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Abstract

The traditional camera based on a hundred-year-old sampling theorem de-

veloped by Whittaker–Nyquist–Kotelnikov–Shannon has resulted in a mas-

sive problem of redundant data in image and video applications, which

oversamples signal twice higher than information rate. It necessitates the

use of complex lossy coding algorithms to reduce redundancy. However, the

most recent coding algorithms are going far beyond coding efficiency; for

instance, improving coding performance by 20% would cost roughly 50%

more complexity and resources, which is still a significant issue today. A

new camera architecture based on block-based compressed sensing (CS) has

recently gained popularity because it offers lower sampling costs and pro-

duces far less amount of raw data. Meanwhile, it is sufficient to represent

the original content accurately. CS is based on the Johnson–Lindenstrauss

lemma, which deals with low-distortion embedding of points from high to

low dimensions via random projection, resulting in a compressed vector. It

theoretically eliminates the need for coding algorithm. However, the recent

studies found that raw data from the CS camera is still redundant in the

form of linear combination, potentially necessitating additional coding to

reduce redundancy. This thesis presents a new sensing matrix that outper-

forms existing sensing matrices in data acquisition performance and speed

at low sampling rates while dramatically improving image quality. Further-

more, a newly developed data structure of a block-based CS camera called

data cube is introduced, making coding raw CS data easier. Simplified im-

age and video coding algorithms for compressive imaging, both vector-based

and data cube-based, are introduced in software and hardware, including

intra-prediction, inter-prediction with quantization, and entropy coding to

improve bitrate reduction performance.
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Introduction

1.1 Background

The Nyquist-Shannon sampling theorem (also known as the Whittaker − Nyquist −
Kotelnikov − Shannon theorem) is a widely used method for converting an analog

signal to a digital signal (81). It is a signal processing theorem that serves as a funda-

mental link between continuous-time and discrete-time signals. It creates a sufficient

condition for a sample rate that allows a discrete sequence of samples to capture all of

the information from a continuous-time signal with finite bandwidth. This sampling

theorem introduces the concept of a sample rate sufficient for perfect fidelity for the

class of functions that are band-limited to a given bandwidth so that no information

is lost during the sampling process. It expresses the necessary sample rate in terms of

bandwidth for the class of functions. The theorem also leads to a formula for recon-

structing the original continuous-time function from samples perfectly.

Considering popular consumer devices that strongly embraced the Nyquist-Shannon

sampling theorem, complementary metal-oxide-semiconductor (CMOS) image sensors,

which primarily used a sample-and-hold (S/H) circuit for analog to digital conversion

(A/D). Commonly, CMOS image sensors capture light using a high-precision bit of

ADC (often 12 to 16 bits for a single ADC unit), quantize to a manageable size of

8 bits, and output as raw pixel data. In general, we will not directly measure band-

limited signals at preferred bits because it may miss some information, but will instead

perform oversampling to band-limited signals and then quantize to a manageable size to

ensure that we do not miss any information. Furthermore, losing some signal fractional
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1. INTRODUCTION

coefficients due to quantization does not affect signal reconstruction ability.

Nowadays, as resolution requirements increase, throughput can significantly in-

crease by a large number of pixels, such as 4K, 8K, and 16K. In this case, image

and video coding algorithms are required to reduce data size. We would prefer lossless

compression, which reduces file size by 15 to 25% of the original size while preserving

all meaningful information, However, the file size cannot be reduced further due to

limited redundant sequences. This causes issues with real-world memory space. Re-

calling Fourier coefficients, an image can be represented in another transform basis

of sparsity. All data compression algorithms that rely on sparsity to reduce spatial

and temporal redundancy, whereby a signal is compressed more efficiently in terms of

the sparse vector of coefficients using a generic transform basis such as discrete cosine

transform (DCT)—a lossy variant of Fourier transforms or discrete wavelet transform

(DWT). This is the fundamental concept underlying all data compression methods,

including JPEG/JPEG2000, JPEG-XR, advanced video coding (AVC), high-efficiency

video coding (HEVC), and versatile video coding (VVC). The complexity of algorithms,

on the other hand, can be tenfold increased with each generation and screen resolution.

Furthermore, there is a significant problem with power consumption. Because of their

inter-frame and group of pictures (GOPs)-based schemes, they require a lot of mem-

ory. As a result, because they are highly complex and consume a lot of power on their

own, they would never be used to reduce power consumption and interfaces within an

electronic device. Furthermore, they are typically not executable in terms of software

implementation, but rather necessitate the purchase of more expensive hardware, which

will become more expensive with each generation as future resolution increases. This

means that we are currently focusing on statistical numerical compression performance

via bit-per-pixels (bpps) while trading complexity. For example, some algorithms com-

press 5% better than previous generations while increasing algorithm complexity by

20%. In this case, the latency between encoder and decoder is also high because a large

amount of memory is required as a frame buffer.

JPEG-XS, later known as TICO CODEC, is a new standard compression algorithm

from the JPEG group for 4K/8K/16K IP-based transmission where they implemented

lightweight, simple encoder and decoder, low FPGA/ASIC footprint, low latency, highly

parallelizable in CPU and GPU, primarily focusing on devices with limited power and

resources such as wireless cameras and handheld live streaming. In video production,
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the concept of this device is less expensive than AVC, HEVC, and VVC, which trade

lossless quality for a lower compression ratio (resulting in higher bpps). This CODEC is

now widely used in virtual reality (VR), augmented reality (AR), mixed reality (MR),

automotive, ADAS systems, and machine vision (cameras, frame grabbers, extenders),

wireless video systems, and drone applications where the bandwidth is set as high as

possible to unlimited.

As a result, we are all wondering if the data compression algorithm has reached an

efficiency limit that is generally not worth the additional effort (87), while the rest of

the world is focusing on unlimited bandwidth to solve the bottleneck in transmission.

1.2 Motivation

Now, it is reasonable to assume that the root problems of high complexity of image

and video coding algorithms were all based on an inefficient signal acquisition model.

Regarding the problem challenges presented previously mentioned, image and video

coding algorithms have reached their efficiency limit, and further implementation is

only required to maintain an increased screen resolution.

The compressed sensing (CS) sampling theorem was recently developed to replace

the Nyquist-Shannon sampling theorem in dozen applications, most notably wireless

imaging for surveillance systems, particularly when operating continuously through-

out the day and night. The CS theorem is based on an underdetermined linear sys-

tem and random projection regarding the Johnson-Lindenstrauss Lemma (JL-Lemma),

which produces lower-dimensional data (also known as compressed data) from high-

dimensional data. This method, which does not require data compression in theory,

has the potential to revolutionize image and video acquisition models by simplifying

sensor architecture and reducing oversampled data. Block-based CS cameras have been

proposed, which is groundbreaking in the CMOS image sensor industry, recently. Each

work claims that CS solves problems such as power consumption, internal heat, frame

rate, and readout rate (20) (112) (50) (67) (53) (52), which is known to be superior to

traditional architecture.

When the mechanism on each iteration of the JL-Lemma random sampling pro-

cess is closely examined, each low-dimensional sample still represents weak redundant

information that is compressible. As a result, image and video coding algorithms are
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still required for the CS camera. However, unlike traditional image and video data

structures, which are held in two coordinates of width and height, with a third optional

coordinate to represent color-space. The CS data structure, on the other hand, oper-

ates in the form of a single column vector, rendering conventional data compression

algorithms ineffective and necessitating the development of a new coding algorithm.

1.3 Contribution

There is concern that the lack of a coding algorithm for CS data structures will lead

to bandwidth and data storage issues, both of which are limited when the CS theorem

is widely used in many applications. Hence, a novel coding algorithm for CS data is

becoming increasingly important in order to ensure that the new sampling technique

serves the internet of things (IoT) and centralizes the artificial intelligence (AI) era

smoothly. The contribution of this study is to investigate unusual CS data structures

and develop novel data compression algorithms for the CS camera in both software and

hardware implementation to serve future technology.

The study is divided into two sections: novel sensing matrix for CS, which al-

lows image and video visualization to be improved over the classical sensing matrices

stated in the theorem, and convex optimization, which allows convex optimization to

reach convergence faster because each data point is well placed in orderliness, and

reduces the state in non-deterministic computation, and multiple compression algo-

rithms, which operate in the following styles: vector-based (which is commonly found

in state-of-the-art works), and newly proposed data cube concept (also known as cube)

and its coding algorithm. First and foremost, the coding algorithm is composed of vari-

ous components such as intra-prediction, inter-prediction, and moving detection. Each

component is then broken down and explained in detail, as follows: Intra prediction

employs spatial correlation between blocks within a single frame to generate residual

data by extrapolating from previously coded blocks and subtracting them from the cur-

rent block. Inter-prediction is the inverse of intra-prediction in that it uses temporal

correlation between multiple blocks in successive frames to generate prediction candi-

dates, which are then subtracted from the current block to generate residual. However,

intra-prediction and inter-prediction require a large number of candidates to compute,

which is a computational burden. The static or low-change block will be skipped by the
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moving detection algorithm. It can reduce intra-prediction and inter-prediction work-

load by handling only the blocks that frequently change. Furthermore, by compressing

low-dimensional CS data, the proposed encoder will be simpler, less expensive, and

more efficient than traditional image and video coding algorithms. To be clear where

is this effort standing in the ocean of real-wold implementation realm, this section has

included a comparison statistic graph as shown in Figure 1.1.

Figure 1.1: Statistic graph comparison of existing standard image and video coding

algorithms, where this work is clearly stated in terms of lower signal acquisition cost,

platform flexibility, low complexity, and low latency.

1.3.1 Structured Sensing Matrix By Scrambling Orthogonal Walsh

Matrix for Compressed Sensing

First and foremost, a sensing matrix is important in CS because it limits the quality

of acquired data, which directly affects image quality. Several sensing matrices have

been proposed to determine the best basis sensing matrices. However, existing sensing

matrices may fail in some sparse transforms used in image and video acquisition, such

as the Fourier and Canonical transforms. The challenge is that novel sensing matrices

must provide high image quality even when sampling with low SR close to the transform

basis limited bound, whereas existing sensing matrices all fail to provide high image

quality. An inverse problem and an undetermined linear system are formulated over

the consistency of signal acquisition, according to the JL-Lemma, in which it should

provide a close relationship and a close distance between each data point with a high

5



1. INTRODUCTION

probability. Arranging the number of zero-crossing in sensing matrices, for example,

should provide a good relationship between each data point in the case of binary sensing

matrices. However, as a result, it will lose randomness, making it unreconstructed under

certain conditions.

In this work, a novel structured sensing matrix called Continuously ordering Walsh

matrix (CoW) is proposed by scrambling orthogonal Walsh construction. Furthermore,

the lowest bound condition of this novel sensing matrix is provided, which can be used

to determine signal recoverability prior to the sample. According to spare optimiza-

tion and the JL-Lemma, it enables CS camera to acquire signals more efficiently while

reducing the number of observations and the computational overhead associated with

sparse optimization. This sensing matrix allows for faster convergence due to the short

distance of data clusters in the non-polynomial hard problem of non-deterministic com-

putation when it comes to optimization. This sensing matrix transforms computation

constraints into a nearly deterministic one. In another context, the problem of non-

deterministic computation is simplified into nearly deterministic computation, where

accepted and rejected branches are reduced, resulting in faster sparse recovery.

1.3.2 Vector-based coding algorithm for CS camera

1.3.2.1 A Measurement Coding System for Block-based Compressive Sens-

ing Images by Using Pixel-Domain Features

This paper proposes a method for reducing redundancy in compressively sensed images

from a CS camera via Natural ordered Hadamard (NoH). This work employs an intra-

prediction algorithm inspired by the traditional image and video coding. Because of the

differences between the CS and conventional data structures, it is unable to perform

neighboring pixel-to-pixel coding; instead, it suggests an alternative intra-prediction

method that performs neighboring vector-to-vector coding. To begin, sensing patterns,

to the best of our knowledge, can be used to determine which pixel has been read out.

As a result of these properties, it is possible to make a prediction candidate by utilizing

single magnitude data from a neighboring block such as the left and upper sides of

the current block. These single magnitudes will be multiplied by the sensing matrix

to generate prediction candidates, which is a novel method in comparison to previous

work. After obtaining several prediction candidates, the residual can be calculated
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by using the sum-of-absolute difference to calculate the minimum error between the

current block and each of the prediction candidates (SAD). The residual will then be

transferred to SQ to further reduce magnitude. Finally, Huffman coding will be used

to compress the data for efficient transmission over communication channels.

1.3.2.2 Intra Prediction Based Measurement Coding Algorithm for Block-

Based Compressive Sensing Images

This work is an extension of previous work aimed at improving intra-prediction perfor-

mance by switching the sensing matrix from NoH to sequency ordered Walsh-Hadamard

(SoWH), which, when combined with intra-prediction, provides better compression

performance with higher image quality than previous work. Following that, the soft-

ware algorithm was adapted into a hardware algorithm that was tested on a field-

programmable gate array (FPGA). When compared to software implementation, per-

formance has increased by a factor of ten. Surprisingly, CS data structures allow for

lower circuit complexity than conventional data structures. Furthermore, when pro-

cessing large image/video files, such as 4K, it can operate at a lower operating frequency

while providing similar to higher throughput.

1.3.2.3 Temporal Redundancy Reduction in Compressive Video Sensing

by using Moving Detection and Inter-Coding

Moving detection and inter-coding are proposed in this work to reduce temporal re-

dundancy in compressive video sensing. To begin, moving detection is performed using

coding area extraction with a local adaptive threshold to classify the measurement

with an association of error distinction. However, false-positive detection may occur

at random, increasing the transmission cost and increasing uncertainty. The adaptive

quantization parameters are adjusted based on how frequently the area is detected

to reduce transmission costs. The detected area is further compressed by encoding

the difference between the current measurement and the best-matched measurement in

neighboring frames.
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1.3.2.4 Multiple Candidates Based Hybrid Hierarchical Search for Com-

pacting Compressively Sensed Video

In general, finding the best match motion vector required a long search time when using

inter prediction with moving estimation and moving compensation (MEMC). Coarse-

grained search MEMC has been proposed as a way to cut search time in half. However,

it also sacrificed accuracy and reduced bit-rates by half. In this paper, an efficient

computational and higher accuracy MEMC with moveable search vectors is proposed.

It provides the option to stop searching in a vector that potentially does not meet the

criteria and redirects computational resources to another vector, implying that this

algorithm performs a partially fine-grained search to some part of the area of interest

compared to traditional MEMC and coarse-grained search MEMC. Furthermore, this

work improved on previous work in terms of lower bit-rate while maintaining visual

quality.

1.3.2.5 Measurement Coding Framework for High-Resolution Compressive

Imaging

This paper proposed a completed measurement coding framework for the 4K CS cam-

era. This framework consists of intra and inter-prediction, as well as a precise scalar

quantization design. This work provides universal coding in which performance is not

limited by measurement matrices, as commonly found in state-of-the-art works. By

comparing to existing work, this work offers better coding performance with nearly no

distortion targeting streaming content. It outperformed state-of-the-art works.

1.3.3 Cube-based coding algorithm for CS camera

1.3.3.1 Cube-based Video Coding Algorithm for Compressive imaging

First and foremost, a new perspective on vector data structures in the form of a data

cube is proposed. In this case, the data cube comprises multiple downsampled images

that can be obtained from an undetermined linear equation via multiple sensing matrix

patterns. It enables us to create a more adaptable data compression algorithm for the

CS camera. Because each layer in a data cube represents low-resolution image, for

example, when sampling 4K frame (3840 × 2160 pixels) using a CS camera with a
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sub-block size of 16×16, we instead get 240 × 135 pixels, where the amount of sub-

image is equal to the number of observations. In contrast to previous works that limit

algorithm functionality to a few specific sensing matrices, this paper proposes a new

compression algorithm for CS cameras to achieve universality for data sampled via

a wide range distribution of sensing matrices. A normalized sub-image is created by

averaging each layer in a cube data structure. Rather than performing intra and inter-

prediction on each layer individually, an algorithm performs intra and inter-prediction

on the generated sub-image, yielding the predicted template. The predicted template

is then subtracted from each layer, resulting in faster coding performance and more

reliable results, allowing residual data to be processed more effectively by quantization

and entropy coding than in previous works.

1.4 Thesis Outline

This thesis carefully describes each necessary fundamental subject in this thesis to as-

sist the reader in understanding the future data acquisition concept, which is vastly

different from the conventional approach. Furthermore, it reflects the significant dif-

ference in data compression algorithms. First and foremost, the fundamentals of CS,

which will revolutionize data acquisition methodology in general, are described. Fur-

thermore, in section 2, an early work that propagated these technologies to become

reality is summarized. Because the data acquisition model in this work differs greatly

from conventional methods, a data structure in vector space is described in subsec-

tion 2.1, which helps the reader better understand the proposed algorithms through-

out the thesis. The relationship between sparsity and compression geometries is then

discussed, which is essential knowledge throughout this thesis. In subsection 2.2, com-

pression geometries from a sparsity standpoint are provided, where the conventional

approach samples a large number of coefficients but eventually keeps some fractional

coefficients for better storage management. This concept will be explained in a casual

manner using well-known transformation function such as Fourier. It will assist the

reader in better understanding the theory behind any compression algorithm. The

most important fundamental foundation, which is related to an undetermined system

and dictionary creation, is discussed (also known as sensing matrices and measurement

matrices) in subsection 2.3. This fundamental enables us to measure sparse signals in
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sufficient quantities to represent data in other space domains such as image and video

without discarding any over sample coefficients. The following subsection 2.4 explains

how to recover undetermined data and restore the original length of a sparse signal.

It should be noted that, in general, only small minimization problems were consid-

ered, with only convex optimization achieving excellent results with no difficulty in

implementation except for computation intensity. Iterative methods based on greedy

or expectation–maximization algorithms are not considered in this work because they

require prior information that is impossible to determine in real-world situations other

than brute-force search, such as sparsity levels and transform basis. Using an iterative

method, this has been identified as a flaw in some applications that are directly related

to consumer imaging systems. Finally, the current technological transition of CMOS

imaging architecture that uses CS with current representation and compression models

is summarized, which helps the reader understand where the proposals stand.
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Compressed Sensing

The inherent structure observed in natural data implies that the data can be repre-

sented sparsely in an appropriate coordinate system. In other words, if natural data

is expressed on a well-chosen basis, only a few parameters are required to characterize

the modes that are active and in what proportion. All data compression is based on

sparsity, in which a signal is more efficiently represented in terms of a sparse vector

of coefficients in a generic transform basis, such as Fourier or wavelet bases. Recent

fundamental advances in mathematics have turned this paradigm upside down. Instead

of collecting a high-dimensional measurement and then compressing, it is now possi-

ble to acquire compressed measurements and solve for the sparsest high-dimensional

signal that is consistent with the measurements. This so-called CS is a valuable new

perspective that is also relevant for complex systems in engineering, with the potential

to revolutionize data acquisition and processing.

CS, which leverages the concept of transform coding, has emerged as a new frame-

work for signal acquisition and sensor design that enables a potentially large reduction

in sampling and computation costs for sensing signals with a sparse or compressible

representation. While the Nyquist–Shannon sampling theorem states that a certain

minimum number of samples are required to perfectly capture an arbitrary bandlim-

ited signal, when the signal is sparse in a known basis, we can greatly reduce the number

of measurements that must be stored. As a result, when sensing sparse signals, we may

be able to perform better than classical results suggest. This is the fundamental idea

behind CS: rather than first sampling at a high rate and then compressing the sampled

data, we would like to find ways to directly sense the data in a compressed form —
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i.e., at a lower sampling rate. Candès, Romberg, and Tao, as well as Donoho, estab-

lished the field of CS by demonstrating that a finite-dimensional signal with a sparse or

compressible representation can be recovered from a small set of linear, non-adaptive

measurements (6) (16) (13). The development of these measurement schemes, as well

as their application to practical data models and acquisition systems, are main chal-

lenges in the field of CS. To the rest, this chapter gently introduces the fundamental

principles of sparsity as well as the mathematical theory that enables CS.

Early Works

While the concept of CS has recently gained popularity in the signal processing com-

munity, hints in this direction have been present since the eighteenth century. Prony’s

proposed an algorithm for estimating the parameters of a small number of complex ex-

ponential sampled in the presence of noise in 1795 (it has been translated from French

to English and stored in a modern database (85)) In the early 1900s, Carathéodory

demonstrated that a positive linear combination of any k sinusoids is uniquely deter-

mined by its value at t = 0 and any other 2k points in time. When k is small and the

range of possible frequencies is wide, this represents far fewer samples than the number

of Nyquist-rate samples. This work was generalized in the 1990s by George, Gorodnit-

sky, and Rao, who investigated sparsity in biomagnetic imaging and other contexts (40)

(38) (39) (77). Concurrently, Bresler, Feng, and Venkataramani proposed a sampling

scheme for acquiring certain classes of signals consisting of k components with nonzero

bandwidth (as opposed to pure sinusoids) under constraints on the possible spectral

supports, though exact recovery was not guaranteed in general (11) (34) (107). In

the early 2000s Blu, Marziliano, and Vetterli developed sampling methods for certain

classes of parametric signals that are governed by only k parameters, showing that

these signals can be sampled and recovered from just 2k samples (108).

A related problem is the recovery of a signal from a partial observation of its Fourier

transform. Beurling proposed a method for extrapolating these observations to deter-

mine the entire Fourier transform. One can demonstrate that if the signal consists of

a finite number of impulses, then Beurling’s approach will correctly recover the entire

Fourier transform (of this non-bandlimited signal) from any sufficiently large piece of

its Fourier transform. His approach is to find the signal with the smallest ℓ1 norm
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among all signals that agree with the acquired Fourier measurements — is remarkably

similar to some of the algorithms used in CS.

