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Preface

This thesis summarizes research into efficient designs for neuromorphic hardware and
consists of the following chapters, including the introduction and conclusion in Chapter 1
and Chapter 6, respectively.

Chapter 2 focuses on the cochlea, an important part of the auditory sensory system.
Previous investigations have found that the cochlea exhibits a variety of nonlinear charac-
teristics and so can be modeled as a nonlinear active filter. On the other hand, current
cochlear implants are mainly based on linear systems, which cannot reproduce nonlinear-
ities. It is anticipated that future cochlear implants will incorporate nonlinear signal pro-
cessing. Therefore, this chapter proposes novel cochlea models, which can be implemented
in small and low-power circuits. The proposed models use limit cycle oscillators based on
asynchronous cellular automata (ACA), which exhibit nonlinear bandpass filter character-
istics and nonlinear distortion characteristics as observed in the cochlea. An iterative map
describing the nonlinear behavior of a model is derived, and it is shown theoretically that the
model exhibits an Andronov-Hopf bifurcation. The proposed models were compared with
a conventional model, the Hopf cochlea model, by implementation of a field-programmable
gate array (FPGA), showing that the proposed models employ fewer circuit elements than
the conventional model.

Chapter 3 focuses on the central nervous system involved in gait generation. It is
thought that biological neural circuits that produce rhythmic motor patterns, known as
central pattern generators (CPGs), which are found in the spinal cord. Various animals
such as ants, spiders, and snakes can perform locomotory movements utilizing rhythmic
patterns produced by CPGs. Future application of such a mechanism to walking robots is
expected. In this context, a locomotion controller would need to be small and low-power to
enable incorporation into a mobile robot. This chapter proposes novel CPG models, which
can be implemented in small and low-power circuits, using coupled limit-cycle oscillators
based on ACA and coupled phase oscillators based on ACA. Numerical and theoretical
analyses of synchronization phenomena in the proposed models are presented, alongside an
investigation of gait generation for snake-like and hexapod robots. An implementation of
the proposed models using FPGAs is shown, demonstrating that FPGA-controlled robots
can perform multiple gaits. Furthermore, it is shown that the proposed models requires
fewer circuit elements that the conventional model.

In Chapter 4, the focus is on the neural integrator (NN) in the central nervous sys-
tem, such as the oculomotor system. Recently, artificial neural networks (ANNs), such
as deep learning, have been actively investigated. ANN models focus on the behavior of
neural circuits at a macroscopic scale (i.e., firing frequency). In contrast, spiking neural
networks (SNNs) more closely mimic the dynamical system in neural circuits. As SNNs
utilize pulse signals (i.e., action potentials) to transmit information between neurons, as
in the actual brain, they are expected to consume less power in electronic circuits than
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ANNs. However, the computational cost required to reproduce the complex nonlinear dy-
namics of spiking neurons is an issue. Thus, this chapter proposes a novel neuron model
that can be implemented using small low-power circuits. The proposed model consists of
an integrate-and-fire-type ACA-based oscillator and has nonlinear response characteristics
matching those of a typical neuron. An iterative map describing the nonlinear behavior of
the model is derived, and it is shown theoretically that the model exhibits a saddle-node
bifurcation. Moreover, a novel SNN model combining the proposed neuron models, which
can be implemented in small and low-power circuits, is proposed. To show that this pro-
posed SNN model can be differentiated into neural circuits that play specific roles in the
brain, NNs have been reproduced using the proposed SNN model. NIs have been known as
neural circuits found in the oculomotor system; in recent years, they are also thought to be
involved in cognitive functions such as working memory and decision making. The proposed
NI model and a conventional model are implemented on a field-programmable gate array
(FPGA), and comparison shows that the proposed NI model employs fewer circuit elements
than the conventional model.

In Chapter 5, the design of a neuron model using a quantum-dot cellular automaton
(QCA) is discussed. In accordance with Moore’s Law, transistor integration capacity has
improved exponentially, but in recent years it is thought that the physical limit of minia-
turization is approaching due to quantum effects experienced by nanostructures. QCAs
are an emerging technology alternative to MOS-FET-based computing architecture. In this
chapter, the circuit implementation of a neuron model using quantum-dot cellular automata
is discussed. By using a QCA simulator, an integrate-and-fire-type neuron model based on
quantum-dot cellular automata is proposed. A spike-phase map of the proposed model is
derived, and the characteristics of spike trains generated by the proposed model are ana-
lyzed theoretically. Furthermore, the results are used to investigate a heuristic parameter
optimization method for ultra-wideband impulse radio communication, which is one of the
potential applications of the proposed model.
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Chapter 1

General Introduction

Neuromorphic engineering is an emerging field which attempts to use electronic circuits
to physically mimic biological systems such as the central nervous and sensory system. These
electronic circuits, known as neuromorphic hardware, are expected to replace conventional
computer architectures. However, biological systems generally exhibit strong nonlinearity,
which is challenging to implement in integrated circuits [1]. Therefore, research is needed to
investigate circuit implementation methods for designing small and low-power circuits for
use in brain-inspired computing devices, bio-inspired robots, and neural prosthetic devices.
This thesis aims to investigate efficient designs of neuromorphic hardware to mimic these bi-
ological systems, in particular presenting hardware-efficient biological system models based
on asynchronous cellular automata (ACA) and quantum-dot cellular automata (QCA). This
chapter will now introduce key concepts for the ACA and QCA used throughout this thesis.

1.1 Asynchronous cellular automaton
1.1.1 Four kinds of dynamical systems

Many mathematical and electronic circuit models of biological systems have been pro-
posed to date [2–4]. As summarized in Table 1.1.1, such biological system models can be
classified into the following four classes based on the continuity and discontinuity of state
variables and time.

Class CTCS. A nonlinear differential equation model of a biological system that has
continuous time and continuous states (CTCS). Such a biological system model can be
implemented by an analog nonlinear circuit.

Class DTCS. A nonlinear difference equation model of a biological system that has dis-
crete time and continuous states (DTCS). Such a biological system model can be imple-
mented by a switched capacitor circuit.

Class DTDS. A numerical integration model of a biological system that has discrete time
and discrete states (DTDS). Such biological system models can be implemented by either
a digital processor or a sequential logic circuit.

Class CTDS. An ACA of a biological system that has continuous time and discrete
states (CTDS). Such a biological system model can be implemented by an asynchronous
sequential logic circuit.

As a preparation to consider n-dimensional biological system models, for simplicity, two-
dimensional biological system models are explained in the following part. Biological system
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2 Chapter 1. General Introduction

Table 1.1.1: Four biological system modeling approaches.
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models belonging to class CTCS are described by the following differential equation.
dX1(t)

dt
= F1

(
X1(t), X2(t)

)
,

dX2(t)

dt
= F2

(
X1(t), X2(t)

)
,

Xi ∈ R, t ∈ R, Fi : R2 → R.

(1.1.1)

Here state variables correspond to capacitors and vector field functions are reproduced by
the nonlinearity of circuit elements such as MOSFETs. The dynamic system behavior is
induced by the characteristics of circuit elements with memory; i.e. capacitors Cdv(t)/dt =
i(t) and inductors Ldi/dt = v(t). Biological system models belonging to class DTCS are
described by the following difference equation.{

X1(n+ 1) = X1(n) + F1

(
X1(n), X2(n)

)
,

X2(n+ 1) = X2(n) + F2

(
X1(n), X2(n)

)
,

Xi ∈ R, n ∈ Z, Fi : R2 → R.

(1.1.2)

Here state variables also correspond to capacitors and vector field functions are again re-
produced by the nonlinearity of circuit elements such as MOSFETs. The dynamics system
behavior is induced by iterative switching for capacitor charging, following the vector field
functions. Biological system models belonging to class DTDS are described by the following
difference equation.{

X1(n+ 1) = X1(n) + F1

(
X1(n), X2(n)

)
,

X2(n+ 1) = X2(n) + F2

(
X1(n), X2(n)

)
,

Xi ∈ F ≡ {Xmin, · · · , Xmax}, Xmin ∈ Z, Xmax ∈ Z, n ∈ Z, Fi : F2 → F.

(1.1.3)
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Figure 1.1.1: Relationships between the classes CTCS, DTCS, DTDS, and CTDS.

where Xmin and Xmax are constants. Here state variables correspond to flip-flops and the
vector field functions are reproduced by logic gates or arithmetic processing units. The
dynamic system behavior is induced by iterative switching for state transitions according
to the vector field functions.
Most conventional biological system models belong to either CTCS, DTCS, or DTDS classes.
However, this thesis focuses on the class CTDS described as follows.{

X1

(
(n+ 1)h1 + t

(0)
1

)
= X1(nh1 + t

(0)
1 ) + F1

(
X1(nh1 + t

(0)
1 ), X2(nh1 + t

(0)
1 )
)
,

X2

(
(n+ 1)h2 + t

(0)
2

)
= X2(nh2 + t

(0)
2 ) + F2

(
X1(nh2 + t

(0)
2 ), X2(nh2 + t

(0)
2 )
)
,

Xi ∈ F, hi ∈ (0,∞), t
(0)
i ∈ [0, hi), n ∈ Z, Fi : F2 → F.

(1.1.4)

where hi and t
(0)
i are constants. Here state variables also correspond to flip-flops and the

vector field functions are again reproduced by logic gates or arithmetic processing units.
The dynamic system behavior is induced by asynchronous iterative switching for state
variable transitions according to the vector field functions. Fig. 1.1.1 shows the relationships
between the classes CTCS, DTCS, DTDS, and CTDS. As can be seen from this figure,
class CTDS biological system models make more efficient use of temporal axes than DTDS
biological system models do.

1.1.2 Property of asynchronous cellular automaton

Depending on the parameters h1 and h2, the system in Eq. (1.1.4) is regarded as a hybrid
dynamical system with continuous time and discrete states as follows. State transitions of
the variables X1 and X2 in Eq. (1.1.4) are triggered by the clocks Ci ∈ {0, 1} with periods
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hi, defined as

Ci(t) =

∞∑
n=0

δ(t− nhi − t(0)i ), (1.1.5)

where δ : R→ {1, 0} is a unit impulse function defined by δ(t) = 1 if t = 0, and δ(t) = 0 if
t ̸= 0. Let ϕi ∈ [0, hi) be the following restricted phases of the clocks Ci,

ϕi(t) = t+ t
(0)
i (mod hi). (1.1.6)

Then, using the restricted phases ϕi, the definition of the clocks Ci can be rewritten as

Ci(t) =

{
1 if ϕi(t) = 0,

0 otherwise,
(1.1.7)

The dynamics of the restricted phase ϕ2 can be described by the following iterative map
σ : [0, h2)→ [0, h2)

ϕ2(t+ h1) = σ(ϕ2(t)) ≡ ϕ2(t) + h1 (mod h2), (1.1.8)

where h1 < h2. Furthermore, using the restricted phase ϕ2, Eq. (1.1.4) can be rewritten as{
X1(t+ h1) = X1(t) + F1(X1(t), X2(t+ h1)),

X2(t+ h1) = X2(t) + F2(X1(t), X2(t))s(ϕ2(t)),
(1.1.9)

where the function s : [0, h2)→ {1, 0} is defined as

s(ϕ2) ≡

{
1 if ϕ2 ≥ h2 − h1,
0 if ϕ2 < h2 − h1.

(1.1.10)

Note that the system in Eq. (1.1.4) is now represented by Eqs. (1.1.8) and (1.1.9). In
addition, the system in Eqs. (1.1.8) and (1.1.9) is equivalent to a Poincaé map [5] of Eq.
(1.1.4) with a Poincaé section {(X1, X2, ϕ1, ϕ2) | X1 ∈ Z, X2 ∈ Z, ϕ1 = 0, ϕ2 ∈ [0, h2)}. The
system in Eqs. (1.1.8) and (1.1.9) is considered to belong to class DTDS if h1/h2 ∈ Q and
to class CTDS if h1/h2 ∈ R \ Q. In the case of h1/h2 ∈ Q, Eq. (1.1.8) is equivalent to
a rational rotation [6]. Thus, the system can be regarded as belonging to the DTDS class
because ϕ2 can be defined by a finite set. Conversely, in the case of h1/h2 ∈ R \ Q, Eq.
(1.1.8) is equivalent to an irrational rotation [6]. Then, the system is regarded as belonging
to the CTDS class because ϕ2 should be defined by continuous states. Note that ϕ2 implies
the restricted phase of the clock C2, that is to say, time.

1.1.3 Advantage of asynchronous cellular automaton
ACA-based class CTDS biological system models have the advantage that they can

produce smoother nonlinear vector fields than class DTDS models can. Fig. 1.1.2 shows
the concept and advantage of the ACA-based biological system modeling. Assume that
the state variables X1 and X2 move one cell ahead when the clock signals C1 and C2 with
the periods h1 and h2 rise, respectively. In Figs. 1.1.2(a) and (b), the period ratios h1/h2
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Figure 1.1.2: Concept and advantages of an ACA-based biological system modeling approach.

are 1 and rational, and thus state transitions are triggered synchronously. In these cases,
the velocity vectors are characterized by the finite set and rational numbers, respectively.
However, in Fig. 1.1.2(c), the period ratio h1/h2 is irrational, and thus state transitions are
triggered asynchronously. In this case, the velocity vectors are characterized by real num-
bers. Hence, the asynchronous state transitions make the nonlinear vector fields smooth,
unlike the synchronous state transitions in Figs. 1.1.2(a) and (b). Therefore, due to having
smooth nonlinear vector fields, ACA-based biological system models can be implemented
in digital circuits using fewer circuit elements than are needed for DTDS-class models.

The rest of the thesis will investigate applying ACA-based biological system models to
specific areas. Chapter 2 focuses on a cochlea model, Chapter 3 focuses on a central pattern
generator model, and Chapter 4 focuses on a neural integrator model.

Alternatively, biological system modeling can be based on quantum-dot cellular au-
tomata (QCAs), and this option is also investigated in this thesis as a possible model with
low hardware resources requirements for implementation.

1.2 Quantum-dot cellular automaton
QCAs are an emerging technology alternative to MOSFET based computing architecture

proposed by C. S. Lent [7]. The basic element of the QCA has consists of four quantum dots
arranged in a square, two of which being charged electrons, as shown in Fig. 1.2.1. Due to
Coulomb forces, two electrons can tunnel among the quantum dots when a potential barrier
on the dots is low, where diagonally located states (see Fig. 1.2.1) of the two electrons are
stable. If the two electrons are placed at the upper right and lower left dot locations, the
cell is usually defined as logic “1”, whereas if the two electrons are placed at the upper left
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Figure 1.2.1: QCA cell.

and lower right dot locations, the cell is usually defined as logic “0”. Thus, the QCA cell
has two stable binary states, can function as memory device, and these binary states can
be controlled by neighboring cells via Coulomb forces. Therefore, QCA cells can transmit
binary states to an adjacent cell without using the current. Many combinational circuits and
sequential circuits using QCA cells have been proposed, [8], but to date no attempts exist
to build a biological system based on QCA. Therefore, in Chapter 5, this thesis investigates
using QCAs to implement a neural spike-train generator.
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Chapter 2

Cochlea Model based on
Asynchronous Cellular Automaton

2.1 Reproduction of nonlinear compression1

2.1.1 Introduction
Biological cochleae have a wide variety of responses to sound stimuli [1–3], e.g., Fig. 2.1.1

shows typical response characteristics (called frequency tuning curves) of multiple species
[2, 3]. In this figure, the horizontal axis is a frequency of a single tone sound stimulation.
The vertical axis is the minimum sound pressure level leading to a pre-determined activity
level of the cochlea. The curves have the following features (F1)–(F4): (F1) Some curves
have very steep positive slopes and relatively gentle negative slopes as indicated by (i) and
(ii); (F2) Some curves have sudden changes of slopes as indicated by (iii); (F3) The curves
are relatively symmetric compared to the curves of the mammalian in (a); and (F4) The
minimum values of the curves depend on corresponding center frequencies as illustrated by
the dotted curve (iv). In order to analyze and reproduce such responses, many mathematical
and electronic circuit models of cochleae have been presented [4–10], where applications
of such cochlear models and circuits include the cochlear implant. Concerning modeling
methods of biological systems, there exist four approaches depending on continuousness of
time and state as follows. The first approach is to model a biological system by using a
nonlinear ordinary differential equation (ODE), which has a continuous time and continuous
states (CTCS). Such a CTCS model can be implemented by a nonlinear electronic circuit.
The second approach is to model a biological system by using a nonlinear difference equation,
which has a discrete time and continuous states (DTCS). Such a DTCS model can be
implemented by a switched capacitor circuit. The third approach is to model a biological
system by using a numerical integration in a fixed-point or a floating-point number format
or by a cellular automaton, which have discrete times and discrete states (DTDS). Such
DTDS models can be implemented by a digital signal processor or a sequential logic. Most
biological system modeling approaches are belonging to one of the above three ones. On
the other hand, our group has been developing the fourth missing approach, i.e., to model
a biological system by using an asynchronous cellular automaton, which has a continuous
(state transition) time and discrete states (CTDS), e.g., [10–12]. Such a CTDS model can

1 c⃝ 2017 IEEE. Reprinted, with permission, from Kentaro Takeda and Hiroyuki Torikai, A Novel
Hardware-Efficient Cochlea Model based on Asynchronous Cellular Automaton Dynamics: Theoretical Anal-
ysis and FPGA Implementation, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no.
9, pp. 1107–1111, Sep. 2017.

7
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Figure 2.1.1: Frequency tuning curves of biological cochleae. (a) Chinchilla (mammalian) adapted

from [2]. (b) Turtle (reptilian) adapted from [3].

be implemented by an asynchronous sequential logic. In this paper, a novel cochlear model
based on the asynchronous cellular automaton is presented. Theoretical analyses show that
the model can mimic a nonlinear vector field of one of standard ODE cochlea models [4–6].
It is then shown that the model can reproduce typical features of the biologically measured
frequency tuning curves. Furthermore, the model is implemented in a field programmable
gate array and experiments validate the reproductions of the biological frequency tuning
curves. It is also shown that the presented model consumes fewer hardware resources
compared to a numerical integration formula of the ODE cochlea model. Novelties of this
paper include the following points. (a) The theoretical analyses of the model are presented
in this paper for the first time. (b) The frequency tuning curves of the model are analyzed
in detailed in this paper for the first time. (c) The experimental tuning curves are measured
in this paper for the first time. Very preliminary and limited results of this paper can be
found in our conference proceedings [13,14].

2.1.2 Model description
In this section, a novel cochlea model based on an asynchronous cellular automaton

dynamics is presented. Let t ∈ R be a continuous time. As shown in Fig. 2.1.2, the model
has the following two internal clocks CX(t) and CY (t).

CX(t) =

{
1 if Θ(t) = 0,
0 otherwise,

Θ(t) = t− θ (mod TX),

CY (t) =

{
1 if Φ(t) = 0,
0 otherwise,

Φ(t) = t− ϕ (mod TY ),

where TX > 0 and TY > 0 are periods, Θ(t) ∈ [0, TX) and Φ(t) ∈ [0, TY ) are phases, and θ
and ϕ are initial phases. In this paper, the clock generators are assumed to be uncoupled,
to have different periods, and to be asynchronous. As shown in Fig. 2.1.2, the model has
the following four discrete states.

X ∈ ZN = {0, · · · , N − 1}, Y ∈ ZN ,
P ∈ ZM = {0, · · · ,M − 1}, Q ∈ ZM ,
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Figure 2.1.2: Timing chart of the proposed model.

where N ≥ 2 and M ≥ 2 are integers, which determine a resolution of a state space
Z = {(X,Y, P,Q) | X ∈ ZN , Y ∈ ZN , P ∈ ZM , Q ∈ ZM} of the model. In order to design a
nonlinear vector field, the following two functions fX : ZN×ZN → R and fY : ZN×ZN → R
are introduced.

fX(X,Y ) = δl(X −N/2)− ωl(Y −N/2)− l3(X −N/2)((X −N/2)2 + (Y −N/2)2),
fY (X,Y ) = ωl(X −N/2) + δl(Y −N/2)− l3(Y −N/2)((X −N/2)2 + (Y −N/2)2),

where l ∈ R+ = {r ∈ R | r ≥ 0}, δ ∈ R, and ω ∈ R+ are parameters. Note that the
functions fX and fY are not implemented in a circuit but are used to design a nonlinear
vector field of the model. Using the functions fX and fY , the following discrete functions
FX : ZN × ZN → Z±

M = {−(M − 1), · · · , 0, · · · ,M − 1} and FY : ZN × ZN → Z±
M are

designed.
FX(X,Y ) = Int(l/(fX(X,Y )TX)),
FY (X,Y ) = Int(l/(fY (X,Y )TY )),

where Int(r) represents the integer part of a real number r and the functions FX and FY are
saturated at M − 1 and −(M − 1). As shown in Fig. 2.1.2, the asynchronous clocks CX(t)
and CY (t) trigger the following asynchronous transitions of the discrete states (X,Y, P,Q).

