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Abstract—In the first part of this research, we propose
two hybrid topologies named k-Cube k-Ary n-Tree (CAT)
and Mirrored k-Cube k-Ary n-Tree (MiCAT), based on
fat-trees and hypercubes. We evaluate the path diversity,
cost, performance, and average packet latency of CAT and
MiCAT. The results show that CAT and MiCAT can save
up to 87% switches and 80% links in a large-scale parallel
system, for example, if k = n = 8, compared to fat-trees,
and meanwhile, both CAT and MiCAT have higher path
diversities than fat-trees. The second part gives four link
fault tolerant routing algorithms in Mirrored k-ary n-tree
(MiKANT) interconnection networks and evaluates their per-
formance through simulations. In addition, the performance
of the combined algorithms is also evaluated.

1. Introduction

Nowadays, more and more compute nodes are used in
supercomputers and data centers that require a large-scale
interconnection network. Thus the trade-off of the cost and
the performance for the interconnection networks becomes
a more and more important issue.

In order to find a balance between the hardware cost
and performance, a wide variety of interconnection topolo-
gies were proposed. Among these topologies, fat-tree [1]
is one of the most popular topologies of the interconnec-
tion networks in current large-scale supercomputers. In a
k-ary n-tree [3], a special case of fat trees, the switch
radix is 2k, and the number of switch levels is n. In
order to reduce the hardware cost of the switches and
links and improve the communication performance of the
fat-tree networks, a Mirrored K-Ary N -Tree (MiKANT)
network [2] was proposed. It is a variant of fat-trees aimed
at reducing hardware cost and packet latency. As the scale
of MiKANT becomes large, the probability of switch
or link failure increases. Fault tolerance is one of the
important issues of the interconnection networks for large-
scale parallel computers. [6] gave four link fault tolerant
routing algorithms in Mirrored k-ary n-tree (MiKANT)
interconnection networks and evaluated their performance
through simulations.

However, in each leaf switch of the k-ary n-tree or
MiKANT, there are only k compute nodes connected
to it. A large-scale parallel computing system, which
consists of a huge number of compute nodes, requires
a large-scale interconnection network that consists of a
huge number of switches and links. In such a case, we
propose two hybrid topologies: k-Cube k-Ary n-Tree
(CAT) and Mirrored k-Cube k-Ary n-Tree (MiCAT) [5]
that are based on a fat-tree and small size hypercubes [4].

∗ Supervisor: Prof. Yamin Li

For a CAT/MiCAT, the parameter k represents both the
dimension of the hypercube and the switch arity to ensure
that the radix of this architecture will be equal to 2k.
There are 2k−1 hypercube switches connected to each of
the leaf switches. And k compute nodes are connected to
each of the hypercube switches. We analyze the hardware
cost, performance, path diversity, and packet latency of
CAT and MiCAT. The results show that CAT and MiCAT
achieve higher path diversity at a lower hardware cost than
the classical fat-trees.

2. CAT and MiCAT Topologies

This section introduces the CAT and MiCAT topolo-
gies.

2.1. K-Cube K-Ary N -Tree

The CAT is constructed based on hypercube and k-
ary n-tree, denoted as CAT(k, n). A CAT(k, n) can be
constructed by replacing k compute nodes connected to
each switch in level 0 with a k-cube and each switch
of k-cube connects k compute nodes. That is, 2k − 1
switches and k(2k − 1) compute nodes are connected
to each switch in level 0. Each switch of CAT is la-
beled as ⟨L,D,C⟩; Where L indicates level, D indicates
the fat-tree ID, and C indicates the hypercube ID. In
a CAT(k, n), we call the level 0 switch transit switch.
Each switch of k-cube part is labeled as ⟨0, D,C⟩, where
C = Ck−1, Ck−2, . . . , C1, C0 with Ci ∈ ⟨0, 1⟩ and C ̸=
0, . . . , 0, a transit switch is labeled as ⟨0, D, 0⟩. Suppose
two switches U = ⟨0, DU , CU ⟩ and V = ⟨0, DV , CV ⟩
are connected to a same transit switch, then DU = DV .
Because a transit switch ⟨0, Dn−2, . . . , D0, 0, . . . , 0⟩ has
a k-cube address C = 0, . . . , 0, it connects to switches
⟨0, Dn−2, . . . , D0, Ck−1, . . . , C0⟩ with Ck−1+ · · ·+C0 =
1. In the routing within a k-cube part, the label D will
not change. Similarly, the label C will not change when
routing in the fat-tree part.

