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Abstract—In the past decade, compressive sensing has been
successfully applied to many image processing tasks based on
an empirical observation that most image signals are sparse in
a certain domain. Several image compressive sensing methods
have been proposed these years including the block compressive
sensing (BCS) which uses a relatively smaller sensing matrix to
raster-scan the entire image to acquire the signal block by block,
which can greatly reduce the memory consumption. However,
BCS still suffers from two issues. One is that block-wised sensing
causes heavy block effect on the reconstructed image, which
leads to degradation in the image quality metrics. Besides, the
sensing matrix usually needs to be handcrafted, which requires
a huge amount of work. In this paper, we propose a WGAN-
gp based image compressive sensing and reconstruction model
using generative adversarial networks which have achieved a
great success these years on dealing with computer vision tasks,
e.g. super-resolution and deblurring. More precisely, we train a
plain convolutional neural networks to perform the block-wised
sampling and initial reconstruction. Then we use a generative
adversarial network which provides fine reconstruction on the
initial reconstructed images to eliminate the block effect to
improve the final reconstruction quality. Experimental result
shows that our model is superior both in visual quality and
in the image quality metrics compared to the traditional image
compressive sensing methods.

Index Terms—image compressed sensing, generative adversar-
ial networks, neural network

I. INTRODUCTION

A. motivation

Compressive sensing proposed by Candes and Donoho [1]
is a novel theory in the signal processing field. The key idea
of compressive sensing is to recover a sparse signal from sub-
Nyquist samplings by convex optimization. It suggests that
most of the signals are sparse signals that we can use a a∗A
sampling matrix to sub-Nyquist sample the target signal

s = Φo (1)

where o is the A ∗ 1 original signal and s is the compressive
sampling result of a∗1 where a << A, notice that o has to be
sparse and the sensing matrix Φ must meets restricted isometry
property (RIP):

(1−δk)∥c∥2 ⩽ ∥ΦT c∥2 ≤ (1+δk))∥c∥2 (2)

∗ Supervisor: Prof. Kaoru Uchida

let k denotes the sparsity of the signal o meaning that it only
contains very few non-zero coefficients

∥o∥0 ⩽ k (3)

and the columns of the sensing matrix Φ is a finite collection
of vectors, then δk is the k-restricted isometry constants [2].

Generally speaking, we can use a sampling signal which
much lower than the Nyquist frequency to sample the signal
meanwhile enables data hardware compression during the
sampling process and exactly reconstruct the target signal by
solving a reverse ill-posed problem:

r = Φ
−1s

where r is the recovery from the s, and Φ−1 is the pseudo
inverse of sampling matrix.

To solve this ill-posed problem, many non-linear algorithms
have been developed which basically can be categorized into
three kinds: one kind is convex optimization methods, which
translate the non-convex problem into a convex one then
replace the L0 norm constraint with L1 norm and solve a linear
programming problem to get the approximate recovery result
r [3]. Another kind is greedy algorithms including orthog-
onal matching pursuit (OMP), and Simultaneous Orthogonal
Matching Pursuit (SOMP). For images processing, methods
like Total Variation [4] also have been proposed. Before the
Block Compressed Sensing (BCS) [5] was proposed by Lu
Gan et al, most image compressive sensing algorithms were
not practiced in real word application, since the sensing matrix
Φ is a a ∗A matrix thus we need to flatten the whole input
image into a long A vector which causes a huge memory
consumption.

The third kind is Deep Learning based methods, that have
come to be widely used for image reconstruction tasks in
the last few years. Stacked denoising autoencode (SDA) [6]
proposed by Mousavi et al was the first deep learning based
network specially designed for reconstructing sampled images.
Wuzhen Shi et al in their work [7] successfully establish
a relationship between the Deep learning and the compres-
sive sensing. Compared to those non-Deep learning iteration
reconstruction algorithm their work not only achieved good
reconstruction quality but also a way faster speed, and since
the sensing matrix can be automatically learned during the
training process, it no longer needs to be handcrafted.

These years, many Generative Adversarial Network (GAN)
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[8] based models have been proposed and achieved superior
performance in image processing tasks such as SRGAN for
super-resolution image reconstruction and DeblurGAN [9] for
image helpful way to deal with the block-effects and improve
the reconstruction quality.