Candès, Romberg, Tao, and Donoho’s works demonstrated that a sparsely repre-

sented signal can be recovered exactly from a small set of linear, non-adaptive mea-

surements. This finding implies that it may be possible to sense sparse signals with

far fewer measurements, hence the term compressed sensing. However, there are three

significant differences between CS and classical sampling. To begin, sampling theory

is typically applied to infinite-length, continuous-time signals. CS, on the other hand,

is a mathematical theory that focuses on measuring finite-dimensional vectors in Rn.

Second, rather than sampling the signal at specific points in time, CS systems typically

acquire measurements as inner products of the signal and more general test functions.

This is in keeping with modern sampling methods, which also acquire signals through

more general linear measurements (103). Third, the two frameworks differ in the man-

ner in which they deal with signal recovery, i.e., the problem of recovering the original

signal from the compressive measurements. In the Nyquist–Shannon framework, signal

recovery is achieved through sinc interpolation – a linear process that requires little

computation and has a simple interpretation. Compressed sensing has already had a

significant impact on several applications. One application is in medical imaging (59),

where it has enabled speedups by a factor of seven in pediatric MRI while preserv-

ing diagnostic quality (105). Moreover, the broad applicability of this framework has

inspired research that extends the CS framework by proposing practical implementa-

tions for numerous applications, including sub-Nyquist sampling systems (24) (100)

(97) (101), compressive imaging architectures (30) (2) (79), and compressive sensor

networks (29) (23) (45).

2.1 Vector Space

For much of its history, signal processing has concentrated on signals generated by

physical systems. Many natural and man-made systems can be modeled as linear.

As a result, it is natural to consider signal models that complement this type of lin-

ear structure. This concept has been incorporated into modern signal processing by

modeling signals as vectors in an appropriate vector space. This captures the linear

structure that we often seek, namely that when we add two signals together, we get a

13



2. COMPRESSED SENSING

new, physically meaningful signal. Moreover, vector spaces allow us to apply intuitions

and tools from geometry in R3, such as lengths, distances, and angles, to describe and

compare signals of interest. This is useful even when our signals are in high-dimensional

or infinite-dimensional spaces.

In the case of a discrete, finite domain, we can view our signals as vectors in an

n-dimensional Euclidean space, denoted by Rn. When dealing with vectors in Rn, we

will frequently dealing with make frequent use of the ℓp norms, which are defined for

p ∈ [1,∞) as

∥x∥p =


(
∑n

i=1 |xi|
p)

1
p , p = [1,∞)

max |xi|
i = 1, 2, ..., n

, p =∞
(2.1)

In Euclidean space we can also consider the standard inner product in Rn, which

we denote ⟨x, z⟩ = zTx =
∑n

i=1 xizi. This inner product leads to the ℓ2 norm: ∥x∥2 =√
⟨x, x⟩ In some cases, it is useful to extend the concept of ℓp norms to the case where

p < 1. In this case, the “norm” defined in 2.1 fails to satisfy the triangle inequality, so

it is a quasi-norm.

We will also make frequent use of the notation ∥x∥0 := |supp(x)|, where supp(x) =

{i : xi ̸= 0} denotes the support of x and |supp(x)| denotes the cardinality of supp(x).

Note that ∥·∥0 is not even a quasi-norm, but one can easily show that

lim
p→0
∥x∥pp = |supp(x)| , (2.2)

justifying this choice of notation. The ℓp (quasi-) norms have notably different

properties for different values of p. To illustrate this, in Figure 2.1 we show the unit

sphere, i.e.,
{
x : ∥x∥p = 1

}
induced by each of these norms in R2. We typically use

norms as a measure of the strength of a signal, or the size of an error. For example,

suppose we are given a signal x ∈ R2 and wish to approximate it using point in a one-

dimensional affine space A. If we measure the approximation error using an ℓp norm,

then our task is to find the x̂ ∈ A that minimizes ∥x− x̂∥p. The choice of p will have

a significant effect on the properties of the resulting approximation error.

An example is illustrated in Figure 2.2. To compute the closet point in A to x using

each ℓp norm, we can imagine growing an ℓp sphere centered on x until it intersects with

A. This will be the point x̂ ∈ A that is close to x in the corresponding ℓp norm. We

observe that larger p tends to spread out the error that is more unevenly distributed
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Figure 2.1: Unit spheres in R2 for the ellp norms with p = 1, 2,∞, and for the ℓp

quasinorm with p = 1
2

Figure 2.2: Best approximation of a point in R2 by a one-dimensional subspace using the

ℓp norms for p = 1, 2,∞, and the ℓp quasi-norm with p = 1
2 .

and tends to be sparse. This intuition generalizes to higher dimensions and playing an

important role in the development of CS theory.

2.2 Sparsity and Compression Geometries

Most natural signals, such as images and audio, are highly compressible. This com-

pressibility means that when the signal is written on an appropriate basis only a few

modes are active, thus reducing the number of values that must be stored for an ac-

curate representation. Said another way, a compressible signal x ∈ Rn may be written

as a sparse vector s ∈ Rn (containing mostly zeros) in a transform basis Ψ ∈ Rn×n. It

can be represented mathematically as follows:

x = Ψs (2.3)
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In particular, the vector s is called K-sparse in Ψ if it contains exactly K nonzero

elements. Sparse signals are frequently well approximated by a linear combination of

only a few elements from a known basis or dictionary. When this representation is

exact, the signal is said to be sparse. If the basis Ψ is generic, such as the Fourier or

wavelet basis as shown in Figure 2.3, then only a few active terms in s are required

to reconstruct the original signal x, reducing the amount of data required to store or

transmit the signal.

Figure 2.3: Illustration of a sparse signal captured on a Fourier basis and transformed to

an image (in the dense domain) using the inverse Fourier transform.

Furthermore, high-dimensional signals often contain little information when com-

pared to their ambient dimension. Talking mathematically, generally, we would say

that signal x is k-sparse when it has a most k non-zeroes, i.e., ∥x∥0 ≤ k. We let∑
k

= {x : ∥x∥0 ≤ k} (2.4)

denote the set of all k-sparse signals. In most cases, we will be dealing with signals that

are not sparse in and of themselves, but do admit a sparse representation in some basis

Φ. In this case, we will still refer to x as being k-sparse, with the understanding that

we can express x as x = Φc where ∥c∥0 ≤ k. In signal processing and approximation

theory, sparsity has long been used for compression and other tasks (25) (66) (91) and

denoising (26), and in statistics and learning theory as a method for avoiding over-

fitting (104). Sparsity also figures prominently in the theory of statistical estimation

and model selection (89) (92), in the study of the human visual system (68), and has

been exploited heavily in image processing tasks, since the multiscale wavelet transform

(60) provides nearly sparse representations for natural images.
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Consider image compression and denoising problems as a traditional application

of sparse models. It is important to note that image compressibility is related to the

overwhelming dimensionality of image space. Figure 2.4 presents a basic paradigm of

data compression via fast Fourier coefficients by keeping only 5% of coefficients, where

we can only notice a change in file size but feel the same in overall image details. So

Figure 2.4: Illustration of conventional compression scheme via fast Fourier transform

that, when we know in advance that drawing 5% of Fourier coefficients from Fourier

space is enough to represent an image, there is no need to acquire 100% of Fourier

coefficients in the first place and then discard 95% of them. Can we pick those 5%

signals in the first place? Then we do not need to truncate them out.

2.3 Undetermined System and Sensing matrices

If there are fewer equations than unknowns in a system of linear equations or a system

of polynomial equations, the system is said to be underdetermined, in contrast to an

overdetermined system, where there are more equations than unknowns. The concept
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2. COMPRESSED SENSING

of constraint counting can be used to clarify the terminology. Each unknown can be

thought of as a degree of freedom that is available. Each equation introduced into

the system can be thought of as a constraint that limits one degree of freedom. As

a result, when the number of equations and the number of free variables are equal,

the critical case (between overdetermined and underdetermined) occurs. There is a

corresponding constraint that removes a degree of freedom for every variable that gives

a degree of freedom. In contrast, the underdetermined case occurs when the system is

underconstrained—that is, when the unknowns outnumber the equations.

An underdetermined linear system has either no solution or infinitely many solu-

tions, as shown in the following example:

x+ y + z = 1 (2.5)

x+ y + z = 0 (2.6)

is an underdetermined system with no solution; any equation system with no solution

is said to be inconsistent. On the other hand, the system

x+ y + z = 1 (2.7)

x+ y + 2z = 3 (2.8)

is consistent and has an infinite number of solutions, for example, (x, y, z) = (1, 2, 2),

(2, 3, 2), and (3, 4, 2) All of these solutions can be characterized by subtracting the

first equation from the second, which demonstrates that all solutions obey z = 2; using

this in either equation demonstrates that any value of y is possible, with x = 1y. The

Rouché–Capelli theorem states that any system of linear equations (underdetermined

or not) is inconsistent if the rank of the augmented matrix is greater than the rank of

the coefficient matrix. If the ranks of these two matrices are equal, the system must

have at least one solution; because in an underdetermined system, this rank must be

less than the number of unknowns, there are indeed an infinite number of solutions,

with the general solution having k free parameters, where k is the difference between

the number of variables and the rank. There are algorithms for determining whether an

underdetermined system has solutions and, if so, for expressing all solutions as linear

functions of k variables, where the simplest method is Gaussian elimination.

This system is the foundation of CS, and it requires hints to recover sparse signals

successfully. These hints, referred to as dictionaries, enable the linear combination of
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2.3 Undetermined System and Sensing matrices

spare signals to meet existing solutions. In terms of CS foundation, sensing matrices

should be composed of non-uniform distributions such as Gaussian or Bernoulli and

uniform distributions such as Discrete Cosine transform or Hadamard transform, all of

which must satisfy a specific linear algebra condition known as the restricted isometry

property (RIP). It is used to characterize matrices that are nearly orthonormal, at

least when operating on sparse vectors. The concept was introduced by Emmanuel

Candès and Terence Tao (14) and is used to prove many theorems in the field of CS.

Although there are no known large matrices with bounded restricted isometry constants

(computing these constants is strongly non-deterministic polynomial also known as NP-

hard (93) and difficult to approximate), many random sensing matrices have been shown

to remain bounded. It has been demonstrated, in particular, that random Gaussian,

Bernoulli, and partial Fourier matrices satisfy the RIP with a nearly linear number of

measurements in the sparsity level with exponentially high probability (111).

It defines RIP to sensing matrices given by: let Φ be an m × n matrix and let

1 ≤ s ≤ n be an integer. Suppose that there exists a constant δs ∈ (0, 1) such that, for

every m× s submatrix Φs of Φ and for every s-dimensional vector y.

(1− δs) ∥y∥22 ≤ ∥Φsy∥22 ≤ (1 + δs) ∥y∥22 (2.9)

Then, the matrix Φ is said to satisfy the s-restricted isometry property with restricted

isometry constant δs. This is equivalent to

∥Φ∗
sΦs − I∥2→2 ≤ δs (2.10)

where I is the identity matrix and ∥X∥2→2 is operator norm. Finally, this is equiv-

alent to stating that all eigenvalues of Φ∗
sΦs are in the interval [1− δs, 1 + δs]. Further,

an eigenvalue is used to describe for any matrix that satisfies RIP property with re-

stricted isometric constant (RIC) which is used to define the infimum of all possible δ

for a given Φ ∈ Rn×m. It can be stated by the following condition:

inf [δ : (1− δ)] ∥y∥22 ≤ ∥Φsy∥22 ≤ (1 + δ) ∥y∥22 ,∀ |s| ≤ K,∀y ∈ R|s| (2.11)

which can be denoted shortly as δK Back to eigenvalues, the following condition holds:

1− δK ≤ λmin (Φ
∗
τΦτ ) ≤ λmax (Φ

∗
τΦτ ) ≤ 1 + δK (2.12)
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For Gaussian matrices, the tightest upper bound on the RIC can be computed. This

can be accomplished by computing the exact probability that all Wishart matrices’

eigenvalues fall within a given interval. Regarding the theoretical foundation above,

CS acquisition model, in which high-dimensional signal length n can be mapped into

lower-dimensional signal length m via random sampling method stated by JL-Lemma

can be given by

y = Φx (2.13)

where y is compressed signal with length of m and x is compressible signal with length

of n. Clearer explain, it can represent with the following procedure:

(2.14)

2.4 Sparse Optimization

In this subsection, spare optimization is discussed, which is related to curve fitting to

obtain a curve, or a function, from given data, and how sparse optimization effectively

work for CS problem ranging from a small problem to a large problem. There are key

ideas to implement a sparse solver for CS as the following:

• The curve fitting is well-known formulated as an optimization problem to choose

one solution among candidates.

• Regularization is used to avoid over-fitting.

• Sparse optimization is reduced to ℓ1 optimization, which is convex and efficiently

solved by numerical optimization.
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2.4 Sparse Optimization

2.4.1 Underdetermined System and Minimum ℓ2-norm Solution

To begin with least squares and regularization with a simple example, consider the

linear equation in CS given by

y = Φx (2.15)

where y ∈ Rm is given vector, ΦinRm×n is given matrix, and x ∈ Rn is an unknown

vector, in which m < n, and Φ has full row rank, which can be described in equation

as the following:

rank(Φ) = m (2.16)

Here, under this assumption, there exist infinitely many solutions. First, let find the

smallest ℓ1-norm solution among them. This is formulated as an optimization problem,

given by

minimize
x∈Rn

1

2
∥x∥22 s.t. y = Φx (2.17)

This problem is called as ℓ2 optimization problem, and the solution is the minimum

ℓ2-norm solution. The method of Lagrange multipliers is used to solve this problem.

First, the Lagrange function, or simply Lagrangian, of the optimization problem is

defined by

L (x, λ) =
1

2
xTx+ λT (Φx− y) (2.18)

where, the variable λ inRm is called Lagrange multiplier. Then, we can obtain the

optimal solution of 2.17 by finding the stationary point (x̂, λ̂) of the Lagrange function

L. By differentiating L by the variable x,

∂L

∂x
=

∂

∂x

(
1

2
xTx+ λTΦx

)
= x+ΦTλ (2.19)

It follows that the stationary point (x̂, λ̂) satisfies

x̂+ΦT λ̂ = 0 (2.20)

Then differentiating L by lambda gives

∂L

∂λ
= Φx− y (2.21)

and hence

Φx̂− y = 0 (2.22)
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2. COMPRESSED SENSING

From this and 2.20, we have

−ΦΦT λ̂ = y (2.23)

Since Φ has full row rank, the matrix ΦΦT is non-singular and has its inverse. Therefore,

from 2.23 we have

λ̂ = −(ΦΦT )−1y (2.24)

Assigning this to 2.23 gives the minimum ℓ2-norm solution x̂ as

x̂ = −(ΦΦT )−1y (2.25)

Finally, in summary, if we are given a full-row-rank matrix Φ and a vector y, we can

compute the minimum ℓ2-norm solution by the formula 2.25

2.4.2 Regression and Least Squares

Now, given 2 dimensional data (t1, y1), (t2, y2), ..., (tm, ym). Next, consider a polynomial

of order n− 1,

y = f(t) = an−1t
n−1 + an−2t

n−2 + ...+ a1t+ a0 (2.26)

The curve fitting is to find coefficients a0, a1, ..., an−1 with which the polynomial curve

has the best fit to the m-point data. For example, t1, t2, ..., tm are sampling instants,

and y1, y2, ..., ym are temperature data from a sensor at a portion. From these data,

we often want to know the curve behind the data. We call such data analysis the

regression analysis or polynomial curve fitting. First, we consider the polynomial curve

2.26 goes through the data points (t1, y1), (t2, y2), ..., (tm, ym), and hence we have m

linear equations with unknowns an−1, an−2, ..., a1, a0:

an−1t
n−1
1 + an−2t

n−2
1 + ...+ a1t1 + a0 = y1,

an−1t
n−1
2 + an−2t

n−2
2 + ...+ a1t2 + a0 = y2,

...

an−1t
n−1
m + an−2t

n−2
m + ...+ a1tm + a0 = ym,

(2.27)

Define a matrix

Φ ≜


tn−1
1 tn−2

1 · · · t1 1

tn−1
2 tn−2

2 · · · t2 1
...

...
. . .

...
...

tn−1
m tn−2

m · · · tm 1

 ∈ Rm×n (2.28)
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and vectors

x ≜


an−1

an−2
...

a1
a0

 ∈ Rn, x ≜


y1
y2
...

ym

 ∈ Rm (2.29)

The system of linear equation can be represented in a matrix from: Φx = y. The

matrix Φ is known as a Vandermonde matrix, and if m = n, then Φ is a square matrix

and its determinant is given by

det(Φ) =
∏

1≤i<j≤m

(ti − tj) = (t1 − t2)(t1 − t3)...(tm−1 − tm) (2.30)

It will be followed that if

ti ̸= tj ,∀i, j s.t. i ̸= j (2.31)

then Φ is non-singular and has its inverse. Hence, the solution x̂ of 2.27 is given by

using Φ−1 as

x̂ = Φ−1y (2.32)

2.4.3 ℓ1-Minimization With Equality Constraints

Since the original polynomial is sparse and non-zero coefficients ∥x∥0 is assumed to be

unknown. By borrowing the idea of the optimization priory mentioned, ℓ0-norm as the

cost function is used, and consider the following optimization problem:

minimize
x∈Rn ∥x∥0 s.t. y = Φx (2.33)

However, this is quite hard to solve using the exhaustive search method when the

problem size is large. Therefore, the key idea of sparse optimization is to use ℓ1-norm

∥x∥1 =
n∑

i=1

|xi| (2.34)

instead of ℓ0-norm. Consider the following optimization problem as relaxation of the

ℓ0 optimization 2.35:
minimize
x∈Rn ∥x∥1 s.t. y = Φx (2.35)

We call this optimization the ℓ1 optimization. The method to obtain a sparse vector by

the ℓ1 optimization is known as the basis pursuit, which is recovery guarantee on any
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sensing matrices. However, using basis pursuit is a brute-force method that consumes

a lot of computation resources and time. It will not meet the real-world requirement,

which is primarily real-time unless solver optimization is performed. As a result, this

thesis proposes using primal-dual interior-point optimization to optimize basis pursuit,

which benefits optimization time the most.

2.4.4 ℓ1-Minimization With Primal-Dual Interior-Point Method

Advances in interior-point methods for convex optimization over the past 20 years, led

by the work in (83), have made large-scale solvers for the inverse problems feasible.

In the past, Boyd and Vandenberghe outline a relatively simple primal-dual algorithm

for linear programming, which we have followed very closely for the implementation of

(P1), (PA), and (PD). Their algorithm will be briefly reviewed here for completeness

and to establish the notation. First, the standard form of linear program is given by

minimize
z ⟨c0, z⟩ s.t. A0z = b, fi(z) ≤ 0 (2.36)

where the search vector z ∈ Rn, b ∈ Rk, A0 is k timesn matrix, and each of the fi,

i = 1, ...,m is a linear functional:

fi(z) = ⟨ci, z⟩+ di, (2.37)

for some ci ∈ Rn, di ∈ R. At the optimial point ẑ, there will exist dual vectors v̂ ∈ Rk,

λ̂ ∈ Rm, λ̂ ≥ 0 such that the Karush-Kuhn-Tucker (KKT) conditions are satisfied:

(KKT ) c0 +AT
0 v̂ +

∑
i

λ̂ici = 0 (2.38)

λ̂ifi(ẑ) = 0, i = 1, ...,m, (2.39)

A0ẑ = b (2.40)

fi(ẑ) ≤ 0, i = 1, ...,m (2.41)

In a nutshell, the primal-dual algorithm finds the optimal ẑ (along with optimal dual

vectors v̂ and λ̂) by solving this system of nonlinear equations. The solution procedure
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2.4 Sparse Optimization

is the classical Newton method: at an interior point (zk, vk, λk) (by which it mean

fi(z
k < 0, λk > 0)), the system is linearized and solved. However, the step to new

point (zk+1, vk+1, λk+1) must be modified so that it will remain in the interior. In

practice, we alway relax the complementary slackness condition λifi = 0 to

λk
i fi(z

k) =
−1
τk

(2.42)

where we judiciously increase the parameter τk as we progress through the Newton

iterations. This biases the solution of the linearized equations towards the interior,

allowing a smooth, well defined central path from an interior point to the solution on

the boundary. The primal, dual, and central residuals quantify how close a point (z, , λ)

is to satisfying (KKT) with 2.42 in place of the slackness condition:

τdual = c0 +AT
0 v +

∑
i

λici (2.43)

τcent = −Λf − (
1

τ
)1 (2.44)

τprimal = A0z − b (2.45)

where Λ is a diagonal matrix with (Λii) = λi, and f = (fi(z)...fm(z))T . From a point

(z, v, λ), we want to find a step (∆z,∆v,∆λ) such that

τr(z +∆z, v +∆v, λ+∆λ) = 0 (2.46)

by linearizing 2.46 with Taylor expansion around (z, v, λ) to be

τr(z +∆z, v +∆v, λ+∆λ) ≈ ττ (z, v, λ) + Jττ (z, vλ)

∆z

∆v

∆λ

 (2.47)

where Jττ (z,vλ) is the Jacobian of ττ , so then we have the new system as the following: 0 AT
0 Cτ

−ΛC 0 −F
A0 0 0


∆z

∆v

∆λ

 = −

c0 +AT
0 v +

∑
i λici

−Λf − 1
τ 1

A0z − b

 (2.48)

, where m × n matrix C has the cTi as rows, and F is diagonal with (F )ii = fi(z).