Fig. 1 shows a CAT(3, 3). There are kn−1 = 9 transit
switches and each transit switch connects a 3-cube. In a
3-cube, there are 2k = 8 switches (including the transit
switch). Except for the transit switch, each 3-cube switch
connects 3 compute nodes. Totally there are 9×(8−1)×3,
or 189 compute nodes.

2.2. Mirrored K-Cube K-Ary N -Tree

The MiCAT, denoted as MiCAT(k, n), is constructed
based on MiKANT(k, n) and k-cube. Each switch of a
MiCAT(k, n) is labeled as ⟨G,L,D,C⟩, where G indi-
cates a group, L, D, c is the same as CAT. For example, a



102*101*100*

202*201*200* 210*

110*

211*

111* 112*

212* 220*

120* 121* 122*

221* 222*

000* 001* 002* 010* 011* 012* 020* 021* 022*

*=000 *000 *010

*100
*001 *011

*110

*101 *111 000011
100011
200011

Figure 1. A 3-cube 3-ary 3-tree

MiCAT(4, 3) has 2kn−1 = 32 transit switches. The group
0 and the stage 1 switches of group 1 form a CAT(4, 3);
and the group 1 and the stage 1 switches of group 0 form
another CAT(4, 3). A switch W

⟨G,L,Dn−2, . . . , DL+1, DL, DL−1, . . . , D0, Ck−1, . . . , C0⟩

connects to switches

⟨G,L+1, Dn−2, . . . , DL+1, ∗′, DL−1, . . . , D0, Ck−1, . . . , C0⟩

if 0 ≤ L < n− 2; otherwise (L = n− 2) to switches

⟨G,L, ∗′, Dn−3, . . . , D1, D0, Ck−1, . . . , C0⟩

where G is the bit-inversion of G, ∗′ is any value for ∗′ ∈
{0, 1, . . . , k − 1}. When the source node and destination
node are of a same group (group 0 or 1), MiCAT(k, n)
acts as the same as CAT(k, n).

Table 1 summarizes the topological properties of
k-cube, k-ary n-tree, MiKANT(k, n), CAT(k, n), and
MiCAT(k, n). From the table, we can see that both the
CAT and MiCAT can connect more compute nodes with
fewer switches and links.

3. Performance Evaluation

In this section, we evaluate the cost, performance, and
path diversity of CAT(k, n) and MiCAT(k, n).

3.1. Cost Ratio

The k-ary n-tree has kn nodes and nkn−1 switches.
That is, one node requires nkn−1/kn switches. A
CAT(k, n) has (2k − 1)kn nodes and (n + 2k − 1)kn−1

switches. The switch cost ratio of a CAT(k, n) to the k-ary
n-tree is

(n+ 2k − 1)kn−1/(2k − 1)kn

nkn−1/kn
=

n+ 2k − 1

n(2k − 1)

Similarly, the link cost ratio of a CAT(k, n) to the k-
ary n-tree is

(3× 2k−1 + n− 2)kn/(2k − 1)kn

nkn/kn
=

3× 2k−1 + n− 2

n(2k − 1)
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Figure 2. Cost ratios of switches and links to k-ary n-tree

We plot the switch and link cost ratios of the
CAT(k, n) to the k-ary n-tree in Fig. 2. For convenience,
we set n = k in both figures. We can see that when
n = k ≥ 3, both the CAT(k, n) and MiCAT(k, n) have
a lower cost of the switches and links than the k-ary n-
tree. For k = n = 8, the CAT saves 87.11% switches and
80.88% links compared to k-ary n-tree. The MiCAT saves
87.16% switches and 80.91% links compared to k-ary n-
tree.