B. proposed architecture

In this paper, we propose a new block-based image compres-
sive sensing model called wganBCS which uses Wasserstein
GAN to solve the block-effects problems. Fig. 1 shows the
overview architecture of our model; wganBCS is composed
of four parts. First, a BCS layer LBCS and the initial networks
NI which performs the block-wised sensing on the original
input images DT and initial reconstruct the sampled results into
initial reconstructed images DL. Then a multi-layer convolu-
tional neural network NG receives the DL which are suffered
from heavy block effects and outputs the fine reconstructed
images marked DH . Finally, both original images DT and
fine reconstructed images DH are sent into the discriminator
ND as a pair to calculate a distance loss between the real
ground truth distribution Pt and generated distribution Pf .
Experimental result shows that our model is superior both
in visual quality and the image quality metrics compared to
traditional compressive sensing methods.
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Fig. 1: Overview architecture of wganBCS. wganBCS is
composed of four parts: a BCS sensing layer LBCS, a initial
reconstruction network NI , a fine reconstruction network NG
and a discriminator network ND.

C. main contribution

In short, the main contributions of our work are summarized
in three aspects:

• We explore a relationship between BCS sampling
paradigm and the GAN networks.

• We propose an end to end image compressive sensing and
reconstruction model with generative adversarial network,
and prove that it is superior both in reconstruction time
and the image quality metrics compared to traditional
compressive sensing methods.

• We show that the trained generator network can be
applied to other block-wise image compressive sensing
to eliminate block effects.

The rest of this paper is organized as follows: In Section II,
first we review image compressive sensing methods. Section

III presents the details of our proposed model. In Section IV,
we give the detailed parameters for the training. Experimental
results are given in Section V. In Section VI, based on
the experimental results we discuss the advantages of our
model and also the relationship between image entropy and
reconstruction quality. Finally, in Section VII we summarize
the paper.

II. RELATED WORK

In this Section, we briefly review the block-based com-
pressive sensing paradigm; Then we briefly introduce the
Wasserstein GAN (WGAN).

A. Block-based CS network

Block-wised compressive sensing was proposed by Gan Lu
et al. in [5]. It generally consists of two stages, block-wise
sampling and iterative reconstruction. First the image would
be divided into B×B blocks and use a sensing matrix S to
perform the matrix multiplication with each block in a raster
scanning manner. Let yi denotes the sampled result of the ith
block xi. This procedure can be described as Eq.4

yi = Sxi (4)

The second stage is to reconstruct the image X from yi
through a iterative algorithm. In [5] a two-stage iterative hard
thresholding linear estimation algorithm has been proposed.
To be specific, to reconstruct natural image X by solving Eq.5
through minimum mean square error (MMSE)

x̂i = Ŝyi (5)

where Ŝ is
Ŝ = RxxST (SRxxST )−1 (6)

Rxx denotes a autoregressive model AR(1).

B. Generative Adversarial Network

WGAN proposed by Arjovsky et al [10] try to solve
this problem by replace the Jensen-Shannon divergence with
Wasserstein distance, specifically speaking WGAN remove the
log from the original GAN loss function and add a weight clip
letting the discriminator to fit the Lipschitz function

∥ f (x1)− f (x2)∥ ≤ k∥x1 − x2∥ (7)

where f (x) denote a neural network and when k=1 it is 1-
Lipschitz. The target function of WGAN is

max
Dis

EX∼Pt [Dis(X)]−EXr∼Pf [Dis(Gen(Xr))] (8)

Based on WGAN, WGAN-gp proposed by Gulrajani et al.
[11] made an further improvement on the training stability by
using gradient penalty instead of weight clipping. Experiment
result [11] shows that WGAN-gp is more faster than WGAN
in model training speed and avoids gradient binaryzation,
gradient vanishing and gradient exploding which are caused
by weight clipping.
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III. PROPOSED WGANBCS

In this section, we propose an end to end fully data-driven
block-based image compressive sensing and reconstruction
model called wganBCS, which use a WGAN-gp network to
eliminate the block effects that are caused by the BCS sensing.
Our model consists of mainly four parts: a BCS layer and a
initial reconstruction network, a fine reconstruction network,
and a discriminator network. We put the BCS sensing and
the initial reconstruction into a same sub-network and share a
same loss function. And the rest sub networks are trained as
a GAN network. More details are given in the rest sections of
this section.