If CX(t) = 1, then

P (t+) :=

{
P (t) + 1 if P (t) < |FX |,
0 otherwise,

X(t+) := X(t) + sgn(FX) if P (t) ≥ |FX |,

(2.1.1)
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Figure 2.1.3: Typical behaviors of the presented model in steady states. N,Mω, l, TX , TY ) =

(256, 256, 2π × 103, 0.25, 1× 10−7, 1.1× 10−7). (a) δ = −10. (b) δ = 700.

If CY (t) = 1, then

Q(t+) :=

{
Q(t) + 1 if Q(t) < |FY |,
0 otherwise,

Y (t+) := Y (t) + sgn(FY ) if Q(t) ≥ |FY |,

(2.1.2)

where sgn(x) = 1 if x ≥ 0 and sgn(x) = −1 otherwise and the discrete states X and Y (P
and Q) are saturated at 0 and N − 1 (0 and M − 1). Also, the symbol ”t+” represents
”limϵ→+0t+ϵ” and the symbol ”:=” represents an ”instantaneous state transition” hereafter.
Fig. 2.1.3 shows typical behaviors of the model in steady states. In Fig. 2.1.3(b), the state
vector (X,Y ) stays in the small blue region E around (X,Y ) ≃ (N/2, N/2). During a
transient (not shown in Fig. 2.1.3(a)), the state vector (X,Y ) approaches the region E. In
Fig. 2.1.3(b), the value of the parameter δ is changed from that in Fig. 2.1.3(a). In this
case, the state vector (X,Y ) stays in the ring-shaped blue region C. During a transient (not
shown in Fig. 2.1.3(b)), the state vector (X,Y ) approaches the region C. Hence, the model
undergoes a bifurcation phenomenon when the value of the parameter δ is changed. In order
to characterize the bifurcation phenomenon, let us introduce a radius r = (maxX−minX)/2
of the state X in a steady state. Fig. 2.1.4 shows the characteristics of the radius r of X
for the parameter δ, where the black graph (corresponding to the black orbits in Fig. 2.1.3)
is numerically obtained by simulating Eqs. (2.1.1) and (2.1.2). On the other hand, the blue
bars in Fig. 2.1.4 (corresponding to the blue regions E and C in Fig. 2.1.3) are calculated
by using theoretical bifurcation analyses in the next section.

2.1.3 Theoretical bifurcation analyses
From a view point of dynamical system theory, the presented model has six state vari-

ables (X,P,Θ, Y,Q,Φ). In order to analyze the bifurcation, let us consider the following
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Figure 2.1.4: Bifurcation diagram of the radius r of X. (N,M,ω, l, TX , TY ) = (256, 256, 2π ×
103, 0.25, 1× 10−7, 1.1× 10−7).

{
Start point:

First return point:

Second return point:

Figure 2.1.5: The region Λ and the map G used for theoretical analyses.

initial condition of the three states (Y,Q,Φ) at t = ts.

Y (ts) = Int(N/2), Q(ts) = 0, Φ(ts) = 0,

where note that Φ(ts) = 0 implies the clock CY is 1 at t = ts. Let the other three states
(X,P,Θ) at t = ts be denoted by

X(ts) = Xs, P (ts) = Ps, Θ(ts) = Θs,

where the subscript ”s” implies ”start point.” Now let the state vector (X,P,Θ, Y,Q,Φ)
starting from the initial condition (Xs, Ps,Θs, Int(N/2), 0, 0) be projected onto the (X,Y )-
plane as shown in Fig. 2.1.5. In the (X,Y )-plane, let us define a horizontal region Λ =
{(X,Y )|Y = Int(N/2)}. Then the trajectory of the state vector (X,Y ) starting from the
start point (Xs, Ys) in the region Λ has the following four possibilities.

Case 1. As shown in Fig. 2.1.5, the state vector (X,Y ) departs from the region Λ and
returns into the region Λ at a finite time, say t = tr <∞. In this case, let the three states
(X,P,Θ) at this return moment tr be denoted by (Xr, Pr,Θr) as shown in Fig. 2.1.5, where
the subscript ”r” implies ”first return point.”
Case 2. The state vector (X,Y ) stays in the region Λ and transits in the region Λ. In this
case, let (Xr, Pr,Θr) = (X(ty), P (ty),Θ(ty)), where ty is the moment when the clock CY
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(a)

(b)

Figure 2.1.6: Tools for theoretical analyses: multi-valued map G (left), its enlargement (right), and

fixed set B (blue box). (N,M,ω, l, TX , TY ) = (256, 256, 2π × 103, 0.25, 1 × 10−7, 1.1 × 10−7). (a)

δ = −10. (b) δ = 700.

firstly becomes 1 after the transition of X.
Case 3. The state vector (X,Y ) does not transit forever. In this case, let (Xr, Pr,Θr) =
(X(tz), P (tz),Θ(tz)), where tz > ts is the moment when the clock CY firstly becomes 1.
Case 4. The state vector (X,Y ) departs from the regionΛ and never returns into the region
Λ. In this case, let (Xr, Pr,Θr) = (∅, ∅, ∅, ), where ∅ denotes the empty set. Then we define

the following maps gX : ZN×ZM×[0, TX)→ ZN ∪{∅}, gP : ZN×ZM×[0, TX)→ ZM ∪{∅},
and gΘ : ZN × ZM × [0, TX)→ ×[0, TX) ∪ {∅}.

gX(Xs, Ps,Θs) =Xr,
gP (Xs, Ps,Θs) = Pr,
gΘ(Xs, Ps,Θs) = Θr.

(2.1.3)

Using the maps (gX , gP , gΘ), the following multi-valued map G is defined (see Fig. 2.1.5).

G(Xs) = gX(gX(Xs, P,Θ), gP (Xs, P,Θ), gΘ(Xs, P,Θ))

for all P ∈ ZN ,Θ ∈ [0, TX),

where G(Xs) = ∅ if gX(Xs, P,Θ) = ∅. Figs. 2.1.6(a) and (b) show the map G corresponding
to Figs. 2.1.3(a) and (b), respectively. Let us give the following definition (see Fig. 2.1.6).

Definition 1: A subset B = {Xf , Xf +1, · · · , Xf + ϵ} of ZN is said to be a fixed set with
size ϵ ∈ {1, 2, · · · , N − 1} of the multi-valued map G if each G(X) ∈ B for all X ∈ B.

In the following analyses, the subset B is assumed to have its possible minimum size ϵ.



Section 2.1. Reproduction of nonlinear compression 13

Then we have the following propositions, where their proofs are omitted since they are
straightforward from the definitions of the multi-valued map G and the fixed set B (i.e.,
the definitions of G and B per se are important results of this paper).

Proposition 1 (Equilibrium): Suppose the multi-valued map G(X) has a fixed set B and
suppose gX(X,P,Φ) ∈ B for all X ∈ B, P ∈ ZN , and Φ ∈ [0, TX). Then there exists
a subset E (which is typically small) in the (X,Y )-plane ZN × ZN from which the state
vector (X,Y ) does not escape.

For example, the map G in Fig. 2.1.6(a) satisfies the Proposition 1 and thus there exists a
subset E in the (X,Y )-plane as shown in Fig. 2.1.3(a). Note that the subset E corresponds
to an equilibrium point of a nonlinear ODE.

Proposition 2 (Oscillation): Let the mapG has a fixed setB and suppose gX(X,P,Φ) /∈ B
for all X ∈ B, P ∈ ZN , and Φ ∈ [0, TX). Then there exists a ring-shaped subset C (which
is typically thin) in the (X,Y )-plane ZN ×ZN from which the state vector (X,Y ) does not
escape.

For example, the map G in Fig. 2.1.6(b) satisfies the Proposition 2 and thus there exist a
ring-shaped subset C in the (X,Y )-plane as shown in Fig. 2.1.3(b). Note that the subset
C corresponds to an invariant circle of a nonlinear ODE.

Remark (Implications of the propositions): In Fig. 2.1.4, the blue bars are calculated
by using the fixed sets B. It can be seen that the blue bars cover the black graph (the
radius r obtained by the numerical simulation), i.e., the theoretical analyses give a necessary
region in which the true bifurcation diagram must exist. Also, the propositions guarantee
the following properties of the model: (i) the radius r of the oscillation is almost 0 for
negative δ, and (ii) the radius r is approximately proportional to

√
δ for positive δ (with

some exceptions). These properties are the same as properties of the normal form of the
supercritical Hopf bifurcation [15]. Note that the normal form of the Hopf bifurcation has
been utilized as a cochlea model (called Hopf-cochlea) [4–6]. Hence, the theoretical analyses
in this section suggest that the presented model may be also useful as a cochlea model. This
suggestion is validated in the next section.

2.1.4 Reproductions of biological nonlinear frequency tuning
curves

Recall that Fig. 2.1.4 shows the characteristics of the radius r of the state X for the case
where no sound stimulation is applied. From a viewpoint of cochlea model, the parameter
δ should be set to a negative value since the oscillation of the state X for a positive δ
may correspond to an ear ringing (i.e., the model respond to zero sound stimulation).
By extensive numerical analyses, we have found that δ = −10 (i.e., negative δ near the
bifurcation value 0) is suitable to reproduce the biological frequency tuning curves in Fig.
2.1.1. Now, let us introduce the following tone sound stimulation s(t).

s(t) = A sin 2πft.
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Figure 2.1.7: (a)–(c) Typical responses of the model to the stimulation S(t).

(N,M,ω, δ, l, TX , TY ) = (256, 256, 2π × 103, 0.25, 1× 10−7, 1.1× 10−7). A = 127. (a) f = 100 [Hz].

(b) f = 1 [kHz]. (c) f = 10 [kHz]. (d) Frequency tuning curve. p0 = 106, RMSth = 15.

Let us also introduce the following spike-density-modulated stimulation S(t).

S(t) =


1 if t = τp(1), τp(2), · · · ,
−1 if t = τn(1), τn(2), · · · ,
0 otherwise,

where an instantaneous density of the spike positions {τp(1), τp(2), · · · , } is proportional to
s(t) for s(t) ≥ 0 and is zero for s(t) < 0; and the instantaneous density of the spike positions
{τn(1), τn(2), · · · , } is proportional to −s(t) for s(t) ≤ 0 and is zero for s(t) > 0. Note that
such a density modulator can be easily realized by using a standard density modulator. The
stimulation S(t) triggers the following transitions of the discrete states (X,P ), which are
asynchronous with the transitions in Eqs. (2.1.1) and (2.1.2).

If |S(t)| = 1, then

P (t+):=


P (t) + 1 if P (t) < |FX | and S(t) = sgn(FX),

0 if P (t) ≥ |FX | and S(t) = sgn(FX),

P (t)− 1 if P (t) > 0 and S(t) ̸= sgn(FX),

|FX | if P (t) ≤ 0 and S(t) ̸= sgn(FX),

X(t+):=

{
X(t)+sgn(FX) if P (t)≥|FX | and S(t)= sgn(FX),

X(t)−sgn(FX) if P (t)≤0 and S(t) ̸=sgn(FX).

(2.1.4)
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Figure 2.1.8: Reproductions of the biological frequency tuning curves in Figs. 2.1.1(a) and

(b). (N,M, l, p0) = (256, 256, 0.25, 106). (a) Chinchilla. TX = 10−7. (ω/(2π), TY , RMSth)

= (450, 1.5 × 10−7, 10), (1750, 1.1 × 10−7, 10), (3630, 1.1 × 10−7, 10), (2 × 105, 1.1 × 10−7, 20). (b)

Turtle. (ω/(2π), TX , TY , RMSth) = (160, 10−7, 3 × 10−7, 7), (230, 10−7, 1.5 × 10−7, 8), (350, 3 ×
10−7, 3.10−7, 8), (600, 0.7× 10−7, 0.8× 10−7, 8).

Figs. 2.1.7(a)–(c) show time waveforms of the model for the stimulation S(t) with three
frequencies. In Fig. 2.1.7(b), the stimulation frequency is f = 1[kHz] and the amplitude
of the state X is about 180. On the other hand, in Figs. 2.1.7(a) and (c), the stimulation
frequencies are f = 100[Hz] and 10[kHz], and the amplitude of the state X is about zero.
That is, the model has selectivity of the stimulation frequency f . In order to characterize
such frequency selectivity, let us introduce the following indices SPL(S) and RMS(X).
The strength of the stimulation S(t) is characterized by

p(S) = lim
τ→∞

Number of spikes |S(t)| = 1 for t ∈ [0, τ ]

τ
.

The strength p(S) is rescaled to the following stimulation power level SPL(S), which cor-
responds to the sound pressure level in the biological frequency tuning curves in Fig. 2.1.1.

SPL(S) = (p(S)− p0)× 10−5(dB),

where p0 is a reference magnitude corresponding to 0 (dB) of the SPL. In Figs. 2.1.7(a)–
(c), the stimulation S(t) has the same SPL(S) = 2.67. The strength of the response of the
proposed model to the stimulation S(t) is characterized by the following root mean square
of the discrete state X.

RMS(X) = limT→∞

√
l2

T

∫ Ts

T (X(t)−N/2)2dt.

In Figs. 2.1.7(a), (b), and (c), the discrete state X has RMS(X) = 0.19, 10.65, and 0.18,
respectively. Using the SPL(S) and the RMS(X), let us introduce the following index
SPLmin.

Definition 2: The minimum stimulation power level SPLmin is the minimum stimulation
power level SPL(S) of the stimulation S(t) such that the RMS(X) of the state X is
greater than or equal to a pre-defined threshold value RMSth. Also, the characteristics of
the minimum stimulation power level SPLmin for the frequency f of the sound stimulation
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Proposed model Forward Euler formula of
Hopf-cochlea model [4–6]

# Slices 236 1788

# LUTs 792 6190

# FFs 76 110

Figure 2.1.9: (a) Experimental setup. (b) Experimental frequency tuning curve and numerical

curve. “LUTs” stands for “look-up tables” and “FFs” stands for “flip-flops.”

S(t) is referred to as a frequency tuning curve.

Fig. 2.1.7(d) shows a frequency tuning curve of the presented model, where the dots (a)-(c)
correspond to Figs. 2.1.7(a)–(c), respectively. Fig. 2.1.8 shows frequency tuning curves of
the presented model, the parameter values of which are tuned to reproduce the biological
frequency tuning curves in Fig. 2.1.1. In this figure, the arrows (i)–(iv) correspond to
those in Fig. 2.1.1(a) and (b). It can be seen that the presented model can qualitatively
reproduce the features (F1)–(F4) of the biological frequency tuning curves in Fig. 2.1.1.

2.1.5 FPGA implementation and comparison
Recall that the state transitions of the presented model are described by Eqs. (2.1.1),

(2.1.2), and (2.1.4). These equations are rewritten as a VHDL code, which is compiled
into a bitstream file, and the resulting file is downloaded to a field programmable gate
array (FPGA), Xilinx’s XC7A100T-1CSG324C. Fig. 2.1.9(a) shows an experimental setup
consisting of a speaker (Audio-Technica’s AT-SPP30), a microphone (Audio-Technica’s Pro-
300), a microphone amplifier (Audio-Technica’s AT-MA2), a level shifter (TI’s TL074), and
A/D converter (Analog Devices’ AD7476A). Since the FPGA device and the HDL compiler
(Xilinx’s Vivado 2016.02) used in this paper do not support asynchronous triggering, the
clocks CX(t) and CY (t) and the stimulation S(t) are generated from a common clock with
high frequency (100[MHz]), where, since the frequency of the common clock is much higher
than the frequencies of CX(t), CY (t) and S(t), the resulting behavior of the implemented
circuit can be regarded to be almost identical with the asynchronous behavior of the pre-
sented model. Actually, we have confirmed that the implemented circuit behaves almost
identical with the simulation results in Figs. 2.1.3, 2.1.4, and 2.1.7. Fig. 2.1.9(b) shows a
frequency tuning curve obtained by FPGA experiments and numerical simulations. It can
be seen that the implemented circuit can reproduce the tuning curve, where the difference
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from the simulation is not due to a defect in the implementation but is due to saturation of
the microphone. In addition, we have confirmed that the implemented circuit can reproduce
other tuning curves in Fig. 2.1.8 except for effects of saturation of the microphone. For
comparison, the Hopf-cochlea model [4–6] is implemented as a forward Euler formula by
using a fixed-point number format in the same FPGA device. The bit-length of the Hopf-
cochlea model and the resolution (M,N) of the presented model are decreased as short
as possible under the condition that their bifurcation diagrams qualitatively reproduce the
properties (i) and (ii) of the supercritical Hopf bifurcation (see the Remark in Section III),
where the resulting bit-length is 26 bit and the resulting resolution is M = N = 64. The
table in Fig. 2.1.9 shows comparison results. It can be seen that our model consumes fewer
hardware resources than the Hopf-cochlea model.

2.1.6 Conclusions
The presented model was theoretically analyzed by utilizing the multi-valued map G

and the analyses results suggested that the model can mimic the nonlinear vector field of
the Hopf-cochlea model. It was then shown that the model can reproduce the biologically
measured nonlinear frequency tuning curves of the multiple species. It was also shown
by the FPGA experiments that the model can be implemented by using fewer hardware
resources compared to the numerical integration formula of the Hopf-cochlea model. Future
problems include: (a) realization of other nonlinear responses of biological cochleae such as
multi-tone suppression, (b) more detailed comparisons with biological tuning curves, and
(c) more intensive hardware experiments and related comparisons.

2.2 Reproduction of two-tone distortion products2

2.2.1 Introduction
A laser Doppler velocimeter performed on live mammalian cochleas has observed that

they have an active amplifier and essential nonlinearities [16–18]. For example, Fig. 2.2.1
shows typical nonlinear response characteristics of a mammalian cochlea measured in an
anesthetized chinchilla [18]. In this figure, the basilar membrane (BM) is stimulated by
two-tone frequencies f1 and f2 (f2 > f1), and it perceives tones with a combination of two
frequencies, namely n1f1±n2f2 (n1, n2 ∈ Z), where the characteristic frequency (CF) in the
stimulated site of the BM corresponds to 2f1− f2. Such responses to tones with frequencies
not included in two-tone stimuli are called two-tone distortion products. Eguiluz et al. were
the first to introduce a cochlea model based on Hopf oscillators to understand the nonlinear-
ities of hearing [19]. Subsequently, Stoop et al. succeeded in demonstrating that the model
enables the reproduction of a number of nonlinear hearing phenomena such as nonlinear
compression, two-tone suppression, combination tone generation, and first (second) pitch
shift [20–25]. Since then, there has been an increasing interest in implementing a cochlea
model utilizing nonlinear oscillators on digital and analog electronic circuits [9,26–44]. Such
an electronic circuit can be applied to hearing aids and cochlear implants that incorporate
nonlinear signal processing.

2This section is based on “Two-Tone Distortion Products in Hardware-Efficient Cochlea Model based on
Asynchronous Cellular Automaton Oscillator,” by the same author, which appeared in IEICE Electronics
Express, vol. 18, no. 18, 20210310, 2021, Copyright(C)2021 IEICE.
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Figure 2.2.1: Spectrum of cochlear basilar membrane (BM) responses to two-tone stimuli with

frequencies f1 and f2 (f2 > f1) measured in chinchilla adapted from [18]. The two-tone distortion

products are perceived at frequencies not included in the stimulus (e.g., 2f1 − f2, 3f1 − 2f2, 2f2 − f1,

and 3f2−2f1), where the characteristic frequency (CF) in the stimulated site of the BM corresponds

to 2f1 − f2.

Traditional methods applicable to modeling and implementing nonlinear biological os-
cillators, including the cochlear amplifier, can be classified into the following three ways
based on the continuousness of time and state.

(i) The first method to model a nonlinear biological oscillator is by using an ordinary dif-
ferential equation, which has a continuous time and state. Such a model is implemented by
a nonlinear electronic analog circuit [26–29].

(ii) The second method to model a nonlinear biological oscillator is by using a difference
equation, which has discrete time and continuous states. Such a model is implemented by
a switched-capacitor circuit [33–36].

(iii) The third method to model a nonlinear biological oscillator is by using a discrete dif-
ference equation or a cellular automaton (CA), which has discrete times and states. Such
models are implemented using a digital signal processor (DSP) that performs numerical
integration or sequential logic [9, 30–32].

Most nonlinear biological oscillators that have been studied belong to one of the above-
mentioned three categories [9, 26–32]. Recently, our group and a few other groups have
designed a nonlinear biological oscillator using the below-mentioned fourth method.

(iv) The fourth method to model a nonlinear biological oscillator is by using asynchronous
CA, which has a continuous state transition time and discrete states. Such a model is im-
plemented by an asynchronous sequential logic [37–44].

Inspired by the Hopf-type cochlea [19–25], our group has proposed a cochlea model designed
by the fourth method and has shown that the model can reproduce the frequency-threshold
tuning curves of a mammalian cochlea [41]. However, the reproduction of nonlinear re-
sponse characteristics to two-tone stimuli remains to be demonstrated.