Luckily, it is possible to eliminate ∆λ term using:

∆τ = −ΛF−1C∆z − λ− (
1

τ
)f−1 (2.49)
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leaving us with the new core system:(
−CτF−1ΛC AT

0

A0 0

)(
∆z

∆v

)
=

(
−c0 + ( 1τC

τ )f−1 −AT
0 v

b−A0z

)
(2.50)

With the (∆z,∆v,∆λ) we have a step direction. To choose the step length 0 < s ≤ 1,

we ask that it satisfy two criteria: First, z + s∆z and λ + s∆λ are in the interior.

Second, the norm of the residuals has decreased sufficiently following the condition of

∥ττ (z + s∆z, v + s∆v, λ+ s∆λ)∥2 ≤ (1−αs) · ∥ττ (z, v, λ)∥2, where α is a user-specified

parameter. Since the fi are linear functional. We can choose the maximum step size

that keeps the problem in the interior by

I+f = {i : ⟨ci,∆z⟩ > 0} , I−λ {i : ∆λ < 0} , (2.51)

and set

smax = 0.99 ·min
{
1,
{
−fi(z))/ ⟨ci,∆z⟩ , i ∈ I+f

}
,
{
−λi/∆λi, i ∈ I−f

}}
(2.52)

Then starting with s = smax, we check if two items above is satisfied; if not, we

set s
′
= β · s and try again to get accurate recovery results. Furthermore, it was

discovered during thesis writing that the alternating direction method of multipliers

(ADMM) is an algorithm that solves convex optimization problems by breaking them

down into smaller pieces, each of which is then easier to handle. It provided interesting

optimization as well as the primal-dual interior-point method. However, ADMM was

not used in the research and implementation of this thesis (9).

2.5 Imaging Architecture based on Compressed Sensing

The conventional image sensor will currently have a very high resolution. A 4K image,

defined as 3840 × 2160 pixels, produces an 8.29 megapixel image, whereas an 8K image

produces a 33.17 megapixel image. This means that 8.29 million and 33.17 million

conversions are required to convert analog to digital. Furthermore, it generates internal

heat, reducing the life of the image sensor. The work in (30) introduced the first trial to

revolutionize image sensor by utilizing a single-pixel with a digital micromirror device

(DMD) to achieve random sampling behavior, which is a good fit with 3D microscopy

camera (70). However, there is a significant disadvantage in other applications where a
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2.5 Imaging Architecture based on Compressed Sensing

single-pixel camera requires a long exposure time that is incompatible with consumer

use.

Later, the major image sensor companies, such as Sony and Hamamatsu, introduced

new methods to capture images using CS by still fabricating multiple pixels sensor, but

partitioning an entire sensor into individual blocks, giving much sensing performance

boost while also reducing exposure time when compared to signal-pixel method. Fur-

thermore, redesigning an imaging system saves significant energy by reducing not only

RAW data size but also transistor count per pixel, pixel size, fill factor, and simplifying

analog-to-digital circuits as in (74) (33) (? ) stated. Various data gathering techniques

for these novel image sensor have been proposed such as voltage summation (21) and

current summation (47). In which the most successful implementation, Oike (Sony)

and El Gamal (Standford University) proposed programmable block-based CS camera

with per-column Σ∆ analog-to-digital (ADC) converters to reduce sensing time and

increase frame-rate up to 480 fps and 1920 fps when the sampling rate is equal to

1/4 and 1/16, respectively (67), which plan to be used this technique in future Sony

image sensor. Figure 2.5 shows a comparison of image sensor architecture. In terms

of resources and power consumption, the CS camera outperforms conventional image

sensors. The recent applications for CS cameras range from scientific cameras to ex-

amine gas leakage to wireless surveillance cameras (49) (1) and optical-based on-board

missions (44), where RAW measurements will only stream from image sensor nodes to

receiver (80). It requires less storage and bandwidth consumption than conventional

approach.

Surprisingly, because CS cameras are implemented using a block-based approach, it

allows spatial and temporal relationships between adjacent blocks and previous frames

to be discovered. The same pixel will be measured multiple times according to the JL-

lemma, resulting in each RAW measurement element containing a comparable amount

of information about the signal being acquired. As a result, CS data is said to be more

compressible than before. This investigation has been confirmed by the most recent

and influential article (41). As a result, there is an open question about how to reduce

redundancy in CS data, particularly in video applications, which typically continuously

acquire large amounts of data. A novel compression algorithm for CS data is urgently

required to address future storage and bandwidth consumption issues.
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3

Novel structured Sensing Matrix

By Scrambling Orthogonal Walsh

Matrix for Compressive Sensing

The theory of compressed sensing (CS) has the potential to revolutionize traditional

signal acquisition methods. In CS, a sensing matrix has a remarkable meaning in that

it can be used to determine the efficiency of signal acquisition. Several measurement

matrices have been proposed to determine the best sensing matrix for CS. In this

work, a novel structured sensing matrix called Continuously ordering Walsh matrix

(CoW) is proposed by scrambling orthogonal Walsh construction. It enables the CS to

acquire signals more efficiently while minimizing the number of observations and com-

putational overhead associated with sparse optimization. We assess performance using

reconstructed image quality when sampling at a rate of 5%− 15%. According to simu-

lation results, CoW provided significantly better image quality with significantly lower

recovery error when compared to images sampled by existing structured measurement

matrices.

3.1 Introduction

The band-limited model in Shannon’s sampling theorem (81) is replaced by sparse

model of compressed sensing (CS) (27). The model is based on solving underdetermined

linear systems of equations: y = Φx, where x ∈ Rn×1 is unknown solution, Φ ∈
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Rm×n is sensing matrix with m < n where m
n is sampling rate (SR), and y ∈ Rm×1

is a measurement vector (also known as compressed data), with assumption that a

signal can be exploited to recover it from far fewer samples than Shannon’s sampling

theorem requires. By applying this scheme to sensor design, it also implies that sensing

costs, power consumption, and the complexity of data compression algorithms can be

drastically reduced.

CS-camera has recently successfully gained popularity due to their possibility to

reduce read-out timing and power consumption in 4K and 8K resolutions. They mostly

adopted a linear-feedback shift register (LFSR) circuit to generate the sensing matrices.

However, there is widespread concern that uncontrollable sensing sequences from LFSR

have a significant impact on image quality with fairly poor compression performance

(96). As the result, it has been a major drawback. Structured sensing matrices based

on orthogonal transforms have recently been adopted in CS-camera. They allowed for

the control of image quality and compression performance which have been published

recently (37) (55) (56) (106) (57). There are many kinds of structured sensing matrices

available that aim to reduce the number of observations close to 5% − 15% of SR

(3). First and foremost, Hadamard and Walsh have been extensively researched and

successfully applied to CS-camera because it provides good sensing performance, fast

reconstruction, and is hardware friendly. However, it provides fairly poor image quality

when further reduce SR lower than 60% (31) (10) (122).

Several studies have been carried out to investigate the effect of Hadamard and

Walsh projection order selection on image reconstruction quality by simply reordering

orthogonal matrices. In (88) the Russian-doll ordering Hadamard was proposed, in

which the projection patterns are sorted by increasing the number of zero-crossing

components. Cake-cutting ordering Hadamard was proposed in (113) by rearranging

zero-crossing components over sensing matrix. It outperformed Russian-doll ordering

Hadamard in image reconstruction quality. Later, Origami ordering Hadamard was

proposed to improve the image quality of Cake-cutting ordering Hadamard (114). All

of the above sensing matrices were tested on the CS camera, which provided significantly

better image quality and compression performance than the LSFR. None of these works,

however, explain why reordering such matrices can improve image quality at low SR.
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3.2 Preliminaries

This thesis proposes a hypothesis that randomness is essential for recovering from the

restricted isometry property (RIP) condition (17), whereas orderliness of zero-crossing

from the smallest to the largest number of zero-crossings is important for image quality.

If any sensing matrices possess those properties, they should be able to provide high

compression performance while preserving image quality when sampling at low SR.

The theoretical foundation of random projection and sensing matrices in CS is related

to Johnson-Lindenstrauss-Schechtman (JL-lemma), 1986 as the following: given any

0 < ε < 1 with any integer of n, and Φ ∈ Rm×n be a random orthonormal matrix.

Then, for any set x of n point in Rm, the following the following inequality about

pairwise distance between any two data points ai and aj in x holds true with high

probability as the following:

(1− ϵ) ∥ai − aj∥2 ≤
∥∥ΦTai − ΦTai

∥∥
2
≤ (1 + ϵ) ∥ai − aj∥2 (3.1)

This lemma obviously demonstrates that in Euclidean space, high-dimensional data

can be randomly projected into lower-dimensional space while the pairwise distances

between all data points are well preserved in close distance with a high probability, and

the lower-dimensional signal can be fully recovered back to the original-dimensional

without any problem. It has a lower sampling cost than the Nyquist-Shannon sam-

pling theorem, which requires a high-dimensional signal all of the time. There are

several different ways to construct the sensing matrices such as permutation, row-by-

row reordering, and subsampled randomized. However, this work proposes reordering in

conjunction with scrambling. It will not change the distance between each data point,

but it will result in a more compact arrangement, which will allow the sparse solver to

work faster and reach the convergent faster compares to existing sensing matrices.

According to the promising hypothesis, this can be explained by NP-hard, NP-

completed, and NP problems regarding non-deterministic Turing machines, a theoreti-

cal model of computation whose governing rules specify more than one possible action

when in some given situations. Unlike a deterministic Turing machine, which operates

on a sequential state machine, the next state of a non-deterministic Turing machine is

not entirely determined by its action and the current symbol it sees. In general, tra-

ditional ℓ1-minimization via convex optimization is NP-hard problem where it cannot
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be solved in polynomial time constraint. Many convex optimization problems, such as

linear programming (LP), second-order cone programming (SOCP), and semi-definite

programming (SDP), can be solved in polynomial time using interior-point primal-dual

methods, which reduce NP-hard to NP-completed and NP but never to P, in short,

there is a limit. By carefully examining the non-deterministic Turing machine and the

JL-lemma, it is possible to conclude that an effective prospect sensing matrix must

reduce an irrelevant number of branches that eventually reach to reject as much as

possible. Non-deterministic Turing machines, on the other hand, can be reduced to

nearly deterministic Turing machines, resulting in faster convergent when solving ℓ1-

minimization problem.

3.3 New construction of structured sensing matrices

A new sensing matrix construction by scrambling orthogonal Walsh sensing matrix is

proposed. First and foremost, generate Hadamard matrix H (2n) = H (2)
⊗

H
(
2n−1

)
,

where n is even number (n = 2, 4, 6, ...), then, apply Gray code permutation and bit-

reverse to H (2n), resulting in Walsh matrix W (2n) as shown in Fig 3.1. Subsequently,

Figure 3.1: An example of matrices transformation via gray code permutations and bit-

reversal where (a) Hadamard sensing matrix and (b) Walsh sensing matrix.

Walsh matrix size of b×b is partition into multiple masks size of
√
b×
√
b as shown in Fig

3.2. Rather than reordering rows by rows as is common in existing methods, this work

linewidthlinewidth

Figure 3.2: An example of partitioning of Walsh matrix size of b× b into multiple masks

size of
√
b×
√
b, where b = 16.
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scrambles them by applying a zigzag pattern to partitioned masks. The procedures are

summarized as follows:

Step 1. Partition W (2n) into multiple pieces, where the size of each piece equal to
√
b×
√
b.

Step 2. Apply zigzag scramble to the multiple pieces of W (2n).

Step 3. Lastly, vectorize each piece from
√
b×
√
b and stack back into b× b matrix.

This method produces a new construction of Walsh matrix that gradually arranges

measurement patterns from lowest number of zero-crossing to highest number of zero-

crossing as shown in Fig 3.3. This order is named as Continuously ordering Walsh

sensing matrix (CoW). For recovery guarantee according to foundation theorem, in

Figure 3.3: Structured measurement matrices and projection patterns comparison of (a)

Hadamard, (b) Walsh, and (c) Continuously ordering Walsh (this work), where b = 4 and

n = m = 16

general, CoW is not satisfied classical RIP condition given by

(1− δ) ∥x∥22 ≤ ∥Φ∥
2
2 ≤ (1− δ) ∥x∥22 (3.2)
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where δ ∈ {1, 0} It can be used to judge only non-uniform random such as Gaussian

distribution. This condition is rigorous. In the actual situation, it is not easy to use

this metric to judge if the sensing matrix is suitable for CS camera.

In (5) proposed alternative RIP conditions that use to guarantee recoverability of

structured measurement matrices. Let c0 (ε) > 0 be positive constant, ε ∈ (0, 1) if

Φm×n satisfy probability of an event of

∣∣∣∥Φ∥22 − ∥x∥22 ≥ ε ∥x∥22
∣∣∣ (3.3)

but must be less than

2exp ⌈−nc0ε⌉ , 0 < ε < 1 (3.4)

then for a given δ, there exists a constant c0, which enable the probability Φ of struc-

tured measurement matrices satisfy alternative RIP condition is above

1− 2
(
12/δkexp (−nc0 (δ/2))

)
(3.5)

For instance, CoW is constructed by uniform distribution that produces property of

{−1, 1} with the probability of 1/2. Then,

c0 (ε) (3.6)

for CoW will be equal to

ε2/4− ε3/6 (3.7)

Hence, CoW satisfy alternative RIP by

1− 2
(
12/δkexp

(
−nε2/4− ε3/6 (δ/2)

))
(3.8)

Commonly, CoW composes of two possible values consisting of {−1, 1} which is possibly

shifted to {0, 1} for hardware compatibility. Moreover, each measurement mask can

generate on-the-fly, which does not need to be stored as in some existing measurement

matrices.
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3.4 Experimental results

3.4 Experimental results

In this section, the proposed sensing matrix performance is demonstrated. The simula-

tion results were delivered by a standard solver called ℓ1-minimization via primal-dual

interior-point method. To compare performance to existing measurement matrices used

in CS cameras, such as linear-feedback shift register (LFSR), Hadamard, Walsh, and

Parlay ordering Walsh (PoW). It should be noted that the Hadamard and Walsh order-

ing algorithm matrix generator codes were not available online at the time of writing

the dissertation. They will only be made available upon reasonable request, to which

every effort was made but no response was received. As shown in experimental results,

CoW provided less recovery error via RMSE when sampled at target SR ∈ {5, 10, 15}
compared to existing measurement matrices on each test image in Table 3.1. However,

at these target SR, statistical results are actually far beyond the point in which using

in order to evaluate sensing matrices performance. Our human visual perception can

use to judge better than statistical results. As a result, Figure 3.4 shows a compre-

hensive comparison of reconstructed images. It can be seen that CoW gave clearer

image with fewer artifacts at high-frequency components. Further, it can significantly

improve PSNR and SSIM averagely by 10% on each SR. Lastly, the evaluation results

are provided by SSIM and RMSE comparison graphs with a different number of mea-

surements per block as shown in Fig. 3.5, which CoW performed more extraordinary

performance on both matrices than existing structured measurement matrices.

3.5 Summary

This work proposed a novel sensing matrix for CS camera by scrambling orthogonal

Walsh matrix. When compared to existing measurement matrices, it allowed the CS-

camera to capture images with fewer samples while providing better image quality with

fewer artifacts.
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Table 3.1: Recovery error via RMSE comparisons of (a) LSFR, (b) Toeplitz, (c)

Hadamard, (d) Walsh, (e) PoW, (f) CoW, where b = 16 and SR ∈ {5, 10, 15} (lower

is better)

Images
SR = 5%

(A) (B) (C) (D) (E) (F)

Man 8.38 8.39 8.29 7.59 7.60 7.45

Boat 7.25 7.23 7.09 6.88 6.86 6.55

House 6.97 7.08 6.87 6.44 6.42 5.89

Leopard 7.04 7.03 6.92 6.58 6.58 6.36

Lena 7.37 7.43 7.30 6.09 6.08 6.23

Average 7.40 7.43 7.29 6.71 6.70 6.49

Images
SR = 10%

(A) (B) (C) (D) (E) (F)

Man 8.39 8.31 8.02 7.38 7.38 6.84

Boat 7.33 7.11 6.69 6.73 6.72 6.04

House 6.99 6.91 6.50 6.24 6.23 5.27

Leopard 7.08 6.97 6.65 6.51 6.51 5.96

Lena 7.36 7.38 7.12 5.80 5.78 5.51

Average 7.43 7.33 6.99 6.53 6.52 5.92

Images
SR = 15%

(A) (B) (C) (D) (E) (F)

Man 8.31 8.34 7.79 7.31 7.31 6.62

Boat 7.23 7.17 6.65 6.63 6.25 5.92

House 6.89 6.90 5.82 6.14 6.15 5.26

Leopard 7.04 7.01 6.53 6.48 6.48 5.77

Lena 7.23 7.40 7.00 5.73 5.70 5.23

Average 7.34 7.36 6.75 6.45 6.37 5.76
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4

A Measurement Coding System

for Block-based Compressive

Sensing Images by Using

Pixel-Domain Feature

This work proposes a method for reducing redundancy in compressively sensed images

from a CS camera via Natural ordered Hadamard (NoH). This work employs an intra-

prediction algorithm inspired by the traditional image and video coding. Because of the

differences between the CS and conventional data structures, it is unable to perform

neighboring pixel-to-pixel coding; instead, it suggests an alternative intra-prediction

method that performs neighboring vector-to-vector coding. To begin, sensing patterns,

to the best of our knowledge, can be used to determine which pixel has been read out.

As a result of these properties, it is possible to make a prediction candidate by utilizing

single magnitude data from a neighboring block such as the left and upper sides of

the current block. These single magnitudes will be multiplied by the sensing matrix

to generate prediction candidates, which is a novel method in comparison to previous

work. After obtaining several prediction candidates, the residual can be calculated

by using the sum-of-absolute difference to calculate the minimum error between the

current block and each of the prediction candidates (SAD). The residual will then be

transferred to SQ to further reduce magnitude. Finally, Huffman coding will be used

to compress the data for efficient transmission over communication channels.
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4.1 Introduction

The concept of compressed sensing (CS) is a new paradigm in signal processing for

efficient data acquisition and feature extraction. The sparse signal can be recovered

from very few samples, which maps the signal from m-dimensional into n-dimensional,

where (m < n). Thus, CS camera captures the signals in compressed form, rather

than sampling at the Nyquist-Shannon rate and compressing. The robustness of CS by

taking the linear projections and computational complexity of the recovery algorithm.

Them-dimensional can be recovered to n-dimensional using efficient recovery algorithm

(e.g. basis pursuit, OMP, and AMP). As a result, new imaging architectures for CMOS

image sensors (CIS) have been proposed in order to sense and compress simultaneously,

resulting in a faster image acquisition system. In a wireless cameras network for video

surveillance, a massive amount of data is produced. In addition, massive data needs

to be transmitted efficiently and secured over the network to monitoring sites where

the video streams can be processed and analyzed. However, there is still a significant

amount of redundant data in the measurement domain that must be compressed before

transmission. In order to address this issue, the CS data coding algorithm is proposed

in this paper in order to further reduce data redundancy and improve measurement pro-

cess efficiency. To begin, instead of a random measurement matrix, Hadamard is used

to sensing, compress, and generate predictive candidates. Next, using pixel domain

features, a new intra-prediction architecture is proposed to reduce spatial redundancy

in the measurement domain. Lastly, image quantization and Huffman coding are used

to further compress the data. The reconstruction is carried out using a single iteration

basis pursuit with an inverse fast Walsh Hadamard transform. When compared to pre-

vious works, the experimental results show that the proposed system can significantly

improve coding efficiency, increasing PSNR by 1.94dB - 2.3dB and lowering bitrate by

42% - 65% in terms of bpp.

4.2 Propose measurement coding system

An input images is divided into sub-block size B × B where X ∈ (x1, x2, x3, ..., xN ) is

vectorized signal of sub-block which will be used through underdetermined system with

sensing matrix Φ as shown in Figure 4.1. Furthermore, the intra-preduction algorithm

from H.264 is used to inspire this work, and four directional prediction modes are
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4.2 Propose measurement coding system

promised, including left mode, upper mode, mean mode, and constant mode, which

obtain information from neighboring blocks as shown in Figure 4.2.

Figure 4.1: An illustrate of block-based compressed sensing sampling process

Figure 4.2: An illustrate of propose measurement coding system

Hadamard Transform Based Measurement Matrix

Many researchers have concentrated on random matrices, which are generated by iden-

tical or independent probability distributions such as Gaussian, Bernoulli, or Uniform.

Random matrices, on the other hand, are simple to build and have a high probability

of satisfying the restricted isometry property (RIP). However, there are some draw-

backs to using a random matrix. The use of random matrices, for example, slows the

recovery process and makes large-scale problems impossible to solve. This work used
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hadamard as sensing matrix with complementary entries. The columns of this matrix

are orthogonal. Given a matrix H of order N , H is said to be a hadamard matrix if the

transpose of the matrix H is closely related to its inverse. This can be expressed by

HHT = NIN×N (4.1)

where IN×N is identity matrix and HT is transposed matrix of H. The random

hadamard matrix consists of taking random rows from the hadamard matrix. This

measurement matrix satisfies the RIP with probability at least 1−5/N−e−β providing

M ≥ C0(1 + β)KlogN where β and C0 contain positive constants, K is sparsity level

of signal. After that, the matrix is binarized to increases measurement processing time

and decrease the hardware cost. As the hyphothesis that random matrices has influ-

ential to image degradation, the comparison between random and the proposed matrix

are demonstrated by increased 6% in PSNR and decrease 39% in bpp.