A. BCS layer and Initial Reconstruction Network

We use a convolutional layer to imitate the block-wise
sensing same as Wuzhen Shi did in their work [7]. Since we
are sensing the grayscale image, the size of kernel H of this
layer is set to 32×32, the strides s of this kernel are also set
to 32×32. The mechanism of the convolution lets the kernel
scan though the image, for each calculation a filter outputs a
value yi j, i denotes the ith filter and j denoted the times of
the calculation. This layer outputs a 102×4×4 feature map
(assuming the input image is 128×128), which represents the
block-wise sampling results. Same as in [7] we use another
convolutional layer to perform the initial reconstruction which
outputs a 32×32×4×4 feature map Y . Finally, a custom layer
reshapes and concatenates blocks of Y back to image. We train

(a) (b) (c)

Fig. 2: The ground truth input image (a) and its initial recon-
struction result (b), which suffers from heavy block effects.
(c) is the result after fine reconstruction that block effect has
been reduced. The shape of input image is 128×128 and the
sampling rate is 10%. We can also find that the leopard print
in (c) is much more clear than it in (b).

the BCS and the initial reconstruction layer as a standalone
end to end sub-network and the loss function is Mean Square
Error (MSE). Therefore for an input image Xi, the target of
optimizer is to minimize

1
m

m

∑
i=1

(Xi −Reshape(InitialRecon(BCS(Xi))))
2 (9)

where i denotes the ith image in a m size batch.

B. Fine Reconstruction Network

The initial reconstruction results are suffered from heavy
block effect, to eliminate the block effect we propose a fine

Fig. 3: Architecture of fine reconstruction network. This figure
shows the structure of the fine reconstruction network NG,
which works as the generator in the adversarial training. The
basic structure is from Unet, we cut off some layers in order
to make the training easier. For the baseline model we use
four residual blocks and add a skip connection between the
input and the output.

Fig. 4: Architecture of discriminator network. This figure
shows the architecture of discriminator, the output of the
last layer are not binary labels as original GAN did, instead
it outputs a tensor vector called Wasserstein distance which
measuring the divergence between the ground truth images
and generated images.

reconstruction network. The architecture of this fine recon-
struction network are shown in Fig. 3. This network is variant
from the famous U-net [12] which is widely used in image
segmentation tasks. To keep the model from collapsing, we
also train the fine reconstruction network with the MSE loss
before the adversarial training at each epoch, then the loss
function is Eq.10

1
m

m

∑
i=1

(Xi −FineRecon(XL)
2 (10)

where i denotes the ith image in a m size batch. Notice the BCS
sensing layer and the initial reconstruction network are trained
together but separated from the fine reconstruction network,
which is different with the CSnet.

C. Discriminator

Fine reconstruction result XH and the ground truth image
X are sent as a pair into the discriminator. We use WGAN-
gp [11] as the basic framework for the adversarial training;
Compared to the original Wasserstein GAN (WGAN)[10],
WGAN-gp made an improvement on the training stability by
adding the gradient penalty. First we calculate an interpolation
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image Xinter between the X and XH following the Eq.11

Xinter = X +α × (XH −X) (11)

where α is a random number follows a standard normal
distribution. And the discriminator loss with gradient penalty
shall be

Dis(Xinter)−Dis(X)+λ (∥∇Xinter Dis(Xinter)∥2 −1)2 (12)

where λ denotes the weight of gradient penalty, by default it
is set to 10. Fig. 4 shows the structure of our discriminator
network. Compared to the original GAN, the discriminator in
WGAN outputs a Wasserstein distance between the generated
input and the ground truth instead of a binary result, therefore
there is no more loss function like binary cross entropy at the
last dense layer.

Compared to the former works which did not incorporate
WGAN network, using Wasserstein distance instead of only
mean square error (MSE) loss function helps the model to re-
consturct images better both in visual quality and quantitative
metrics. Also gradient penalty mechanism helps the generator
to learn in a much smoother way.

IV. MODEL TRAINING

In this section, first we give the details about the selection
of training data, pre-processing augmentations and some pa-
rameters we set for training.

