 arrives.
(4) Transition by coupling: As shown in Fig. 3, assume
the membrane models M𝑖 and M 𝑗 are coupled. In Eq.
(5), 𝐺𝑖 𝑗 : {−(𝑀 − 1),−(𝑀 − 2), · · · , 𝑀 − 1} → {−(𝑀 −
1),−(𝑀 − 2), · · · , 𝑀 − 1} is a discrete function, which
determines the characteristics of the coupling. Hence 𝐺𝑖 𝑗

is referred to as a coupling function. In this paper, to realize
various dendritic phenomena, the coupling function 𝐺𝑖 𝑗 is
designed as follows:

𝐺𝑖 𝑗 (𝑉) =
{ ⌊𝑔𝑖 𝑗𝑉⌋ if − 𝑇𝑖 𝑗 ≤ 𝑉 ≤ 0,

0 otherwise,
(12)

where 𝑇𝑖 𝑗 ∈ 𝑴 and 𝑔𝑖 𝑗 ∈ 𝑹 are parameters. In Fig. 4, the
discrete state𝑉𝑖 is transited by the coupling function𝐺𝑖 𝑗 at
the moment 𝑡 = 𝑡𝑒 when the clock 𝐶𝑖 = 1 arrives.

In addition to the transitions in Eq. (5), the membrane
potential model M𝑖 exhibits the following firing reset.

If 𝐶𝑖 (𝑡) = 1 and 𝑉𝑖 (𝑡) = 𝑇ℎ(𝑈𝑖),
then 𝑉𝑖 (𝑡+) = 𝐵(𝑈𝑖),

(13)

where 𝑇ℎ : 𝑵 → 𝑴 is a firing threshold and 𝐵 : 𝑵 → 𝑴
is a reset value. In Fig. 4, the model M𝑖 exhibits the
firing reset at the moment 𝑡 = 𝑡 𝑓 . At the firing moment,
the model M𝑖 generates the following action potential (see
also Fig. 3):

𝑌𝑖 (𝑡) =
{

1 if 𝑉𝑖 (𝑡) = 𝑇ℎ(𝑈𝑖) and 𝐶𝑖 (𝑡) = 1,
0 otherwise. (14)

A. Spike timing dependent synaptic plasticity of synapse
model

To realize the conditioning functions of the neuron
model, the synapse model S𝑖 is extended to realize plastic-
ity of the synaptic weight𝑊𝑖 as follows:

If 𝐶𝑖 (𝑡) = 1, then
𝑊𝑖 (𝑡+) = 𝑊𝑖 (𝑡) + 𝑌𝑖 (𝑡)𝐼𝑘 (𝑖) (𝑡)𝐿𝑇𝑃(𝑃𝑖 (𝑡))

−𝐼𝑖 (𝑡)𝐿𝑇𝐷 (𝐷𝑖 (𝑡)) − 𝐿𝐾𝑖 (𝐾𝑖 (𝑡)),
(15)

where 𝑊𝑖 is assumed to be saturated at 0 and 𝑊𝑚𝑎𝑥 and
to exist in its range. Also, 𝑃𝑖 ∈ {0, 1, · · · , 𝑃𝑚𝑎𝑥} and
𝐷𝑖 ∈ {0, 1, · · · , 𝐷𝑚𝑎𝑥} are discrete states, and 𝐿𝑇𝑃 :
{0, · · · , 𝑃𝑚𝑎𝑥} → {0, 1} and 𝐿𝑇𝐷 : {0, · · · , 𝐷𝑚𝑎𝑥} →
{0, 1} are discrete functions defined by

𝐿𝑇𝑃(𝑃) =
{ 0 if 𝑃 = 0,

1 if 𝑃 > 0,
(16)

𝐿𝑇𝐷 (𝐷) =
{ 0 if 𝐷 = 0,

1 if 𝐷 > 0.
(17)

The dynamics of the discrete states 𝑃𝑖 and 𝐷𝑖 are:

𝑃𝑖 (𝑡+) = 𝑃𝑚𝑎𝑥 if 𝐶𝑖 (𝑡) = 1 and 𝐼𝑖 (𝑡) = 1,
𝑃𝑖 (𝑡+) = 𝑃𝑖 (𝑡) − 1 if 𝐶𝑖 (𝑡) = 1, (18)

𝐷𝑖 (𝑡+) = 𝐷𝑚𝑎𝑥 if 𝐶𝑖 (𝑡) = 1 and 𝑌𝑖 (𝑡) = 1,
𝐷𝑖 (𝑡+) = 𝐷𝑖 (𝑡) − 1 if 𝐶𝑖 (𝑡) = 1,

(19)

where 𝑃𝑖 (𝐷𝑖) is assumed to be saturated at 0 and 𝑃𝑚𝑎𝑥

(0 and 𝐷𝑚𝑎𝑥) and to exist in its range. The functions
𝐿𝑇𝑃 and 𝐿𝑇𝐷 work to increase the synaptic weight 𝑊𝑖