3.2. Relative Cost Performance

In order to make a good tradeoff between the cost and
performance for CAT(k, n) and MiCAT(k, n), we define
a relative cost performance (RCP ) to the hypercube as
below:

RCP 1 =
2k × (2n+ 2k)

(log2(N1/p) + p)× (log2(N1/p) + 2)

RCP 2 =
2k × (2n+ 2k)

(log2(N2/p) + p)× (log2(N2/p) + 2)

where the RCP 1 and RCP 2 means the RCP of the
CAT(k, n) and RCP of the MiCAT(k, n), respectively;
2k is the radix of the CAT(k, n) and MiCAT(k, n) which
affects the hardware cost; 2n+ 2k is the diameter of the
CAT(k, n) and MiCAT(k, n) which affects the commu-
nication performance; (log2N/p) is the dimension of the
hypercube; and p indicates the number of ports in a router
for connecting compute nodes. Both the radix and diame-
ter of k-cube are k, but in real implementations, there are
p ports in a router for connecting compute nodes. That is,
the real router radix is k + p. The diameter of CAT(k, n)
and MiCAT(k, n) contains the links that connect compute
nodes to switches. To make a fair comparison, we let the
diameter of k-cube be k + 2.

Fig. 3 and Fig. 4 illustrate the RCP s of CAT(k, n) and
MiCAT(k, n), respectively, to the n-cube for 2 ≤ n ≤ 7
with p = 1. For a given n, we change the value of k
to implement the system with different sizes. The lower
values in the curves mean that the systems achieve higher
performance at lower hardware costs. For example, when
we build a 491,520-node system with MiCAT(4, 7), the
RCP is 0.4676. For a given size of a system, we can
select suitable k and n based on the figures so that the
system will have a lower RCP .



TABLE 1. COMPARISON OF NETWORK TOPOLOGICAL PROPERTIES

Parameters HC(k) k-ary n-tree MiKANT(k, n) CAT(k, n) MiCAT(k, n)

Nodes 2k kn 2kn (2k − 1)kn 2(2k − 1)kn

Switches 2k nkn−1 (2n− 2)kn−1 (n+ 2k − 1)kn−1 (2n− 4 + 2k+1)kn−1

Links k2k−1 nkn (2n− 1)kn (3× 2k−1 + n− 2)kn (3× 2k + 2n− 5)kn

Radix/Degree k 2k 2k 2k 2k

Diameter k 2n 2n 2n+ 2k 2n+ 2k

Average distance k
2

2n− 2
k−1

2n− 1
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Figure 3. RCP comparison of CAT(k, n)
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Figure 4. RCP comparison of MiCAT(k, n)

3.3. Path Diversities

Path diversity is an important attribute of a topology.
High path diversity means that there are many paths
between the source and destination nodes for sending
packets. This section defines a method to calculate the
path diversity of the CAT(k, n) and MiCAT(k, n), and
compares it to that of k-ary n-tree and MiKANT(k, n).
The path diversity (PD) of a network is defined as below.

PD =
P̃

N

where P̃ is the average number of shortest paths and N
is the number of nodes in the system. The path diversity
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Figure 5. Path diversities

PD of a k-cube is

PDcube =
P̃cube

Ncube
=

k∑
i=1

k!

i!× 4k

And, the path diversity PD of a k-ary n-tree is

PDkant =
P̃kant

Nkant
=

1− 1/k2n−2

k + 1

Similarly, The path diversity PD of a MiKANT(k, n) is

PDmikant =
P̃mikant

Nmikant
=

1− 1/k2n−2

4(k + 1)
+

1

4k2

The path diversity of CAT can be written by the path
diversity of the hypercube and k-ary n-tree. The path
diversity PD of a CAT(k, n) is

PD =
P̃cat

Ncat
=

P̃cube

kn−1
[P̃cubeP̃kant(k

n−1 − 1) + 1]/Ncat

Similarly, the path diversity of MiCAT can be written by
the path diversity of the hypercube and MiKANT(k, n).
The path diversity PD of a MiCAT(k, n) is