Spatial Redundancy Reduction using Pixel-Domain Fea-

tures

To reduce spatial redundancy, intra-prediction has been applied to this research. How-

ever, the concept of traditional intra-prediction cannot be applied to CS directly due to

no similarity in measurement domain. Therefore, the new intra-prediction architecture

has been proposed for CS. Since we can obtaine pixel values only in compressed form

Y ∈ {y1, y2, y3, ..., yM}, where y1 is the summation of all pixel. Meanwhile, Hadamard

measurement matrix introduces a patterns to extract two kind of boundary informa-

tion by yM−2 and yM−3 for upper and left respectively. Then, we can approximated

the boundary information by subtract y1 with yM−2 and yM−3, respectively. After the

subtraction the summation of the pixel will be represent in compressed form. Next,

divide the summation by the total number of pixels to get an average value. Further-

more, a special prediction mode called mean mode ydc is added as shown in Figure

4.3. To select a predictive candidate, sum of absolute differences (SAD) is required to

compare between Y and predictive candidates. In case there is no predictive candidate,

the prediction candidate willl be zero for transmitting without prediction. The simple

quantization is needed for entropy coding before transferred to Huffman coding.
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Figure 4.3: Illustration of (a) the block to be predicted surrounded by nearest neighbor

pixels and directional prediction modes available for predictive candidates: (b) vertical for

upper, (f) horizontal for left, and (d) mean for dc mode

4.3 Experimental results

The proposed measurement coding for BCS was implemented using MATLAB. All of

experiment use 512 × 512 grayscale images of Lenna, Mandril, Goldhill, and Pentagon

from “The USC-SIPI image database”. The image was divided into non-overlapping

by B = 4, 8, and 16, SR = 0.75, 0.5, and 0.25, and quantization parameter Qstep ∈

{0, 1, 2, 3, 4, 5, 6}. The image is reconstructed using basis pursuit with the inverse dis-

crete fast Walsh-Hadamard transform (IFWHT). RD-distortion and performance is

measured in terms of PSNR, bitrate in bits per pixel (bpp) using entropy quantize to

estimate actual bitrate, and structural similarity index (SSIM) for perceptual metric

that quantifies image quality degradation. The comparison of random and hadamard

matrices with same condition by intra prediction and quantization step is demonstrated.

As shown in Table 1. both matrix can achieve high PSNR. However, random matrix

has higher bitrate than hadamard matrix. Thus, the construction of measurement ma-

trix is greatly effects coding efficiency by increased 6% in PSNR and decrease 39% in

bpp. The BD-rate curve between PSNR and bpp of four test image are plotted, which

our framework can greatly achieve almost same PSNR with lower bpp as shown in Fig-

ure 4.4 The comparison of visual qualities and compression artifacts are demonstrated

in Figure 4.5 and Figure 4.6 Since we applied intra-prediction and quantization, our

proposal can greatly increase 1.94dB - 2.3dB in PSNR and reduced 42% - 65% in bpp

when compared to BCSSPL, SQ, and DPCM respectively as shown in Table 4.1.
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Figure 4.4: BD-rate curve of four test images: (a) Lenna, (b) Goldhill, (c) Mandrill, and

(d) Pentagon among Proposed, BCSSPL (35), SQ, and DPCM (62) with B = 4, SR = 0.5

with Qstep ∈ {0, 1, 2, 3, 4, 5, 6}

Table 4.1: PSNR comparison among BCSSPL (35), SQ, and DPCM (62), and Proposed

(Qstep = 4, B = 4, SR = 0.5).

Image
BCSSPL (35) SQ DPCM (62) Proposed

PSNR bpp PSNR bpp PSNR bpp PSNR bpp

Lenna 27.62 2.20 26.74 1.69 26.74 0.52 31.05 0.84

Goldhill 26.77 2.17 26.29 1.67 26.29 0.67 29.56 0.89

Mandrill 24.12 2.17 26.67 1.77 26.27 0.91 25.13 1.65

Pentagon 25.83 2.07 26.46 1.70 26.46 0.75 27.78 0.98

Avg. 26.08 2.15 26.44 1.70 26.44 0.71 28.38 1.09

4.4 Summary

CS has been considered as innovative technology in signal sampling and compressing.

In this paper, we present our architecture and simulation results of BCS framework

using the measurement-domain to generate pixel-domain features, which can reduce the

redundant information with low computational complexity and realize high compression

ratio via hadamard matrix. The pixel-domain features is obtaining by subtracting with

intra-prediction for upper, left and dc mode respectively and divided the summation

by total active pixel. The simulation results shown that this framework can increase

1.94dB - 2.3dB in PSNR and reduced 42% - 65% of bitrate in terms of bit-per-pixel when
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Figure 4.5: Comparison of visual qualities and compression artifacts of four test images:

Lenna, Goldhill, Mandrill, and Pentagon among our proposal, BCSSPL (35), SQ, and

DPCM (62) with B = 4, SR= 0.5 with Qstep = 4
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Figure 4.6: Comparison of visual qualities of four test images: Lenna, Goldhill, Mandrill,

and Pentagon with B = 4, SR = 0.75, 0.5, and 0.25 with Qstep = 4.
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compared to previous works. The design of measurement matrix is greatly importance

for image and video compression using compressed sensing.
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5

Intra Prediction Based

Measurement Coding Algorithm

for Block-Based Compressive

Sensing Images

Block-based compressive image sensor (BCIS) captures light and represents them as

compressed data called measurement. It has potential to revolutionize conventional

image and video acquisition system that builds upon high complexity and redundant

process. However, by comparing the compression performance between these two sys-

tems, BCIS cannot reduce bitrate to similar factor as the compressed media by pixel-

based compression algorithms. It still requires enormous amounts of bit to store and

transmit data. In this work, we introduce intra prediction based measurement cod-

ing (IPMC) algorithm for giving an extra compression performance to measurement.

Moreover, importantly, there is a requirement that sensing matrix for BCIS must not

be derived from non-uniform distribution in order to control prediction accuracy and

quality. Therefore, we use structural sensing matrix made of sequency-ordered Walsh-

Hadamard. Furthermore, it allows boundary pixels of adjacent blocks to be accessible

through measurement, which helps intra prediction to generate its candidates accu-

rately. The algorithm encodes prediction error between target measurement and mul-

tiple prediction candidates, resulting in smaller data size. This work can significantly

reduce bpp by 10.90% and simultaneously increase 3.95 dB in PSNR compared to the
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state-of-the-art works. Moreover, we implemented the proposal on FPGA. It gave 10

times higher throughput than software. The core power consumption is at 50 mW and

working at 88 MHz when processing 3840 × 2160 pixels with the sampling rate of 1/4.

5.1 Introduction

Over the past few years, block-based compressive image sensor (BCIS) has gained sig-

nificant interest in imaging technology. It can solve analog-to-digital converter (ADC)

problems in conventional image sensor such as slow pixel readout time and power con-

sumption. A single-pixel camera was successfully developed by using digital micromir-

ror device (DMD) array (32). It is useful for microscopy and microanalysis applications

(70). Nevertheless, it required long sensing time when the resolution is relatively high.

Robucci et al. proposed separable-transform BCIS (79). It could capture image faster

than single-pixel camera. Nevertheless, it had limited in frame-per-second (fps). Later,

Oike and El Gamal proposed programmable BCIS with per-column Sigma-Delta ADC

to reduce sensing time and increase frame-rate up to 1920 fps (67), which overcame

the problems of (32) and (79). In (75) and (49), they gave an opinion that BCIS can

revolutionize image and video capturing and compressing scheme, where bitrate could

be varied depending on preferred quality. However, at this stage, it is not suitable for

consumer devices because they do not have enough computational resources for decod-

ing the measurement. In the meantime, there is a suitable application for BCIS such

as wireless surveillance system because the measurement can be decoded at monitoring

sites with unlimited resources(48) (63). To transmit measurement wirelessly, it must be

compressed into more compact format, resulting in lower transmission costs (80) (42).

Therefore, in this work, we propose four modes intra prediction based measurement cod-

ing (IPMC) algorithm including upper, left, average, and no prediction. However, there

is a requirement that sensing matrix for BCIS must not be derived from non-uniform

distribution in order to control prediction accuracy and quality. Therefore, we use

structural sensing matrix (SSM) made of sequency-ordered Walsh-Hadamard (SoWH).

It allows boundary pixels of adjacent blocks to be accessible through measurement,

which helps intra prediction to generate its candidates accurately. The algorithm en-

codes prediction error between target measurement and multiple prediction candidates,

resulting in smaller data size.
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To demonstrate the applicability and versatility, we evaluate the proposal using

numerous video datasets in 4K resolution using peak-to-noise-ratio (PSNR), structural

similarity index measure (SSIM), and bits-per-pixel (bpp). Moreover, we increase com-

pression throughput by extending the proposal from software to hardware using FPGA.

We establish notation and provide a brief background of compressive sensing theory in

chapter A. and related works on measurement coding in chapter B. Section II provides

the proposed IPMC algorithm for BCIS and hardware architecture. Section III provides

extensive simulation results and compares them with state-of-the-art works. Further,

we also report hardware implementation summary. Section IV provides conclusions.

5.2 Compressive sensing theory

Comressive sensing (CS) is built upon two major fundamental conditions consisted of

sparsity and incoherent (98) (19). There are essential conditions in order to apply

CS. First, a signal characteristic of x must be sparse when expressing in a specific or-

thonormal transform basis. Next, sensing matrix Φ ∈ Rm×n, it can be made of random

distribution called random sensing matrix (RSM), where the number of dimensional m

must be less than n, known as sampling rate (SR).

The measurement y ∈ Rm×1 can be obtained by projecting Φ to x. Nevertheless,

traditional CS is not suitable for a large scale problem because it requires long sensing

time. In (36) proposed partitioning approach to traditional CS by dividing an entire

frame into multiple non-overlapping blocks. Instead that n equal to frame size, now n

will be equal to b× b, where b is block size. Hence, x will be sampled with smaller Φ,

resulting in faster projection. It can be expressed mathematically as:

yi = Φxi (5.1)

where yi ∈ {ẏ1, ẏ2, ẏ3, ..., ˙ym} is measurement of compressible signal of xi ∈ {ẋ1, ẋ2,

ẋ3, ..., ẋn} and i is the block order through raster scanning as shown in Figure 8.2.

To guarantee a good reconstructed image, the sensing matrix should satisfy restricted

isometry property. In this work, we recover y by using a classical method via convex

optimization called ℓ1-minimization.
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Figure 5.1: Non-overlapping blocks compressive sensing diagram.

5.3 Related works on measurement coding

Up to the present time, most of the CS literature has been devoted to study the recovery

of sparse signals from a small number of measurement, but less in measurement coding

algorithm. By referring to the legacy vector compression algorithms, introduced for

lossless coding (84), and its extension for lossy coding (109). Although, it is possible to

use these legacy approaches to encode measurement. Nevertheless, it requires a precise

design for each system specifically, which is not convenient.

Scalar quantization (SQ) provided a straightforward approach to compress measure-

ment. By comparing to vector compression algorithms, SQ gave higher performance

and versatility than vector compression. Nevertheless, it has been established that SQ

is highly inefficient in terms of information-theoretic rate-distortion (RD) performance

(58) (65) (115) (123) (22). Additionally, it require an iterative recovery algorithm to

predict corrupted quantized measurement such as quantized iterative hard threshold-

ing (QIHT) (46), quantized compressed sampling matching pursuit (QCoSaMP), and

adaptive outlier pursuit for quantized iterative hard thresholding (AOP-QIHT) (82).

Next, differential pulse-code modulation (DPCM) was introduced to reduce bitrate

(62). DPCM used a single prediction candidate to predict target measurement. How-

ever, the disadvantage is that the single prediction candidate may contain irrelevant

information to target measurement, resulting in unstable bitrate reduction. Afterward,

spatially directional predictive coding (SDPC) was introduced in (116). This work was

implemented based on DPCM. It gave higher compression performance than SQ and
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DPCM, while improved image quality. However, this work used RSM as sensing ma-

trix, resulting in unstable quality and unstable bitrate when coding the same image.

Importantly, they could not embed this kind of sensing matrix into hardware device,

where it can only handle binary signal sources.

Later, intra prediction based measurement coding with modification of RSM was

introduced in (121). This work was inspired by intra prediction concept from conven-

tional pixel-based compression algorithms that uses boundary pixels of adjacent blocks

to predict target block. By imitating the conventional approach, they modified sensing

patterns of RSM corresponding to obtain boundary pixels of adjacent blocks called

hybrid sensing matrix (HSM). They used that boundary pixels information to generate

intra prediction candidates. This work significantly reduced bitrate lower than SQ,

DPCM, and SDPC. Nevertheless, it produced sampling artifact to the image due to

the modification of sensing matrix.

In our previous work (73), we adopted SSM made of Natural ordered Hadamard

(NoH) to obtain boundary information. We proposed four modes intra prediction

included upper, left, average, and no prediction. This work significantly reduced bitrate

and improved image quality compared to other works in this literature.

5.4 Proposed intra prediction based measurement coding

for BCIS

This work adopted SSM made of Natural ordered Hadamard (NoH) to obtain boundary

information. We proposed four modes intra prediction included upper, left, average,

and no prediction. This work significantly reduced bitrate and improved image quality

compared to other works in this literature. In this work, we improve coding performance

and image quality based on the previous work in 4. The overall architecture including

BCIS and IPMC algorithm can be seen in Figure 5.2.

There are three primary signals control BCIS including column selector, row selec-

tor, and pixel selector where each pixel will be selected according to the sensing matrix.

Subsequently, we adopt SoWH as SSM. It can gather information more efficiently than

RSM, HSM, and SSM made of NoH due to higher orderliness, resulting in better im-

age quality. Furthermore, it allows pixels boundary information of neighboring blocks

to be accessible through measurement without modifying the sensing matrix. After
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obtaining the measurement, it will be compressed using the IPMC algorithm. By uti-

lizing the boundary pixels of adjacent blocks, this work provides four modes of intra

prediction. The target measurement encodes by minimizing distortion with multiple

prediction candidates, resulting in a smaller data set. For Huffman coding, quantiza-

tion is used to reduce the probability symbol. We also include inverse quantization

within the transmitter to estimate prediction candidate loss by quantization at the

receiver. The estimated prediction candidates are then used to predict the next tar-

get measurement. Otherwise, the decoder at receiver will act as error accumulator, in

which a single corrupted measurement can initiate recovery error to the whole image.

Moreover, to increase coding performance, throughput, and to realize IPMC algorithm

in real-world applications, we implement the proposal in hardware level and evaluate

it on FPGA.

Sequency-ordered Walsh-Hadamard sensing matrix

To use BCIS to capture the light, there is an implementation constraint that sensing

matrix Φ must be {0, 1} because the pixel selector can handle only digital signal (i.e.,

low (0) and high (1)). Let ΦNoH can be obtained by order n, it can be said to be ΦNoH

if the transpose of the matrix ΦT
NoH is closely related to its inverse. It can be expressed

as given below:

ΦNoHΦT
NoH = nIn×n (5.2)

where nIn×n is the identity matrix and ΦT
NoH is the transpose of matrix. By applying

Sylvester’s construction to ΦNoH , resulting in Walsh-Hadamard matrix denoted by

ΦWH as the following:

ΦWH

(
2k
)
=

[
ΦNoH

(
2k−1

)
ΦNoH

(
2k−1

)
ΦNoH

(
2k−1

)
−ΦNoH

(
2k−1

)]
= ΦNoH (2)

⊗
ΦNoH

(
2k−1

) (5.3)

for 2 ≤ k ∈ n, where
⊗

denotes the Kronecker product. Subsequently, we applying

bit-reversal and gray-code permutation, resulting in sequency order of ΦWH denoted by

ΦSoWH this sensing matrix satisfies the RIP with a probability of at least 1−5/n−e−β

providing m ≥ c(1 + β))κ log n where β is a positive constant and κ is sparsity level.

In general, Hadamard transform will return matrix in {−1, 1}. Therefore, we binarize

them from {−1, 1} to {0, 1} to possibly embed the sensing matrix into BCIS.
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Intra prediction based measurement coding algorithm

In general, boundary pixels of adjacent blocks have information that closely related

to target block. Hence, we use that boundary information to deliver four modes intra

prediction including upper, left, average, and no prediction.

Firstly, prediction parameter preparation, different sensing patterns can refer to

each order of ΦSoWH , which use to obtain each element of y. It offers several features

that allow boundary information to be accessible from measurement. Hence, we can

trace back to which pixels in the block had read. In this work, there are three significant

sensing patterns as shown in Figure 5.3. where white and black squares indicate the

Figure 5.3: An example of significant sensing patterns in ΦSoWH .

pixel that is being read and skip, respectively.

For instance, by multiplying x with ΦSoWH1 , the first element denoted by ẏ1 is the

summation of 4× 4 pixels; The second element ẏ2 can be obtained by multiplying x with

ΦSoWH2 , which is the summation of upper-half 2 × 4 pixels; and the third element ˙y32

can be obtained by multiplying x with ΦSoWH32 , which is the summation of half-left 4 ×
2 pixels. However, the parameters that necessary for generating prediction candidates

are located in black squares, which are opposite-side of ΦSoWH2 and ΦSoWH32 . To

retrieve them, since ẏ1 is a summation of all pixels in the block. Therefore, the data

in black squares can be obtained by subtracting ẏ1 with ẏ2 and ẏ1 with ˙y32, resulting

in sum of bottom-half 2 × 4 pixels and sum of the right-half 4 × 2 pixels, respectively.

To understand the concept clearer, we present the subtraction process by referring to

sensing patterns subtraction as shown in Figure 5.4. This method delivers the same

results as modifying the sensing matrix to obtain boundary pixels of adjacent blocks.

Besides, the image quality will not be disturbed as the work in . Further, the group

of pixels after subtraction over image is illustrated in Figure 5.5. At this stage, the
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5.4 Proposed intra prediction based measurement coding for BCIS

Figure 5.4: An example of effective pixels after element subtraction.

Figure 5.5: An example of group of pixels over image, where the yellow area indicates

the pixel group for target measurement; the blue area indicates the pixel group for left

mode; the green area indicates the pixel group for up mode.

parameters are the representation of multiple pixels. It is necessary to average them

by dividing by the number of active pixels (i.e., in the case of 2 × 4 pixels and 4 ×

2 pixels, the number of active pixels equals 8). Afterward, we multiply the averaged

parameters with ΦSoWH to generate vector known as intra prediction candidate. To

sum up, the candidate generation procedure of each mode can be explained by the

following equations: Up mode:

yu =
(ẏ1 − ẏ2)∑n

j=1(ΦSoWH1,j − ΦSoWH2,j)
× ΦSoWH (5.4)
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Left mode:

yl =
(ẏ1 − ˙y32)∑n

j=1(ΦSoWH1,j − ΦSoWH32,j)
× ΦSoWH (5.5)

Average mode

yavg =
(yu + yl)

2
(5.6)

The final prediction candidate yp can be estimated by finding minimum error between

target measurement y with prediction candidates yc ∈ {yu, yl, yavg}. It can be expressed

as the following:

yp = argmin
yc∈{yh,yv ,yavg}

∥yi − yc∥l1 (5.7)

In addition, in case there is no prediction candidate selected from yc, yp will be equal

to zero, which means no prediction. The residual measurement yr can be calculated by

subtracting y with yp. It can be expressed by

yr = y − yp (5.8)

Scalar Quantization

We further reduce bitrate and probability symbols of yr using SQ. It maps residual

measurement yr into a finite sequence of codewords with quantization step equal to ∆.

It can be expressed by:

∆ =

⌊
max (yr)−min (yr)

2Qb

⌋
, (5.9)

yq =
⌊yr
∆

⌋
(5.10)

where Qb is quantization bit and quantized measurement denoted by yq. Subsequently,

inverse quantization maps yq into yiq that is an approximation of yr. It can be expressed

by:

yiq = ∆ · yq (5.11)

In this work, we fixed Qb at 4 bits, which is sufficient to reduce bitrate and probability

symbols. Furthermore, we include inverse quantization inside the transmitter to esti-

mate prediction candidates loss by quantization at the receiver. Subsequently, we use

that estimated prediction candidates to predict the next target measurement. If both

sides do not have the same prediction candidates information, the decoder will act as
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error accumulator, in which a single corrupted measurement can ruin the whole image.

Note that, yq needs to transmit along with 2 bits side information of prediction mode

and ∆ of each block to the receiver.

Hardware implementation of proposed IPMC algorithm for

BCIS

In this section, we extend IPMC algorithm from software to hardware for increasing

throughput. The hardware architecture can be seen in Figure 5.6. It can be placed next

to BCIS. Hence, the target measurement y can be encoded and transmitted immedi-

ately. The hardware procedure of measurement obtaining and coding can be described

as the following step:

Step 1: Send block coordinate denoted by rows addr and columns addr to BCIS.

Step 2: Obtain y from BCIS according to rows addr and columns addr.

Step 3: Fetch prediction parameters from registers. We note that when block coordi-

nate rows addr = 1 and columns addr = 1, y will go straight to quantization

without prediction. This is a special case in IPMC algorithm because there

are no prediction parameters available for the first block.

Step 4: Average prediction parameters and multiply them with ΦSoWH to generate yu

and yl.

Step 5: Find minimal error of y among yc ∈ {yu, yl, yavg}, resulting in final prediction

candidate yp.

Step 6: Subtract y with yp, resulting in yr.

Step 7: Apply quantization to yr, resulting in yq.

Nevertheless, the data structure of y is vector. Without optimization, it requires at

least m− 1 clock cycles to encode y. Therefore, we optimize vector summation module

using a tree-like pipeline technique as shown in Figure 5.7a. and non-pipeline in Figure

5.7b, in which clock cycle can be shorten from m − 1 to log2(m). Consequently, it

requires slightly higher resources than non-pipeline. Subsequently, it is necessary to
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5.5 Experimental results

Figure 5.7: A diagram of vector summation for m = 4, where (a) tree-like vector pipeline

which the summation can be done within log2(m) clock cycles and (b) non-pipeline which

the summation can be done within m− 1 clock cycles.

prepare the prediction parameters for the next target measurement. The procedure of

prediction parameters preparation can be described as the following step:

Step 1. Apply inverse quantization to yq, resulting in yiq.