(i.e., long-term potentiation) and to decrease the synaptic
weight𝑊𝑖 (i.e., long-term depression), respectively. Using
the extended synapse model S𝑖 , the synaptic weight 𝑊𝑖 is
increased if an action potential 𝑌𝑖 = 1 (i.e., post-synaptic
spike) comes to the synapse model S𝑖 after a stimulation
𝐼𝑖 = 1 (i.e., pre-synaptic spike) comes, and is decreased
in the opposite case. In addition, 𝐾𝑖 ∈ {0, 1, · · · , 𝐾𝑚𝑎𝑥}
is a discrete state and 𝐿𝐾 : {0, · · · , 𝐾𝑚𝑎𝑥} → {0, 1} is a
discrete function defined by

𝐿𝐾𝑖 (𝐾) =
{
Λ𝑖 if 𝐾 = 𝐾𝑚𝑎𝑥 ,

0 otherwise.
(20)

The dynamics of the discrete state 𝐾𝑖 is:

𝐾𝑖 (𝑡+) = 𝐾𝑖 (𝑡) + 1 if 𝐶𝑖 (𝑡) = 1 and 𝐾𝑖 (𝑡) < 𝐾𝑚𝑎𝑥 ,

𝐾𝑖 (𝑡+) = 0 if 𝐶𝑖 (𝑡) = 1 and 𝐾𝑖 (𝑡) = 𝐾𝑚𝑎𝑥

or 𝐶𝑖 (𝑡) = 1 and 𝑌𝑖 (𝑡) = 1.
(21)

The function 𝐿𝐾 work as leakage of the synaptic weight
𝑊𝑖 .

III. RESULTS
A. Differential classical conditioning

Recall that, in the differential classical conditioning ex-
plained in Fig. 2, an unconditioned stimulus (e.g., food)
and multiple conditioned stimuli (e.g., bell and light) are
used, where the unconditioned stimulus leads to an innate
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Fig. 5. Differential conditioning of the multi-compartment neuron model. (a)Proposed multi-compartment neuron model. (b),(c), and (d)
are simulation results showing typical time waveforms of the model before and after conditioning. The parameter values of the membrane
model are (𝑀, 𝑁, 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5) = (64, 64, 3.5, 0.45, −0.05, 1.5, −0.43), 𝑇ℎ = 63, 𝐵 = 0, 𝑇𝐶𝑖 = 𝑇𝑉 𝑖 = 𝑄𝑉 𝑖 = 𝑄𝑈𝑖 = 𝑄𝐺𝑖 = 121,
𝑇𝑈𝑖 = 12

√
817, and 𝑇𝐺𝑖 = 4

√
770, 𝑉𝑟 = 63. The coupling functions 𝐺𝑖 𝑗 are parameterized as 𝑔31 = 𝑔32 = 𝑔43 = 𝑔65 = 𝑔76 = 𝑔84 =

𝑔87 = 𝑔98 = 𝑔109 = 0.5 and 𝑔13 = 𝑔23 = 𝑔34 = 𝑔56 = 𝑔67 = 𝑔48 = 𝑔78 = 𝑔89 = 𝑔910 = 0.5. Pulse density of the noise 𝑁𝑖 is 20
√

259.
The parameter values of the synapse model are (𝑃𝑚𝑎𝑥 , 𝐷𝑚𝑎𝑥 ,𝑊𝑚𝑎𝑥 , 𝛼, 𝛽) = (500, 250, 10, 0.5, 0.5), 𝑉𝑟 = 63, and 𝑊1 = 10. (a)
Before conditioning. 𝑊2 = 𝑊5 = 0. (b) After conditioned by the bell stimulation 𝐼2. 𝑊2 = 10 and𝑊5 = 0. (c) After conditioned by the
light stimulation 𝐼5. 𝑊2 = 0 and𝑊5 = 10.

Table 1. Comparisons.

Model Function Hardware
Differential Extinction Resolusions of On-chip
conditioning discrete state #LUTs #FFs #Slices power [W]

Presented neuron model Possible Possible N=64 1492 371 459 0.141
operated as ergodic DDE M=64
Presented neuron model Not suited as explained N=64 1561 533 521 0.138
operated as regular DDE in Remarks 1 and 2 M=64

Neuron model Possible Possible 19bit 16851 779 5551 0.586
described by ODE

#LUTs, #FFs and #Slices represent the numbers of FPGA of lookup tables, of flip flops and of slices respectively.