In this paper, a cochlea model with nonlinear dynamics described by an asynchronous
CA was studied. We demonstrated that the proposed cochlea model enables the repro-
duction of two-tone distortion products [18]. The proposed model was implemented on a
field-programmable gate array (FPGA). Subsequently, we demonstrated that the proposed
cochlea model can be implemented using fewer hardware resources than a Hopf cochlea-type
cochlea model implemented on a DSP performing a numerical integration.
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(a)

(b)

Figure 2.2.2: (a) Hardware configuration of the proposed cochlea model. (b) Schematic of asyn-

chronous cellular automaton (CA) oscillator.

2.2.2 Model description
In this section, a hardware-efficient cochlea model based on an asynchronous CA oscil-

lator is proposed. Subsequently, we demonstrated that the proposed cochlea model enables
the reproduction of two-tone distortion products. Fig. 2.2.2(a) shows a hardware con-
figuration of the proposed cochlea model. As shown in the figure, the proposed cochlea
model comprises a sigma-delta analog-to-digital converter (ADC) and an asynchronous CA
oscillator.

2.2.2.1 Asynchronous CA oscillator

Fig. 2.2.2(b) shows a schematic of the asynchronous CA oscillator. As shown in the
figure, the oscillator accepts the following clock.

Cint(t) ≡
∞∑
k=0

δR(t− kTint), Cint ∈ B ≡ {0, 1}, (2.2.1)

where t ∈ R and Tint ∈ R+ ≡ {x ∈ R | x > 0} represent the continuous time and a period
of the clock, respectively, and the function δR : R→ B represents the unit impulse.

δR(x) ≡

{
1 (x = 0),

0 (x ̸= 0).

Furthermore, as shown in Fig. 2.2.2(b), the oscillator has the following two discrete state
variables,
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Figure 2.2.3: Timing chart of asynchronous CA oscillator. The parameter values are N = 27,

M = 28, µ = −10, ω = 2π × 103, l = 0.25, Tint = 2−23, Text = 3 × 10−6, ω1 = 2π × 103,

ω2 = 2π × 200, A1 = 0.125, A2 = 0.125, and B0 = 2.

X ∈ ZN ≡ {0, · · · , N − 1}, Y ∈ ZN ,

and the following two discrete auxiliary variables

PX ∈ ZM ≡ {0, · · · ,M − 1}, PY ∈ ZM ,

where N ≥ 2 and M ≥ 2 are integers determining the resolution of a state space Z ≡
{(X,Y, PX , PY ) | X ∈ ZN , Y ∈ ZN , PX ∈ ZM , PY ∈ ZM} of the oscillator. To design a
nonlinear vector field, the following two functions fX : ZN×ZN → Z and fY : ZN×ZN → Z
are introduced.

fX(x, y) ≡
⌊ 1

Tint(µ(x−N
2 )−ω(y−

N
2 )−l2(x−

N
2 )((x−

N
2 )

2+(y−N
2 )

2))

⌋
,

fY (x, y) ≡
⌊ 1

Tint(ω(x−N
2 )+µ(y−

N
2 )−l2(y−

N
2 )((x−

N
2 )

2+(y−N
2 )

2))

⌋
,

(2.2.2)

where l ∈ R+, µ ∈ R, and ω ∈ R+ are the parameters. The derivation of the functions
fX and fY in Eq. (2.2.2) is presented in Appendix. Furthermore, ⌊.⌋ denotes the following
floor function.

⌊x⌋ ≡ max{l ∈ Z | l ≤ x}, x ∈ R.
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The functions fX and fY are implemented in the lookup tables (LUTs). Fig. 2.2.3 shows the
timing chart of the oscillator. As shown in Fig. 2.2.3, the clock Cint triggers the following
transitions of the discrete state variables X and Y .

If Cint(t) = 1, then

X(t+):=satN (X(t)+δZ(PX(t))sgn(satM (fX(X(t),Y (t)))),

Y (t+):=satN (Y (t)+δZ(PY (t))sgn(satM (fY (X(t),Y (t)))),

(2.2.3)

where the symbol “t+” represents “limϵ→+0t + ϵ”, the symbol “:=” represents an “in-
stantaneous state transition,” and satN : Z → ZN and satM : Z → Z±

M ≡ {−(M −
1), · · · , 0, · · · ,M − 1} denote the following saturation functions.

satN (x) ≡


N − 1 (x > N − 1),

x (0 ≤ x ≤ N − 1),

0 (x < 0).

satM (x) ≡


M − 1 (x > M − 1),

x (0 ≤ x ≤M − 1),

−(M − 1) (x < −(M − 1)).

Furthermore, δZ : Z→ B denotes the following unit impulse function.

δZ(x) ≡

{
1 (x = 0),

0 (x ̸= 0),

where sgn : Z→ Q ≡ {−1, 1} denotes the following signum function.

sgn(x) ≡

{
1 (x ≥ 0),

−1 (x < 0).

As shown in Fig. 2.2.3, the clock Cint triggers the following transitions of the discrete
auxiliary variables PX and PY .

If Cint(t) = 1, then

PX(t+) := PX(t) + FD(PX(t), |satM (fX(X(t), Y (t))|)),
PY (t+) := PY (t) + FD(PY (t), |satM (fY (X(t), Y (t))|)),

(2.2.4)

where F : Z2
M → Z−

M ≡ {−(M − 1), · · · , 0, 1} denotes the following function.

FD(x, a) ≡

{
1 (x < a),

−x (x ≥ a).

Fig. 2.2.4(a) shows a typical time waveform of the discrete state variables X and Y without
an input stimulus.
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(a)

(b)

Figure 2.2.4: (a) Typical responses of asynchronous CA oscillator without input stimulus. The

parameter values are N = 27, M = 28, µ = −10, ω = 2π × 103, l = 0.25, and Tint = 2−23.

(b) Typical responses of asynchronous CA oscillator with two-tone input stimulus. The parameter

values are the same as those chosen in Fig. 2.2.3.

2.2.2.2 Input stimulus modulated by sigma-delta ADC

In this study, an input stimulus is assumed to be

u(t) ≡ A1e
jω1t +A2e

jω2t, u ∈ C

where A1, A2 ∈ R+ and ω1, ω2 ∈ R+ represent the amplitude and angular frequency of
the input stimulus, respectively. The input stimulus u(t) is transformed into a Cartesian
coordinate representation for applying to the asynchronous CA oscillator as follows.

uX(t) ≡ A1 cos(ω1t) +A2 cos(ω2t), uX ∈ R,
uY (t) ≡ A1 sin(ω1t) +A2 sin(ω2t), uX ∈ R.

The input stimuli uX and uY are converted by using a first-order sigma-delta ADC, and
a schematic of the ADC is shown in Fig. 2.2.5. As shown in this figure, for sampling an
analog signal, the following clock is introduced.

Cext(t) ≡
∞∑
k=0

δ(t− kText), Cext ∈ B, (2.2.5)
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Figure 2.2.5: Schematic of first-order sigma-delta ADC.

where Text ∈ R+ represents a period of the clock. Furthermore, the input stimuli uX and
uY are sampled by clock Cext and integrated by the following signals WX ,WY ∈ R.

If Cext(t) = 1, then

WX(t+) := uX(t) +WX(t)−B0SX(t),

WY (t+) := uY (t) +WY (t)−B0SY (t),

(2.2.6)

where SX(t) = q(WX(t)), SY (t) = q(WY (t)) and B0 ∈ R, and the function Q : R → Q
denotes the following quantizer.

q(x) ≡

{
1 (x ≥ 0),

−1 (x < 0).

Subsequently, the clock Cext(t) triggers the following transitions of the discrete state vari-
ables X and Y .

If Cext(t) = 1, then

X(t+) := X(t) + SX(t),

Y (t+) := Y (t) + SY (t).

(2.2.7)

Fig. 2.2.4(b) shows the typical time waveforms of the asynchronous CA oscillator with
a two-tone input stimulus. The transitions of the discrete state variables X and Y are
triggered by the uncoupled clocks Cint and Cext, as shown in Fig. 2.2.3, the oscillator can
be regarded as an asynchronous CA.

2.2.2.3 Reproductions of two-tone distortion products
Fig. 2.2.6(a) shows a frequency spectrum of a time waveform of the proposed cochlea

model with two tones modulated by the first-order sigma-delta ADC, where CF corresponds
to 2f1 − f2. The frequency spectrum herein was obtained via fast Fourier transform (FFT)
using a Hanning window with an applied amplitude factor. The proposed cochlea model
perceives tones with frequencies not included in the two-tone stimulus, for example, 2f1− f2.
Hence, the FFT analysis results shown in Fig. 2.2.6(a) verified that our proposed cochlea
model can generate two-tone distortion products (see also Fig. 2.2.1). Fig. 2.2.6(b) shows
two-tone distortion products in the proposed cochlea model with input stimuli modulated
by the second-order sigma-delta ADC. As shown in Figs. 2.2.6(a) and (b), the order of the
sigma-delta ADC has no significant effect on the characteristics of the two-tone distortion
products. Hence, in this study, the first-order sigma-delta ADC is used to modulate input
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(a)

(b)

Figure 2.2.6: Two-tone distortion products in the proposed cochlea model (see also Fig. 2.2.1). (a)
Case the first-order sigma-delta ADC is used to modulate input stimuli. (b) Case the second-order
sigma-delta ADC is used to modulate input stimuli. The parameter values are N = 27, M = 28,
µ = −10, ω = 2π × CF = 2π × 103, l = 0.25, Tint = 2−23, Text = 3 × 10−6, ω1 = 2π × 1052.63,
ω2 = 2ω1 − (2π × CF), A1 = A2 = 0.3, and B0 = 2.

stimuli by which the proposed cochlea model is stimulated.

2.2.3 FPGA implementation and comparison
2.2.3.1 FPGA implementation

The proposed cochlea model is implemented on a field-programmable gate array (FPGA)
in a register transfer level (RTL) code using VHDL as follows: The discrete state variables
X and Y are implemented by registers as n-bit unsigned integers, where n = ⌈log2N⌉.
The discrete auxiliary variables PX and PY are implemented by using registers as m-bit
unsigned integers, where m = ⌈log2M⌉. The functions satM (fX(x, y)) and satM (fY (x, y))
are implemented in lookup tables (LUTs) with an n-bit unsigned integer input and anm+1-
bit signed integer output in the two’s complement format. The dynamic equations in Eqs.
(2.2.3), (2.2.4), and (2.2.7) are written by sequential statements triggered by the clocks Cint

and Cext in Eqs. (2.2.1) and (2.2.5), respectively. The RTL code was synthesized by Xilinx
Vivado Design Suite v2020.1, and a generated bitstream file was downloaded into Xilinx
FPGA Artix-7 XC7A100T-1CSG324C. Fig. 2.2.7(a) shows the resulting RTL schematic of
our proposed cochlea model. The sigma-delta ADC is implemented by a switched-capacitor
technique on a field-programmable analog array (FPAA) (Anadigm Single Apex 3.3 V
Development Kit). The dynamic equation in Eq. (2.2.6) is written using Anadigm Designer
2, where the resulting schematic of the sigma-delta ADC is shown in Fig. 2.2.7(b). Fig.
2.2.8 shows the frequency spectrum of the proposed cochlea model stimulated by two-tone
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(a)

(b)

Figure 2.2.7: (a) Schematic of the FPGA for implementing the proposed cochlea model. (b)

Schematic of the FPAA for implementing the sigma-delta ADC.
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Figure 2.2.8: Two-tone distortion products in the proposed cochlea model implemented on FPGA

(see also Figs. 2.2.1 and 2.2.6(a)). The parameter values are the same as those chosen in Fig. 2.2.6.

stimuli implemented on the FPGA. The two-tone distortion product can be confirmed from
the frequency spectrum (see also Figs. 2.2.1 and 2.2.6(a)).

2.2.3.2 Comparison with Hopf-type cochlea model

For comparison, we implemented a Hopf-type cochlea model [19,20] on the same FPGA,
where the hardware configuration is shown in Fig. 2.2.9. The model comprises a sigma-delta
ADC3 and the following Hopf oscillator.

ż = (b+ j)ωchz − |z|2z + F (t), z ∈ C, (2.2.8)

where b ∈ R and ωch ∈ R are parameters, and F (t) ≡ E1e
jω1t +E2e

jω2t is an external input
representing a two-tone stimulus. To implement an electronic circuit, the model in Eq.
(2.2.8) is transformed into a Cartesian coordinate representation as follows.

ẋ1 = f1(x1, x2) + F1(t), x1 ∈ R,
ẋ2 = f2(x1, x2) + F2(t), x2 ∈ R,

(2.2.9)

where
f1(x1, x2) ≡ bx1 − ωchx2 − x1(x21 + x22),

f2(x1, x2) ≡ ωchx1 + bx2 − x2(x21 + x22),

F1(t) ≡ E1 cos(ω1t) + E2 cos(ω2t),

F2(t) ≡ E1 sin(ω1t) + E2 sin(ω2t).

The Hopf oscillator in Eq. (2.2.9) is discretized using the forward Euler method, which is
one of the simplest numerical integration methods as follows.

x1(t+∆t) = x1(t) + ∆t(f1(x1(t), x2(t)) + F1(t)),

x2(t+∆t) = x2(t) + ∆t(f2(x1(t), x2(t)) + F2(t)),
(2.2.10)

where ∆t ∈ R denotes a discretized time step. Furthermore, F1(t) and F2(t) are modulated
by the sigma-delta ADC, which is the same as that shown in Fig. 2.2.7(b). As with Section

3The sigma-delta modulator is not necessarily chosen for the ADC in the Hopf-type cochlea model.
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Figure 2.2.9: Hardware configuration of the Hopf-type cochlea model. The parameter values are

ωch = 2π × CF = 2π × 103, b = −200, ω1 = 2π × 1052.63, ω2 = 2ω1 − (2π × CF), L = 33, and

∆t = 2−17.

Table 2.2.1: Comparisons of Hardware Resource

asynchronous CA oscillator Hopf oscillator

# Slices 1031 2237

# LUTs 3713 6666

# FFs 216 161

Note: The hardware resources of the Hopf oscillator do not include those of the IIR LPF. Artix-7 XC7A100T-

1CSG324C has 15,850 slices; each slice contains four 6-input lookup tables (LUTs) and eight flip-flops (FFs). DSP

slices and block RAM were not used.

3.1, the discretized Hopf oscillator in Eq. (2.2.10) is implemented on the FPGA in an RTL
code using VHDL, where the state variables and parameters are represented by fixed-point
numbers in the two’s complement format. Furthermore, as shown in Fig. 2.2.9, an infinite
impulse response (IIR) low-pass filter (LPF) is implemented on the FPGA for demodulation
of a sigma-delta ADC signal. Note that this digital filter is not required in the proposed
cochlea model. The bit-lengths L of all variables are reduced to be as short as possible
under the condition that the model can generate two-tone distortion products. The RTL
code is synthesized using the same development environment as that used in Section 3.1.
Table 2.2.1 summarizes the comparison results of hardware resources. As shown in this
table, the proposed cochlea model can be implemented using fewer hardware resources than
the Hopf oscillator.

2.2.4 Conclusions

In this paper, a cochlea model based on an asynchronous CA oscillator is proposed.
Our proposed cochlea model enables the reproduction of two-tone distortion products. The
proposed cochlea and Hopf-type cochlea models were implemented on the same FPGA.
The comparison revealed the following advantages of the proposed cochlea model: (i) the
asynchronous CA oscillator can be implemented using fewer hardware resources than the
Hopf oscillator and (ii) the proposed cochlea model does not require a digital filter for
the demodulation of the sigma-delta ADC signal. Hence, this study contributes to the
development of hearing aids and cochlear implants implemented in small-scale circuits.
Our future work will include (i) extensive analyses of the two-tone distortion products
in the proposed cochlea model and (ii) reproduction of other types of nonlinear response
characteristics in a biological cochlea such as two-tone suppression and first (second) pitch
shift.
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(a)

(b)

Figure 2.2.10: (a) Forward Euler method. (b) Our method. t0 and x0 are constant.

Appendix: Derivation of functions fX and fY
The proposed cochlea model is based on the Hopf-type cochlea model in Eq. (2.2.8).

The forward Euler formula for the model in Eq. (2.2.10) without the input term is rewritten
as follows.

x1

(
t+

∣∣∣∣∣ ∆x

f1(x1(t),x2(t))

∣∣∣∣∣
)
=x1(t)+∆xsgn(f1(x1(t),x2(t))),

x2

(
t+

∣∣∣∣∣ ∆x

f2(x1(t),x2(t))

∣∣∣∣∣
)
=x2(t)+∆xsgn(f2(x1(t),x2(t))),

(2.2.11)

where ∆x ∈ R denotes a discretized state step and the function sgn : R → Q denotes
sgn(x) = 1 for x ≥ 0 and sgn(x) = −1 for x < 0. In the left-hand side of Eq. (2.2.11),
|∆x/f1(x1(t), x2(t))| and |∆x/f2(x1(t), x2(t))| represent the amounts of time advance per
unit distance ∆x. Furthermore, in the right-hand side of Eq. (2.2.11), the amounts of
state transitions of x1 and x2 are restricted to ∆x or −∆x. Fig. 2.2.10 shows the relation-
ship between the forward Euler method and our method. In the proposed cochlea model,
the discrete state variables {X,Y } and the functions {fX , fY } correspond to {x1, x2} and
{∆x/f1(x1(t), x2(t)),∆x/f2(x1(t), x2(t))} in Eq. (2.2.11), where ∆x = 1. Also, the discrete
auxiliary variables {PX , PY } whose dynamic equations are defined in Eq. (2.2.4) work as
state-dependent frequency dividers using the functions {fX , fY } (see also the bent black
arrows in Fig. 2.2.3).
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Chapter 3

CPG Model based on
Asynchronous Cellular Automaton

3.1 Snake-like Robot Controlled by Coupled Limit

Cycle Oscillators1

3.1.1 Introduction
Central pattern generators (CPGs) are intraspinal networks of neural oscillators capable

of producing rhythmic output signals to control motor systems in part of animal locomotion
[1]. Many mathematical models of CPGs have been proposed and analyzed so far [2–
8]. Also, CPG models have been used to control artificial robots of various kinds [3–8]
including snake-like robots [5–8] like the one in Fig. 3.1.1. The purpose of this paper is
to propose a novel kind of CPG model, which consumes much fewer hardware resources
compared to conventional numerical integration models. First, the novel CPG model the
dynamics of which is described by an asynchronous cellular automaton is proposed. By
intensive numerical analyses, it is shown that the proposed model can generate multi-phase
synchronized periodic signals, which are suitable for controlling a serpentine motion of a
snake-like robot. The intensive numerical analyses also reveal roles of parameters. Then, the
proposed model is implemented on a field programmable gate array (FPGA) and is used to
control a snake-like robot. It is shown by experimental validation using a prototype machine
that the proposed model can realize rhythmic locomotor activity in snakes. Moreover, it
is shown that the proposed model consumes much fewer hardware resources (FPGA slices)
than a typical numerical integration CPG model. Novelties and significances of this paper
include the following points.

• The dynamics of most conventional CPG models are described by differential equa-
tions and are implemented as numerical integrations. On the other hand, the dynamics
of the proposed CPGmodel is described by the asynchronous cellular automaton and is
implemented as an asynchronous sequential logic circuit. Although some asynchronous
cellular automaton models of biological systems have been proposed so far [9,10], the
asynchronous cellular automaton CPG model is proposed in this paper for the first
time. Note that, from a fundamental research view point, such an exploration of
designing a bio-inspired engineering system (like the snake-like robot controlled by

1This section is based on “A Novel Hardware-Efficient CPG Model based on Asynchronous Cellular
Automaton,” by the same author, which appeared in IEICE Electronics Express, vol. 15, no. 11, 20180387,
2018, Copyright(C)2018 IEICE.
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Figure 3.1.1: Snake-like robot controlled by the proposed central pattern generator model (CPG

model), which consists of asynchronous cellular automaton oscillators (ACA oscillators).

the CPG model) base on an unconventional method (like the asynchronous cellular
automaton modeling method) per se is a significant research topic.

• As explained above, roles of parameters of the proposed model are revealed. From a
practical view point, this is significant since these roles show how to adjust locomotion
of the snake-like robot. Actually, in this paper, parameter setting methods to adjust
moving velocity of the snake-like robot are shown based on the revealed roles of the
parameters.

3.1.2 Model description
In this section, a novel central pattern generator model (CPG model) based on an

asynchronous cellular automaton is proposed. Fig. 3.1.1 shows a schematic of a snake-
like robot controlled by the proposed CPG model, which consists of asynchronous cellular
automaton oscillators (ACA oscillators).