Step 2. Decode yiq by adding yp, resulting in ŷ.

Step 3. Extract ŷ using vector splitter to obtain prediction parameters (i.e., ˙̂y1, ˙̂y2, and

˙̂y32).

Step 4. Subtract ˙̂y1 with ˙̂y2 and ˙̂y1 with ˙̂y32.

Step 5. Store the results in registers for the next prediction.

5.5 Experimental results

The performance of the IPMC algorithm is evaluated in this section using PSNR, SSIM,

and bpp. The simulation results delivered by MATLAB using l1-minimization via

primal-dual interior-point method. We used multiple 4K datasets consisted of Beauty,

ReadySetGo, Bosphorus, and HoneyBee. Lastly, we reported hardware implementation

results in terms of device specification and throughput.
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Table 5.1: Overall performance comparison with the state-of-the-art on various datasets,

where b = 16, SR=1/4, and Qb = 4.

Methods
Beauty dataset ReadySetGo dataset

PSNR (dB)/SSIM bpp PSNR (dB)/SSIM bpp

Bernoulli + SQ 34.45 / 0.86 2.71 30.83 / 0.67 2.72

NoH + SQ 32.72 / 0.77 0.39 29.69 / 0.48 0.51

Gaussian + SQ 33.27 / 0.75 2.62 30.79 / 0.50 2.64

DPCM + SQ 36.15 / 0.88 2.71 31.23 / 0.72 2.71

SDPC + SQ 36.27 / 0.88 2.71 31.31 / 0.73 2.70

Intra Pred. + HSM + SQ 35.57 / 0.87 2.30 31.04 / 0.70 2.18

This work 38.90 / 0.92 2.21 34.36 / 0.87 2.05

Methods
Bosphorus dataset HoneyBee dataset

PSNR (dB)/SSIM bpp PSNR (dB)/SSIM bpp

Bernoulli + SQ 31.07 / 0.71 2.70 31.84 / 0.85 2.72

NoH + SQ 30.02 / 0.51 0.25 30.00 / 0.67 0.35

Gaussian + SQ 29.83 / 0.36 2.59 30.79 / 0.67 2.63

DPCM + SQ 34.95 / 0.92 2.74 32.85 / 0.89 2.74

SDPC + SQ 34.99 / 0.92 2.69 32.96 / 0.90 2.73

Intra Pred. + HSM + SQ 34.70 / 0.91 2.20 31.72 / 0.83 1.90

This work 36.47 / 0.94 1.92 35.64 / 0.94 1.67

62
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Figure 5.8: Comparing the performance of sensing matrices including Bernoulli , NoH,

Gaussian, HSM, and SoWH, where SR ∈ {4/4, 3/4, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64}
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Overall quality comparison of various sensing matrices:

As the results shown in Figure 5.8, we compared SoWH with various existing sensing

matrices such as Bernoulli, NoH, Gaussian, and HSM using ReadySetGo and HoneyBee

datasets. It can be seen that SoWH gave the best quality in terms of SSIM than other

sensing matrices at the same SR, reflecting a higher ability to gather compressible

signals.

Overall performance comparison with state-of-the-art works:

As the results shown in Table 5.1, firstly, we compared our proposal with the works

that used SQ to code measurement such as Bernoulli + SQ, NoH + SQ, and Gaussian

+ SQ . Our proposal overcame them in terms of higher PSNR and SSIM, and lower

bpp. Nevertheless, NoH + SQ gave incredible results in bpp reduction because the

data structure of measurement has highly uncorrelated. By using the equation (9), it

returns a large parameter of ∆. Thus, SQ will give a huge image degradation as can

be noticed by artifacts. Based on the uncontrollable performance of SQ, where the

performance will be varied depending on sensing matrix. We assume that SQ is an

inefficient coding method, which correspond to the opinion stated in the most recent

literature. Next, we compared our proposal with state-of-the-art works that utilized

measurement coding and SQ such as DPCM + SQ, SDPC + SQ, and Intra Pred. +

HSM . This work significantly outperformed by reduced 10.90% of bpp, increased in

PSNR and SSIM by 3.95 dB and 10.17%, respectively.

These results emphasized our opinion that compression performance can be in-

creased by designing a good pair of measurement coding algorithm and sensing matrix.

The measurement sampled by SSM has higher data structure consistency, which en-

abled coding algorithm to perform better, resulting in higher compression performance.

Hence, the most important element in measurement will be encoded and will not be

ruined by quantization, resulting in an improvement of PSNR and SSIM. Lastly, we

provided visual quality comparison of reconstructed images in Figure 5.9. This work

provided better image quality than state-of-the-art works without compression artifacts

at the edge of object. Subsequently, we reported RD-curve performance in various set-

ting of Qb as shown in Figure 5.10. It can be seen that this work gave a remarkable
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coding performance, where the data were encoded and not ruined by quantization even

at shallow Qb.

Figure 5.10: RD-curve comparison of Bernoulli + SQ, NoH + SQ, Gaussian + SQ,

DPCM + SQ, SDPC + SQ, Intra Pred. + HSM + SQ, and this work using ReadySetGo

and HoneyBee datasets, where each point represent to Qb ∈ {1, 2, 3, 4, 5, 6, 7, 8}
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5.6 Summary

Results of hardware implementation:

we reported hardware specification of IPMC algorithm in Table 5.2. The full block

diagram and schematic in the Altera Quartus tools is located in Figure 6.5. The IPMC

algorithm consumed total logic utilization by 5,948/41,910 logic elements and total

registers by 2,138. The throughput of this algorithm is 5 Gpixels/s and operated at

88 MHz. This architecture cost the power of 50 mW for encoding 3840 × 2160 pixels,

where the SR is fixed at 1/4. Lastly, we provided top-level timing diagram of BCIS

and IPMC algorithm in Figure 5.12.

Table 5.2: Hardware implementation summary

Evaluation device Altera Cyclone V

Technology TSMC 28nm low power

ADC resolution 16 bits

Resolution 3840 ×2160
Maximum frequency 88 MHz

Logic utilization/ Total logic gates 5,948/41,910

Total registers 2,138

Sampling ratio 1/4

Streaming package length 2.0736 Mbits/frame

Throughput 5 Gpixels/s

Core power consumption 50 mW

5.6 Summary

BCIS is an innovative approach, in which turned conventional image and video system

upside down. In this work, we closed the gap of compression performance between

these BCIS and conventional systems. Our proposal capitalizes on a good pair of sens-

ing matrix and the IPMC algorithm, which gave an extra compression performance

to the traditional CS paradigm. Further, our proposal gave the highest compression

performance compared to state-of-the-art works, which gradually closing the possibil-

ity gap to replace image and video acquisition system with BCIS and novel coding

algorithm.
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6

Temporal Redundancy Reduction

in Compressive Video Sensing by

using Moving Detection and

Inter-Coding

In wireless surveillance camera (WSC) application, the scene could be unchanging for

hours. Thus, wasting power and bandwidth consumption. Temporal redundancy has

become primary concern to reduce power and bandwidth consumption. However, exist-

ing temporal redundancy reduction algorithm has high computational complexity. By

changing the sampling method on CMOS image sensor (CIS) could reduce computation

complexity, power, and bandwidth consumption using compressive sampling (CS). It

is signal acquisition technique for simultaneous data sampling and compressing. The

theory asserts that CS promised to reduce A/D sampling rates without adversely af-

fecting signal recoverability. Furthermore, amount of measurements is reduced during

acquisition that is no additional compression algorithm. In this paper, we proposed

block-based measurement coding framework by reducing temporal redundancy for com-

pressive video sensing. The transmitter can minimize bandwidth usage by finding the

temporal redundancy on measurement based on three consecutive frames differencing

method. Moreover, we used local adaptive threshold to extract useful measurement

while skipping redundancy on the frames. Hence, we reduce bandwidth usage by trans-

ferring only information about the change in the scene. The receiver will compensate
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for the skipped measurement with previous measurement on the same location of the

frame. We recover a signal using 1-minimization via primal-dual (PD) interior point

algorithm and transform by using inverse fast Walsh-Hadamard transforms (IFWHT)

with overlapping reconstruction to reduce staircase artifact while keeping the details.

We demonstrated results on six surveillance video sequences. our proposal yields trade-

off results in PSNR at 38.49dB, SSIM at 0.92, and BPP at 0.31 bpp, where sampling

rate equal to 1⁄2.

6.1 Introduction

Compressive sensing is a signal acquisition and compression technique that allows for

the efficient acquisition and reconstruction of a signal from a small number of mea-

surements obtained by linear projections onto a sparse signal. Many works used intra

prediction-based measurement coding to further compress the measurements. In this

paper, we proposed using moving detection and inter-coding to reduce temporal re-

dundancy in compressive video sensing. Firstly, the moving detection is performed

coding area extraction using local adaptive threshold to classify the measurement with

an association of error distinction. However, false positive detection could be occurred

randomly, which transmission cost can be increasing uncertainty. In order to reduce

transmission cost, the adaptive quantization parameters are adjusted by how frequently

the area is detected. Moreover, we further compress the detected area by encoding the

difference of current measurement and the best matching measurement in neighboring

frames. Finally, an efficient recovery algorithm of sparse signal is performed by using

ℓ1-minimization via primal-dual interior-point algorithm and reconstructed by inverse

fast Walsh-Hadamard transform with horizontal kernel filter to prevent staircase ar-

tifacts simultaneously. The experimental results show that our proposal can greatly

reduce bandwidth usage in terms of BPP by 63.15%, improve in PSNR by 1.56dB, and

SSIM by 14.81% on average when compared to the state-of-the-art.
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6.2 Propose temporal redundancy reduction by using mov-

ing detection and inter-coding algorithm

Consecutive frames’ information is usually similar, resulting in temporal redundancy.

To further reduce the complexity, background subtraction is the most straightforward

method for analyzing temporal variability and extracting the moving object of a pixel.

However, because data is represented as a compressed vector of pixels domain, it is

impossible to directly apply existing classical techniques.

System overview

Figure 6.1: Three consecutive frames with static and region of moving components

We divided the measurement type into two parts: static measurement, which is non-

moving, and dynamic measurement, which is moving on the pixel domain. To begin,

we must calculate the mean square error between the current measurement Yt and the

predicted measurement Y predicted (MSE). We used local adaptive thresholding to

classify the measurement data with the association of error distinction independently,

which resulted in a more precise classification than global thresholding. If the difference

is not greater than or equal to the threshold, we can conclude that the current Yt is a

static measurement. Otherwise, dynamic measurement is used. As a result, changing Yt

causes objects to move in the pixel domain (e.g. illumination change or moving parts).

Lower than the threshold will result in a background or redundant object that must

be skipped. To notify the receiver that the transmitter omitted some measurement,
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we must include SkipFlag in the transmission packet by setting SkipFlag to ”1.” The

receiver will then compensate for the missed measurement using non-moving parts.

Otherwise, SkipFlag will be set to “0,” which means no skip. To reduce bandwidth

usage and packet length even further, we used 8-bit quantization to perform left and

right shift on Yt bit patterns, resulting in Yq. Furthermore, we reduced the number of

bits on data streaming required to stream and store a packet before transferring over

a communication channel by using Huffman coding.

Measurement modeling

Because the image has varying environmental conditions from time to time and no

ground truth is available, it is necessary to model statistical measurements on each

frame. We cannot use current measurements to create a statistical measurement model

for the next frame. Because measurement is a sum of pixels in compressed form, it may

not always contain the exact non-moving part of the pixel domain. Because every po-

sition on a measurement is generally self-related, using an existing denoising algorithm

will affect detection and reconstruction results. We used three consecutive frames to

model statistical measurement in this work. By locating the smallest difference between

predicted and actual measurements Ypredicted. To begin, we stacked the dequantized

measurements of three consecutive frames denoted by Ydequantized, Ydequantized−1, and

Ydequantized−2. Second, as Ycandidate, we chose the candidate with the lowest difference

between measurement in stack and Ydequantized via MSE. Finally, the new Y predicted

can be computed by averaging the Ydequantized and the lowest different Ycandidate, see

Algorithm 1.
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Algorithm 1: Temporal Redundancy Reduction for Residual Extraction

Input: rows, columns, colors, Qp, Yq, SkipF lag;
Output: Yquantized and SkipF lag;
for k ← 0 to colors do

for k ← 0 to colors do
for i← 0 to rows do

for i← 0 to rows do
finding the difference between Yestimate(i,j,k) and Yt(i,j,k) via MSE

if difference ¿ Thresholdi,j,k then
Yquantized ← quantizeYt(i,j,k)withQp

Transfering Yquantized where SkipF lag = 0

else
Break and go to the next YT

end

end
Ydequantized−2(i,j,k) = Ydequantized−1(i,j,k) = Ydequantized(i,j,k) //Stack
swapping

Ydequantized(i,j,k) = dequantize Yquantized with Qp

Finding lowest different between measurement in stack and Ypredicted
through MSE as Ycandidate

Ypredicted(i,j,k) ← average of Ypredicted(i,j,k) and Ycandidate
Threshold(i,j,k) = mean Yestimated(i,j,k)

end

end

end

where rows are the height of the block after it has been divided; columns are

the width of the block after it has been divided; colors are color planes (default=1,

grayscale); The quantization parameters are denoted by Qp. Y t denotes current mea-

surement, while Yquantized denotes YT after quantization. SkipF lag equal to 0 is non-

skip (the default), and SkipF lag equal to 1 is skip.

Local Adaptive Thresholding

In order to account for variations in measurement, local adaptive thresholding has

become primary method to classify the measurement. Since all of measurement in

one frame contained different level of illumination and object in pixel domain. Global

thresholding would be failed on adaptive environment such as climate change or camera

shake caused by unstable camera mount, which is always happen in urban environment.

Moreover, it also sensitive to noise and difficult to initialize threshold value. Unlike
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6.2 Propose temporal redundancy reduction by using moving detection
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local adaptive thresholding, where threshold values are chosen independently. It is

allowed BCS can operated automatically with nonuniform illumination where a global

thresholding technique will not work satisfactorily. We can calculate threshold values

of each block by finding an average mean of Ypredicted.

Skipped Measurement Compensation and Sparse Recovery

When SkipF lag is equal to 1 and the sum of Yq is equal to 0, the receiver will com-

pensate for the missing block with information from the previous measurement on the

same frame location. On the other hand, if SkipF lag is equal to 0 and the sum of the

elements of Yt is non-zero, we can directly proceed to the optimization and reconstruc-

tion algorithm while storing patch measurement into buffer for an incoming frame. The

k-sparse signal recovery is performed by a well-known solver known as l1-minimization

via PD interior point algorithm. The recovery process can be very efficient in terms of

computational speed per frame by using block-based CS. To avoid staircase artifacts,

IFWHT has been chosen to transform the signal back into the image using overlapping

reconstruction, as shown in Algorithm 2.

Algorithm 2: Missing Measurement Compensation and Sparse Recovery

Input: rows, columns, colors, Qp, Yq, SkipF lag;
Output: Image;
for k ← 0 to colors do

for k ← 0 to colors do
for i← 0 to rows do

if SkipF lag == 1 then

Y ′
(i,j,k) = Ŷ ′

(i,j,k)

else

Ŷ ′
(i,j,k) = Yquantized(i,j,k) dequantization by bitwise shift with Qp

Ŷ ′
(i,j,k) = Y ′

(i,j,k)

end

end

end

end
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6.3 Experimental results

6.3 Experimental results

We demonstrated a block-based measurement coding framework for compressive video

sensing by reducing temporal redundancy using 8-bit six surveillance video sequences

with three crowded and uncrowded people. We sampled an entire scene by dividing

it into non-overlapping blocks and sampling with the same operator. To classify the

change in measurement, we used local adaptive thresholding. We used 8-bit quanti-

zation on bit patterns of measurement to further reduce bandwidth usage and packet

length. Furthermore, we reduced the number of bits on data streaming required to

stream and store a packet before transferring to the receiver using Huffman coding.

Spare recovery is performed using ℓ1-minimization and IFWHT transforms with over-

lapping reconstruction to reduce staircase artifacts while preserving details.

6.4 Summary

We demonstrated that using moving detection and inter-coding for compressive video

sensing can further reduce temporal redundancy. Our proposal is fast in restoration,

has good visual qualities, and significantly lowers BPP. According to the experimental

results, the encoder can detect moving objects and recover the test scenes accurately.

The initial frame and environmental noise had no effect on the performance of moving

detection. Furthermore, by compressing the detected area further, we can significantly

reduce bandwidth usage. For a perceptual metric that quantifies image quality degra-

dation, the coding efficiency and performance are measured in terms of PSNR, BPP,

and SSIM. This proposed method can reduce sampling costs and reduce communication

and storage burdens while achieving comparable estimation performance, resulting in

a simple approach against bandwidth usages.
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6. TEMPORAL REDUNDANCY REDUCTION IN COMPRESSIVE
VIDEO SENSING BY USING MOVING DETECTION AND
INTER-CODING

Figure 6.4: Simulation results of proposed temporal redundancy reduction with crowded

of people by using VIRAT, AVL-Town Centre, and WILDTRACK sequences, respectively.

The first row is the ground truth. The second row is residual results of moving detection

in pixel-domain. The third row is residual motion in pixel-domain. The fourth row is fully

reconstruction results. The fifth row is crop results to show the remaining details, where

b× b = 16× 16, Qp ∈ {2, 4, 6, 8}, and SR = 1⁄2
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Figure 6.5: The visual comparison among three methods with our proposal using WILD-

TRACK sequence. The top row is the original scene. The second row is residual motion in

pixel-domain. The third row is fully reconstruction results in pixel-domain. The fourth row

is cropped and zoomed results for comparing the remaining details, where b× b = 16× 16,

Qp ∈ { 2, 4, 6, 8}, and SR = 1⁄2
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7

Multiple Candidates Based

Hybrid Hierarchical Search for

Compacting Compressively

Sensed Video

Compressive sensing is a simultaneously signal acquisition and compression technique

for efficiently acquiring and reconstructing a signal from a small number of measure-

ments, which can be obtained by linear projections onto sparse signal. In recent years,

spatial and temporal redundancy in measurement has become a primary concern. In

this paper, we proposed hybrid three levels hierarchical search block matching algorithm

with multiple vector candidates to reduce bit-rate consumption and forbidden compu-

tational cost. The multiple vector candidates technique can increase match percentage

and reduce erroneous match at highest level. Moreover, we introduce termination mech-

anism to stop further search in vector as soon as it might be led to erroneous in lower

levels. The experimental results show that our proposal can greatly reduce bandwidth

usage in terms of BPP by 64.15%, improve in PSNR by 0.48dB, and SSIM by 1.16%

on average when compared to the state-of-the-art works.
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7.1 Introduction

The conventional method that we used nowadays for signal acquisition called Nyquist

Shannon sampling theorem is inefficient because the signals of interest contain only

a small number of significant frequencies relative to the bandlimited. Therefore, we

need to oversample underdetermined signals in a large portion in the first place, reduce

redundancy of minimal process data and represent in more compact format such as

JPEG, resulting in high redundancy of compression algorithm, implementation com-

plexity, and memory consumption. Compressed sensing or compressive sensing (CS)

is a signal acquisition technique for efficiently acquiring and reconstructing a signal in

mathematically sophisticated approach, by finding solutions to underdetermined lin-

ear systems (27). Noted that, CS is not a certain data compression methodology in

information theory perspective, but it is dimensionality reduction in the first place we

sample target signal. CS-based CMOS image sensor (CS-CIS) has gained significant

interest in the past few years. It can greatly reduce analog-to-digital conversion cir-

cuits (ADCs) sampling rate, on-chip processing unit complexity, storage requirement,

and ready to transmit right from sensors compared to conventional signal acquisition

method using Nyquist-Shannon rate. CS-CIS performs acquisition and compression

simultaneously on focal plane and transfers all heavy computation burden components

to decoder, where the measurement streams can be processed and analyzed with unlim-

ited resources, resulting in a low-complexity encoder (18). In recent years, spatial and

temporal redundancy in measurement has become a primary concern, which needs to

be further compressed. However, it is impossible to apply an existing multimedia com-

pression algorithm into CS since the measurement is represented in compressed vector

form, which its length can be varying. Therefore, there is a demand for compression

algorithm in the measurement domain to reduce spatial and temporal redundancy,

transmission cost, and power consumption. Several works introduced a coding method

to further reduce spatial redundancy in measurements before transferring over commu-

nication channels while still maintain visual quality. J. Zhang, et al., have proposed a

novel coding strategy for block-based compressive sensing, called spatially directional

predictive coding (SDPC), which efficiently utilizes the intrinsic spatial correlation of

natural images. For each block of compressive sensing measurements, its optimal pre-

diction is selected from a set of multiple prediction candidates that are generated by
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four designed directional predictive modes (49). Jian bin, et al., also proposed four

modes of intra-prediction with specific rows modification of random measurement ma-

trix to gain boundary information from pixel-domain. It is allowed intra-prediction to

generated predictive candidates accurately. This proposed can greatly reduce band-

width usages when compared to other methods. However, it has degradation in image

quality due to the modification of measurement matrix (118). In our previous works,

we proposed hardware friendly measurement coding algorithm to further improve cod-

ing and transmission efficiency by using intra-prediction and partial Walsh-Hadamard

to reduce the spatial redundancy in measurement with neighboring features. Our pre-

vious experimental results can reduce bit-rate in terms of bpp by half and improved

image quality when compared to above methods (73). However, most of the existing

works only focus on reducing the spatial redundancy while there is higher temporal

redundancy in video transmission, in which mandatory reduction in frame-to-frame

rather than being neighbor-to-neighbor manner. In this work, we proposed hybrid

three levels hierarchical search block matching algorithm with multiple vector candi-

dates (H3L-HSBM) for motion estimation and compensation to reduce an erroneous

match in higher level, bitrate, and increase match percentage. Moreover, we introduce

termination mechanism to stop further search in vectors as soon as it might be led to

erroneous in lower levels. In such a case that some vectors have been terminated, the

algorithm will dedicate computational resources to the remaining vectors. Thus, the

computational resources would not be wasted and increase match percentage in the

remaining vectors, resulting in hybrid algorithm compared to existing algorithms such

as exhaustive search block matching (ESBM) and three levels hierarchical search block

matching algorithm (3L-HSBM).