A. Training Data and Parameters Setting
Unlike in other works which uses BDS500 [13] as train-

ing dataset, we train our model on the ImageNet2012 Test
database which contains 100000 different natural images,
since it already has enough images we did not use any data
augmentation methods, instead we just resize each image into
128× 128 and then normalize them into [-1,1]. To reach the
maximum training efficiency meanwhile reduce the memory
usage we set the batchsize to 32 and train our model for 80
epochs on a Nvidia GTX1060 graphic card. We choose Adam
as the common optimizer in this work [11] and use callback
functions to periodically reduce the learning rate during the
training.

V. EXPERIMENTAL RESULTS

In this section, we introduce the metrics we used for the
testing. Then we show the comparison results between our
model and other former works.

A. Metrics and Testing Datasets
For the testing metrics, we use Peak Signal to Noise

Ratio (PSNR) and Structural Similarity (SSIM) which are
a commonly used standards in image reconstruction tasks.
we test our model on SET11 [14] which contains 11 dif-
ferent 256 × 256 grayscale images, except f ingerprint and
f lintstones are 512× 512. Notice that the testing dataset is
separate from the training dataset. Since the kernel size we
used in BCS network is 32×32 without padding, which means
we can not directly send images that can not be divided
exactly by 32. Therefore we zero-padding the images, and
after reconstruction we de-padding them before the testing.

B. Comparison with DL-based method

We compared our proposed model with the ISTAnet [15],
CSnet and AMPnet [16] which are all DL-based. Codes of
ISTAnet and AMPnet are open sourced and we use the well-
trained model which are provided by the authors to perform
the experiment, and we reimplement CSnet following the
parameters setting and training methods in [7] since it is not
open sourced. We choose AMPnet-2 from the [16] since it is
the base-line model in their work. Detailed results are shown
in Table.I. Fig. 6 shows the comparison of image parrot from
SET11 at different sampling rates. Comparison results shows
that on SET11 our wganBCS are better than ISTAnet, CSnet
and the AMPnet-2 as shown in Table.I. On average PSNR of
SET11 we improved around 2.53 dB, 0.92 dB and 0.501 dB
respectively to ISTAnet, CSnet and the AMPnet-2. The visual
quality comparison results are given in Fig. 5. ISTAnet has
the wrose reconstruction quality which only got 23.66 dB on
image cameraman, then followed by CSnet which got 25.729
dB. Our wganBCS reached 26.463 dB which are the best
among these models. Fig. 6 shows the reconstructed image at
different sampling rates, the higher sampling rate were used in
the BCS sensing stage, the better reconstruction results can be
obtained. At the 0.01 sampling rate, we can see that the details
of the image parrot is totally messed up; At the 0.04 sampling
rate, it is obviously much clearer but the strips around the
bird head are still blurred. When increased the sampling rate
into 0.1, most detail of the image can be correctly restored,
however fine detail like the texture of the feather is still kind of
blurred. When using higher sampling rate like 0.25 and 0.3,
the visual quality is good enough compared to the original
image.

VI. DISCUSSIONS

In this section, based on the experimental results given
in Section VI we discuss the advantages of our model and
also discuss the relationship between the image entropy and
the reconstruction quality of our model. As we mentioned
in Section I our model imports WGAN-gp into the BCS
sampling paradigm, Figure.7 shows the final reconstruction
quality with and without our WGAN based fine reconstruction
network. At 10% sampling rate we improved 2.13 dB using
the fine reconstruction network we proposed; Compared with
the ISTAnet [15], CSnet and AMPnet [16] we improved 2.532
dB, 0.9 dB and 0.5 dB respectively. Image entropy are used
as a measure of image information content, which can be
interpreted as the average uncertainty of information source.
The first dimension image entropy can be described as Eq.13

E =−
255

∑
i=0

pi log pi (13)

where pi denotes the probability of a pixel being i gray level.
We implement the code with NumPy to calculate histogram
then return the entropy of each image. The reuslts of SET11
are shown in Fig.8. X-axis denotes the entropy of images from
SET11 which are from low to high, and Y-axis suggests the
PSNR. Generally, image with higher entropy and entropy per
pixel can get better reconstruction quality. Compared to other
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cameraman  ISTAnet\23.660\0.767 CSnet/25.729/0.828 wganBCS/26.463/0.852AMPnet-2/26.115/0.84

Fig. 5: Comparison of reconstruction quality on image cameraman from SET11 at sampling rate 10%. ISTAnet has the worst
reconstruction quality among four networks. Our model shows superiority on reconstructing edges of objects, notice there are
many strips and blurry around tripod and the background building in images reconstructed from CSnet and AMPnet-2.