3.1.2.1 Asynchronous CA Oscillator
In this subsection, we propose the ACA oscillator, which has discrete states variables

Xi ∈ ZN = {0, · · · , N − 1} and Yi ∈ ZN , and discrete auxiliary variables Pi ∈ ZM =
{0, · · · ,M − 1} and Qi ∈ ZM , where i is an index for the ACA oscillators, and N and M
are natural numbers that determine resolutions of the discrete variables {Xi, Yi, Pi, Qi}. In
order to design a vector field of the ACA oscillator, inspired by [7], the following functions
gi : ZN × ZN → R and hi : ZN × ZN → R are prepared: gi(Xi, Yi) = −ωi((Xi − N

2 )
2 +

(Yi − N
2 )

2 − δi)(Xi − N
2 )δi

−1 − ωi(Yi − N
2 ) and hi(Xi, Yi) = −ωi(Xi − N

2 ), where δi ∈ R
and ωi ∈ R are parameters. Note that the functions gi and hi are not implemented as
hardware but are used to design the following discrete functions Gi : ZN × ZN → Z±

M =
{−(M − 1), · · · , 0, · · · ,M − 1} and Hi : ZN × ZN → Z±

M .

Gi(Xi, Yi) =

⌊
αx

gi(Xi, Yi)

⌋
, Hi(Xi, Yi) =

⌊
αy

hi(Xi, Yi)

⌋
, (3.1.1)

where the functions Gi and Hi are assumed to be saturated at ±(M − 1) hereafter, i.e.,
Gi(Xi, Yi) = (M − 1) for (M − 1) ≤ ⌊ αx

gi(Xi,Yi)
⌋, Gi(Xi, Yi) = −(M − 1) for −(M − 1) ≥
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(a) (b)

Figure 3.1.2: (a) Typical time waveform of the proposed asynchronous cellular automaton oscillator.

(N , M , TX , TY , αx, αy, δi, ωi) = (26, 210, 0.0001, 0.00015
√
1.00020134, 10000, 100000

15
√
1.00020134

, 252,

2π × 1.0). (b) Phase plane trajectories for different initial states. The mean radius is ri ≃ 25.

⌊ αx
gi(Xi,Yi)

⌋, Hi(Xi, Yi) = (M − 1) for (M − 1) ≤ ⌊ αy

hi(Xi,Yi)
⌋, Hi(Xi, Yi) = −(M − 1) for

−(M − 1) ≥ ⌊ αy

hi(Xi,Yi)
⌋, and ⌊.⌋ denotes the floor function. The ACA oscillator has two

internal clocks CX(t) and CY (t), which are described by CX(t) = 1 if t = 0, TX , 2TX ... and
CX(t) = 0 otherwise; and CY (t) = 1 if t = 0, TY , 2TY ... and CY (t) = 0 otherwise, where
TX ∈ R+ = {t|t ≥ 0} and TY ∈ R+ are periods of CX(t) and CY (t), respectively. In
this paper, the clock generators are assumed to be uncoupled and thus the clocks CX(t)
and CY (t) are assumed to be asynchronous. These asynchronous internal clocks CX(t) and
CY (t) trigger the following asynchronous transitions of the discrete auxiliary variables Pi

and Qi, respectively.

If CX(t) = 1, then Pi(t+) :=

{
Pi(t) + 1 if Pi(t) < |Gi(Xi(t), Yi(t))|,
0 if Pi(t) ≥ |Gi(Xi(t), Yi(t))|,

(3.1.2)

If CY (t) = 1, then Qi(t+) :=

{
Qi(t) + 1 if Qi(t) < |Hi(Xi(t), Yi(t))|,
0 if Qi(t) ≥ |Hi(Xi(t), Yi(t))|,

(3.1.3)

where the symbol “t+” denotes “limϵ→+0t+ ϵ” and the symbol “:=” denotes an “instanta-
neous state transition” hereafter. In addition, the asynchronous internal clocks CX(t) and
CY (t) trigger the following asynchronous transitions of the discrete state variables Xi and
Yi, respectively.

If CX(t) = 1 and Pi(t) ≥ |Gi(Xi(t), Yi(t))|, then

Xi(t+) :=

{
Xi(t) + 1 if Xi(t) ̸= N − 1 and Gi(Xi(t), Yi(t)) ≥ 0,

Xi(t)− 1 if Xi(t) ̸= 0 and Gi(Xi(t), Yi(t)) < 0,

(3.1.4)

If CY (t) = 1 and Qi(t) ≥ |Hi(Xi(t), Yi(t))|, then

Yi(t+) :=

{
Yi(t) + 1 if Yi(t) ̸= N − 1 and Hi(Xi(t), Yi(t)) ≥ 0,

Yi(t)− 1 if Yi(t) ̸= 0 and Hi(Xi(t), Yi(t)) < 0.

(3.1.5)

Fig. 3.1.2(a) shows a typical time waveform of the discrete state variable Xi and Fig.
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(a) (b)

Figure 3.1.3: (a) Definition of τi(k), which is the moment when Xi transits into a local maximum

value. (b) Characteristics of the mean radius ri of the discrete state variable Xi with respect to

the parameter δi. (N , M , TX , TY , αx, αy, ωi) = (26, 210, 0.0001, 0.00015
√
1.00020134, 10000,

100000
15

√
1.00020134

, 2π × 1.0).

3.1.2(b) shows phase plane trajectories for different initial states. It can be seen that the
ACA oscillator oscillates in a steady state. In order to characterize such an oscillation, let
us introduce the following definitions (see also Fig. 3.1.3(a)).

Definition 1a: Assume the discrete state variable Xi is in a steady state. Assume the
discrete state variable Xi ever repeats the following two behaviors: (i) Xi increases and
transits into a certain constant value XC and (ii) Xi decreases and transits from XC .
Under these assumptions, let τi(k) denote the moment when the discrete state variable Xi

transits to its maximum value from the moment when (i) occurs to the moment when the
next (i) occurs. Then, the discrete state variable Xi is said to have a mean radius ri defined
by

ri =
1

2K

K∑
k=1

max
τi(k)≤t<τi(k+1)

{Xi(t)} − min
τi(k)≤t<τi(k+1)

{Xi(t)},

where K is a sufficiently large positive integer.

Definition 1b: Assume the discrete state variable Xi is in a steady state and ever stays
in a certain constant value XC . Then, the discrete state variable Xi is said to have a mean
radius ri = 0.

For example, the discrete state variable Xi in Fig. 3.1.2 has a mean radius ri ≃ 25.0. Fig.
3.1.3(b) shows the characteristics of the mean radius ri with respect to the parameter δi.
It can be seen that the ACA oscillator does not oscillate for δi < 0 and oscillates for δi > 0.
Hence the ACA oscillator exhibits a bifurcation near δi = 0. Since the mean radius ri is
approximately proportional to

√
δi for δi > 0 near δi = 0, the bifurcation is similar to the

supercritical Hopf-bifurcation [11]. Since our goal is to design the CPG model, the ACA
oscillator is expected to oscillate and thus the parameter δi should be set to a positive value.
Then we assume the assumptions in Definition 1a. Under these assumptions, let us give the
following definition.

Definition 2: Assume the assumptions in Definition 1a are satisfied. Then, the discrete
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Figure 3.1.4: Characteristics of the mean frequency fi of the discrete state variable Xi with respect

to the parameter ωi. (N , M , TX , TY , αx, αy, δi) = (26, 210, 0.0001, 0.00015
√
1.00020134, 10000,

100000
15

√
1.00020134

, 252).

Table 3.1.1: Periods (TX , TY ) of the clocks and the mean frequency fi of the discrete state
variable Xi. (N , M , δi, ωi) = (26, 210, 252, 2π × 1.0).

Internal clocks Period TX Period TY Mean frequency fi

Frequency locked 0.0001 0.00015 1.00004800520048031

Asynchronous 0.0001 0.00015
√
1.00020134 1.00000000000000000

state variable Xi is said to have a mean frequency fi defined by

fi =
K∑K

k=1 τi(k + 1)− τi(k)
.

For example, the discrete state variable Xi in Fig. 2 has a mean frequency fi ≃ 1.0. Fig.
3.1.4 shows the characteristics of the mean frequency fi with respect to the parameter ωi and
Table 3.1.1 shows the mean frequency fi for different values of the period TY of the internal
clock CY (t). Based on these characteristics, roles of the parameters can be summarized as
follows.

• The mean radius ri of the discrete state variable Xi can be adjusted by the parameter
δi as shown in Fig. 3(b).

• The mean frequency fi of the discrete state variable Xi can be adjusted by the pa-
rameter ωi as shown in Fig. 4.

• The mean frequency fi of the discrete state variable Xi can be fine-tuned by the
parameter TY as shown in Table 3.1.1.

3.1.2.2 Central pattern generator model

In this subsection, the novel CPG model, which consists of coupled n ACA oscillators,
is proposed. In order to couple the ACA oscillators, the discrete function Gi in Eq. (3.1.1)
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is modified as follows.

Gi(X0, · · · , Xn−1, Y0, · · · , Yn−1) =

⌊
αx

gi(Xi, Yi) +
∑n−1

j=0 (ai,jYj + bi,jXj)

⌋
,

where ai,j and bi,j are coupling constants between the i-th and the j-th ACA oscillators,
respectively, and i, j ∈ {0, 1, · · · , n− 1}. In this paper, the following coupling constants are
focused on.

ai,i+1 = ka and bi,i+1 = kb for i = 0, 1, · · · , n− 2,

where other ai,j and bi,j are zeros. For example, the CPG model in Fig. 1 is characterized
by such coupling constants. Fig. 3.1.5 shows typical time waveforms of the proposed CPG
model. It can be seen that the ACA oscillators oscillate with the same mean frequency in
Fig. 3.1.5(a) and with different mean frequencies in Fig. 3.1.5(b). In order to characterize
such oscillations, let us introduce the following definition.

Definition 3: If the ratio fi : fj of the mean frequencies fi and fj of the i-th and the j-th
ACA oscillators can be represented by a ratio n : m of integers n and m, then the ACA
oscillators are said to exhibit an n : m synchronization. In this case, fi

fj
is referred to as a

mean frequency ratio of the i-th and the j-th ACA oscillators.

For example, the ACA oscillators in Fig. 3.1.5(a) exhibit an 1 : 1 synchronization with the
mean frequency ratio f0

f1
= 1 and the ACA oscillators in Fig. 3.1.5(b) exhibit a 2 : 1 syn-

chronization with the mean frequency ratio f0
f1

= 2. Fig. 3.1.5(c) shows the characteristics

of the mean frequency ratio f0
f1

with respect to the parameter ω0. Fig. 3.1.5(d) shows the

characteristics of the mean frequency ratio f0
f1

with respect to the parameters (ω0, ka). In
this figure, the parameter region labeled by 1 : 1 leads to the 1 : 1 synchronization. Note
that in this paper we design the CPG model, which utilizes the 1 : 1 synchronization. So,
the 1 : 1 synchronization is focused on hereafter. Fig. 3.1.6 shows various 1 : 1 synchro-
nizations with different phase differences. In order to characterize such phenomena, let us
introduce the following definition (see also Fig. 3.1.7).

Definition 4: Assume the assumptions in Definition 1a are satisfied and assume the ACA
oscillators in the CPG model exhibit 1 : 1 synchronizations. Then

ϕi,j =
1

K

K∑
k=1

(
(τi(k) (mod f−1

i ))− (τj(k) (mod f−1
i ))

)
is referred to as a phase difference between the i-th and the j-th ACA oscillators. Also,

Φ =
1

n− 1

n−2∑
i=0

ϕi,i+1

is referred to as a mean phase difference of the ACA oscillators in the CPG model.

For example, the ACA oscillators in Figs. 3.1.6(a), (b) ,(c) and (d) have mean phase differ-
ences Φ = 1.071, 0.849, 0.599 and −0.472, respectively. Fig. 3.1.8 shows the characteristics
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(a) (b)

(c) (d)

Figure 3.1.5: Typical time waveforms of the CPG model with n = 2 ACA oscillators and their

characteristics. (N , M , TX , TY , αx, αy, δ0, δ1, ω1) = (26, 210, 0.0001, 0.00015
√
1.00020134, 10000,

100000
15

√
1.00020134

, 252, 252, 2π × 1.0). kb = 0. In (a) and (b), the solid curves and the dashed curves

show discrete states variables X0 and X1, respectively. (a) 1 : 1 synchronization. (ω0, ka) =

(2π × 1.3,−2.5). (b) 2 : 1 synchronization. (ω0, ka) = (2π × 1.9,−2.5). (c) Characteristic of the

mean frequency ratio f0
f1

with respect to the parameter ω0. ka = 1.0. The arrows (a) and (b)

correspond to the figures (a) and (b), respectively. (d) Characteristic of the mean frequency ratio
f0
f1

with respect to the parameters (ω0, ka). The arrow (c) corresponds to the figure (c).

of the mean phase difference Φ with respect to the parameter ka. Based on the character-
istics of the CPG model in Figs. 5 and 8 and the characteristics of the ACA oscillator in
Fig. 3(b), Fig. 4, and Table 3.1.1, roles of the parameters from a viewpoint of the CPG
model for controlling the snake-like robot in Fig. 1 can be summarized as follows.

• The amplitude of the oscillating rotary motion of the servomotor can be adjusted by
the parameter δi.

• The frequency of the oscillating rotary motion of the servomotor can be adjusted by
the parameter ωi and fine-tuned by the parameter TY .

• The phase difference of the oscillating rotary motions of the servomotors can be ad-
justed by the parameter ka. Since the moving direction (forward or backward) of
the snake-like robot is determined by the phase difference (see Fig. 3.1.8), it can be
adjusted by the parameter ka.

• The moving velocity of the snake-like robot can be adjusted by the frequency and
the phase differences of the oscillating rotary motions of the servomotors under the
condition that the amplitudes of the oscillating rotary motions are appropriately set.
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(a)

(c)

(b)

(d)

Figure 3.1.6: 1 : 1 synchronizations of the proposed CPG with various mean phase differences Φ.

(N , M , TX , TY , αx, αy, δi, ωi) = (26, 210, 0.0001, 0.00015
√
1.00020134, 10000, 100000

15
√
1.00020134

, 252,

2π × 1.0) for all i. (n, kb) = (6, 0.3). (a) ka = −1.0. Φ = 1.071. (b) ka = −0.5. Φ = 0.849. (c)

ka = −0.3. Φ = 0.599. (d) ka = 0.3. Φ = −0.472.
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Figure 3.1.7: Definition of the phase difference ϕi,j . The arrows represent τi(k)− τj(k) and τi(k+
1)− τj(k + 1).

Therefore, the moving velocity of the snake-like robot can be adjusted by the param-
eters (ωi, ka) under an appropriate setting of the value of the parameter δi.

Hence, in the next section, effects of the parameters (ω, ka) to the moving velocity of the
snake-like robot are analyzed.

3.1.3 Hardware implementation and comparison
Recall that the dynamics of the proposed CPG model is described by Eqs. (3.1.2)–

(3.1.5). These equations are written in a VHDL code, which is compiled into a bitstream file
by using Xilinx’s design software environment Vivado 2016. 2. The resulting bitstream file is
downloaded to Xilinx’s field programmable gate array (FPGA) XC7K325T-2FFG900C. Fig.
3.1.9(a) shows a picture of the snake-like robot controlled by the FPGA-implemented CPG
model. As shown in the figure, the snake-like robot consists of n = 6 sections and an extra
bracket-B attached to the head of the snake, and each section consists of two brackets,
bracket-A and bracket-B. Each i-th bracket-A has Tower Pro’s servo motor SG92R, the
target angle of which is instructed by the discrete state variable Xi of the CPG via a pulse
width modulation. Figs. 3.1.9(b) and (c) show experimentally measured characteristics of
the moving velocity of the robot with respect to the parameters ka and ωi, respectively.
From these figures, it can be concluded that the moving velocity of the snake-like robot
can be controlled by adjusting the parameters ka and ωi. For comparison, a CPG model
consisting of a simple oscillator [7], the bifurcation mechanism of which is similar to the ACA
oscillator, is implemented by the same compiler and the same FPGA device. The oscillator
is described by a set of two ordinary differential equations (ODEs), which is implemented
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Figure 3.1.8: Characteristics of the mean phase difference Φ with respect to the parameter ka.

(N , M , TX , TY , αx, αy, δi, ωi) = (26, 210, 0.0001, 0.00015
√
1.00020134, 10000, 100000

15
√
1.00020134

, 252,

2π × 1.0) for all i. (n, kb) = (6, 0.3). The parameter regions “Forward” and “Backward” lead to

forward and backward moving directions of the snake-like robot in Fig. 9. The arrows (a), (b), (c),

and (d) correspond to Figs. 3.1.6 (a), (b), (c), and (d), respectively.

Table 3.1.2: Comparison. The symbol “#” denotes “the number of.”

Hardware resources Proposed CPG model CPG model consisting of
occupied in the FPGA the ODE oscillator [7]

# Look-up-tables 12824 48216

# Flip-flops 1035 816

# Total slices 3633 13519

as a forward Euler formula in a VHDL code. The bit-length of the ODE oscillator is
decreased as short as possible under the condition that the resulting characteristics of the
moving velocity of the snake-like robot are almost identical with those in Figs. 3.1.9(b)
and (c) (see the dashed graphs in these figures). Table 3.1.2 shows comparison of hardware
resources used to implement the CPG models in the FPGA device. It can be seen that
the proposed CPG model consumes much fewer hardware resources compared to the CPG
model consisting of the ODE oscillator.

3.1.4 Conclusions

The novel CPG model based on the asynchronous cellular automaton was proposed.
The proposed CPG model was implemented on the FPGA and was used to control the
snake-like robot. By experimental validation using the prototype machine, it was shown
that the proposed model can realize rhythmic locomotor activity in snakes. Moreover, it
was shown that the proposed CPG model and the Hopf-oscillator CPG model (which is one
of simple CPG models) realize almost identical characteristics of the moving speeds of the
snake-like robot but the proposed model consumes much fewer hardware resources. Also,
the parameter setting methods to adjust the moving speeds of the snake-like robot were
clarified. Future problems are including (a) comparison to other models, (b) more detailed
analysis on the hardware cost, and (c) applications to other types robots.
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(a)

(b) (c)

Figure 3.1.9: Snake-like robot controlled by the proposed CPG model. (N , M , TX , TY , αx, αy,

δi) = (26, 210, 0.0001, 0.00015, 10000, 6667, 252) for all i. (n, kb) = (6, 0.3). (a) Picture of the

implemented snake-like robot. (b) The solid graph shows the characteristics of the moving velocity

of the snake-like robot with respect to the parameter ka. ωi = 2π × 1 for all i. (c) The solid graph

shows the characteristics of the moving velocity of the snake-like robot with respect to the parameter

ωi. ka = −0.3. In (b) and (c), the dashed graphs show the characteristics of the moving velocity of

the snake-like robot controlled by a differential equation CPG model [7].

3.2 Hexapod Robot Controlled by Coupled Limit

Cycle Oscillators2

3.2.1 Introduction
Various species of animals, such as ants, spiders, snakes, and fish perform locomotion

using flexor and extensor muscles that are driven by multiple signals with rhythmic patterns.
Studies in the field of biological motor control system show that such rhythmic patterns are
produced by central pattern generators (CPGs) in the central nervous systems [12]. Inspired
by this biological principle, many mathematical and electronic circuit models of CPGs have
been designed to control artificial robots that are capable of performing useful tasks [3,13].

2 c⃝ 2020 IEEE. Reprinted, with permission, from Kentaro Takeda and Hiroyuki Torikai, A Novel
Hardware-Efficient Central Pattern Generator Model based on Asynchronous Cellular Automaton Dynamics
for Controlling Hexapod Robot, IEEE Access, vol. 8, pp. 139609–139624, Jul. 2020.
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Figure 3.2.1: Hexapod robot [44] mounted with a field programmable gate array (FPGA) with the

proposed central pattern generator (CPG) model.

For example, networks of Hopf and Kuramoto oscillators have been used to control hexapod
robots, as shown in Fig. 3.2.1. Further, CPG models have been used in the field of medical
engineering [14, 15]. For example, a network of integrate-and-fire oscillators were used to
control mammalian muscles to assist in damaged nervous systems [15]. Considering the
nonlinear circuit and system theory, biomimetic models, including the CPG models, are
classified into the following four classes based on continuousness and discontinuousness of
state variable and time.

Class CTCS. This is a nonlinear differential equation model of a biomimetic system with
a continuous time and continuous states (CTCS). A class CTCS biomimetic model can
be generally implemented in an analog nonlinear circuit, e.g., [15–19].

Class DTCS. This is a nonlinear difference equation model of a biomimetic system with
a discrete time and continuous states (DTCS). A class DTCS biomimetic model can be
generally implemented in a switched capacitor circuit, e.g., [20–23].

Class DTDS. This is a numerical integration model (in finite binary number represen-
tation) of a biomimetic system with a discrete time and discrete states (DTDS). A
class DTDS biomimetic model can be generally implemented in a digital processor or
a biomimetic sequential logic circuit, e.g., [7, 24–28].

Class CTDS. This is an asynchronous cellular automaton (CA) model of a biomimetic
system with a continuous (state transition) time and discrete states (CTDS). A class
CTDS biomimetic model can be generally implemented in an asynchronous sequential
logic circuit, e.g., [9, 10,29–43].