7.2 Analyze of extending the existing pixel-domain mo-

tion estimation algorithm to measurement domain

In pixel-domain, the procedure of a block-matching algorithm is to find the best

matched displaced block from previous reference frame, within a designated area, for

each b×b pixels in current frame. In CS camera, however, the pixel information cannot

be represented individually. Moreover, measurement is sampled in block-based manner

and represented in k-sparse vector length of m, which is ambitious to determine the
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displacement. To determine the difference of k-sparse, we adopted a straightforward

method called Manhattan distance (MD) to find minimal distortion in designated area

for each candidate location (u, v) area as following:

MD(u, v) =

b∑
i=0

b∑
j=0

|Yt(x+ i, y + i)− Yt−1(x+ i+ u, y + j + v)| (7.1)

where (x, y) is the coordinate of the current block Yt. The values of u and v are limited

between −d to d, which (x + u, y + v) is valid candidate position. To the best of our

knowledge, ESBM yields the best performance in terms of best-matched percentage and

bit-rate reduction. The searching mechanism has been demonstrated in Figure 7.1.a.

Figure 7.1: Illusions of block-matching searching path of (a) ESBM, (b) HSBM, and (c)

MCH-HSBM

ESBM offered the best match candidate at 225 boxes but slow in searching process

when the search range −d, d is equal to 7; HSBM offered faster searching process at 25

boxes but worst in matching performance when the search range −d, d = 7 (highest),

4 (middle), and 1 (lowest) and searching location of each levels equal to 9 as show in

7.1.b. HSBM seems to be faster than ESBM in searching time but lower in bit-rate

reduction performance. In this work, since Walsh-Hadamard sequency-order offered

low frequency sampling pattern at y1 called measurement matrix features, which is a

summation of all pixels in range of b × b. By using only y1 divined by total pixel in

b × b is enough to determine the displacement. Hence, we can reduce average filter in

hardware level implementation. Noted that, other measurement matrices rather than

Walsh-Hadamard sequency-order can use equation 7.1 with additional average filter.

Therefore, our proposal hierarchical search block-matching can offer lower computa-

tional complexity and a large degree of flexibility compared to other algorithms.
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7.3 Propose multiple candidates based hybrid hierarchical

search for compacting compressively sensed video

Since both ESBM and HSBM have their own advantages and disadvantages. In this

work, we introduced MCH-HSBM as optimal solution for motion estimation and com-

pensation to reduce an erroneous match at higher level, bitrate, and increase match per-

centage simultaneously. The early termination mechanism is proposed to stop searching

in branches as soon as it might be led to erroneous in lower levels. In such a case that

some branches have been terminated, an algorithm will dedicate computational re-

sources of terminated branch to help the remaining branches as shown in 7.1.c. The

MCH-HSBM algorithm is proceeding as four following steps: Firstly, we assigned the

common search range for three levels searching, where −d, d = 7 (highest), 4 (middle),

and 1 (lowest) and searching location of each levels equal to 9; Secondly, we find the

minimal distortion block between present frame and previous frame in designated area.

The algorithm would perform multiple vectors searching to reduce erroneous of block

matching, which the number of vector candidates denoted by Vc; Thirdly, we used

sorting algorithm and selected the minimum Vc values to implement early termination

mechanism, in which to stop searching in the path that might propagate the cause of

erroneous to lower levels; Finally, the algorithm will return all possible candidate values

and locations. The residual given by Yr will be calculated by subtracting Yt with final

candidate Ytlow (u, v) multiplied with Φ to generate predictive candidate as following:

Yr = Yt(x, y)− (Ytlow(u, v)× Φ) (7.2)

However, since we implemented MCH-HSBM with the measurement that sampled in

non-overlapped block-based manner. Thus, the best match candidate might be located

between two candidate blocks. The first candidate by Ytmid
umid, vmid and the second

candidate is obtained by lowest levels given by Ytlow ulow, vlow. The final result will be

judge by normalizing two candidates and find the minimum measurements as residual

given by Yr. If Ytlow is less than Ytmid
, Yr will be equal to Ytlow . Otherwise, Yr will be

equal to the average of Ytmid
and Ytlow multiplied with Φ.
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7.4 Experimental results

We demonstrated and compared our proposal with state-of-the-art works by using two

video sequences consisted of Touch down for high motion test and WILD for low motion

test. The video resolution is 1280 × 720. We adopted uniform scalar quantization

(SQ) to quantize the measurement before being transfer to communication channel, in

which each sample value is rounded to the nearest value from a finite set of possible

quantization levels given by 2bits. We fixed quantization parameter at 4-bit to serve

ordinary media information. The entropy encoding can be performed by using Huffman

coding. The algorithm required 16-bits overhead for each block depends on designated

searching area and hierarchical level (for instance, if block size is set to be 16 × 16,

searching area is set to be 7, and three levels of hierarchical then the overhead is equal

to 16/256 = 0.0625 bpp). Since we used y1, which is measurement matrix feature to

find the displacement and calculate predictive candidate. Therefore, it is unnecessary

to store an entire frame of measurements, resulting in low memory utilization. our

proposal is outperformed in both high and low motion scene.

The multiple vector candidates with early termination mechanism yield trade-off

performance in total search boxes, memory consumption, and bitrate reduction. The

simulation results in Table 7.1 and Table 7.2 show that MCH-HSBM is outperformed

when Vc equal to 3, which it can improve PSNR by 0.48 dB, SSIM by 1.16%, and

bit-rate reduction by 88.49% on average compared to state-of-the-art works.

7.5 Summary

Multiple candidates based hybrid hierarchical search (MCH-HSBM) is proposed for

compressively sensed video compacting, which significantly reduces bitrate while main-

taining good visual quality. Furthermore, using the measurement matrix feature can

reduce hardware resources and implementation complexity.
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7.5 Summary

Table 7.1: An average PSNR (dB), SSIM, and bitrate (bpp) comparisons of 100 frames

using Touch down sequence

Block size 16× 16 16× 16 16× 16

Sampling rate 50% 50% 50%

Sensing matrix Modified DCT Modified DCT
Walsh-Hadamard

Sequency-order

Coding method Intra Intra Intra

Candidate vector - - -

Search vector - - -

Search area - - -

Search boxes - - -

Quantization

method
Scalar Bit-shift Bit-shift

Quantization bit 4 4 4

Transformation

basis
IDCT IDCT IFWHT

Post-processing
Median

filter

Horizontal

kernel filter

Horizontal

kernel filter

Avg. PSNR (dB) 33.74 37.76 36.94

Avg. SSIM 0.83 0.93 0.93

Avg. Bitrate (bpp) 2.84 1.99 0.98
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Table 7.2: An average PSNR (dB), SSIM, and bitrate (bpp) comparisons of 100 frames

using Touch down sequence (continue)

This work

Block size 16× 16 16× 16 16× 16

Sampling rate 50% 50% 50%

Sensing matrix
Walsh-Hadamard

Sequency-order

Walsh-Hadamard

Sequency-order

Walsh-Hadamard

Sequency-order

Coding method MEMC + Inter MEMC + Inter MEMC + Inter

Search vector Exhastive 1 3

Search area 16× 16 16× 16 16× 16

Search boxes 255 25 54

Quantization

method
Scalar Scalar Scalar

Quantization bit 4 4 4

Transformation

basis
IFWHT IFWHT IFWHT

Post-processing
Horizontal

kernel filter

Horizontal

kernel filter

Horizontal

kernel filter

Avg. PSNR (dB) 37.22 37.24 37.24

Avg. SSIM 0.94 0.94 0.94

Avg. Bitrate (bpp) 0.36 0.41 0.36
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8

Measurement Coding Framework

for High-Resolution Compressive

Imaging

Compressive imaging system employs a simultaneous sensing and compressing scheme

to provide a novel imaging system for multimedia. It enables high-resolution image

sensors to perform better in terms of lower read-out latency and lower power con-

sumption of analog-to-digital converters, which dominate the power of sensing systems.

This system digital output is not pixels as in traditional imaging systems, but rather

a compressed vector called measurements. There are two major challenges in design-

ing a compressive imaging system. To begin, the sampling rate has an effect on the

reconstructed image quality, and most existing sensing matrices cannot produce good

image quality at very low sampling rates. Second, there is redundant information in

RAW measurements because the sensor measures the same pixel several times to gen-

erate output. In this paper, we propose a measurement coding framework comprised

of intra-inter coding, quantization, and entropy coding to improve RAW measurement

compression performance. We test the performance on a variety of 4K datasets. We

improved image quality in PNSR and SSIM by 8.5 and 5.5 %, respectively, in exper-

imental results. Furthermore, we reduced bpp by 40% when compared to previous

works. This proposal provided an efficient sensing matrix and high compression per-

formance, allowing us to revolutionize the next generation of image/video acquisition

systems.
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8.1 Introduction

Modern image sensors capture the light and output as RAW pixel data. With higher

and higher resolution requirement, the throughput can significantly increase by a large

number of pixels. To reduce the data size, image and video coding algorithms are

mandatory such as JPEG/JPEG2000, JPEG-XR, JPEG-XS, advanced video coding

(AVC), high-efficiency video coding (HEVC), and versatile video coding (VVC). How-

ever, the complexity can be reached up to 10 times higher on each generation in software

and hardware implementation. All data compression algorithms relying on sparsity by

reducing spatial and temporal redundancy, whereby a signal is compressed more ef-

ficiently in terms of the sparse vector of coefficient using a generic transform basis

such as discrete cosine transform (DCT)—a variant of Fourier transforms or discrete

wavelet transform (DWT), which is lossy. Thus, we all question if we will perform lossy

compression plainly to satisfy low bit-rate.

8.2 Compressive sensing theorem

Recently, the fundamental advances in mathematics have turned the conventional

paradigm upside down. Instead of collecting high redundant pixel data and then com-

pressing, it is now possible to acquire lower dimensional pixel data and then solve the

sparest signal consistent, resulting in higher dimensional pixel data. This paradigm

called “compressed sensing” or ”compressive sensing” (CS) (18).

CS is built upon two major fundamental conditions consisted of sparsity and in-

coherent (98) (19). There are essential conditions in order to apply CS to specific

applications. First, a signal characteristic must be sparse when expressed in a specific

orthonormal transform basis. This characteristic implies that only a few coefficients

would contain the majority of the signal information. It can be expressed by:

x = Ψθ (8.1)

where x ∈ Rn×1 is the vectorized signal and θ ∈ Rn×1 is the sparse vector that contains

the projection of x in the basis Ψ ∈ Rn×n. The theory asserts that incoherence is key

associated to the quality of measurements and how the signal is sampled. Therefore,

the sensing matrix Φ ∈ Rm×n used to sample x must have low coherence with Ψ.

The theory asserts that Φ can be obtained by various random distribution such as
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Bernoulli, Gaussian called random sensing matrix (RSM). However, the idea of using

RSM in multimedia has been drawbacks because it generates a whole new sensing

matrix for each frame, resulting in uncontrollable quality.

We obtain measurements y ∈ Rm×1 by using underdetermined system project to x,

where the dimensional ofmmust be less than n, known as sampling rate (SR). However,

traditional CS is not suitable for a large scale problem due to long sensing time and

optimizing time. In (36) proposed alternative projection technique to traditional CS by

dividing an entire data frame into multiple non-overlapping blocks, where now n = b×b
and b is block size. Hence, each block will sample with smaller Φ. It can be represented

mathematically as:

yi = Φxi (8.2)

The measurement yi ∈ {ẏ1, ẏ2, ẏ3, ..., ˙ym} is measurement of compressible signal of

xi ∈ {ẋ1, ẋ2, ẋ3, ..., ẋn}, where i is the block order through raster scanning as shown in

Figure 8.2.

Figure 8.2: Block-based compressive sensing diagram.

To guarantee a good reconstruction, there is a hinge on a characterization of sensing

matrix called restricted isometry property (RIP) (14). We can determine the lower

bound dimensional of m for non-uniform distributed sensing matrix using the following

equation:

(1− δs) ∥x∥22 ≤ ∥Φ∥
2
2 ≤ (1− δs) ∥x∥22 (8.3)

where δs ∈ {1, 0}. However, theoretically, RIP condition is a rigorous metric, which does

not sound practical in some conditions of sensor design. Hence, it is challenging to use

RIP condition to judge if the sensing matrix is suitable for BCI system. We found that
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8.3 Compressive sensing based imaging technology

the simplest solution is to look at reconstructed images directly. By solving ill-posed

linear inverse problems via convex optimization to recover the signal, CS states that

if the signal x is compressible by sparse transform Φ and Ψ is highly incoherent to Φ.

Therefore, it can accurately recover from dimensional m of incomplete measurements

in the coefficient domain as:

x̂ = ΦΨ−1Ψx (8.4)

where Ψ−1 is inverse transform. y can recover by using a classical method via convex

optimization called ℓ1-minimization (12) (15) (17) as follows:

x̂ = argmin
∥Φx=y∥≤ε

∥x∥l1 , where

{
y = Φx

∥w∥ ≤ ε
(8.5)

which can simplify by

x̂ = argmin
1

2
∥Φx− y∥2 + λ ∥x∥1 (8.6)

Further, there are greedy-based recovery algorithms have been proposed for CS such

as orthogonal matching pursuit (OMP) (99) and its extension stage-wise OMP (28),

A*OMP (51), CoSaMP (64), and TwIST2 (8). In comparison with ℓ1-minimization,

greedy-based methods are generally faster because they take advantage of sparsity

structure via minimizing a sequence of subspace problem. However, it requires higher

prior-knowledge and a decent amount of measurements to make good reconstructed

results, in which some applications are impracticable to obtain such information if they

need to reduce SR at the sensing device frequently.

8.3 Compressive sensing based imaging technology

Several works investigated the possibility of CS-based imaging technology for multime-

dia and wireless surveillance system called compressive imaging (CI). By redesigning

the conventional imaging system, CI provides significant energy savings as it not only

cuts the RAW data size but also reduces transistor count per pixel, decreases pixel size,

increases fill factor, and simplifies ADC (74) (33) (43). Further, it gives a reasonable

bit-rate regarding image quality. Thus, theoretically, it does not require an additional

compression algorithm. A single-pixel camera is the first image sensor that successfully

developed using a digital micromirror device (DMD) (32). However, DMD-based CI
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required long sensing time when the resolution is relatively large. Hence, it is only

suitable for microscopy and microanalysis applications (70). Various signal gathering

technique for CI devices have been proposed such as voltage summation (21) and cur-

rent summation (47) in block-based manner, which are practical for multimedia com-

pare to single-pixel camera. Afterward, Oike and El Gamal proposed programmable

block-based CI (BCI) with per-column Σ∆ ADCs to reduce sensing time and increase

frame-rate up to 480 fps and 1920 fps when SR is equal to 1/4 and 1/16, respectively

(67).

BCI can outperform conventional image sensors (CIS) in lower resources and lower

power consumption. Nevertheless, the existing algorithms require relatively high com-

putational resources to recover RAW measurements. Up to the present time, it may

not be suitable for commercial multimedia. On the other hand, there are practical

applications for BCI such as wireless surveillance system (48) (1) and optical-based

on-board mission (44), where RAW measurements will only stream from image sensor

nodes to receiver (80). The monitoring site (i.e., police station or ground station) is

a good example that can recover RAW measurements with unlimited computational

resources and power.

Moreover, BCI allows spatial and temporal relationships among adjacent and pre-

vious frame to be exploited. Each element in RAW measurement carries a similar

amount of information about the signal being acquired. Hence, RAW measurements

are redundant (41). There is an open problem on BCI for multimedia that how to store

or transmit them in an efficient way?

8.4 Related works on measurement coding

Regarding CS theory, RAW measurements are reasonable to store and transmit as

they sampled, where the amount of bit-rate will correspond to SR. However, in some

applications, there is a retraction in dimensionality reduction. For instance, BCI for 4K

resolution has a special microarchitecture with SR reduction limit of 50% to preserve

high visual quality, resulting in approximately 13.27MB per frame (while conventional

CIS produces 26.54MB per frame). However, the amount of bit-rate is still higher

than the compressed media by pixel-based compression algorithms, which makes BCI

difficult to replace traditional approaches.
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To save storage space and reduce bit-rate in transmission, we state an opinion that

RAW measurements require a compression algorithm, which can produce a similar

factor of bit-rate reduction as using pixel-based compression algorithms.

Up to the present time, most of the CS literature has been devoted to study the

recovery of sparse signals from a small number of measurements, but less in compression

algorithms. By referring to the legacy vector compression algorithms, introduced for

lossless compression (84), and its extension for lossy compression (109). Although, it

is possible to use these legacy approaches to code RAW measurements. However, to

deploy in conjunction with BCI, it requires a precise design for each system specifically,

which is not convenient.

Scalar quantization (SQ) provided a straightforward approach. However, it has

been established that SQ is highly inefficient in terms of information-theoretic rate-

distortion (RD) performance (123) (22). By comparing to traditional source coding,

SQ gave low bit-rate utilize but high recovery failure rate. Additionally, it required

an iterative recovery algorithm to predict corrupted quantized measurements such as

quantized iterative hard thresholding (QIHT) (46), quantized compressed sampling

matching pursuit (QCoSaMP), and adaptive outlier pursuit for quantized iterative hard

thresholding (AOP-QIHT) (82). The quality degradation would emphatically appear

in the reconstructed image, which can be easily detected by human visual perception

as artifacts.

Differential pulse-code modulation (DPCM) was introduced to reduce bit-rate over

transmission channels (62). DPCM used single previously compressed measurement to

predict RAW measurement. However, the previously compressed measurement may

contain irrelevant information with no relation to RAW measurement, in circumstance,

resulting in unstable bit-rate reduction. Nevertheless, DPCM provided a practical

method with low recovery error rate. The work in (119) used lossy discrete cosine

transform (DCT) to encode RAW measurements. This approach achieved better cod-

ing efficiency than SQ and DPCM. Consequently, it had quality degradation higher

than SQ and DPCM. The work from (120) proposed an alternative approach from

most state-of-the-art works. They investigated in dead-zone of quantizer. They stated

that quality degradation mainly came from the quantizer and SR. Hence, in their stud-

ies, The system was designed strictly included an opinion on how to choose sensing
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matrix, the trade-off between quantization and SR, and provided reconstruction algo-

rithm using deep learning. They controlled the quantization step and SR to achieve

near-optimal quality at any given bit-rate. Hence, their approach can gain a better

balance between reconstruction quality and bpp. The directional compression scheme

introduced in (118). Spatially directional predictive coding (SDPC) is an efficient mea-

surement compression scheme that accomplished SQ and DPCM with a higher suc-

cessful recovery rate and low bit-rate. However, this work used Gaussian distributed

as sensing matrix, resulting in unstable quality and bit-rate utilization. Importantly,

they could not embed this kind of sensing matrix to hardware that can handle only

binary sensing matrix. Later, four directional intra coding with partial modification of

RSM was proposed (121). They were inspired by intra coding concept of H.264/AVC

in order to propose their algorithm. Subsequently, the partial modification of RSM was

used to obtained specific pixels for generating prediction candidates. They embedded

specific sensing patterns into RSM in order to gain boundary information while sensing

called hybrid sensing matrix (HSM). Afterward, they used gained information and then

multiplied it with HSM to generate prediction candidates. This work can significantly

reduce bit-rate compared to state-of-the-art works. Nevertheless, it cost tremendous

degradation to image quality due to the modification of sensing matrix that was not

satisfied by RIP conditions and inverse transformation.

In the past few years, in (31) (78) (90) proposed an idea that RAW measurements

were more compressible than those sampled by RSM and HSM, if sensing matrix made

of diagonal-constant matrix such as toeplitz, vandermonde polynomial, and alternant.

It was called a structural sensing matrix (SSM). Subsequently, this matrix construc-

tion gave stable image quality all the time because each block will always sample by

the same sensing matrix. The work in (73) motivated by pixel-based compression al-

gorithms, we introduced intra coding for BCI to reduce bit-rate utilization. We used

SSM made of Natural ordered Hadamard (NoH) to obtain boundary information from

neighboring blocks partially, producing three prediction candidates. This work could

overcome bit-rate lower than state-of-the-art works with reliable image quality. More-

over, in (72), we proposed an extension by coding only a high transition vector in

conjunction with inter coding. With similar technique as in (73), in this work, we

used sequency ordered Walsh-Hadamard (SoWH) properties to predict redundant mo-

tion from the successive frame. We could significantly overcome bit-rate utilization
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lower than state-of-the-art works. However, it introduced numerous image clipping

artifacts due to non-overlapping block-based sampling approach. The previous works

were mainly focused on bit-rate reduction while preserving visual quality. However,

we could not further reduce bit-rate and SR lower than 50% due to the unsatisfactory

image quality. Although, we added five more prediction candidates into intra cod-

ing in (73). However, reported in (94), it could not provide significant improvement

in compression performances compared to (73) (72), which averagely better by 1-2%.