Original 
wganBCS 0.04

PSNR_24.907

SSIM_0.825

wganBCS 0.01

PSNR_22.467

SSIM_0.727

wganBCS 0.1

PSNR_28.825 

SSIM_0.901

wganBCS 0.3

PSNR_34.721

SSIM_0.962

wganBCS 0.25

PSNR_33.206 

SSIM_0.952

Fig. 6: Comparison of reconstruction quality on image parrot from SET11 at different sampling rates. Basically the higher
sampling rate were used in the BCS sensing stage, the better reconstruction results can be obtained. When sampling rate
reaches 30% the visual quality is good enough compared to the original image.

TABLE I: Comparison on SET11, On average PSNR of SET11 we improve around 2.53 dB, 0.92 dB and 0.501 dB respectively
to ISTAnet, CSnet and the AMPnet-2.

Sample Rate ISTA-Net CSnet AMP Net 2 BM AMP Net 4 BM wganBCS
0.01 0.431 17.42 0.552 20.943 0.554 20.412 0.556 20.358 0.567 21.215
0.04 0.612 21.32 0.745 24.800 0.756 24.724 0.768 25.070 0.763 25.304
0.1 0.805 26.64 0.857 28.270 0.865 28.671 0.873 29.045 0.874 29.172

0.25 0.921 32.59 0.935 32.947 0.942 33.917 0.945 34.380 0.957 34.053
0.3 0.926 33.05 0.948 34.177 0.953 35.121 0.956 35.665 0.955 35.136

TABLE II: Entropy of images from SET11. This table shows
the entropy of each image in SET11; Image entropy are used
as a measure of image information content, which can be
interpreted as the average uncertainty of an information source.

barbara2 boats cameraman fingerprint
7.525 7.146 7.01 6.728

flintstones foreman2 house lena256
6.579 7.008 6.493 7.444

Monarch Parrots peppers256
7.472 7.401 7.533

methods, our wganBCS can reach a higher score on most
entropy and had a close result with AMPnet-2 on 6.493, 7.444
and 7.472.

VII. CONCLUSIONS

In this paper, we proposed a block-based image compressive
sensing and reconstruction model which we called wgan-
BCS, it uses a generative adversarial network to eliminate

block effects caused by the block-wise sampling. Our model
mainly consist of four parts, a BCS sampling layer, a initial
reconstruction network, a fine reconstruction network and
a discriminator network. the network we used for the fine
reconstruction is a simplified U-net and based on the WGAN-
gp framework, we let the fine reconstruction network to work
as the generator and use a discriminator network to form as a
GAN network. After training, we compare with some former
works on the SET11 and result shows that our model is better
in SSIM and PSNR than most former works on natural images.

In the future study, we would like to add the attention
mechanism like transformers or CBAM into the fine recon-
strucion network. Further more, we also considered to use the
conditional GAN mechanism to see if it can make the model
training more stable. Last we would like to know if our model
can be used on other compressive sensing tasks such as MRI
image reconstruction.
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Fig. 7: Comparison of PSNR on SET11 at 10% sampling rate
W and W/O fine reconstruction network. Our WGAN-gp based
fine reconstruction network can reduce the block effect and
improve the reconstruction quality; The average PSNR W/O
and W fine recon is 27.04 dB and 29.17 dB. We improved
2.13 dB by our WGAN-gp based fine reconstruction network.

Fig. 8: PSNR, SSIM, Entropy and Entropy per pixel of each
image from SET11 at sampling rate 10%. X-axis denotes the
entropy of images from SET11 which are from low to high,
and Y-axis suggests the PSNR. Generally, image with lower
entropy and entropy per pixel can obtain better reconstruction
quality. Compared to other methods, our wganBCS can reach
a higher score at most entropy and had a close result with
AMPnet-2.
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