Most conventional biomimetic models belong to the CTCS, DTCS, and DTDS classes. The
CPG models in [15–18], [20–22], and [7, 24–27] belong to the CTCS, DTCS, and DTDS
classes, respectively. We and certain other research groups have been developing various
kinds of class CTDS biomimetic models, e.g.,

• Asynchronous CA neuron models [10,29–31],
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• Asynchronous CA cochlea models [9, 32–34],

• Asynchronous CA gene–protein system models [35],

• Asynchronous CA neural network models [36–39],

• Asynchronous CA CPG models [40,41].

These studies have shown that class CTDS biomimetic models have many advantages, such
as the following: (i) The models can be implemented by fewer circuit elements than the
numerical integration models employed in digital processors [9, 10, 29–41], and (ii) They
consume lower power than numerical integration models employed in digital processors
[9, 10, 29–41]. Hence, this study aims at presenting a novel asynchronous CA model of the
CPG that consumes fewer circuit elements and lower power than a conventional digital
processor CPG model.

Fig. 3.2.2(a) shows a conceptual diagram of the proposed CPG model, where each
oscillator is implemented in a sequential logic circuit; thus, its dynamics is described by a
CA. In this study, a CA oscillator is introduced in Section II. Detailed analyses of nonlinear
dynamics of the CA oscillator reveal an important advantage of the asynchronous nature of
the clocks: an asynchronous CA oscillator (i.e., a CA oscillator with multiple asynchronous
clocks) can control its oscillation such that the oscillation is suited to control a hexapod
robot, while a synchronous CA oscillator (i.e., a CA oscillator with a single clock or multiple
synchronous clocks) cannot. As preparations to design the CPG, Section III presents a small
network of the CA oscillators. Detailed analyses of the nonlinear dynamics of the network
reveal the effects of the parameters on the synchronization phenomena of the network.
Section IV presents a novel asynchronous CA CPG model, which consists of a network of
CA oscillators. Depending on the asynchronous nature of the clocks in a single CA oscillator
and among multiple CA oscillators, the following four types of CA oscillator networks exist
(see also Fig. 3.2.2(b)).

(a) Asynchronous network of asynchronous CA oscillators

(b) Synchronous network of asynchronous CA oscillators

(c) Asynchronous network of synchronous CA oscillators

(d) Synchronous network of synchronous CA oscillators

Detailed analyses of nonlinear dynamics of the four networks reveal that the asynchronous
network of asynchronous CA oscillators is best suited to be employed as a CPG model.
Based on the aforementioned analyses, systematic design procedures of the CPG model are
proposed. In Section V, the proposed CPG model is implemented in a field programmable
gate array (FPGA). Our experiments indicate that the CPG model implemented in an
FPGA can realize a tripod gait of the hardware robot, as shown in Fig. 3.2.1, where
the tripod gait is a typical gait observed in six-legged insects [45]. For comparison, a
conventional digital processor CPG model is implemented in the same FPGA. It is observed
that the proposed CPG model employs fewer circuit elements and lower power than the
conventional CPG model. This paper reports the following novelties and significances.
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(a)

(b)

Figure 3.2.2: Cellular automaton oscillator and four types of networks.

• This study proposes a novel CPG model design procedure, which employs few cir-
cuit elements and low power. Hence, this study provides fundamental measures to
develop small and low-power CPG models, whose potential applications include single-
chip low-power controllers for bio-inspired multi-legged robots and implantable muscle
controllers to assist in damaged nervous systems.

• This study analyzes the effects of the asynchronous nature of clocks in the CA oscilla-
tors in a network. To the best of our knowledge, this analysis has been performed for
the first time. Hence, this study can contribute to develop new nonlinear circuit theo-
ries – oscillation and synchronization theories of networks of asynchronous sequential
logic circuits.

• Although preliminary results of this study were presented in an IEEE flagship confer-
ence [40], to the best of our knowledge, this paper reports detailed analyses of a CA
oscillator and its networks for the first time. These analyses reveal that the network
in this study is better suited to be employed as a CPG than the previously reported
network.
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Figure 3.2.3: Schematic diagram of the asynchronous cellular automaton (CA) oscillator.
LUT represents look-up table.

3.2.2 Asynchronous CA oscillator

3.2.2.1 Model description

This subsection describes an asynchronous CA oscillator, which is used as an element
of a CPG model, as described in a further section. Fig. 3.2.3 shows a schematic diagram
of the CA oscillator. The CA oscillator has two clocks

CX
i (t) =

∞∑
k=0

δ(t− kTX
i ), CY

i (t) =
∞∑
k=0

δ(t− kT Y
i ),

where i is an oscillator index, t ∈ R is a continuous time, TX
i ∈ (0,∞) and T Y

i ∈ (0,∞) are
clock periods, and δ : R→ {0, 1} is the unit impulse function

δ(t) =

{
1 if t = 0,

0 if t ̸= 0.

Further, as shown in Fig. 3.2.3, the CA oscillator has the following two discrete state
variables {Xi, Yi} and two discrete auxiliary variables {Pi, Qi}.

Xi ∈ ZN ≡ {0, · · · , N − 1}, Yi ∈ ZN , (3.2.1)

Pi ∈ ZM ≡ {0, · · · ,M − 1}, Qi ∈ ZM , (3.2.2)

whereN andM are positive integers characterizing resolutions of the discrete state variables
Xi ,Yi, Pi, and Qi. The two clocks CX

i and CY
i trigger transitions of the discrete state

variables Xi and Yi as follows (see Fig. 3.2.4(a)).

If CX
i (t) = 1 and Pi(t) ≥ |Fi(Xi(t), Yi(t))|, then

Xi(t+):=

{
Xi(t)+1 if Fi(Xi(t),Yi(t))≥0 andXi(t)<N−1,
Xi(t)−1 if Fi(Xi(t),Yi(t))<0 andXi(t)>0.

(3.2.3)
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(a)

(b) (c)

Figure 3.2.4: Nonlinear dynamics of the CA oscillator. N = 25, M = 210, ωi = 2π/αi, αi = 0.01,

TX
i = 0.001, and TY

i = 0.001014142. (a) Timing chart of state transitions. (b) Phase plane

trajectory starting from Xi = Yi = Pi = Qi = 0. ρi = 144. (c) Phase plane trajectory starting from

Xi = Yi = Pi = Qi = 0. ρi = −100.
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If CY
i (t) = 1 and Qi(t) ≥ |Gi(Xi(t), Yi(t))|, then

Yi(t+):=

{
Yi(t)+1 if Gi(Xi(t),Yi(t))≥0 and Yi(t)<N−1,
Yi(t)−1 if Gi(Xi(t),Yi(t))<0 and Yi(t)>0,

(3.2.4)

where “t+” denotes “limϵ→+0t + ϵ” and “:=” denotes an “instantaneous state transition.”
Moreover, Fi : ZN × ZN → Z±

M ≡ {−(M − 1), · · · , (M − 1)} and Gi : ZN × ZN → Z±
M

denote discrete functions
Fi ≡ Fi ◦ fi, Gi ≡ Gi ◦ gi, (3.2.5)

where Fi and Gi are implemented in look-up-tables, as shown in Fig. 3.2.3. In this study,
we propose to design the functions Fi : R→ Z±

M and Gi : R→ Z±
M as follows.

Fi(x) =
⌊ 1

αiTX
i x

⌋
, Gi(y) =

⌊ 1

αiT Y
i y

⌋
,

where the functions Fi and Gi are assumed to be saturated at ±(M − 1), αi ∈ (0,∞) is a
scaling parameter, and ⌊.⌋ denotes the floor function

⌊z⌋ = max{n ∈ Z | n ≤ z}.

Further, we propose to design the functions fi : ZN ×ZN → R and gi : ZN ×ZN → R as
follows.

fi(x, y) = ρi

(
x−

⌊N
2

⌋)
− ωi

(
y −

⌊N
2

⌋)
−
(
x−

⌊N
2

⌋)((
x−

⌊N
2

⌋)2
+
(
y −

⌊N
2

⌋)2)
,

gi(x, y) = ωi

(
x−

⌊N
2

⌋)
+ ρi

(
y −

⌊N
2

⌋)
−
(
y −

⌊N
2

⌋)((
x−

⌊N
2

⌋)2
+
(
y −

⌊N
2

⌋)2)
,

where ρi ∈ R and ωi ∈ R are parameters. Then, the two clocks CX
i and CY

i trigger
transitions of the discrete auxiliary variables Pi and Qi as follows (see Fig. 3.2.4(a)).

If CX
i (t) = 1, then

Pi(t+) :=

{
Pi(t) + 1 if Pi(t) < |Fi(Xi(t), Yi(t))|,
0 if Pi(t) ≥ |Fi(Xi(t), Yi(t))|,

(3.2.6)

If CY
i (t) = 1, then

Qi(t+) :=

{
Qi(t) + 1 if Qi(t) < |Gi(Xi(t), Yi(t))|,
0 if Qi(t) ≥ |Gi(Xi(t), Yi(t))|.

(3.2.7)

As a result, the dynamics of the CA oscillator are described by Eqs. (3.2.3), (3.2.4), (3.2.6),
and (3.2.7), and characterized by the parameters

N, M, ρi, ωi, αi, T
X
i , T

Y
i . (3.2.8)
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(a)

(b)

Figure 3.2.5: Definitions of the amplitude ri and mean frequency fi of the discrete state variable

Xi. (a) Oscillation. The amplitude ri is larger than the reference value λ = 1. (b) Convergence.

The amplitude ri is smaller than the reference value λ = 1.

Figs. 3.2.4 (b) and (c) show phase plane trajectories of the CA oscillator. The CA oscillator
exhibits different behaviors, such as oscillation and convergence for different parameter val-
ues. The next subsection provides characterizations for such behaviors of the CA oscillator
and describes the roles of the parameters.

3.2.2.2 Roles of parameters
We assume that the discrete state variable Xi is in a steady state for t > Ts. Then, the

following is defined.

Definition 1 (Amplitude): The discrete state variable Xi is said to have an amplitude

ri =
Xmax

i −Xmin
i

2
,

where
Xmax

i = max{Xi(t) ∈ ZN | t > Ts},

Xmin
i = min{Xi(t) ∈ ZN | t > Ts}

are the maximum and minimum values of the discrete state variable Xi in the steady state,
respectively.

For example, in Figs. 3.2.5(a) and (b), the amplitude ri of the discrete state variable
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Figure 3.2.6: Characteristics of the amplitude ri of the discrete state variable Xi for the parameter

ρi. N = 25, M = 26, ωi = 2π/αi, αi = 0.01, TX
i = 0.0012236, and TY

i = 0.001.

Table 3.2.1: Roles of parameters

Param. Role

ρi Adjustment of amplitude ri of oscillation
ωi Adjustment of mean frequency fi of oscillation
αi Scaling of mean frequency fi of oscillation

TX
i , T

Y
i Adjustment of coexistence of multiple attractors

wi,j
Adjustment of n:m phase-locking
Adjustment of mean phase difference Φi,j

Xi is 6 and 1, respectively. Fig. 3.2.6 shows the characteristics of the amplitude ri for
the parameter ρi. Further, it shows the following relations between the parameter ρi and
amplitude ri.

• Fig. 3.2.6 shows that the amplitude ri is approximately 0 for negative ρi and positive
for positive ρi.

• Fig. 3.2.6 shows that the amplitude ri is approximately proportional to
√
ρi for

relatively small positive ρi and saturates for large positive ρi.

The aforementioned relations reveal that the parameter ρi can adjust the amplitude ri (see
Table 3.2.1). Using the amplitude ri, the following is defined.

Definition 2 (Oscillation and Convergent): The discrete state variable Xi is said to
converge if ri ≤ λ and is said to oscillate if ri > λ, where λ is an appropriately small
positive constant, which is introduced to indicate that “the amplitude ri is regarded to be
almost 0 if ri ≤ λ.”

In this study, λ = 1 is chosen. In Fig. 3.2.5(a), the amplitude ri is 5 > λ; thus, the discrete
state variable Xi oscillates. In Fig. 3.2.5(b), the amplitude ri is 1 ≤ λ; thus, the discrete
state variable Xi converges. Then, the following is defined.

Definition 3 (Mean frequency): Assume the discrete state variable Xi oscillates and
repeats to transit from a certain constant value XC−1 to XC . Let τi(k) be the k-th moment
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(a) (b)

(c)

Figure 3.2.7: (a) Characteristics of the mean frequency fi for the parameter ρi. N = 25, M = 26,

ωi = 2π/αi, αi = 0.01, TX
i = 0.0012236, and TY

i = 0.001. (b) Characteristics of the mean frequency

fi for the parameter ωi. N = 25, M = 26, ρi = 225, αi = 0.01, TX
i = 0.0012236, and TY

i = 0.001.

(c) Characteristics of the mean frequency fi for the parameter ωi. αi = 0.05 and the remaining

parameter values are equal to those in (b).

when the discrete state variable Xi transits from the constant value XC − 1 to XC . Then,
the discrete state variable Xi is said to have a mean frequency fi defined by

fi =
K − 1∑K−1

k=1 τi(k + 1)− τi(k)
,

where K is an appropriately large positive integer. If the discrete state variable Xi converges,
the mean frequency is defined as fi = 0.

For example, in Figs. 3.2.5(a) and (b), the mean frequency fi of the discrete state variable
Xi is positive and 0, respectively. Fig. 3.2.7 shows the characteristics of the mean frequency
fi for the parameters ρi, ωi, and αi. These figures show the following roles of the parameters.

• Fig. 3.2.7(a) shows that the mean frequency fi is almost constant with respect to the
parameter ρi > 0.

• Figs. 3.2.7(b) and (c) show that the mean frequency fi is almost proportional to the
parameter ωi.

• Figs. 3.2.7(b) and (c) show that the parameter αi changes the scale of the mean
frequency fi.
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The aforementioned relations show that the parameter ωi can adjust the frequency fi, while
the parameter ρi > 0 does not affect the frequency ri significantly (see Table 3.2.1). Further,
the parameter αi can scale the frequency fi (see Table 3.2.1).

3.2.2.3 Importance of asynchronous transitions
This subsection describes the importance of the asynchronous transitions of the discrete

state variables Xi ,Yi, Pi, and Qi.

Definition 4 (Asynchronous and synchronous CA oscillators): The CA oscillator
is said to be

• asynchronous CA oscillator if TX
i /T

Y
i is irrational.

• synchronous CA oscillator if TX
i /T

Y
i is rational3.

Then, we compare the characteristics of the asynchronous and synchronous CA oscillators.

(a) Fig. 3.2.8 shows the characteristics of the asynchronous CA oscillator. Fig. 3.2.8(a)
shows an orbit of the discrete state vector (Xi, Yi) in a steady state. Here, all the
trajectories of the discrete state vector (Xi, Yi) starting from different initial conditions
are attracted into the same orbit in Fig. 3.2.8(a). For certain different parameter
values, a small number of orbits coexist in steady states and the asynchronous CA
oscillator exhibits one of them depending on the initial condition of the discrete state
vector (Xi, Yi). Fig. 3.2.8(b) shows the characteristics of the number of such coexisting
orbits in steady states. The asynchronous CA oscillator has a single orbit in a steady
state for a wide range of parameter values. Fig. 3.2.8(c) shows the characteristics of

the maximum values Xmax
i and minimum values Xmin

i of the coexisting orbits.

(b) Fig. 3.2.9 shows the characteristics of the synchronous CA oscillator. Fig. 3.2.9(a)
shows that the synchronous CA oscillator has many coexisting orbits and the oscillator
exhibits one of orbits depending on the initial condition of the discrete state vector
(Xi, Yi). Fig. 3.2.9(b) shows the characteristics of the number of such coexisting
orbits, and Fig. 3.2.9(c) shows the characteristics of the maximum values Xmax

i

and minimum values Xmin
i of the coexisting orbits. These figures show that the

synchronous CA oscillator has multiple orbits in steady states for a wide range of
parameter values.

The aforementioned characteristics show that the periods TX
i and T Y

i of the clocks CX
i , and

CY
i determine the characteristics of the coexisting orbits in steady states (see Table 3.2.1).

Further, the aforementioned characteristics show the following significance of the analyses.

Remark 1 (significance obtained from the analyses of single oscillator): The CA
oscillator is used as an element of a CPG model in Section IV, where the amplitude ri and
mean frequency fi of the discrete state variable Xi control an amplitude and a frequency of
motion of a robot leg, respectively. In this context, the asynchronous CA oscillator is more
suited to build the CPG model because the leg motion is expected to be controlled by the

3The synchronous CA oscillator for TX
i = TY

i (or the CA oscillator with a single clock with period TX
i )

has simultaneous transitions of the discrete state variables, and the synchronous CA oscillator for TX
i ̸= TY

i

has phase-locked transitions of the discrete state variables.



54 Chapter 3. CPG Model based on Asynchronous Cellular Automaton

(a)

(b)

(c)

Figure 3.2.8: Characteristics of the asynchronous CA oscillator. N = 25, M = 26, ωi = 2π/αi,

and αi = 0.01. TX
i = 0.0012236 and TY

i = 0.001, where TX
i /T

Y
i can be regarded as almost

irrational. (a) Phase plain trajectories starting from the different initial conditions Xi(0) ∈ ZN ,

Yi(0) = ⌊N/2⌋, and Pi(0) = Qi(0) = 0. ρi = 110. (b) Characteristics of the number of coexisting

orbits. The vertical broken line corresponds to (a). (c) Characteristics of the maximum values

Xmax
i and minimum values Xmin

i of the coexisting orbits. The vertical broken line corresponds to

(a).
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(a)

(b)

(c)

Figure 3.2.9: Characteristics of the synchronous CA oscillator. N = 25, M = 26, ωi = 2π/αi, and

αi = 0.01. TX
i = 0.001 and TY

i = 0.001, where TX
i /T

Y
i is rational. (a) Phase plain trajectories

starting from the different initial conditions Xi(0) ∈ ZN , Yi(0) = ⌊N/2⌋, and Pi(0) = Qi(0) = 0.

ρi = 110. (b) Characteristics of the number of coexisting orbits. The vertical broken line corresponds

to (a). (c) Characteristics of the maximum valuesXmax
i and minimum valuesXmin

i of the coexisting

orbits. The vertical broken line corresponds to (a).
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system parameters as a consequence of the analyses in Subsection II-B and characteristics
(a) in Subsection II-C. If the synchronous CA oscillator is used to build the CPG model,
the leg motion is not expected to be controlled by the system parameters as a consequence
of the characteristics (b) in Subsection II-C. Using these analyses, a CPG model design is
proposed in Section IV.

3.2.3 Analyses of small network of CA oscillators as prepa-
rations to design CPG

In this section, a small network of the CA oscillators is designed and analyzed to design
the CPG model for controlling the hexapod robot in Fig. 3.2.1. The following is a procedure
to design a modified CA oscillator to build the network.

3.2.3.1 Modified CA oscillator for coupling

Fig. 3.2.10(a) shows a schematic diagram of the modified CA oscillator, where the
dashed boxes represent modifications of the CA oscillator in Fig. 3.2.3. The modified CA
oscillator has a clock

CZ
i (t) =

∞∑
k=0

δ(t− kTZ
i )

for coupling, where TZ
i ∈ (0,∞) is a clock period. Further, the modified CA oscillator has

discrete state variables

Vi ∈ ZM , Ui ∈ ZM (3.2.9)

for coupling. The clock CZ
i triggers transitions of the discrete state variables Vi and Ui as

follows (see Fig. 3.2.10(b)).

If CZ
i (t) = 1, then

Vi(t+) :=

{
Vi(t) + 1 if Vi(t) < |Hi(X(t))|,
0 if Vi(t) ≥ |Hi(X(t))|,

Ui(t+) :=

{
Ui(t) + 1 if Ui(t) < |Hi(Y (t))|,
0 if Ui(t) ≥ |Hi(Y (t))|,

(3.2.10)

where X(t) and Y (t) denote vector forms

X(t) = (X0(t), X1(t), · · · , XL−1(t)),
Y (t) = (Y0(t), Y1(t), · · · , YL−1(t)),

of the discrete state variables, L is the number of CA oscillators in the network, and Hi :
ZL

N → Z±
M denotes a discrete function

Hi ≡ Hi ◦ hi, (3.2.11)
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(a)

(b)

Figure 3.2.10: (a) Schematic diagram of the modified CA oscillator for coupling. (b) Timing chart

of state transitions triggered by the clock CZ
i .
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(a)

(b) (c)

Figure 3.2.11: (a) Network of L = 2 CA oscillators. N = 25, M = 26, ρ0 = ρ1 = 200, α0 =

α1 = 0.01, TX
0 = TY

1 = 0.0012236, TY
0 = TY

1 = 0.001, β0 = β1 = 1, and TZ
0 = TZ

1 = 0.01. (b) 1:1

phase-locking. ω0 = ω1 = 2π/α and w0,1 = w1,0 = −1. The mean phase difference is Φ0,1 = −3.14.
(c) 1:2 phase-locking. ω0 = 2π/α, ω1 = 0.4× ω0, w1,2 = w2,1 = −1.1. The mean phase difference is

Φ0,1 = −2.87.

which is implemented in a look-up-table, as shown in Fig. 3.2.10(a). In this study, we
propose to design the function Hi(χ) : R→ Z±

M as follows.