PD =
P̃cube

2kn−1
[P̃cubeP̃mikant(2k

n−1 − 1) + 1]/Nmicat

Fig. 5 plots the path diversities of the k-cube, k-
ary n-tree, MiKANT(k, n), CAT(k, n), and MiCAT(k, n)
with n = 8. We can see that the path diversities of the
CAT(k, n) and MiCAT(k, n) are better than that of k-ary
n-tree and MiKANT(k, n) when k ≥ 5.
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3.4. Packet Latency

We have evaluated the average packet latencies of CAT
and MiCAT with k = 3 and n = 4 through simulation.
CAT and MiCAT have the number of nodes which is
(2k − 1)kn = 567 and 2(2k − 1)kn = 1134, respectively.
The reason why use k = 3 and n = 4 is that in CAT and
MiCAT topologies, the bottleneck of the packet latency
always happens in the hypercube part, we need to use
the same size of the hypercube part to make them fair;
furthermore, a large scale interconnection network require
to use a big amount of memory and we did it in an
ordinary personal computer.

We evaluate the simulation on a clock cycle-by-cycle
by uniform pattern. In uniform traffic, packet destination
addresses are randomly assigned. For each packet in one
clock cycle, the packet can be sent to another switch/node
if the switch has a usable buffer, otherwise the packet will
wait for one clock cycle. We set traffic load λ in the range
of 0.05 and 0.55, stepped by 0.05. That is, in each clock
cycle, there are N × λ compute nodes that will send the
packet to their destination nodes where N is the number of
nodes in the system. The simulation terminates when each
destination node has received an average of 200 packets.

Fig. 6 illustrates the packet latencies of CAT(3, 4) and
MiCAT(3, 4), respectively. The vertical axis represents the
average packet latency in clock cycles and the horizontal
axis represents the traffic load λ. The NB represents the
normal buffer, the normal buffer means that each switch
has the same buffer depth as 8; DB represents the double
buffers, double buffer means that the level 0 switches have
the double buffer depth of other switches which is 16. We
can see that the double buffer depth has lower average
packet latencies than normal buffer depth in both CAT
and MiCAT obviously.

4. Link Fault Tolerance in MiKANT

The purpose of fault tolerant routing is to enable a
system to continue operating properly in a high probability
with switch or link faulty. A link faulty means that the
ports of the switches connected by the link cannot be used
for passing the packet. In this section, we give four link
fault tolerant routing algorithms.

Figure 7. A Mirrored 3-ary 3-tree

Algorithm 1 MiKANT Routing (packet)

Input: packet = ⟨T, data⟩; /* received packet which will be sent to T
*/
W = ⟨GW , LW ,Wn−2, ...,W1,W0⟩; /* my switch ID */
T = ⟨GT , Tn−1, Tn−2, ..., T1, T0⟩; /* destination node ID */
if (GW ̸= GT ) /* W,T : different groups */

send packet to T+
LW

port; /* increasing level */
else /* W,T : same group */

if (Wn−2, ...,WLW
̸= Tn−2, ..., TLW

) /* going to NCA */
send packet to T+

LW
port; /* increasing level */

else /* going to destination from NCA */
if (LW > 0) /* not a level 0 switch */

send packet to T−
LW−1 port; /* decreasing level */

else /* a level 0 switch */
send packet to T−

n−1 port; /* to destination node */
endif

endif
endif

4.1. Routing Algorithm in MiKANT

The routing algorithm of MiKANT is based on the
destination compute node ID and switch IDs. The output
port in each switch is selected based on the current switch
ID and destination node ID. Each switch has 2k ports in
a MiKANT(k, n). In each group, the ports on the side
near to compute nodes are labeled with 0, 1, . . . , k−1; the
ports on the other side are labeled with k, k+1, . . . , 2k−1.
We use W = ⟨GW , LW ,Wn−2, ...,W1,W0⟩ to denote the
current switch ID. The packet received by W contains
the destination node ID T = ⟨GT , Tn−1, Tn−2, ..., T1, T0⟩.
Based on T , W selects a port and sends the packet through
the selected port. These routings are in an upward phase
in which the packet is sent from the source switch to a
nearest common ancestor (NCA) of both the source and
destination nodes. Because there are more than one NCA,
we can select other ports to send the packet to different
NCAs. This is helpful for fault tolerant routing.