Therefore, our previous methods reached the limit of bit-rate reduction.

8.5 Propose measurement coding for high-resolution com-

pressive imaging

In this work, we study the connected components among adjacent sensing pattern, in

which those RAW measurements sampled by high connected components sensing ma-

trix should provide higher image quality. We hypothesize that if each element in RAW

measurement carries information that associates each other, it should help recovery al-

gorithm to estimate the original signal precisely, even sampling at lowest bound of SR.

Therefore, we introduce a new sensing matrix that improves the reconstructed image

accordingly. Subsequently, we introduce a compression algorithm to compress RAW

measurements, resulting in lower bit-rate than SR control. The overall architecture

of the proposal can be seen in Fig 8.1. There are three primary signals that control

BCI, including column selector, row selector, and pixel selector. Multiple pixels are

sum and read-out by analog-to-digital converter several times regarding SR, resulting

in each element of RAW measurement. Afterward, BCI transfers RAW measurements

to measurement coding framework for further compressing. We compress RAW mea-

surements using intra-inter coding with multiple candidates from neighboring blocks.

Furthermore, we reduce the probability symbol by further quantizing compressed mea-

surements. Besides, we include inverse quantization inside the encoder to estimate

information for decoding at the receiver. Without estimating information between

both sides, the decoder will act as error accumulator, in which a single corrupt decoded

measurement can initiate recovery error to the whole image. Nevertheless, this frame-

work allows users to skip quantization for lossless storing and transmitting. Moreover,
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before storing or transmitting, compressed measurements can further reduce bit-rate

using entropy coding such as Huffman Coding or Arithmetic Coding.

The measurement encoder receives RAWmeasurement from the image sensor. RAW

measurements sampled by SSM show an identical significant correlation of data spa-

tially and temporally, which are highly compressible than RAW measurements sampled

by RSM. Therefore, we benefit from those identical amounts of information to deliver

intra-inter coding by estimating from the neighboring blocks. We note that our scheme

will not conduct in pixel-to-pixel but vector-to-vector due to the data structure of RAW

measurements. The prediction candidate of intra coding can select by finding minimum

difference among the surrounding neighbor measurements on the same frame. On the

other hand, the prediction candidate of inter coding can obtain by finding minimum

difference with multiple candidates from previous frame, as shown in Fig 8.3. An

Figure 8.3: Diagram of prediction candidate positions in current frame and previous

frame for intra-inter coding, respectively.

intra coding candidates are locate in 4 directions as shown in Fig 8.4a, in which a set

of candidates can obtain by yintra ∈ { ya, yb, yc, yd}. The inter coding candidates are

locate in previous frame, as shown in Fig 8.4b, in which a set of prediction candidate

can obtain from 9 directions consists of yinter ∈ { ŷâ, ŷb̂, ŷĉ, ŷd̂, ŷê, ŷf̂ , ŷĝ, ŷĥ, ŷî}. In our

study, we note that when the block size b×b is relatively large, by increasing prediction

candidates, it does not make any difference due to non-overlapped block partitioning.
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Figure 8.4: The neighbor prediction candidates that being used for (a) intra coding and

(b) inter coding.

To determine prediction candidate for each mode, it can be expressed by:

yintracompressed
= ∥yintra − y∥l1 (8.7)

yintercompressed
= ∥yinter − y∥l1 (8.8)

where ∥∗∥l1 is normalization by adding all absolute value of entire vector and find-

ing minimum difference among prediction candidates and current RAW measurement

y. The compressed measurement of each mode can denote by yintracompressed
and

yintercompressed
. Afterward, we normalize yintracompressed

and yintercompressed
to find the

smallest magnitude, and return as final compressed measurement ycompressed. It can be

expressed by:

ycompressed =


yintracompressed

, if
∥∥yintracompressed

∥∥
1
<∥∥yintercompressed

∥∥
1

yintercompressed
, otherwise

(8.9)

Nevertheless, if there is no previous frame available, or the current frame is key-frame,

the encoder will only perform intra coding. Note that,ycompressed need to store or

transmit along with side information compose of 1 bit for coding mode and 4 bits for

direction, which decoder will use this information to decode ycompressed. Moreover, we

introduce a memory model in order to store prediction candidates for the next y. The

memory model can calculate mathematically by

memoryintra = m×
(w
b

)
(8.10)
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memoryinter = m× (w × h)

b2
(8.11)

where w and h is width and height of frame, respectively. For instance, let the frame

size equal to 3840×2160, each measurement element required 16 bits. By using block-

based approach where b = 16, for each block b×b, then n will equal to 256. Let m = 16

for 93.75% reduction in sampling cost. For intra coding, the memory required is 7.68

KB per color channel. On the other hand, for inter coding, the memory required is

1,036.8 KB per color space. Finally, for RGB, we can estimate the total memory to

prediction candidates are approximately 4 MB.

Quantization

After obtained ycompressed, applies SQ further to reduce the probability set input symbol

for entropy coding, resulting in higher compression performance. SQ maps ycompressed

into a finite sequence of codewords with a quantization step size equal to ∆. It can be

expressed by

∆ =

⌊
max (ycompressed)−min (ycompressed)

2Qb

⌋
, (8.12)

yquantized =
⌊ycompressed

∆

⌋
(8.13)

where Qb is quantization bit. The quantized measurement can be denoted by yquantized.

Subsequently, inverse SQ maps yquantized into ydequantized that is an approximation of

ycompressed. It can be expressed by

ydequantized = ∆ · yquantized (8.14)

However, in general, it is difficult to determine how many bit ycompressed need for each

block since Qb can be vary depending on parameters from ycompressed. To determine

Qb, this work used SSIM to analyze quantization effect over ycompressed against Qb ∈
{1, 2, 3, 4, 5, 6, 7, 8} on multiple datasets. We reported an average results of each coding

mode separately, where SR = {3/4, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64}, b = 16, as shown in

Fig 8.5 and Fig 8.6, respectively. As the results show in Fig 8.7, Qb can choose flexibly

depending on the acceptable loss, in which high loss also corresponds to bpp reduction.

Further, quantization will give artifacts at the edge of the object. However, it is not clear
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Figure 8.5: An average results of quantization effect to reconstructed image against

multiple Qb on intra coding.

how to choose the best Qb automatically without seeing the reconstructed images. This

problem has been raised recently in which the most recent developed theorems stated

opinion in (4), (54), and (86) that it should be about log2(m). Lastly, this proposal

allows users to skip SQ for lossless storing and transmitting. To further reduce bit-rate,

yquantized can further compress by Huffman Coding or Arithmetic Coding.

8.6 Experimental results

In this section, we demonstrated the proposal applicability and versatility using PSNR,

SSIM, and bpp as quantitative metrics. The simulation results delivered by MAT-

LAB using l1-minimization via primal-dual interior-point methods. We used mul-

tiple 4K datasets (? ), including Beauty, ReadySetGo, Bosphorus, and HoneyBee.

First of all, we provided extensive simulation results of quality degradation char-

acteristics of ΦCoWH varying by different SR in Fig 8.8, where b = 16 and SR ∈
{4/4, 1/8, 1/16, 1/32, 1/64}.

It can be seen that when SR equal to 1/16, ΦCoWH provided the last acceptable

103



8. MEASUREMENT CODING FRAMEWORK FOR
HIGH-RESOLUTION COMPRESSIVE IMAGING

Table 8.1: SQ performance with various sensing matrices as baseline, where SR= 1/16,

b = 16, and Qb = 4.

Methods
Beauty dataset ReadySetGo dataset

PSNR (dB)/SSIM bpp PSNR (dB)/SSIM bpp

Bernoulli-SQ 34.09 / 0.78 3.9956 31.58 / 0.66 3.9958

NoH-SQ 34.66 / 0.80 3.9690 32.18 / 0.69 3.9691

SoWH-SQ 34.79 / 0.81 3.9689 32.96 / 0.75 3.9687

CoWH-SQ 34.21 / 0.85 3.9679 33.02 / 0.76 3.9680

Average as baseline 34.43 / 0.81 3.9753 32.43 / 0.71 3.9754

Methods
Bosphorus dataset HoneyBee dataset

PSNR (dB)/SSIM bpp PSNR (dB)/SSIM bpp

Bernoulli-SQ 32.59 / 0.80 3.9959 33.25 / 0.88 3.9959

NoH-SQ 33.03 / 0.71 3.9698 33.52 / 0.86 3.9696

SoWH-SQ 32.62 / 0.69 3.9698 33.86 / 0.87 3.9695

CoWH-SQ 30.67 / 0.66 3.9698 33.44 / 0.90 3.9692

Average as baseline 32.22 / 0.71 3.9763 33.51 / 0.87 3.9760
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Table 8.2: Intra coding performance comparison with state-of-the-art works consist of

DPCM-SQ (62), SDPC-SQ (116), In.4M.Pred.-HSM-SQ , In.3M.Pred.-NoH-SQ (73), and

In.9M.Pred.-SoWH-SQ (94), where SR= 1/16, b = 16, and Qb = 4.

Methods
Beauty dataset ReadySetGo dataset

PSNR (dB)/SSIM bpp PSNR (dB)/SSIM bpp

DPCM-SQ 34.77 / 0.79 1.4653 34.35 / 0.85 1.8434

SDPC-SQ 34.53 / 0.79 1.2386 34.06 / 0.82 1.5244

In.4M.Pred.-HSM-SQ 34.77 / 0.79 0.9863 36.04 / 0.92 1.2159

In.3M.Pred.-NoH-SQ 35.85 / 0.84 0.9202 36.04 / 0.92 1.1497

In.9M.Pred.-SoWH-SQ 37.13 / 0.86 0.6591 35.79 / 0.90 0.9104

This work-SQ 38.41 / 0.89 0.3781 35.54 / 0.89 0.6711

Methods
Bosphorus dataset HoneyBee dataset

PSNR (dB)/SSIM bpp PSNR (dB)/SSIM bpp

DPCM-SQ 35.24 / 0.93 1.7356 34.80 / 0.92 1.9188

SDPC-SQ 34.37 / 0.90 1.5224 34.44 / 0.92 1.7584

In.4M.Pred.-HSM-SQ 35.42 / 0.93 1.2813 34.83 / 0.92 1.5004

In.3M.Pred.-NoH-SQ 39.13 / 0.97 1.2995 35.75 / 0.94 1.4952

In.9M.Pred.-SoWH-SQ 40.37 / 0.94 0.9498 37.94 / 0.96 0.9644

This work-SQ 41.61 / 0.92 0.6001 40.14 / 0.98 0.4336
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Figure 8.6: An average results of quantization effect to reconstructed image against

multiple Qb on inter coding.

Figure 8.7: An example of quantization effect to reconstructed image against Qb using

ReadySetGo dataset.
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Figure 8.8: An example of quality degradation characteristics of ΦCoWH with 400%

zoomed results.

quality with less undersampling artifacts compared to 1/32 and 1/64. Therefore, This

proposal fixed SR at 1/16 to evaluate our proposal and compared it with state-of-the-

art works. This work used reproducible state-of-the-art codes. However, this proposal

adapted their quantization method to be SQ with a fixed Qb at 4 bits for general

quantization.
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Defining baseline with SQ

As the results show in Table 8.1, ΦCoWH overcame other sensing matrices such as

ΦBernoulli, ΦNoH , and ΦSoWH . ΦCoWH gave better PSNR than ΦBernoulli. However,

by comparing to ΦNoH and ΦSoWH , ΦCoWH produced slightly lower PSNR but higher

in SSIM. Besides, ΦCoWH gave the lowest bpp compare to the other sensing matrices.

Nevertheless, it seems that only SQ could not satisfy bpp reduction, which corresponds

to our stated opinion at the beginning that RAW measurements need other methods

to compress RAW measurement. At this stage, SQ is undoubtedly inefficient approach

for bpp reduction. Therefore, we used average SQ performance among various sensing

matrices as the baseline for each dataset. In which any measurement coding algorithm

must perform better than baseline.

Overall intra coding comparison with state-of-the-art works.

By comparing with baseline in Table 8.2, our proposal gave remarkable bpp reduction

averagely by 10 times lower with higher quality, which can notice by PSNR and SSIM.

By comparing to exiting DPCM-SQ and SDPC-SQ, which applied directional candi-

dates to encode the measurement. However, both DPCM-SQ and SDPC-SQ imple-

mented based on Φbernoulli. They could not control the consistency of the information

contained inside the measurement, resulting in less ability to reduce bpp. By statisti-

cal comparison in bpp reduction, our proposal accomplished DPCM-SQ and SDPC-SQ

averagely by 70% and 65% in bpp reduction, respectively. Additionally, by comparing

to the advanced scheme in sensing matrix and compression scheme, we accomplished

In.4M.Pred.-HSM-SQ averagely 58% of bpp reduction Further, by comparing with our

previous works such as In.3M.Pred.-NoH-SQ and In.9M.Pred.-SoWH-SQ, this work

accomplished them in averagely 57% and 40% of bpp reduction, respectively. It can

be said that modifying the structure of sensing matrix in order to obtain specific in-

formation to generate prediction candidates is not efficient. Moreover, adding higher

prediction candidates did not reflect to higher compression performance. Finally, we

provide extensive performance comparison curves in SSIM of our proposal among SQ,

baseline, and state-of-the-art works against multiple Qb = {1, 2, 3, 4, 5, 6, 7, 8} as shown
in Fig. 8.9 and Fig. 8.10, this proposal presented highest visual quality compared to

state-of-the-art works.

108



8.6 Experimental results

Figure 8.9: Example of quality comparison of propose measurement coding framework

among state-of-the-art works using Beauty dataset.

Figure 8.10: Example of quality comparison of propose measurement coding framework

among state-of-the-art works using ReadySetGo dataset.

Coding efficiency of intra and inter-prediction coding

Most exiting state-of-the-art works compressed RAW measurements using intra coding

and quantize with small Qb. However, this study found that RAW measurements can
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compress more efficiently using inter coding. Hence, by using intra-inter coding, it

should give higher bpp reduction while still maintaining image quality. In this section,

an experimental results of intra-inter coding for efficiently transmitting compressed

measurements to the receiver is provided. According to the demonstration in Fig

8.11, the prediction map is present, which prediction mode used to compress RAW

measurement. We demonstrate intra-inter coding in the long run by 100 frames using

high motion (ReadySetGo) and low motion (Beauty) datasets. Nevertheless, we set

up the experimental to transmit key-frame every 10 frames. In which measurement

coding framework will encode RAW measurement using intra coding. According to the

Table 8.3: Intra-inter coding performance of 100 frames in terms of PSNR (dB), SSIM,

and bpp.

Dataset PSNR (dB) SSIM bpp

Beauty 41.16 0.94 0.2159

ReadySetGo 38.63 0.94 0.4293

Bosphorus 40.77 0.97 0.3043

HoneyBee 40.56 0.98 0.2448

results shown in Table 8.3, by applying intra-inter coding to RAW measurements, it

can greatly reduce bpp by 40% compared the results in Table 8.2. Moreover, we can

increase PSNR and SSIM by 10% because RAW measurements that compressed by

inter-coding give relatively small residuals, which do not much disturb by quantization

as intra-coding. Lastly, we provided bpp comparison between intra-inter coding and

state-of-the-art works in Fig. 8.12 and Fig. 8.13. We note that only intra-coding

cannot deliver an efficient approach in bpp reduction. On the other hand, inter-coding

takes substantial benefit from a non-overlapping block-based partitioning to deliver

more efficient compression performance. Subsequently, we note that spiking bpp usually

happens when applying intra-inter prediction in conjunction with a non-overlapping

block-based partitioning. It depends on how best matched the candidate that encoder

can find on RAW measurement at that time. In general, intra coding will cause these

spiking behavior.
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Figure 8.12: Result of bpp produced during 100 frames among state-of-the-art works

using Beauty dataset, which consider as low motion sequence.

Figure 8.13: Result of bpp produced during 100 frames among state-of-the-art works

using ReadySetGo dataset, which consider as high motion sequence.
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8.7 Summary

Our proposal capitalizes on future high-resolution of faster imaging and efficient mul-

timedia system. The proposed sensing matrix gave a better sensing scheme, allowing

BCI to sample at lower SR than other sensing matrices. It allowed an image to be cap-

tured faster without ADC bottleneck. Subsequently, the proposed measurement coding

framework gave an extra compression performance. Hence, RAW measurements can be

stored and transmitted more efficiently than plainly using underdetermined systems re-

garding CS theory. The proposed measurement coding framework has low-complexity

and outstanding performance compared to state-of-the-art works. In summary, our

proposal can solve an occurring problem of conventional CIS design and high complex-

ity multimedia compression algorithms. It allows the next generation of image/video

acquisition systems to be revolutionized.
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9

Cube-based Video Coding

Framework for Block-based

Compressive Imaging

Block-based compressive imaging enables new video acquisition methodology while re-

ducing raw data size, theoretically eliminating the need for complex coding algorithms.

When transmitting raw data, however, the redundancy associated with random pro-

jection remains. This paper takes a fresh look at raw data structure by viewing it

as cube made up of multiple downsampled images rather than a vector. As a result,

we can view each individual data point as a pixel, allowing us to code more flexibly

and versatility than state-of-the-art works. Following that, we propose a tailored video

coding algorithm for this structure that includes directional 9 modes intra and inter

prediction with block-matching motion estimation, transformation, and quantization.

We evaluated coding performance using various 4K datasets, resulting in 60-65 % lower

bit-per-pixels while improving visual quality compared to state-of-the-art works.

9.1 Introduction

The traditional camera based on a hundred-year-old sampling theorem developed by

Whittaker–Nyquist–Kotelnikov–Shannon has resulted in a massive problem of redun-

dant data in image and video applications, which oversamples signal twice higher than

information rate. It necessitates the use of complex lossy coding algorithms to reduce
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redundancy. However, the most recent coding algorithms are going far beyond coding

efficiency; for instance, improving coding performance by 20% would cost roughly 50%

more complexity and resources, which is still a significant issue today.

Recently, a new camera architecture based on block-based compressed sensing (CS)

has gained popularity because it offers lower sampling costs, resulting in far fewer raw

data generated but sufficient to represent the original content (69) (7). CS is based

on the Johnson–Lindenstrauss lemma, which deals with low-distortion embedding of

points from high to low dimensions via random projection, resulting in a compressed

vector. It theoretically eliminates the need for coding algorithm. However, the recent

studies found that raw data from CS camera is still redundant in the form of linear

combination, potentially necessitating additional coding to reduce redundancy (110)

(102) (76).

This paper takes a fresh look at raw data by viewing it as cube made up of multiple

downsampled images rather than a vector. As a result, we can view each data point as

a pixel. Following that, we propose a tailored video coding algorithm for cube struc-

ture that includes directional 9 modes intra and inter prediction with block-matching

motion estimation, transformation, quantization, and entropy coding. When compared

to state-of-the-art works, this proposal provides a significant improvement in coding

performance and flexibility.

9.2 Early Works

At the first glance, scalar quantization (SQ) provided a straightforward and fast ap-

proach. By comparing to traditional source coding, SQ gave low bit-rate utilize but

high recovery failure rate. Differential pulse-code modulation (DPCM) was introduced

to reduce bit-rate over transmission channels for block-based CS camera (62). It com-

putes a difference relative to two inputs using the values of two consecutive samples of

previously coded CS data and raw CS data. The difference can be quantized further

in this scenario, allowing for an excellent way to incorporate a controlled loss in the

encoding. However, the previously compressed data may contain irrelevant informa-

tion about the raw CS data that follows. In this case, it will result in an unstable

bit-rate reduction, which can be reduced and increased at random. Later, spatially

directional predictive coding (SDPC) was introduced (117), which effectively used the
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inherent spatial correlation of raw CS data. The best prediction is chosen from a set of

prediction candidates generated by 4 designed directional predictive modes. This work

outperformed DPCM in terms of bit-rate reduction while maintaining visual quality.

Nonetheless, this work still remain recovery errors caused SQ. Furthermore, due to

the limitations of data structure of vector, this work was unable to add more predic-

tion modes. Directional 4 modes intra-prediction was proposed in (121). This work

was inspired by intra-prediction concept in conventional video coding algorithms. This

work embedded specific sensing patterns into the binary random sensing matrix to gain

boundary information while sensing called semi-structured sensing matrix. Afterward,

they used gained information and then multiplied it with sensing matrix to generate

prediction candidates. This work significantly reduced bit-rate. Nevertheless, it cost

tremendous degradation in image quality due to the modification of sensing matrix.

The works mentioned above have become an important fundamental foundation of

the most recent video coding algorithm for CS camera. The work in (73) proposed di-

rectional 4 modes intra-prediction by generating prediction candidates using the stable

structure of hadamard matrix, which partially points to the block boundary through

sampled data. This method was used for the first time without modification to sensing

matrix, and it performed previous works in terms of coding performance and provided

excellent video quality. Furthermore, this work was extended from the software to

hardware level. It turned out that it required far fewer resources and consumed far less

power than the traditional video coding algorithm when performed at 4K resolution

(71). The work in (95) then proposed directional 7 modes intra-prediction to reduce

bit-rate using a stable structure of sequence ordered walsh-hadamard as sensing matrix.

It significantly outperformed previous works by 15% lower bit-rate, while the coding

algorithm did not produce much compression artifacts to video.

9.3 Proposed Video Coding Algorithm

The majority of early works appear to have limited the functionality of coding algo-

rithms to specific sensing matrices. In this paper, we propose alternative data structure

to observe raw CS data, which we believe will provide the coding algorithm with greater

flexibility and universality. To begin, CS is a method for reducing the dimensional of

signal x with a length of n into linear combination signal of y with length of m, where
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m must be less than n. The process can be done through sensing matrix Φ with di-

mensional of m × n as shown in figure 9.1. However, look closely at the block-based

Figure 9.1: An illustrate of undetermined system.