Hi(χ) =
⌊ 1

βiTZ
i χ

⌋
,

where βi ∈ (0,∞) is a scaling parameter and the function Hi(χ) is assumed to be saturated
at ±(M − 1). We further propose to design the function hi(χ) : Z

L
N → R as follows.

hi(χ) =
⌊L−1∑
j=0

wi,j

(
χj −

⌊N
2

⌋)⌋
,



Section 3.2. Hexapod Robot Controlled by Coupled Limit Cycle Oscillators 59

where χ = (χ0, χ1, · · · , χL−1) and the function hi(χ) is assumed to be saturated at ±(M −
1). In addition, wi,j ∈ R represents a coupling strength from the j-th CA oscillator to the
i-th CA oscillator and forms a matrix form

W =

 w0,0 · · · w0,L−1
...

. . .
...

wL−1,0 · · · wL−1,L−1

 .

Then, the clock CZ
i triggers transitions of the discrete state variables Xi and Yi as follows

(see also Fig. 3.2.10(b)).

If CZ
i (t) = 1 and Vi(t) ≥ |Hi(X(t))|, then

Xi(t+):=

{
Xi(t)+1 if Hi(X(t))≥0 andXi(t)<N−1,
Xi(t)−1 if Hi(X(t))<0 andXi(t)>0.

(3.2.12)

If CZ
i (t) = 1 and Ui(t) ≥ |Hi(Y (t))|, then

Yi(t+):=

{
Yi(t)+1 if Hi(Y (t))≥0 and Yi(t)<N−1,
Yi(t)−1 if Hi(Y (t))<0 and Yi(t)>0.

(3.2.13)

Therefore, the dynamics of the modified CA oscillator are described by Eqs. (3.2.10),
(3.2.12), and (3.2.13) in addition to Eqs. (3.2.3), (3.2.4), (3.2.6), and (3.2.7) and have the
parameters

βi, T
Z
i , wi,0, · · · , wi,L (3.2.14)

in addition to the parameters in Eq. (3.2.8).

3.2.3.2 Analyses of small network as preparations to design CPG
We analyze a network of two CA oscillators in Fig. 3.2.11(a), which has a matrix form

W =

(
0 w0,1

w1,0 0

)
of the coupling strength wi,j . Figs. 3.2.11(b) and (c) show the time waveforms of the
discrete state variables (Xi, Yi) of the network for different parameter values. To characterize
such waveforms, we introduce a phase ϕi(t) and restricted phase ϕ̂i(t) of the state vector
(Xi(t), Yi(t)) as follows.

ϕi(t)=Arg
((
Xi(t)−

⌊
N
2

⌋)
+j
(
Yi(t)−

⌊
N
2

⌋))
,

ϕ̂i(t) = ϕi(t) + 2πΩ,

where

Arg(x+ jy) =



arctan(y/x) + π if x < 0,

arctan(y/x) if x > 0 and y ≥ 0,

arctan(y/x) + 2π if x > 0 and y < 0,

π/2 if x = 0 and y > 0,

3π/2 if x = 0 and y < 0,
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Figure 3.2.12: Parameter regions where n:m phase-lockings are observed. L = 6, N = 25, M = 26,

ρ0 = ρ1 = 200, ω0 = 2π/α0, α0 = α1 = 0.01, T
(0)
X = T

(1)
X = 0.0012236, T

(0)
Y = T

(1)
Y = 0.001,

β0 = β1 = 1, and T
(0)
Z = T

(1)
Z = 0.01.

which is undefined if
√
x2 + y2 ≤ κ and κ are introduced to indicate that “the radius of

(x, y) is regarded to be almost zero if
√
x2 + y2 ≤ κ.” Further, Ω denotes “the number of

times the state vector (Xi(t), Yi(t)) has passed through a subset

Γ ≡
{(
x, y
)
∈ Z2

N

∣∣∣ x > ⌊N
2

⌋
, y =

⌊N
2

⌋}
of the state space counterclockwise.” Figs. 3.2.11(b) and (c) show the time waveforms
of the phases (ϕ0(t), ϕ1(t)) and restricted phases (ϕ̂0(t), ϕ̂1(t)) corresponding to the time
waveforms of the discrete state variables (Xi(t), Yi(t)). Using the phase ϕi(t), the following
is defined.

Definition 5 (Phase-locking): The i-th and j-th CA oscillators are said to exhibit n:m
phase-locking if there exists positive constants k and Tp, and coprime integers n and m such
that

|nϕi(t)−mϕj(t)| < k for t > Tp.

For example, in Figs. 3.2.11 (b) and (c), the CA oscillator exhibits 1:1 and 1:2 phase-
lockings, respectively. Fig. 3.2.12 shows the parameter regions where various n:m phase-
lockings are observed. The figure shows that the coupling strength wi,j can adjust the n:m
phase-locking (see Table 3.2.1). Then, the following is defined.

Definition 6 (Mean phase difference): Assume the i-th and j-th CA oscillators exhibit
n:m phase-locking. Then, the i-th CA oscillator is said to have a mean phase difference

Φi,j =
1

T − Tp

∫ T

Tp

nϕi(t)−mϕj(t) dt
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Figure 3.2.13: Characteristics of mean phase difference Φi,j of the network of the two CA oscillators

in Fig. 3.2.11(a). L = 6, N = 25,M = 26, ρ0 = ρ1 = 200, ω0 = 2π/α0, ω1 = 2π/α1, α0 = α1 = 0.01,

T
(0)
X = T

(1)
X = 0.0012236, T

(0)
Y = T

(1)
Y = 0.001, β0 = β1 = 2, and T

(0)
Z = T

(1)
Z = 0.01.

with respect to the j-th CA oscillator, where T is an appropriately large number.

For example, in Figs. 3.2.11 (b) and (c), the 0-th CA oscillator has mean phase differences
Φ0,1 = −3.14 and −2.87 with respect to the 1st CA oscillator, respectively. Fig. 3.2.13
shows the characteristics of the mean phase difference Φ0,1 for the coupling strengths w0,1

and w1,0. The figure shows that the coupling strength wi,j can adjust the mean phase
difference Φi,j (see Table 3.2.1).

Remark 2 (significance obtained from the analyses of small network): A network
of the CA oscillators is used as the CPG model in Section IV, where the ratio n : m and
mean phase difference Φi,j of phase locking determine a spatiotemporal pattern of the orbits
of the legs of the robot. Here, the analysis results of the n : m phase locking in Fig. 3.2.12
and that of the mean phase difference Φi,j in Fig. 3.2.13 are expected to be useful to design
the CPG model. The significances of the analysis results in the CPG design are described
in Section IV.

3.2.4 Design of CPG consisting of network of CA oscillators
Using the analyses of the single CA oscillator in Section II and those of the small network

of the CA oscillators in Section III, in this section, we propose systematic design procedures
of a network of the CA oscillators to control the hexapod robot in Fig. 3.2.1. Here, we
introduce a bio-inspired target pattern of phase-lockings.

3.2.4.1 Target phase-locking pattern for controlling hexapod robot

Fig. 3.2.14(a) shows an illustration of an insect, where its six legs are labeled as 0–5.
Fig. 3.2.14(b) shows a timing chart of a gait, where the horizontal axis represents the time
and vertical axis represents movement of each leg relative to the ground. In this chart, the
black bar shows the moment when the leg is off the ground and moving forward, and the
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(a)

(b)

(c)

(d)

Figure 3.2.14: (a) Illustration of a six-legged insect. (b) Timing chart of a tripod gait [45]. (c) i-th

leg of the hexapod robot in Fig. 3.2.1. The orbit of the tip of the leg is represented by the angle φ̂i.

(d) Example of pattern of time-dependent angles φ̂0(t), · · · , φ̂5(t). This pattern is used as a target

phase-locking pattern of the CPG.
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Figure 3.2.15: Network of six CA oscillators used as a CPG to control the hexapod robot in Fig.

3.2.1.

white region indicates the moment when the leg is touching and crawling on the ground.
The gait in Fig. 3.2.14(b) is called a tripod gait, which is one of the typical gaits of six-
legged insects [45]. As shown in the figure, a pair of black bar and white region form a
period τ of the tripod gait. Fig. 3.2.14(c) shows the i-th leg of the hexapod robot in Fig.
3.2.1. The orbit of the tip of the leg is represented by an angle φ̂i ∈ [0, 2π). We consider a
time-varying angle

φ̂i(t) =
2π

τ
t+ γi (mod 2π),

where γi ∈ [0, 2π) is an offset parameter. Fig. 3.2.14(d) shows an example of the pattern
of six time-varying angles (φ̂0(t), · · · , φ̂5(t)). Further, we consider a map

σ(φ̂i) =

{
“black bar” if φ̂i ≥ π,
“white region” if φ̂i < π.

Applying the map σ to the six time-varying angles(φ̂0(t), · · · , φ̂5(t)) in Fig. 3.2.14(d), the
gait diagram in Fig. 3.2.14(b) is obtained. Hence, here, six CA oscillators are constructed
to reproduce the time-varying angles (φ̂0(t), · · · , φ̂5(t)) in Fig. 3.2.14(d). They are expected
to exhibit the following pattern of phase-lockings.

Target phase-locking pattern of six CA oscillators:

(i) Each pair of CA oscillators exhibits 1:1 phase-locking.

(ii) Each mean phase difference Φi,j for i ∈ {0, 2, 4} and j ∈ {0, 2, 4} is almost zero.

(iii) Each mean phase difference Φi,j for i ∈ {1, 3, 5} and j ∈ {1, 3, 5} is almost zero.

(iv) Each mean phase difference Φi,j for i ∈ {0, 2, 4} and j ∈ {1, 3, 5} is almost π.

(v) Each mean phase difference Φi,j for i ∈ {1, 3, 5} and j ∈ {0, 2, 4} is almost π.
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The next subsection proposes the systematic design procedures of a network of the CA
oscillators, which is used as a CPG to generate the aforementioned target phase-locking
pattern.

3.2.4.2 Design of network of CA oscillators used as CPG to generate
target phase-locking

We propose to use the network of the CA oscillators in Fig. 3.2.15 as a CPG to generate
the target phase-locking pattern. The parameters are designed as follows.

Design procedure 1 (Parameters): The parameter vector (ρi, ωi, αi, βi, T
Z
i ) of each

modified CA oscillator is set to have the same value, and the coupling strengths wi,j among
the oscillators are set to

W =



0 −1 0 −1 0 0
−1 0 −1 0 0 0
0 −1 0 0 0 −1
−1 0 0 0 −1 0
0 0 0 −1 0 −1
0 0 −1 0 −1 0

. (3.2.15)

Further, the values of the parameters ρi and (ωi, αi) are adjusted to realize the desired
amplitude and frequency of the motion of the hexapod robot leg.

Here, the significances of the analyses in Section III explained in Remark 2 are as follows.

• Fig. 3.2.12 shows that a pair of the i-th and j-th CA oscillators with the same value of
the parameter vector (ρi, ωi, αi, βi, T

Z
i ) and coupled via the strengths wi,j = wj,i = −1

exhibits a 1:1 phase-locking. Hence, the design procedure 1 is considered suitable to
realize the item (i) of the target phase-locking pattern.

• Fig. 3.2.13 shows that a pair of the i-th and j-th CA oscillators with the same value
of the parameter vector (ρi, ωi, αi, βi, T

Z
i ) coupled via the strengths wi,j = wj,i = −1

demonstrate mean phase differences |Φi,j | ≃ |Φj,i| ≃ π. Then, the network topology
in Fig. 3.2.15 is considered suitable to realize the items (ii)–(v) of the target phase-
locking pattern.

However, the design procedure 1 is not sufficient. Recall that the Remark 1 in Section II
shows that the ratio of the clock periods of the CA oscillator should be tuned to design a
CPG model, e.g., an irrational ratio of the clock periods and resulting asynchronous state
transitions are preferred. Then, to characterize the networks of the CA oscillators with
various ratios of the clock periods, the following is defined.

Definition 7 (Asynchronous and synchronous networks): The network of the CA
oscillators is said to be

• asynchronous network if TX
i /T

X
j and/or T Y

i /T
Y
j is irrational for certain i ̸= j.

• synchronous network if TX
i /T

X
j and T Y

i /T
Y
j are rational for all i and j.

Then, the following four types of networks exist.
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(a) (b)

Figure 3.2.16: Time waveforms of the discrete state variables (Xi, Yi) and corresponding restricted

phases ϕ̂i of four networks of CA oscillators. L = 6, N = 25, M = 26, ρi = 200, ωi = 2π/αi,

αi = 0.01, βi = 1, and TZ
i = 0.01 for all i. (Xi(0), Yi(0), Pi(0), Qi(0), Vi(0), Ui(0)) = (16, 17, 0, 0, 0, 0)

for all i. κ = 3. (a) Asynchronous network of Asynchronous CA oscillators. TX
i = 0.00100031415

and TY
i = 0.001 for i = 0, 1, 2, 3, and 4. TX

5 = 0.001 and TY
5 = 0.00100031415. (b) Synchronous

network of Asynchronous CA oscillators. TX
i = 0.00100031415 and TY

i = 0.001 for all i. (c)

Asynchronous network of Synchronous CA oscillators. TX
i = TY

i = 0.001 for i = 0, 1, 2, 3, and 4.

TX
5 = TY

5 = 0.00100031415. (d) Synchronous network of Synchronous CA oscillators. TX
i = TY

i =

0.001 for all i. The ratio 0.00100031415/0.001 is regarded as an irrational number owing to the C

language implementation of real numbers.
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(c) (d)

Figure 3.2.16: Continued.
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(a) Asynchronous network of Asynchronous CA oscillators.
(b) Synchronous network of Asynchronous CA oscillators.
(c) Asynchronous network of Synchronous CA oscillators.
(d) Synchronous network of Synchronous CA oscillators.

We compare the characteristics of these networks and their relations with the target phase-
locking pattern, where the aforementioned (a)–(d) correspond to the following (a)–(d),
respectively.

(a) Fig. 3.2.16(a) shows the time waveforms of the discrete state variables (Xi, Yi)
and corresponding restricted phase ϕ̂i of an asynchronous network of asynchronous
CA oscillators. Each restricted phase ϕ̂i is not defined for t < pai as the radius√

(Xi − ⌊N/2⌋)2 + (Yi − ⌊N/2⌋)2 is too small (i.e., smaller than κ). Further, the net-
work exhibits the target phase-locking pattern for t > qa (see Table 3.2.2).

(b) Fig. 3.2.16(b) shows the time waveforms of a synchronous network of asynchronous
CA oscillators. Each restricted phase ϕ̂i is not defined for t > 0 as the radius√

(Xi − ⌊N/2⌋)2 + (Yi − ⌊N/2⌋)2 is too small. Hence, the synchronous network of
the asynchronous CA oscillators cannot realize the target phase-locking pattern (see
Table 3.2.2).

(c) Fig. 3.2.16(c) shows the time waveforms of an asynchronous network of the syn-
chronous CA oscillators. The time interval [0, pci ) where each restricted phase ϕ̂i is
not defined is much longer than that of the asynchronous network of the asynchronous
CA oscillators. The transient time interval [0, qc) to achieve the target synchroniza-
tion is much longer than that of the asynchronous network of the asynchronous CA
oscillators. Hence, the asynchronous network of the synchronous CA oscillators is not
suitable to be used as a CPG when compared with the asynchronous network of the
asynchronous CA oscillators (see Table 3.2.2).

(d) Fig. 3.2.16(d) shows the time waveforms of a synchronous network of the synchronous
CA oscillators. The figure shows that each restricted phase ϕ̂i is not defined for t > 0
as the radius

√
(Xi − ⌊N/2⌋)2 + (Yi − ⌊N/2⌋)2 is too small. Hence, the synchronous

network of asynchronous CA oscillators cannot realize the target phase-locking pattern
(see Table 3.2.2).

The aforementioned four characteristics reveal the following consequence.

Remark 3 (significance obtained from analyses of CPG network): The asyn-
chronous network of asynchronous CA oscillators is best suitable to be used as the CPG as
summarized in Table 3.2.2.

Thus, we propose the following design procedure.

Design procedure 2 (Asynchronous clocks): Each CA oscillator is set to have the
clocks CX

i and CY
i that have an irrational ratio TX

i /T
Y
i of the periods. Further, at least

one pair of the CA oscillators in the network is set to have an irrational ratio TX
i /T

X
j or

T Y
i /T

Y
j of the periods of the clocks.

Using the design procedures 1 and 2, the asynchronous network of the asynchronous CA
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(a)

(b)

Figure 3.2.17: (a) Structure of each leg. Each leg has Hitec’s servomotors HS-422 (yaw axis) and

HS-645MG (roll axis). (b) Tripod gait of the robot. N = 25, M = 26, ρi = 200, ωi = 2π/αi,

αi = 0.01, L = 6, βi = 1, and TZ
i = 0.01 for all i. TX

i = 0.0012236 and TY
i = 0.001 for i = 0, 1, 2, 3,

and 4. TX
5 = 0.001 and TY

5 = 0.0012236.
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oscillators can be designed, which can realize the target phase-locking pattern with a short
transient period, as shown in Fig. 3.2.16(a).

3.2.5 Implementation and comparison
3.2.5.1 Implementation

This subsection shows that the proposed CPG model designed by the procedures pro-
posed in the previous section can realize the tripod gait of the hexapod robot in Fig. 3.2.1.
The dynamics of the CA oscillator are described as a register transfer level (RTL) VHDL
code as follows. The discrete state variables (Xi, Yi) are described by unsigned integers
to reflect Eq. (3.2.1) and implemented by n-bit registers, where n = ⌈log2N⌉. The dis-
crete auxiliary variables (Pi, Qi) are described by unsigned integers to reflect Eq. (3.2.2)
and implemented by m-bit registers, where m = ⌈log2M⌉. The functions Fi and Gi are
described by two’s compliment signed integers to reflect Eq. (3.2.5) and implemented by
look-up-tables with n-bit unsigned inputs and an (m+1)-bit signed output. Then, the state
transitions in Eqs. (3.2.3), (3.2.4), (3.2.6), and (3.2.7) are described by sequential state-
ments triggered by the clocks CX

i and CY
i . Using the aforementioned CA oscillator as a

component, the dynamics of the proposed CPG model are described as an RTL VHDL code
as follows. The discrete state variables (Vi, Ui) for the coupling are represented by unsigned
integers to reflect Eq. (3.2.9) and implemented by m-bit registers. The function Hi for
the coupling is represented by two’s compliment signed integers to reflect Eq. (3.2.11) and
implemented by adders and look-up-tables with an (n+1)-bit signed input and (m+1)-bit
signed output. The state transitions in Eqs. (3.2.10), (3.2.12), and (3.2.13) realize the
coupling of the asynchronous CA oscillators. Then, these state transitions are described by
sequential statements triggered by the clock CZ

i . Fig. 3.2.17(a) shows a structure of the
hexapod robot leg. The discrete state variable Xi of the i-th CA oscillator is transformed
into a pulse-width modulated (PWM) signal PWM(Xi) by a pulse-width modulator, PWM
signal PWM(Xi) instructs the angle of the servomotor, and then, the servomotor deter-
mines the angle in the yaw axis of the i-th leg of the hexapod robot. Further, the discrete
state variable Yi of the i-th CA oscillator is transformed into a saturated signal γ(Yi) by a
saturator

γ(Yi) =

{
Yi if Yi ≥ N/2,
0 otherwise,

(3.2.16)

the saturated signal γ(Yi) is transformed into a PWM signal PWM(γ(Yi)) by the pulse-
width modulator, the PWM signal PWM(γ(Yi)) instructs the angle of the servomotor, and
then, the servomotor determines the angle in the roll axis of the i-th leg. The set of VHDL
codes describing the CPG model, pulse-width modulators, and saturators are compiled
by Xilinx’s design software environment Vivado 2018.2 and a resulting bitstream file is
downloaded to Xilinx’s FPGA Artix-7 XC7A100T-1CSG324C [46] mounted on Digilent’s
Nexys 4 DDR evaluation platform [47]. Because the FPGA and design software environment
used in this study do not support asynchronous triggering, the clocks CX

i , CY
i , and CZ

i

are generated from a common clock with a high frequency (100[MHz]) such that the least
common multiple of the periods of the clocks is much longer than the periods of oscillations of
the discrete state variables Xi and Yi. Thus, the clocks can be regarded to be asynchronous
in practice. Fig. 3.2.17(b) shows snapshots of the hexapod robot controlled by the proposed
CPG model. It can be observed that the robot can realize the tripod gait. Features of the
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proposed CPGmodel implemented by FPGA are summarized in Table 3.2.3. The bit lengths
n and m are sufficiently shortened under the condition that the hexapod robot realizes an
appropriate tripod gait, where the resulting bit lengths are n = 5 and m = 6. The on-chip
power is the total of static power consumption (e.g., device static power) and dynamic
power consumption (e.g., powers of clock, signal, logic, and BRAM). It is estimated by the
design software environment at the post-routing stage, which provides the most accurate
power estimation when compared with other design stages, such as post-synthesize and
post-implementation stages.