The routing algorithm is formally given in Algorithm
1, where T+

x = Tx + k and T−
x = Tx.



4.2. Fault Tolerant Routing Algorithms

The routing algorithm given in Algorithm 1 finds a
shortest path between the source and destination compute
nodes. If a link in the path is faulty while the path to the
destination node is determined, the shortest path routing
algorithm will fail. For example, the current switch is
⟨0, 1, 0, 0⟩ in a MiKANT(3, 3) and the destination node is
⟨1, 0, 0, 0⟩. In this case, if the link ⟨1, 2, 0, 0, 0⟩ is faulty,
the current switch cannot reach the switch ⟨1, 1, 0, 0⟩ in
the shortest path. Based on the shortest path routing algo-
rithm, we give four link fault tolerant routing algorithms
that select other links for the routing if a faulty link is
encountered.

4.2.1. Go-Neighbor-Switch Algorithm. In the previous
example, the link ⟨1, 2, 0, 0, 0⟩ is faulty. We can send the
packet to the neighbor switch ⟨1, 1, 0, 1⟩ or ⟨1, 1, 0, 2⟩ of
switch ⟨1, 1, 0, 0⟩. In this way, the current switch can
send the packet to the destination node ⟨1, 0, 0, 0⟩ via
the lower level switch ⟨0, 1, 0, 1⟩ or ⟨0, 1, 0, 2⟩. We call
this the “Go-Neighbor-Switch” algorithm. The current
switch can go to the lower level and back to the cur-
rent level to change to the neighbor switch. The current
switch is ⟨0, 1, 0, 0⟩ and destination node is ⟨1, 0, 0, 0⟩.
We can select the path like ⟨0, 1, 0, 0⟩ → ⟨0, 0, 0, 1⟩
→ ⟨0, 1, 0, 1⟩ → ⟨1, 1, 0, 1⟩ → ⟨1, 0, 0, 0⟩ or ⟨0, 1, 0, 0⟩
→ ⟨0, 0, 0, 0⟩ → ⟨0, 1, 0, 2⟩ → ⟨1, 1, 0, 2⟩ → ⟨1, 0, 0, 0⟩.
Generally, for W = ⟨GW , LW ,Wn−2, . . . ,W1,W0⟩
and T = ⟨GW , Tn−1, Tn−2, . . . , T1, T0⟩, suppose that
the link ⟨1, LW + 1, Ln−2, . . . , L1, L0, P ⟩ is faulty. If
GW = 1, P equals Tn−2 and (Ln−2, . . . , L1, L0 =
Wn−2, . . . ,W1,W0). Otherwise, P equals Wn−2 and
(Ln−2, . . . , L1, L0 = Tn−2, . . . , T1,W0). W will send
a packet to ⟨GW , LW − 1,Wn−2, ∗, . . . ,W1,W0⟩, then
to ⟨GW , LW ,Wn−2, ∗ − Wn−3, . . . ,W1,W0⟩, and next
to ⟨GW , LW , Tn−2, ∗ − Wn−3, . . . ,W1,W0⟩, where ∗ −
Wn−3 are all the element ∈ {0, 1, . . . , k − 1} except
Wn−3.