CS procedure; an entire frame is partitioned into several blocks with size of b× b. An

elements in the block will be vectorized into x and iteratively linearized into element

of y via each 1D kernel order of Φ. It expects to obtain several downsampled images

corresponding to m as output by grouping the same element order from all blocks as

shown in figure 9.2. We called this data structure as cube. To be more clarify, we

demonstrate the procedure using 4K frame size of 2160 × 3840 pixels in figure 9.3. As

Figure 9.2: An example of block-based CS procedure, where the block size is set to be

2× 2, n = 4, m = 2, which generate 2 downsampled images.
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can be seen, the original frame has been downsampled into 135 × 240 × 8 pixels. It

achieves such a remarkable shift in perspective that we can now code raw CS data more

efficiently using techniques similar to conventional coding algorithms.

Figure 9.3: An example of a block-based CS downsampling procedure into a data cube

over a 4K frame, where block size equal to 16× 16 and m = 8.

Figure 9.4: A proposed framework architecture tailored to a data cube for compressive

imaging.

Following that, we propose a video coding framework tailored to these data struc-

tures, in which overall architecture can be seen in figure 9.4. Because the majority of

the information in each layer of cube is roughly the same, coding each layer separately

would result in redundant computation. As a result, we decided to average them into
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a single image and apply a coding algorithm to it. This method returns a prediction

candidate from the prediction candidate generator, which can be used to code the entire

cube indirectly.

Inside prediction candidate generator, we divide an image into multiple tiles with

size of 4×4. Then, we apply directional 9 modes intra-prediction in order to code image

spatially, which utilizes neighboring pixels to make a prediction candidate consisting

of Mode 0: vertical mode, Mode 1: horizontal mode, Mode 3: DC mode, Mode 4:

diagonal/left mode, Mode 5: diagonal/right mode, Mode 6: vertical/right mode, Mode

7: horizontal/down mode, Mode 8: vertical/left mode, and Mode 9: horizontal/up

mode, as shown in figure 9.5. The sum-of-absolute-differences (SAD) is used to find the

Figure 9.5: Standard 4× 4 block directional 9 modes intra-prediction.

minimum distortion by comparing the current block (CB) that is being processed with

reference blocks (RB) from each mode, which can describe by the following equation:

SAD =
∑∑

|CB −RB| (9.1)

In addition, we apply a block-matching motion estimation algorithm with inter-

prediction to code image temporally. The motion estimation comes with two modes:
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slow and fast mode. The slow mode performs exhaustive search motion estimation in

a specified area, whereas the fast mode performs multiple candidate three-level hierar-

chical search motion estimation, where v denotes the number of candidates. Same as

intra-prediction, this coding mode uses SAD to find minimum distortion between CB

and RB. Unlike the traditional approach, we modify the classical algorithm by employ-

Figure 9.6: Fast three-level hierarchical search motion estimation capable of stopping

motion vectors with v equal to 3, where (a) the top-level of hierarchical motion estimation,

(b) the middle-level of hierarchical motion estimation, (c) two motion vectors in the middle-

level of hierarchical motion estimation are stopped, (d) the lowest-level of hierarchical

motion estimation received computational resources to active motion vector, and (e) the

matched candidate is returned.

ing sorting algorithm, which allows algorithm to select new coordinate on each level by

looking at v first minimum distortion candidates between current block and references

blocks. The procedure is illustrated in figure 9.6.

The final candidate is determined by subtracting the prediction candidate from each

coding mode with the current block. The mode with the smallest residual magnitude

will be chosen as the final prediction candidate. The residual block is calculated by sub-

tracting the final prediction candidate from the current block. Furthermore, we apply
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the DCT transform to the residual block, allowing quantization to perform admirably

and simulating quantization loss when transmitting the coded block to the receiver. In

this work, we use a custom 4× 4 quantization table as shown in figure 9.7, where each

coding mode uses a different table. The quantization table is adjustable by multiplying

quantization parameter (Qp) for greater symbols reduction performance.

Figure 9.7: Custom 4 × 4 quantization table, where (a) quantization table for intra-

prediction and (b) quantization table for inter-prediction.

We embed decoder within a prediction candidate generator that also includes in-

verse quantization, inverse transformation, and a coded block restoration adder. The

output will be used to predict neighboring blocks. Following the prediction candi-

date generator, the final prediction candidate will be used to generate a transmittable

coded cube by subtracting with the entire cube, followed by DCT transformation and

quantization using the same settings as in the prediction candidate generator.

9.4 Experimental Results

In this section, we evaluate the proposed algorithm on 4K resolution datasets such as

Beauty, ReadySetGo, and Bosphorous (61). We use binary random sensing matrix,

where n = b × b = 16 × 16 and m = 64. We compare coding performance using a

variety of quantitative matrices, including PSNR and SSIM and bit-per-pixel (bpp).

To compare existing works, we run an experiment in two parts: intra-prediction only

and intra-prediction with inter-prediction. In Table 9.1, we compared our proposal

to state-of-the-art coding methods using 3 quantization setups via Qp. We set the

quantization bit to 4 bits for state-of-the-art works, as stated in reports.

Overall, the work of (a) performs insufficiently in terms of bpp reduction while

maintaining PSNR and SSIM because they only used a single prediction candidate

from previously coded CS data. The work of (b)-(e) uses an advanced coding algorithm
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Table 9.1: Intra-prediction performance comparison with the state-of-the-art on various

datasets, where b × b = n = 16 × 16, m = 64, (a) binary random matrix with DPCM-

SQ (62), (b) binary random matrix with SDPC-SQ (117), (c) binary random matrix with

modified-binary random matrix with 3 modes intra prediction-SQ (121), (d) hadamard

with 4 modes intra prediction-SQ (71), (e) sequency-ordered walsh-hadamard with 7 modes

intra prediction-SQ (95), (f) this work only intra-prediction with Qp = 3, (g) this work

only intra-prediction with Qp = 6, and (h) this work only intra-prediction with Qp = 9.

Coding

methods

Beauty dataset ReadySetGo dataset Bosphorus dataset

PSNR / SSIM / bpp PSNR / SSIM / bpp PSNR / SSIM / bpp

(a) 34.77 / 0.79 / 2.46 34.35 / 0.85 / 2.84 35.24 / 0.93 / 2.73

(b) 34.53 / 0.79 / 2.23 34.06 / 0.82 / 2.52 34.37 / 0.90 / 2.52

(c) 34.77 / 0.79 / 1.98 36.04 / 0.92 / 2.21 35.42 / 0.93 / 2.28

(d) 35.85 / 0.84 / 1.92 36.04 / 0.92 / 2.14 39.13 / 0.97 / 2.29

(e) 37.13 / 0.86 / 1.65 35.79 / 0.90 / 1.91 40.37 / 0.94 / 1.94

(f) 47.92 / 0.98 / 0.83 39.11 / 0.97 / 0.99 43.22 / 0.98 / 0.95

(g) 47.65 / 0.98 / 0.64 39.07 / 0.97 / 0.84 43.13 / 0.98 / 0.78

(h) 47.24 / 0.98 / 0.53 39.01 / 0.97 / 0.75 42.98 / 0.97 / 0.68

with intra-prediction to improve the performance of bpp reduction on each proposal by

increasing prediction modes and changing sensing matrices. PSNR and SSIM, on the

other hand, have not improved significantly. In contrast, our propose in (f)-(h) with

Qp = 3, 6, and 9 outperforms state-of-the-art works in PSNR and SSIM, resulting in

richer visual quality. Further, we can reduce bpp average by 60-65% across all datasets.

Furthermore, as shown in figure 9.8, we show the performance curve of recovery error

via mean square error (MSE) against multiple Qp ranging from 2 to 50, with a step

size of 2. We show the quality drop caused by quantization in 9.9, where the quality

drops and quantization artifacts begin to appear as Qp increases.

We present the experimental results of proposal, including intra-prediction and

inter-prediction in Table 9.2, where inter-prediction of (a)-(c) performed in slow mode

and (d)-(f) performed in fast mode with the same condition of Qp. It gave better bpp

reduction averagely by 48-50% compared to only intra-prediction approach in Table

9.1. We will note that the performance of each searching mode in inter-prediction can

be determined by downsampled image size, which means that if the frame size is not

large enough, it will be difficult to see the performance.
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9.5 Summary

Figure 9.8: Comparison graph of recovery error via mse and bpp reduction using Beauty

dataset in (a) and Bosphorous dataset in (b), where Qp ranges from 2 to 50 and step size

is equal to 2.

Figure 9.9: Remaining quality and quantization artifacts comparison of Readysetgo and

Bosphorous datasets under different setup of Qp ∈ 5, 25, 50.

9.5 Summary

This paper presents a video coding framework for compressive video sensing while also

changing the perspective from which we view raw CS data as a cube made up of multiple
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downsampled images rather than a vector. The proposed video coding algorithm for

the CS camera significantly improved coding performance and provided more flexibility

for future implementation. Notably, the video coding algorithm functionality will not

be constrained by the structure of sensing matrices, as is commonly found in state-of-

the-art works.
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Discussion

This section discusses CS thoughts on the future CMOS image sensor, as well as image

and video coding algorithms. First and foremost, we are well aware that the traditional

approach has reached its limits in terms of data acquisition and compression efficiency,

so we rarely use the entire RAW data as sampled. Each generation of algorithms was

designed to maintain an increasing screen resolution, such as HEVC, which was designed

for 1080p and 2K resolutions. Of course, it performed well at that resolution but poorly

at 4K and 8K, where VVC performs better, as we are all expected. However, following

AVC, which promised to be the last known software-based codec, all next-generation

codecs require specific encoder and decoder chips, primarily found as a co-processor in

CPU and GPU. They are expensive, and if we did not have programs that required co-

processor operation, we would never turn them on to say hello in practice. Currently,

we are all still using AVC, a video format that has been around for 20 years. The

major companies such as Microsoft, VLC, NHK, Sony, Apple, Netflix, and Google are

also aware of coding efficiency in both software and hardware, resulting in software-

based codec for both image and video such as JPEG-XS for XR/VR, VP9/10, and

AV1, where they do care less about compression ratio but lower latency and cheaper

in computational resources.

Nowadays, deep learning-based data compression algorithms have been successfully

implemented; however, the amount of data required to generate specific models un-

der strict conditions makes real-world applications difficult. For example, some deep

learning methods require at least one week to train a prospect model without know-

ing whether it will be successful or not; at this point, a massive amount of data has
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been sampled using the Nyquist-Shannon sampling theorem. We can say that tons

of data are required further to discard a small fraction of the target data. Further,

it requires high-end hardware to do this codec, such as GPU, which the bottleneck

problem can occur if we reduce the computational resources at the decoder. Hence, the

deep learning-based approach appears to be more inefficient and troublesome than the

conventional codec.

Later, the data acquisition model was changed from Nyquist-Shannon to CS, which

was recently and successfully implemented to make researchers aware of the root cause

problem. In other words, compression algorithms are proposed to solve an inefficient

data acquisition model in which we cannot store the RAW data. Nowadays, any data

can be acquired efficiently with less redundancy and without the need for additional

data compression. However, it should be noted that some codec is still required for

image and video applications that use CS camera because the amount of data is still

enormous when frame-rate is high; however, an algorithm complexity will be straight-

forward and possibly determined by the quality requirement.

This thesis was finally proven by applying CS to image and video applications to

solve problems in CMOS image sensors and alternate image and video coding algo-

rithms. Furthermore, a new perspective on CS data has been addressed in order to

effect a regime shift in which we should not have expected CS cameras to produce

vector data but volumetric data with depth proportional to the number of observa-

tions. Under various 4K datasets, the proposed algorithms can compress CS data in

real-time by software without the use of an expensive chip. Finally, the future direction

of this research field is provided. The high-level image and video coding framework are

written in MATLAB and Python3, but some back-end algorithms should be re-written

in C/C++ or FORTRAN for faster numerical computation. The sparse solver is then

written in Python3 and modified to accept infinity (Inf) and Not-a-Number (NaN)

conditions. It is generally unacceptable in computer programming, but it is required

in applied mathematics and convex optimization via linear programming. Moreover,

FPGA/ASIC implementation is greatly needed; however, it would be difficult to im-

plement floating-point following with Inf and NaN conditions so that the result may

be different. Here, I would suggest doing hardware/software co-design where we will

not transfer all of the algorithms to hardware, but reasoning divides the computational

section.
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Dissertation Summary

This section contains a summary of my works. In chapter 3, A novel sensing matrix

called Continuously ordered Walsh was introduced. It transforms binary sensing ma-

trix research by focusing to enhance worst-case sensing conditions, resulting in shorter

sensing times and huge improve in image quality. Apart from the breakthrough in bi-

nary sensing matrix, which served to improve the foundation theory of the compressive

sensing theorem. I discovered that some redundancy remained in the measurement

data across all sampling rates. As a result, when it comes to image and video applica-

tions, measurement data must be further compressed and placed in a suitable container

before being sent to the receiver. In chapter 4, 5, and 8, a vector-based image and video

coding algorithms were proposed that addressed both spatial and temporal redundancy

reduction by using intra-prediction and inter-prediction, respectively. In chapter 6, I

proposed a special module that only codes moving components in scenes. Later, the

modules were combined into single video coding framework for compressive imaging. It

achieved the highest novelty in video coding framework for compressive imaging, which

is still progressing as of the writing of this dissertation and has become a standard for

future improvement. In addition, I look into the possibility of hardware implementa-

tion in order to compare hardware complexity and implementation cost to traditional

hardware. In which the result turnout to be straightforward and cheaper in devel-

opment even demonstrated at the same resolution such as 4K and 8K. In chapter 7,

inter-prediction module was further improved in complexity and coding performance by

adding multiple candidates based hybrid hierarchical block-matching search algorithm.

This algorithm searches for the best match vector among neighboring blocks to the tar-

129



11. DISSERTATION SUMMARY

get block, resulting in better compression performance than co-location-based coding.

Furthermore, the algorithm can halt search vectors that are potentially unable to find

suitable candidates and redirect computation resources to other searching vectors. It

produced results similar to an exhaustive search but with a shorter coding time. In

chapter 9, the last chapter, takes a fresh look at raw data by viewing it as cube made

up of multiple downsampled images rather than a vector. As a result, we can view each

data point as a pixel. Following that, we propose a tailored video coding algorithm for

cube structure that includes directional 9 modes intra and inter prediction with block-

matching motion estimation, transformation, quantization, and entropy coding. When

compared to state-of-the-art works, this proposal provides a significant improvement

in coding performance and flexibility.
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[97] J. Tropp, M. Wakin, M. Duarte, D. Baron, and R. Baraniuk. Random filters for compressive

sampling and reconstruction. In 2006 IEEE International Conference on Acoustics Speech and

Signal Processing Proceedings, volume 3, pages III–III, 2006. 13

[98] J. A. Tropp. The sparsity gap: Uncertainty principles proportional to dimension. 44th Annual

Conference on Information Sciences and Systems (CISS), Princeton, NJ, 10.:1–6, 2010. 51, 92

[99] J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonal

matching pursuit. 53(12):4655–4666, Dec. 2007. 95

[100] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G. Baraniuk. Beyond nyquist:

Efficient sampling of sparse bandlimited signals. IEEE Transactions on Information Theory,

56(1):520–544, 2010. 13

137



REFERENCES

[101] R. Tur, Y. C. Eldar, and Z. Friedman. Innovation rate sampling of pulse streams with application

to ultrasound imaging. IEEE Transactions on Signal Processing, 59(4):1827–1842, 2011. 13

[102] A. S. Unde and D. P.P. Rate–distortion analysis of structured sensing matrices for block com-

pressive sensing of images. Signal Processing: Image Communication, 65:115–127, 2018. 116

[103] M. Unser. Sampling-50 years after shannon. Proceedings of the IEEE, 88(4):569–587, 2000. 13

[104] V. Vapnik. The nature of statistical learning theory. 1999. 16

[105] S. S. Vasanawala, M. T. Alley, B. A. Hargreaves, R. A. Barth, J. M. Pauly, and M. Lustig.

Improved pediatric mr imaging with compressed sensing. Radiology, 256(2):607–616, Aug 2010.

20529991[pmid]. 13

[106] P. G. Vaz, D. Amaral, L. F. R. Ferreira, M. Morgado, and J. ao Cardoso. Image quality of

compressive single-pixel imaging using different hadamard orderings. Opt. Express, 28(8):11666–

11681, Apr 2020. 30

[107] R. Venkataramani and Y. Bresler. Further results on spectrum blind sampling of 2d signals. In

Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269),

volume 2, pages 752–756 vol.2, 1998. 12

[108] M. Vetterli, P. Marziliano, and T. Blu. Sampling signals with finite rate of innovation. IEEE

Transactions on Signal Processing, 50(6):1417–1428, 2002. 12

[109] A. Wyner and J. Ziv. “the rate-distortion function for source coding with side information at

the decoder. ” IEEE Trans. Inf. Theory, vol. 22, no, 22(1):1–10, Jan. 1976. 52, 97

[110] Z. Xu, L. Zhang, J. Shen, H. Zhou, X. Liu, J. Cao, and K. Xing. Mrcs: matrix recovery-based

communication-efficient compressive sampling on temporal-spatial data of dynamic-scale sparsity

in large-scale environmental iot networks. EURASIP Journal on Wireless Communications and

Networking, 2019(1):18, Jan 2019. 116

[111] F. Yang, S. Wang, and C. Deng. Compressive sensing of image reconstruction using multi-wavelet

transforms. In 2010 IEEE International Conference on Intelligent Computing and Intelligent

Systems, volume 1, pages 702–705, 2010. 19

[112] H. Ye, L. Tian, Q. Zhang, H. Wang, and S. Feng. Cmos image sensor with programmable

compressed sensing. In 2015 IEEE 11th International Conference on ASIC (ASICON), pages

1–4, 2015. 3

[113] W.-K. Yu. Super sub-nyquist single-pixel imaging by means of cake-cutting hadamard basis sort.

Sensors, 19(19), 2019. 30

[114] W.-K. Yu and Y.-M. Liu. Single-pixel imaging with origami pattern construction. Sensors,

19(23), 2019. 30

[115] X. Yuan and R. Haimi-Cohen. Image compression based on compressive sensing: End-to-end

comparison with JPEG. 22(11):2889–2904, Nov. 2020. 52

138


	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Contribution
	1.3.1 Structured Sensing Matrix By Scrambling Orthogonal Walsh Matrix for Compressed Sensing
	1.3.2 Vector-based coding algorithm for CS camera
	1.3.2.1 A Measurement Coding System for Block-based Compressive Sensing Images by Using Pixel-Domain Features
	1.3.2.2 Intra Prediction Based Measurement Coding Algorithm for Block-Based Compressive Sensing Images
	1.3.2.3 Temporal Redundancy Reduction in Compressive Video Sensing by using Moving Detection and Inter-Coding
	1.3.2.4 Multiple Candidates Based Hybrid Hierarchical Search for Compacting Compressively Sensed Video
	1.3.2.5 Measurement Coding Framework for High-Resolution Compressive Imaging

	1.3.3 Cube-based coding algorithm for CS camera
	1.3.3.1 Cube-based Video Coding Algorithm for Compressive imaging


	1.4 Thesis Outline

	2 Compressed Sensing
	2.1 Vector Space
	2.2 Sparsity and Compression Geometries
	2.3 Undetermined System and Sensing matrices
	2.4 Sparse Optimization
	2.4.1 Underdetermined System and Minimum 2-norm Solution
	2.4.2 Regression and Least Squares
	2.4.3 1-Minimization With Equality Constraints
	2.4.4 1-Minimization With Primal-Dual Interior-Point Method

	2.5 Imaging Architecture based on Compressed Sensing

	3 Novel structured Sensing Matrix By Scrambling Orthogonal Walsh Matrix for Compressive Sensing
	3.1 Introduction
	3.2 Preliminaries
	3.3 New construction of structured sensing matrices
	3.4 Experimental results
	3.5 Summary

	4 A Measurement Coding System for Block-based Compressive Sensing Images by Using Pixel-Domain Feature
	4.1 Introduction
	4.2 Propose measurement coding system
	4.3 Experimental results
	4.4 Summary

	5 Intra Prediction Based Measurement Coding Algorithm for Block-Based Compressive Sensing Images
	5.1 Introduction
	5.2 Compressive sensing theory
	5.3 Related works on measurement coding
	5.4 Proposed intra prediction based measurement coding for BCIS
	5.5 Experimental results
	5.6 Summary

	6 Temporal Redundancy Reduction in Compressive Video Sensing by using Moving Detection and Inter-Coding
	6.1 Introduction
	6.2 Propose temporal redundancy reduction by using moving detection and inter-coding algorithm
	6.3 Experimental results
	6.4 Summary

	7 Multiple Candidates Based Hybrid Hierarchical Search for Compacting Compressively Sensed Video
	7.1 Introduction
	7.2 Analyze of extending the existing pixel-domain motion estimation algorithm to measurement domain
	7.3 Propose multiple candidates based hybrid hierarchical search for compacting compressively sensed video
	7.4 Experimental results
	7.5 Summary

	8 Measurement Coding Framework for High-Resolution Compressive Imaging
	8.1 Introduction
	8.2 Compressive sensing theorem
	8.3 Compressive sensing based imaging technology
	8.4 Related works on measurement coding
	8.5 Propose measurement coding for high-resolution compressive imaging
	8.6 Experimental results
	8.7 Summary

	9 Cube-based Video Coding Framework for Block-based Compressive Imaging
	9.1 Introduction
	9.2 Early Works
	9.3 Proposed Video Coding Algorithm
	9.4 Experimental Results
	9.5 Summary

	10 Discussion
	11 Dissertation Summary
	References