3.2.5.2 Comparisons

This subsection compares the proposed CPG model with other CPG models.

Hopf CPG model implemented by customized DSP For comparison, we introduce the fol-
lowing Hopf CPG model as a conventional model [3].

xi(t+ h)= xi(t) + h(Fx(xi(t), yi(t)) +

5∑
j=0

wi,jxj(t)),

yi(t+ h)= yi(t) + h(Fy(xi(t), yi(t)) +
5∑

j=0

wi,jyj(t)),

Fx(xi, yi) = (µ2i − (x2i + y2i ))xi − ξiyi,
Fy(xi, yi) = (µ2i − (x2i + y2i ))yi + ξixi,

(3.2.17)

where h is a stepsize of the time t, xi ∈ R and yi ∈ R are continuous state variables,
and wi,j is the coupling strength defined in Eq. (3.2.15). Further, µi ∈ R and ξi ∈ R
are parameters characterizing an amplitude and intrinsic oscillation frequency of the state
variables (xi, yi), respectively. Fig. 3.2.18 shows time waveforms of the Hopf CPG model.
It can be observed that the Hopf CPG model realizes the target phase-locking pattern. The
dynamics of the Hopf CPG model in Eq. (3.2.17) are described as an RTL VHDL code as
follows. The discrete state variables (xi, yi) and parameters (µi, ξi) are described by signed
fixed point numbers with 8-bit integer parts and 5-bit decimal parts, and implemented by
14-bit registers. The coupling terms are described by summations and implemented by
adders. Then, the state transitions in Eq. (3.2.17) are described by sequential statements
that are triggered by a single clock. The state variable xi is transformed into a PWM signal
PWM(axi+ b) by the pulse-width modulator to determine the angle of the yaw axis of the
i-th leg of the hexapod robot. Further, the state variable yi is transformed into a saturated
signal γ(ayi + b) by the saturator, and the saturated signal γ(ayi + b) is transformed into
a PWM signal PWM(γ(ayi + b)) by the pulse-width modulator to determine the angle of
the roll axis of the i-th leg. The set of VHDL codes describing the Hopf CPG model, pulse-
width modulators, and saturator is compiled by the same design software environment that
was used to compile the proposed CPG model. It is implemented by the same FPGA device
that was used to implement the proposed CPG model. The bit length of the Hopf CPG
model is shortened based on the same criteria as that of the proposed CPG model. It is then
confirmed that the Hopf CPG model realizes the target phase-locking pattern. Features of
the Hopf CPG model are summarized in Table 3.2.3. Note that the Hopf CPG model that
is implemented in the FPGA can be regarded as a hardware digital signal processor (DSP),
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Figure 3.2.18: Time waveforms of the Hopf CPG model [3]. µi = 52 and ξi = 2π for all i. h = 2−5.

which is customized to execute the dynamic equation in Eq. (3.2.17).

Proposed CPG model implemented as software running on customized CPU For compari-
son, the proposed CPG model is implemented as a software running on a customized CPU
as follows. Using the same design software environment used to design the proposed CPG
model, a soft-core CPU called Microblaze [48] is custom designed to execute the dynamic
equations in Eqs. (3.2.3), (3.2.4), (3.2.6), (3.2.7), (3.2.10), (3.2.12), and (3.2.13) of the pre-
sented CPG model. In this design, unnecessary units (e.g., floating point unit and integer
multiplier) to execute the dynamic equations are not included in the CPU and the predefined
configuration is selected as “application preset,” which is among the most standard prede-
fined configurations. The resulting customized CPU is implemented by the same FPGA
device used to implement the proposed CPG model. Further, the dynamic equations of the
proposed CPG model are written in C-language code, the code is compiled by a compiler
embedded in the design software environment used to compile the presented CPG model,
and the resulting executable file is downloaded to the customized CPU with the FPGA. It is
then confirmed that the CPU-based CPG model realizes the target phase-locking pattern.
Features of the CPU-based CPG model are summarized in Table 3.2.3.

Our previously reported CPG model Our previously reported CPG model [40] is designed
by the same design software environment used to design the proposed CPG model and is
implemented by the same FPGA device used to implement the proposed CPG model. The
differences between the previously reported and proposed CPG model are (a) the previous
model has more clocks and flip-flops that do not play any important roles to realize the
target phase-locking pattern, and (b) the previous model has more complicated network
topology. Features of the previous model with the FPGA are summarized in Table 3.2.3.
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3.2.5.3 Discussions
• Table 3.2.3 shows that the proposed CPG model employs the least number of circuit
elements and the lowest power compared to the other models. However, the number
of flip-flops of the proposed model is slightly higher than that of the Hopf CPG model.
This exception can be ignored as the number of circuit elements required to implement
a flip-flop is much smaller than the number of circuit elements required to implement
a look-up-table.

• The number of circuit elements employed depends on the optimization algorithm of
the design software while the power consumption depends on the process rule of the
target device. In this study, the proposed model and other models are designed and
compiled by the same design software and implemented by the same FPGA device.
Hence, it can be said that the comparisons were appropriate. This is an advantage of
the FPGA-based prototype design [49, 50]. In addition, the capability to analyze the
specifications of customized processors (e.g., the customized DSP and CPU analyzed
in this study) is another advantage of the FPGA-based prototype design.

• The FPGA is further advantageous in designing an advanced CPG model. An ad-
vanced hexapod robot requires to change its gate patterns dynamically, and thus, an
advanced CPG model requires to change its coupling pattern dynamically to change
the phase-locking patterns. A dynamically reconfigurable FPGA is suitable to imple-
ment such dynamically reconfigurable neuromorphic hardware [30]. However, such an
advanced function of the CPG model is out of the scope of this study as we focused on
fundamental studies, e.g., the detailed analyses of the nonlinear dynamics of the CPG
model (Sections II and III), the detailed analyses of roles of the asynchronous clocks
(Sections II and IV), development of the systematic design method of the CPG model
based on the analyses results (Section IV), and implementation of the prototype and
comparisons with other models (Section V). Design of a dynamically reconfigurable
CPG model based on the dynamically reconfigurable FPGA is an important future
challenge.

3.2.6 Conclusions
This paper presented a novel CPG model consisting of a network of CA oscillators. The

detailed analyses showed the effects of the parameters on the nonlinear characteristics of
the CA oscillator and its network, such as amplitude of oscillation, frequency of oscillation,
phase-locking between the CA oscillators, mean phase difference between the phase-locked
CA oscillators, and transient period to the phase-locking. Moreover, the detailed analyses
confirmed: the asynchronous network of asynchronous CA oscillators is best suited to be
used as the CPG to realize the bio-inspired tripod gait of the hexapod robot when compared
with the other three types of networks. Using these results, we proposed the systematic
design procedures of the proposed CPG model to realize the tripod gait. Then, the CPG
model designed by the proposed procedures was implemented in the FPGA, and its op-
eration was verified through experiments. It was shown that the proposed CPG model
employs much fewer circuit elements and lower power than the conventional CPG model.
Future scope for research is as follows: (a) detailed analyses of various nonlinear dynamics
of the proposed CPG model, (b) realization of other gaits of the hexapod robot based on
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the proposed CPG model, (c) development of further hardware-efficient CPG model based
on dimension reduction techniques, and (d) development of a dynamically reconfigurable
CPG model based on the dynamically reconfigurable FPGA.

3.3 Hexapod Robot Controlled by Coupled Phase

Oscillators4

3.3.1 Introduction
Legged animals perform complex yet stable locomotion and even adapt their rhythmic

patterns for gait appropriate to their walking speed and certain types of terrain. It has been
thought that such rhythmic patterns are produced by central pattern generators (CPGs),
biological neural circuits found in the spinal cords, without sensory feedback [1]. The CPGs
are mostly modeled by networks composed of nonlinear oscillators (e.g., Van der Pol oscil-
lators [51], Hopf oscillators [52], Kuramoto oscillators [53], and spiking neurons [27]), which
employ their synchronization properties to produce the rhythmic patterns. These models
have been successfully utilized in gait generations for various types of legged robots [13].
Further, in recent years, CPG models have been applied in the field of medical engineering,
e.g., non-invasive and invasive prostheses [14,15]. For such practical applications, the CPG
models must utilize fewer hardware resources and consume less power. However, bio-inspired
models, including the CPG models, tend to increase the hardware resources required for
circuit implementation due to their nonlinearities. Considering the nonlinear circuit and
system theory, the bio-inspired models are classified into the following four classes based on
continuousness and discontinuousness of state variables and time.

Class CTCS. This is a nonlinear differential equation model of a bio-inspired system with
a continuous time and continuous states (CTCS). A class CTCS bio-inspired model can
be generally implemented in an analog nonlinear circuit, e.g., [15, 17,18,54–57].

Class DTCS. This is a nonlinear difference equation model of a bio-inspired system with
a discrete time and continuous states (DTCS). A class DTCS bio-inspired model can be
generally implemented in a switched capacitor circuit, e.g., [20–22].

Class DTDS. This is a numerical integration model (in finite binary number represen-
tation) of a bio-inspired system with a discrete time and discrete states (DTDS). A
class DTDS bio-inspired model can be generally implemented in a digital processor or a
sequential logic circuit, e.g., [5, 14,27,51–53,58].

Class CTDS. This is an asynchronous cellular automaton (CA) model of a bio-inspired
system with a continuous (state transition) time and discrete states (CTDS). A class
CTDS bio-inspired model can be generally implemented in an asynchronous sequential
logic circuit, e.g., [40, 59–61].

4This section is based on “Smooth Gait Transition in Hardware-Efficient CPG Model based on Asyn-
chronous Coupling of Cellular Automaton Phase Oscillators,” by the same author, which appeared in Non-
linear Theory and Its Applications, IEICE, vol. 12, no. 3, pp. 336–356, 2021, Copyright(C)2021 IEICE.
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(a) (b) (c)

Figure 3.3.1: (a) Cellular automaton (CA) phase oscillator. (b) Synchronous coupling of CA phase

oscillators. (c) Asynchronous coupling of CA phase oscillators.

Our group has been developing CPG models for hexapod robots belonging to the class
CTDS system, which utilize fewer hardware resources for circuit implementation than mod-
els belonging to the class DTDS system [40, 59–61]. Fig. 3.3.1 shows conceptual diagrams
of our CPG model studied in this paper. As shown in Fig. 3.3.1(a), our CPG model is
composed of CA phase oscillators implemented in a sequential logic circuit, which have flip-
flops storing discrete state variables and logic gates realizing discrete nonlinear coupling
functions. In particular, the state space of our CPG model is roughly discretized, i.e., the
required bit length for the state space is very small. Accordingly, the logic gates for the non-
linear coupling function can also be designed to be small. However, in this study, we found
that, due to the rough discretization, transitions of discrete variables do not work properly
if they are triggered by a single clock (synchronous coupling of the CA phase oscillators as
shown in Fig. 3.3.1(b)). In order to overcome this difficulty, we employed the asynchronous
nature of the clocks, that is, the state transitions of the discrete variables are triggered by
multiple asynchronous clocks (asynchronous coupling of the CA phase oscillators as shown
in Fig. 3.3.1(c)). We also clarified that the CPG model based on the asynchronous coupling
of CA phase oscillators can perform smooth gait transition for the hexapod robot while the
CPG model based on the synchronous coupling of CA phase oscillators cannot. It should
be noted that a CPG model belonging to the class DTDS system means that the oscillators
composing a network are synchronously coupled, i.e., their state transitions are triggered
by a single clock. Preliminary results can be found in our conference proceedings, which
reported that our CPG model can produce some types of gait patterns and can be imple-
mented in a field programmable gate array (FPGA) utilizing fewer hardware resources than
a CPG model belonging to the class DTDS system [60,61]. That is to say this paper studied
the remaining important issues about the smooth transition between the gait patterns in
our CPG model and comparisons of asynchronously coupled and synchronously coupled CA
phase oscillators.

The significance of this paper is as follows.
Significance: In this study, we firstly demonstrate that roughly discretizing a state space
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of a CPG model in order to reduce hardware resources causes gait transitions failures.
Then, this paper presents a CPG model based on asynchronous coupling of oscillators and
demonstrates that the model can realize smooth transition between different gait patterns.
This advantage of the presented model suggests that this study contributes to design future
applications such as the non-invasive and invasive prosthetic devices [14, 15], and the bio-
inspired robots [13], which can be implemented as a small-scale circuit and has low power
consumption.

3.3.2 Model description

This section presents a central pattern generator (CPG) model based on asynchronous
coupling of cellular automaton (CA) phase oscillators for a hexapod robot shown in Fig.
3.3.2(a). The presented CPG model consists of the CA phase oscillators, where a schematic
diagram of each CA phase oscillator is shown in Fig. 3.3.2(b). As shown in this figure, each
CA phase oscillator has the following discrete phase variable and discrete auxiliary variable.

Discrete phase variable:

Φi ∈ Z+
N ≡ {0, · · · , N − 1}, (3.3.1)

Discrete auxiliary variable:

Pi ∈ Z+
M ≡ {0, · · · ,M − 1}, (3.3.2)

where N and M are positive integers. Further, i ∈ {1, · · · , n} represents an index for the
oscillators with periodic boundary conditions (e.g., Φn+1 = Φ1 and Pn+1 = P1), where n is
a positive integer representing the number of oscillators. State transitions of the discrete
variables Φi and Pi are triggered by the following internal clock.

Internal clock:

Clki(t) ≡
∞∑
j=0

δ(t− jTi), Clki ∈ {0, 1}, (3.3.3)

where t ∈ R represents a continuous time, Ti ∈ (0,∞) represents a period of the i-th internal
clock Clki, and δ represents the following unit impulse.

δ(x) ≡

{
1 if x = 0,

0 if x ̸= 0,
δ : R→ {0, 1}. (3.3.4)

Then, as shown in Fig. 3.3.3, the internal clock Clki triggers the following state transitions
of the discrete phase variable Φi.

If Clki(t) = 1 and Pi(t) ≥ |H(∆Φ+
i )|, then

Φi(t+) :=


Φi(t) + 1 if H(∆Φ+

i ) ≥ 0 and Φi(t) < N − 1,

0 if H(∆Φ+
i ) ≥ 0 and Φi(t) = N − 1,

Φi(t)− 1 if H(∆Φ+
i ) < 0 and Φi(t) > 0,

N − 1 if H(∆Φ+
i ) < 0 and Φi(t) = 0,

(3.3.5)
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(a)

(b) (c)

Figure 3.3.2: (a) Hexapod robot mounted with a field programmable gate array (FPGA), in which

the presented CPG model is implemented. (b) Schematic diagram of the CA phase oscillator. (c)

Network topology of the CPG presented model.
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where the symbol “t+” denotes “limε→+0t + ε” and the symbol “:=” denotes an “instan-
taneous state transition” throughout the paper. Further, the discrete function H, which
works as a coupling function as shown in Fig. 3.3.2(b), is defined as follows.

Discrete coupling function :

H(∆Φ+) ≡


M − 1 if h(∆Φ+) = 0 or ⌊h(∆Φ+)−1⌋ > M − 1,

−(M − 1) if ⌊h(∆Φ+)−1⌋ < −(M − 1),

⌊h(∆Φ+)−1⌋ otherwise,

H : Z±
N ≡ {0, · · · ,±2(N − 1)} → Z±

M ≡ {0, · · · ,±(M − 1)},

(3.3.6)

where ⌊.⌋ denotes the following floor function.

⌊x⌋ ≡ max{l ∈ Z | l ≤ x}, x ∈ R. (3.3.7)

The function h is defined as

h(∆Φ+) ≡ ΓNsin(2π∆Φ+/N), h : Z±
N → R, (3.3.8)

where Γ ∈ R represents a coupling constant. ∆Φ+
i denotes

∆Φ+
i ≡ Φi+1(t)− Φi(t) + ⌊Nϕ/2π⌋ mod N, (3.3.9)

where ϕ ∈ [0, 2π) is a parameter representing the phase difference of the discrete phase
variables Φi and Φi+1. Hence, the CA phase oscillators are unidirectionally coupled in a
loop arrangement, as shown in Fig. 3.3.2(c). It should be noted that if N and M are not
so large, the discrete coupling function H can be implemented in look-up-tables (LUTs),
which consume less hardware resources than arithmetic logic units. Further, as shown in
Fig. 3.3.3, the internal clock Clki triggers the following state transition of the discrete
auxiliary variable Pi.

If Clki(t) = 1, then Pi(t+) :=

{
Pi(t) + 1 if Pi(t) < |H(∆Φ+

i )|,
0 if Pi(t) ≥ |H(∆Φ+

i )|.
(3.3.10)

Figs. 3.3.4(a) and (b) show the examples of time waveforms of the CA phase oscillators.
Further, Figs. 3.3.4(c) and (d) show the Cartesian coordinate representations of the discrete
phase variables Φi on the unit circles for t = 0 and t = 3, where the i-th oscillator is plotted
at

x = cos(2πΦi/N), y = sin(2πΦi/N), (3.3.11)

as the black circle with the index. These figures show that the coupled CA phase oscillators
exhibit in-phase synchronization. Depending on the clock periods Ti, the following definition
is introduced.
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Figure 3.3.3: State transitions of discrete phase variables Φi and discrete auxiliary variables Pi

triggered by internal clocks Clki defined by Eqs. (3.3.5) and (3.3.10).

Definition. The CA phase oscillators are said to be{
synchronously coupled if Ti/Tj = rational number for all i and j,

asynchronously coupled if Ti/Tj = irrational number for certain i ̸= j.
(3.3.12)

In the case of Fig. 3.3.4, the CA phase oscillators are synchronously coupled. The differ-
ence in behaviors between the synchronously and the asynchronously coupled CA phase
oscillators is discussed in Subsection 3.2.

3.3.3 Synchronization phenomena in presented CPG model
This section shows that the presented CPG model can imitate typical gait patterns for

the hexapod robot. By analyses using the evaluation function to quantify synchronization
states, an advantage of the asynchronously coupled CA phase oscillators is clarified. Let us
begin by introducing target gait patterns in the following subsection.

3.3.3.1 Target gait patterns
Figs. 3.3.5(a) and (b) show gait diagrams [45] of a six-legged insect, where the labels

L1–L3 and R1–R3 correspond to those shown in Figs. 3.3.2(a) and (c). These gait patterns,
called tripod gait (fast) and wave gait (slow), are used as the target gait patterns to be
imitated in this study. In the diagrams, the blue rectangle shows the moment when the leg
is off the ground and moving forward, and the orange rectangle shows the moment when
the leg is touching and crawling the ground. A pair of the blue rectangle and the orange
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Figure 3.3.4: (a) Example of time waveforms of discrete phase variables Φi. (b) Example of time

waveforms of discrete auxiliary variables Pi. (c) Cartesian coordinate representation on unit circle

for t = 0. The CA phase oscillator are plotted based on Eq. (3.3.11). (d) Cartesian coordinate

representation on unit circle for t = 3. The parameter values are fixed as follows: N = 18, M = 32,

Γ = 10−2, ϕ = 0, and Ti = 103 for all i.

rectangle forms a period τ as indicated by the black arrow in Fig. 3.3.5(a). In order to
realize synchronization patterns for the coupled CA phase oscillators from the above target
gait patterns, let us consider the following time-varying phases as shown in Figs. 3.3.5(c)
and (d),

φi(t) ≡ 2πt/τ + ψi (mod 2π), φi ∈ [0, 2π), (3.3.13)

where ψi ∈ [0, 2π) represents an initial phase as indicated by the black arrow in Fig. 3.3.5
(c). Let us also consider the following map,

σ(φ) ≡

{
“blue rectangle” for φ < θ,

“orange rectangle” for φ ≥ θ,
σ : [0, 2π)→ {“blue rectangle”, “orange rectangle”},

(3.3.14)

where θ ∈ [0, 2π) represents a threshold to determine a boundary between the “blue rectan-
gle” and the “orange rectangle” as indicated by the black arrow in Fig. 3.3.5 (c). Applying
the map σ to the six time-varying phases (φ1(t), · · · , φ6(t)), a gait diagram can be ob-
tained. For example, the diagram of the tripod gait shown in Fig. 3.3.5(a) can be obtained
by applying the maps σ to the phases φi for a parameter case

(ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, θ) = (0, π, 0, π, 0, π, 0, π). (tripod gait) (3.3.15)

Fig. 3.3.5(c) shows the time waveforms of the phases φi under the above parameter case,
where the shadow rectangle shows the region when φi(t) < θ, which corresponds to the
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Tripod gait Wave gait

Figure 3.3.5: Two typical gait diagrams [45] and their target synchronization patterns. (a) Gait

diagram of tripod gait (fast). (b) Gait diagram of wave gait (slow). (c) Target synchronization

pattern for tripod gait defined by Eq. (3.3.13) . The parameter values are described in Eq. (3.3.15).