response (e.g., salivation) regardless of the conditioning.
In this paper, a design method of the multi-compartment
neuron model in Fig. 5(a) to realize the differential classi-
cal conditioning with two conditioned stimuli is proposed.
Fig. 5(b) shows typical time waveforms of the multi-
compartment neuron model designed by the above method
before conditioning. In this figure, the neuron model sali-
vates (i.e., the soma generates 𝑌10 = 1) in response to the
food stimulation 𝐼1 = 1 but does not to the bell stimulation
𝐼2 = 1 or the light stimulation 𝐼5 = 1. The neuron model is
then conditioned by giving the food stimulation 𝐼1 = 1 and
the bell stimulation 𝐼2 = 1 repeatedly and randomly, where
the food stimulation is presented near the bell stimulation.
Fig. 5(c) shows typical time waveforms of the neuron
model after the conditioning. In this figure, the neuron
model salivates 𝑌10 = 1 in response to the food stimulation
𝐼1 = 1 and the bell stimulation 𝐼2 = 1 but does not to the
light stimulation 𝐼5 = 1. On the other hand, in the case of
Fig. 5(d), the neuron model is conditioned by giving the
food stimulation 𝐼1 = 1 and the light stimulation 𝐼5 = 1.
After this conditioning, as shown in Fig. 5(d), the neuron
model salivates 𝑌10 = 1 in response to the food stimulation
𝐼1 = 1 and the light stimulation 𝐼5 = 1 but does not to the
bell stimulation 𝐼2 = 1. These results reveal that the neuron
model can pair the unconditioned food stimulation 𝐼1 with
the conditioned bell stimulation 𝐼2 or with the conditioned

(a) Conditioned by bell stimulation.

(b) Conditioned by light stimulation.

Fig. 6. Oscilloscope snapshots of the presented multi-
compartment neuron model implemented by Xilinx’s FPGA device
XC7Z020-1CLG484. The scale of the horizontal time axis is 200
ms/div.. (a) Conditioned by bell stimulation corresponding to
Fig. 5(b). (b) Conditioned by light stimulation corresponding to
Fig. 5(c).

light stimulation 𝐼5 selectively, and thus it can be said that
the neuron model can realize the differential conditioning.

B. FPGA Implementation and Comparison
The set of the dynamic equations (5)-(15) describing the

multi-compartment neuron model in Fig. 5(a) was hand-
written as a register transfer level Verilog-HDL code. The
code was compiled by Xilinx’s design software environ-
ment Vivado Design Suite 2019.2.1 and the resulting bit-
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stream file was downloaded to Xilinx’s field programmable
gate array (FPGA) XC7Z020-1CLG484. Fig. 6 shows
oscilloscope snapshots of the multi-compartment neuron
model after the differential conditioning. In Fig. 6(a), the
model was conditioned by the bell stimulation. It can be
seen in the figure that the model salivates (i.e., 𝑌10 = High)
in response to the food stimulation 𝐼1 = High and the bell
stimulation 𝐼2 = High but does not to the light stimulation
𝐼5 = High. In Fig. 6(b), the model was conditioned by
the light stimulation. It can be seen in the figure that the
model salivates in response to the food stimulation 𝐼1 =
High and the light stimulation 𝐼5 = High but does not to the
bell stimulation 𝐼2 = High. Hence the model realizes the
differential conditioning properly.

For comparison, a multi-compartment neuron model
having the in structure in Fig. 5(a) and composed of the
following ordinary differential equation (ODE) membrane
model [14] was designed.

𝐶𝑑𝑣/𝑑𝑡 = 𝑘 (𝑣 − 𝑣𝑟 )(𝑣 − 𝑣𝑡 ) − 𝑢 + 𝐼
𝑑𝑢/𝑑𝑡 = 𝑎{𝑏(𝑣 − 𝑣𝑟 ) − 𝑢}{
𝑣 = 𝑐

𝑢 = 𝑢 + 𝑑
if 𝑣 ≥ 𝑣𝑝𝑒𝑎𝑘 .

(22)

where 𝑣𝑖 ∈ 𝑹 is a membrane potential and 𝑢𝑖 ∈ 𝑹
is a recovery variable, (𝑘, 𝑣𝑟 , 𝑣𝑡 , 𝐼, 𝐶, 𝑎, 𝑏, 𝑐, 𝑑, 𝑣𝑝𝑒𝑎𝑘 ) =
(0.7,−60,−40, 0, 100, 0.03, 5,−60, 100, 35). The dynam-
ics of the ODE multi-compartment neuron model was trans-
formed into a numerical integration formula, which was
implemented by the same design software and in the same
FPGA device used to implement the presented model. Ta-
ble 1 shows comparison results. Note that the bit lengths
of the presented ergodic DDE neuron model and the ODE
neuron model were shortened as short as possible under
the condition that the model realized the differential con-
ditioning properly. It can be confirmed that the presented
ergodic DDE neuron model consumes much less hardware
resources and much less power compared to the ODE neu-
ron model.

IV. CONCLUSION
It was shown that the presented ergodic DDE mem-

brane potential model could realize the differential con-
ditioning. The designed multi-compartment model was
implemeneted by the FPGA and it was shown that the pro-
posed model consumed much fewer hardware resources
and much lower power compared to the typical conven-
tional multi-compartment model (see Table 1).
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