4.2.2. Go-Down-Level Algorithm. In the downward
phase, the path to the destination node is determined. For
example, W = ⟨0, 1, 0, 0⟩ in a MiKANT(3, 3) wants to
send a packet to the destination node ⟨0, 2, 0, 0⟩ via switch
⟨0, 0, 0, 0⟩. If the link ⟨0, 1, 0, 0, 0⟩ is faulty, the shortest
path algorithm will fail. But W can use other ways to
get to the switch ⟨0, 0, 0, 0⟩. For example, ⟨0, 1, 0, 0⟩ →
⟨0, 0, 0, 1⟩ → ⟨0, 1, 0, 1⟩ → ⟨0, 0, 0, 0⟩ or ⟨0, 1, 0, 0⟩ →
⟨0, 0, 0, 2⟩ → ⟨0, 1, 0, 2⟩ → ⟨0, 0, 0, 0⟩. We call this “Go-
Down-Level” algorithm. Generally, for W = ⟨GW , LW ,
Tn−2, . . . , T1, ∗⟩, T = ⟨GT , ∗, Tn−2, . . . , T1, T0⟩, GW =
GT , and LW = 1, if ⟨GW , LW , Tn−2, . . . , T1, ∗, T0⟩
is a faulty link, W can send the packet to the
⟨GW , 0, Tn−2, . . . , ∗−T0⟩, then to ⟨GW , 1, Tn−2, . . . , ∗−
W0⟩, next to ⟨GW , 0, Tn−2, . . . , T1, T0⟩, and finally to the
destination node.

4.2.3. X-Turns Algorithm. In the Go-Neighbor-
Switch algorithm, when all the links connected
to neighbor switches are faulty, W cannot send
the packet to the destination node via neighbor
switches. But there are still other ways to get to
the destination node. We call this “X-Turns” algorithm.

Generally, for W = ⟨GW , LW ,Wn−2, . . . ,W1,W0⟩ and
destination node T = ⟨GW , Tn−1, Tn−2, . . . , T1, T0⟩.
⟨1, LW + 1, Ln−2, . . . , L1, L0, P ⟩ are faulty links. If
GW = 1, (Ln−2, . . . , L1, L0 = Wn−2, . . . ,W1, ∗), P
will equal Tn−2. Otherwise P will equal Wn−2. And
(Ln−2, . . . , LLW

, . . . L1, L0 = Wn−2, . . . , ∗, . . . , T1, T0).
The current switch can send a packet to
⟨GW , L+

W , ∗ − Tn−2, . . . ,W1,W0⟩, then to
⟨GW , L+

W , ∗ − Tn−2, . . . ,W1, ∗ − W0⟩, next
to ⟨GW , L+

W , ∗ − Wn−2, . . . ,W1, ∗ − W0⟩,
and final to the destination node via switch
⟨GW , L+

W , Tn−2, . . . ,W1, ∗ −W0⟩ where L+
W = n− 1.

Algorithm 2 Go-Neighbor-Switch and X-Turns

W = ⟨GW , LW ,Wn−2, ...,W1,W0⟩; /* my switch ID */
T = ⟨GT , Tn−1, Tn−2, ..., T1, T0⟩; /* destination node ID */
L = ⟨GL, LL, Ln−2, ..., L1, L0, P ⟩; /* link ID */
if (GW ̸= GT ) /* W,T : different groups */

send packet to T+
LW

via link L; /* increasing level */
if (L is faulty link)

send packet to WN via link L; /* Go-Neighbor-Switch */
if (L is faulty link)

send packet to N(T+
LW−(n−2)

) via link L;/* X-Turns */
if (L is faulty link)

routing fails;
endif

else
if (current switch in N(T+

LW−(n−2)
)

send packet to T
+
LW

via link L; /* Back to */
if (L is faulty link)

routing fails;
endif

else
if (current switch in T

+
LW

)
send packet to T+

LW
via link L;

if (L is faulty link)
routing fails;

endif
endif

endif
endif /* X-Turns end */

else
if (current switch in WN )

send packet to T+
LW

via link L;/* Go to T+
LW

via WN */
if (L is faulty link)

routing fails;
endif

endif
endif

endif

X-Turns algorithm must be used together with Go-
Neighbor-Switch algorithm, see Algorithm 2, where WN

means the neighbor switch of W , N(T+
LW−(n−2)) means

W has the same group ID as T and in level LW−(n−2) =
0.

X-Turns algorithm is quite complex and may cause
deadlock. In order to avoid the deadlock, we prepare two
parameters to save the values of Wn−2 and W0 for each
packet, and avoid selecting those paths that were visited
before when the packet goes back to the switch.

4.2.4. Three-Turn Algorithm. We find another method
to send the packet to the different group of cur-
rent switch when the Go-Neighbor Switch algorithm
cannot send the packet to the destination node. We
call it the “Three-Turn” algorithm. Generally, for
W = ⟨GW , LW ,Wn−2, . . . ,W1,W0⟩ and destina-
tion node T = ⟨GW , Tn−1, Tn−2, . . . , T1, T0⟩, sup-
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Figure 8. Successful routing ratio on link faulty

pose that ⟨1, LW + 1, Ln−2, . . . , L1, L0, P ⟩ is faulty. If
GW = 1, P equals Tn−2 and (Ln−2, . . . , L1, L0 =
Wn−2, . . . ,W1,W0). Otherwise, P equals Wn−2 and
(Ln−2, . . . , L1, L0 = Tn−2, . . . , T1,W0). W will send
a packet to ⟨GW , LW , ∗ − Tn−2, . . . ,W1,W0⟩, then
to ⟨GW , LW , ∗ − Wn−2, . . . ,W1,W0⟩, and next to
⟨GW , LW , Tn−2, . . . ,W1,W0⟩.

In order to avoid the deadlock, we need a parameter
to save the value of the Wn−2 before W sends a packet
to ⟨GW , LW , ∗−Tn−2, . . . ,W1,W0⟩, and avoid selecting
switch ⟨GW , LW ,Wn−2, . . . ,W1,W0⟩ when the packet
goes back from ⟨GW , LW , ∗ − Tn−2, . . . ,W1,W0⟩.

5. Evaluation of Algorithms

We have evaluated the performance of the shortest
path, Go-Neighbor-Switch, Go-Down-Level, X-Turns, and
Three-Turn algorithms and their combinations through
simulations. We simulate the network MiKANT(3, 3) with
135 links. MiKANT(3, 3) is the smallest scale in which
all the algorithms can be used and all the algorithms can
be effective in a larger scale network of MiKANT(k, n).

We developed our own simulator. For a given number
of faulty links, we simulate each algorithm 100,000 times.
To configure the network for each time, we randomly
assign the source and destination nodes. The faulty links
are also assigned randomly. One configuration is used for
the simulations of all the algorithms.

Fig. 8 shows the successful routing ratios of the algo-
rithms with the link faulty rate ranging from 0% to 100%.
The shortest path algorithm has the lowest successful
routing ratio. The Go-Neighbor-Switch algorithm, Go-
Down-Level algorithm, Three-Turn and their combination
have better performance than the shortest path algorithm.
As shown in Algorithm 2, the X-Turns algorithm must
be used with the Go-Neighbor-Switch algorithm. We also
applied the Go-Down-Level algorithm to the X-Turns and
Three-Turn simulation,respectively. From the figure, we
can know the impacts of the algorithms on the successful
routing ratios.

Fig. 9 shows the average path length when the routings
are successful with the link faulty rate ranging from 0% to

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
v
e

ra
g

e
 p

a
th

 l
e

n
g

th

Link faulty rate

Shorest path

Go-Neighbor-Switch

Go-Down-Level

Three-Turn

Go-Neighbor-Switch and Go-Down-Level

Three-Turn and Go-Down-Level

Go-Down-Level and Go-Neighbor-Switch and X-Turns

Figure 9. Average path length on link faulty

100%. Go-Down-Level algorithm, Three-Turn algorithm,
and X-Turns algorithm increase path lengths obviously.
Generally, the algorithm achieves a higher successful rout-
ing ratio and has a longer routing path. We can find that
the path length increases and then decreases as the link
faulty rate increases. This is because, when the link faulty
rate is high, the routing can be successful only when the
source node and destination node have a shorter distance
between each other.

6. Conclusions

In this research, we proposed two new interconnection
networks, CAT and MiCAT and evaluated their cost ratio,
performance, path diversity and average packet latency,
the results show that both CAT and MiCAT have lower
hardware costs and higher path diversity compared to
the fat-trees. Then, we gave four algorithms and their
combinations which can find a path from the source node
to the destination node at high probability in the MiKANT
with faulty links. The future research may develop new
algorithms to reduce the packet latencies of CAT and
MiCAT.
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