(d) Target synchronization pattern for wave gait defined by Eq. (3.3.13). The parameter values

are described in Eq. (3.3.16). (e) Time waveforms of coupled CA phase oscillators for tripod gait.

The parameter values are described in Eq. (3.3.17). The others are fixed as follows: N = 36,

M = 64, Γ = 4.347×10−3, and Ti = 4.347×10−4 for all i. (f) Time waveforms of coupled CA phase

oscillators for wave gait. The parameter values are described in Eq. (3.3.18). The others are fixed

as the same values chosen in (e). (g) Cartesian coordinate representation on unit circle for t = 5

of time waveforms in (e). (h) Cartesian coordinate representation on unit circle for t = 5 of time

waveforms in (f).
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“blue rectangle” in the diagram in Fig. 3.3.5(a). Further, the diagram of the wave gait
shown in Fig. 3.3.5(b) can be obtained by applying the maps σ(φi) to the phases φi for a
parameter case

(ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, θ) = (0, 5π/3, 4π/3, π, 2π/3, π/3, π/3). (wave gait) (3.3.16)

Fig. 3.3.5(d) shows the time waveforms of the phases φi under the above parameter case.
Hence, the synchronization pattern of the time-varying phases φi shown in Figs. 3.3.5(b)
and (c) should be generated by the presented CPG model for imitating the tripod gait and
the wave gait. In the presented CPG model, the phase differences of the oscillators (e.g., the
black arrow indicated in Fig. 3.3.5(c)) coincide with the system parameter ϕ. Fig. 3.3.5(e)
shows the time waveforms of the tripod gait generated by the presented CPG model, where
the values of the parameter ϕ is

ϕ = π. (tripod gait) (3.3.17)

Fig. 3.3.5(g) shows Cartesian coordinate representations of the discrete phase variables Φi

corresponding to Fig. 3.3.5(e) in a steady state. Further, Fig. 3.3.5(f) shows the time
waveforms of the wave gait generated by the presented CPG model, where the values of the
parameter ϕ is

ϕ = π/3. (wave gait) (3.3.18)

Fig. 3.3.5(h) shows Cartesian coordinate representations of the discrete phase variables Φi

corresponding to Fig. 3.3.5(e) in a steady state. The next subsection investigates differences
between the synchronously and asynchronously coupled CA phase oscillators for the cases
in Eqs. (3.3.17) and (3.3.18).

3.3.3.2 Synchronization analysis of asynchronously and synchronously
coupled CA phase oscillators

In order to quantify the synchronization patterns of the coupled CA phase oscillators,
the following instantaneous evaluation function for the tripod gait is introduced.

rtripod(t) ≡
1

n

∣∣∣∣∣∣
n/2∑
i=1

(
ej2π

Φ2i(t)

N + ej
(
2π

Φ2i+1(t)

N
+π
))∣∣∣∣∣∣ , rtripod ∈ [0, 1], (3.3.19)

where j =
√
−1. The instantaneous evaluation function rtripod closes to 1 means that the

coupled CA phase oscillators achieve the target synchronization pattern for the tripod gait.
It should be noted that rtripod only evaluates phase relationship of the oscillators, which does
not necessarily mean that they are oscillating properly even if rtripod ≈ 1. Accordingly, the
following instantaneous average velocity of the coupled CA phase oscillators is introduced.

vave(t) ≡
1

n

n∑
i=1

Ki(t)∑
k=1

Φi(ti,k)− Φi(ti,k−1)

N(ti,k − ti,k−1)
Ii,k(t), vave ∈ R, (3.3.20)
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Synchronous coupling

Figure 3.3.6: (a) Instantaneous evaluation function rtripod defined by Eq. (3.3.19) for ten simulation

trials of synchronously coupled CA phase oscillators from randomly chosen initial values. The

parameter values are fixed as follows: N = 36, M = 64, Γ = 4.347 × 10−3, and Ti = 4.347 × 10−4

for all i. The others are described in Eq. (3.3.17). (b) Oscillation with target synchronization. The

time waveforms and Cartesian coordinate representations on the unit circle correspond to the blue

lines approaching 1 in (a). (c) Oscillation with non-target synchronization. The time waveforms and

Cartesian coordinate representations on the unit circle correspond the blue line not approaching 1 in

(a). (d) Non-oscillation. The time waveforms and Cartesian coordinate representations on the unit

circle correspond the orange line in (a). (e) Reverse oscillation. The time waveforms and Cartesian

coordinate representations on the unit circle correspond to the green line in (a).
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Synchronous coupling

Figure 3.3.6: Continued.
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Asynchronous coupling

Figure 3.3.7: Instantaneous evaluation function rtripod defined by Eq. (3.3.19) for ten simulation

trials of asynchronously coupled CA phase oscillators from the same initial values as those chosen

in Fig. 3.3.6. The parameter values are fixed as follows: N = 36, M = 64, Γ = 4.347 × 10−3,

Ti = 4.347× 10−4 for 1 ≤ i ≤ 5, and T6 = 1.872π× 10−4. The others are described in Eq. (3.3.17).

where Ki(t) ≡ max{k ∈ Z | ti,k ≤ t}, Φi(ti,k) − Φi(ti,k−1) is calculated on the circle,
ti,k represents the time when the k-th state transition of the discrete phase variable Φi is
occurred, and Ii,k is the following indicator function.

Ii,k(t) ≡

{
1 if t ∈ [ti,k, ti,k+1),

0 if t /∈ [ti,k, ti,k+1),
Ii,k : R→ {0, 1}. (3.3.21)

Fig. 3.3.6(a) shows the instantaneous evaluation functions rtripod and the instantaneous
average velocity vave for ten simulation trials of the synchronously coupled CA phase os-
cillators, where the initial values are randomly chosen. In these trials, the four types of
behaviors are observed as follows.

(i) Oscillation with target synchronization pattern. In Fig. 3.3.6(a), the values of the
instantaneous evaluation functions rtripod for the positive vave in the steady states
are drawn by the blue lines. Among them, the blue lines approaching 1 in steady
states mean that the coupled CA phase oscillators exhibit the synchronization pattern
for the tripod gait properly. For example, Fig. 3.3.6(b) shows the time waveforms
and Cartesian coordinate representations of the discrete phase variables Φi in the
trial indicated by the corresponding arrow in Fig. 3.3.6(a); the features of them are
consistent with those shown in Figs. 3.3.5(d)–(h).

(ii) Oscillation with non-target synchronization pattern. In Fig. 3.3.6(a), the values of
the instantaneous evaluation function rtripod drawn by the blue line that does not
approach 1 in the steady state mean that the coupled CA phase oscillators do not
exhibit the synchronization pattern for the tripod gait. For example, Fig. 3.3.6(c)
shows the time waveforms and Cartesian coordinate representations of the discrete
phase variables Φi in the trial indicated by the corresponding arrow in Fig. 3.3.6(a).
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As shown in this figure on the right, the CA phase oscillators exhibit three-phase
synchronization, which is not the target synchronization pattern for the tripod gait.

(iii) Non-oscillation. In Fig. 3.3.6(a), the values of the instantaneous evaluation functions
rtripod for vave ≈ 0 in the steady states are drawn by the orange lines. The orange lines
approach 1 in the steady states; however, all the CA phase oscillators stop oscillating.
In this case, the coupled CA phase oscillators do not achieve the synchronization
pattern for the tripod gait. For example, Fig. 3.3.6(d) shows the time waveforms and
the Cartesian coordinate representations of the discrete phase variables Φi in the trial
indicated by the corresponding arrow in Fig. 3.3.6(a). As shown in this figure, the
whole CA phase oscillators do not oscillate in the steady state (left side).

(iv) Reverse oscillation. In Fig. 3.3.6(a), the values of the instantaneous evaluation func-
tion rtripod for the negative vave in the steady states are drawn by the green line. The
green line does not approach 1 in the steady state; besides, all the CA phase oscillators
are reversely oscillating. In this case, the coupled CA phase oscillators do not achieve
the synchronization pattern for the tripod gait. For example, Fig. 3.3.6(e) shows the
time waveforms and Cartesian coordinate representations of the discrete phase vari-
ables Φi in the trial indicated by the corresponding arrow in Fig. 3.3.6(a). As shown
on the left side in this figure, all the CA phase oscillators evolve with negative slopes
in the steady state that means the CA phase oscillators are reversely oscillating.

Remark 1 (advantage of asynchronous coupling in gait): Fig. 3.3.7 shows the
instantaneous evaluation functions rtripod for ten simulation trials of the asynchronously
coupled CA phase oscillators, where the parameter values (except for the parameter T5 for
the period of the clock Clk5) and the initial values are the same as those chosen in Fig.
3.3.6(a). For all the trials, the coupled CA phase oscillators exhibit the synchronization
pattern for the tripod gait where all the behaviors correspond to (i).

The characteristic above that the synchronously coupled CA phase oscillators may fail to
synchronize is also observed in gait transitions; it is not observed in the asynchronously
coupled CA phase oscillators. The result of the comparison on the gait transitions is shown
below. For the wave gait, the following another instantaneous evaluation function to quan-
tify the synchronization patterns of the coupled CA phase oscillators is introduced.

rwave(t) ≡
1

n

∣∣∣∣∣
n∑

i=1

ej
(
2π

Φi(t)

N
+π

3
(i−1)

)∣∣∣∣∣ , rwave ∈ [0, 1]. (3.3.22)

As with the one for the tripod gait in Eq. (3.3.19), the instantaneous evaluation function
rwave closes to 1 means that the coupled CA phase oscillators achieve the target synchroniza-
tion pattern for the wave gait. Fig. 3.3.8(a) shows the time waveforms of the synchronously
coupled CA phase oscillators, where the values of the parameter ϕ is time variant as follows.

ϕ = π/3 for 0 ≤ t < 1.25 and 2.5 ≤ t < 3.75, (wave gait)

ϕ = π for 1.25 ≤ t < 2.5 and 3.75 ≤ t ≤ 5. (tripod gait)
(3.3.23)

Fig. 3.3.8(b) shows the instantaneous evaluation functions rtripod (solid line) and rwave
(dashed line), and the instantaneous average velocity vave corresponding to Fig. 3.3.8(a).
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Synchronous coupling Asynchronous coupling

(a) (c)

(b) (d)

Figure 3.3.8: Gait transitions between wave gait and tripod gait. (a) Time waveforms of the

synchronously coupled CA phase oscillators. The values of the parameter ϕ is time variant as

described in Eq. (3.3.23). The other parameter values are the same as those chosen in Fig. 3.3.6. (b)

Instantaneous evaluation functions rtripod (solid line) and rwave (dashed line) defined by Eq. (3.3.38),

and instantaneous average velocity vave defined by Eq. (3.3.20) of the asynchronously coupled CA

phase oscillators. (c) Time waveforms of the asynchronously coupled CA phase oscillators. The

values of the parameter ϕi is switched as described in Eq. (3.3.23). The other parameter values are

the same as those chosen in Fig. 3.3.7. (d) Instantaneous evaluation functions rtripod (solid line)

and rwave (dashed line), and instantaneous average velocity vave of the asynchronously coupled CA

phase oscillators.
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Figure 3.3.9: Schematic diagram of control strategy for i-th leg’s servomotor. The blocks of i-th

and j-th oscillators are identical with the circuit in Fig. 3.3.2(b).

For 0 ≤ t < 1.25, the synchronously coupled CA phase oscillators fail to synchronize
to the target synchronization pattern, where the behavior is corresponding to (iii). For
1.25 ≤ t < 2.5, the synchronously coupled CA phase oscillators achieve the target syn-
chronization pattern, where the behavior is corresponding to (i). For 2.5 ≤ t < 3.75, the
synchronously coupled CA phase oscillators fail to synchronize to the target synchronization
pattern, where the behavior is corresponding to (iv). For 3.75 ≤ t ≤ 5, the synchronously
coupled CA phase oscillators achieve the target synchronization pattern, where the behavior
is corresponding to (i). On the other hand, Figs. 3.3.8(c) and (d) show the time waveforms,
the instantaneous evaluation functions rtripod and rwave, and the instantaneous average ve-
locity vave of the asynchronously coupled CA phase oscillators, where the parameter values
(except for the parameter T5 for the period of the clock Clk5) and the initial values are
the same as those chosen in Figs. 3.3.8(a) and (b). As shown in these figures, the asyn-
chronously coupled oscillators achieve all the gait transitions between the tripod gait and
the wave gait.

Remark 2 (advantage of asynchronous coupling in gait transition). Our extensive
simulations reveal that the synchronously coupled CA phase oscillators often fail to realize
the proper gait transitions. On the other hand, the asynchronously coupled CA phase oscil-
lators mostly realize the proper gait transitions. Hence, the analyses in this study clarified
that the asynchronously coupled CA phase oscillators are suitable to perform the smooth
gait transition for the hexapod robot compared to the synchronously coupled CA phase
oscillators. It should be noted that this study does not guarantee that the asynchronously
coupled CA phase oscillator can always realize the target synchronization patterns. Hence,
future work is needed to theoretically analyze the synchronization phenomena of the coupled
CA phase oscillators.

3.3.4 FPGA Implementation
This section shows the hexapod robot mounted with an FPGA, in which the presented

CPG model is implemented, can realize the wave gait, the tripod gait, and their transitions.
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(a)

Figure 3.3.10: (a) Waveforms of signals X and Y simulated by Xilinx Vivado Design Suite v2018.2.

(b) Snapshots of tripod gait. (c) Snapshots of wave gait. The parameter values are the same as

those chosen in Fig. 3.3.7, where T5 is approximated as 5.88 × 10−4. Also, θ = π/3 for the wave

gait and θ = π for the tripod gait.
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(b) Tripod gait

(c) Wave gait

Figure 3.3.10: Continued.
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Fig. 3.3.9 shows the block diagram of a control system for the i-th leg, where each leg has
the two servomotors for the 2-degrees-of-freedom. As shown in this figure, the discrete phase
variables Φi are converted to Cartesian coordinate representations from polar coordinate
representations as follows.

Conversion from polar to Cartesian:

X(Φ) ≡


⌊
A cos

(
2π(πΦ/θ)/N

)⌋
if Φ < Nθ/2π,⌊

A cos

(
2π
(Φ−Nθ/2π

2− θ/π
+
N

2

)/
N

)⌋
if Φ ≥ Nθ/2π,

X : Z+
N → Z,

Y (Φ) ≡


⌊
A sin

(
2π(πΦ/θ)/N

)⌋
if Φ < Nθ/2π,⌊

A sin

(
2π
(Φ−Nθ/2π

2− θ/π
+
N

2

)/
N

)⌋
if Φ ≥ Nθ/2π,

Y : Z+
N → Z,

(3.3.24)

where A ∈ R is a scaling parameter for a pulse-width modulation and these functions
are implemented in LUTs. Fig. 3.3.10(a) shows the example of the signals X(Φi(t)) and
Y (Φi(t)) simulated by Xilinx Vivado Design Suite v2018.2, an integrated design environment
for synthesis and analysis of hardware description language (HDL) designs, where the detail
of the design is described later. As shown in Fig. 3.3.9, the servomotors corresponding to
yaw axes are controlled by pulse width-modulated signals of the signals X. Also, the
servomotors corresponding to roll axes are controlled by pulse width-modulated signals Ŷ
of the signals through the following a saturator function.

Saturator:

Ŷ (Y ) ≡

{
B if Y ≥ 0,

−B if Y < 0,
Ŷ : Z→ {−B,B | B ∈ Z}, (3.3.25)

where B ∈ Z is a scaling parameter for the pulse-width modulation. The dynamics of the
presented model are written as a register transfer level (RTL) code using VHDL as follows.
The discrete variables Φi and Pi are implemented by registers as N-bit and M-bit unsigned
integers, where N = ⌈log2N⌉ and M = ⌈log2M⌉, respectively. The function H is imple-
mented in LUTs having a 2(N+1)-bit signed integer input and a (M+1)-bit signed integer
output in the two’s complement format. The functions X and Y are respectively imple-
mented in LUTs having a N-bit unsigned integer input and a L-bit unsigned integer output,
where L is depending on the resolution of the pulse-width modulator. The state transitions
in Eqs. (3.3.5) and (3.3.10) are written by sequential statements triggered by the clocks
Clki. The VHDL code is synthesized by Xilinx Vivado Design Suite v2018.2 and a resuting
bitstream file is downloaded into the Xilinx’s FPGA, Artix-7 XC7A100T-1CSG324C [46],
mounted on Digilent’s Nexys 4 DDR evaluation platform [47]. Since the FPGA device does
not support asynchronous triggering, the internal clocks Clki are generated by frequency-
dividing a common clock with a high frequency (100 [MHz]). The FPGA device, in which
the presented CPG model is implemented, is mounted on the hexapod robot, the Lynxmo-
tion’s MH2 hexapod robot [44], as shown in Fig. 3.3.2(a). Figs. 3.3.10(b) and (c) show
snapshots of the hexapod robot controlled by the presented CPG model while performing
the tripod gait and the wave gait. The laboratory experiments verified that the hexapod
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(a) Tripod gait (b) Wave gait

Figure 3.3.11: Oscillation periods of asynchronously coupled CA phase oscillators in steady states.

(a) Tripod gait (ϕ = π). (b) Wave gait (ϕi = π/3). The other parameter values are the same as

those chosen in Fig. 3.3.7, where Ti = T = 4.347× 10−4 for 1 ≤ i ≤ 5.

robot can perform the gait transition between the wave gait, the tripod gait, and their
transitions.

3.3.5 Discussion
3.3.5.1 Oscillation periods

In the case of the synchronously coupled CA phase oscillators, e.g., Ti = T for all i, the
oscillation period of each oscillator can be easily delivered. Assume

Φ(0) ∈ Φ∗ ≡ {(Φ1, · · · ,Φn) | Φi = Φi+1 + ⌊Nϕ/2π⌋ for all i},
P (0) ∈ P ∗ ≡ {(P1, · · · , Pn) | Pi = Pj for all i and j},

(3.3.26)

where Φ(t) ≡ (Φ1(t), · · · ,Φn(t)) and P (t) ≡ (P1(t), · · · , Pn(t)). This assumption means
that the CA phase oscillators are synchronized to a target pattern determined by the pa-
rameter ϕ. Under the assumption, from Eq. (3.3.8), return values of the function h are
always h(∆Φ+

i ) = 0 for all i. Then, from Eq. (6), return values of the coupling function
H are always H(∆Φ+

i ) = M − 1 for all i. Therefore, the oscillation period of each phase
variable Φi is obtained by

Oscillation period = TMN. (3.3.27)

In the case of the asynchronously coupled CA phase oscillators, the oscillation period may
change from TMN depending on the clock periods T6, where Ti = T for 1 ≤ i ≤ 5. Fig.
3.3.11 shows average periods of oscillators for the case of the asynchronously coupled CA
phase oscillators. As shown in the figures (a) and (b), the average periods of oscillators are
almost the same for the tripod gait and the wave gait.

3.3.5.2 Appropriate parameters of N and M for practical use

By choosing a desired oscillation period and a clock period T , the parameters N and
M can be determined as MN = Oscillation period/T . Fig. 3.3.12 shows rates at which
the orbits of the oscillators starting from randomly chosen initial values synchronize to the
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Figure 3.3.12: Rates at which orbits of oscillators starting from randomly chosen initial val-

ues synchronize to tripod gait pattern for N . Total number of trials = 1000 and M =

Oscillation period/TN , where the oscillation period and T are chosen as 1.0015488 and 4.347×10−4,

respectively. The other parameter values are the same as those chosen in Fig. 3.3.6 and Fig. 3.3.7.

tripod gait pattern for N , where

p =
Number of trials synchronized to tripod gait pattern

Total number of trials
, (3.3.28)

and N and M are assumed to be integers satisfying Eq. (3.3.27). A large value of the rate
p correspond to a large attraction basin of the target gait pattern. Therefore, for practical
use, the values of the parameters N and M should be chosen such that p ≃ 1 (e.g., N = 36
and M = 64 as shown in Fig. 3.3.12).

3.3.5.3 Realizable phase locked patterns

Further, under the assumption that P ∈ P ∗, realizable phase locked patterns in the
synchronously coupled CA phase oscillators (Ti = Tj for all i and j) can be analyzed in a
similar way in [62]. From Eq. (3.3.8), the phases Φi are locked if P ∈ P ∗ and

sin(2π∆Φ+
i /N) = sin(2π∆Φ+

i+1/N) for all i, (3.3.29)

where ϕ = 0. Since ∆Φ+
i is defined on {0, · · · , N − 1}, Eq. (3.3.29) can be written in the

form

(∆Φ+
i −∆Φ+

i+1)(∆Φ+
i −N/2 + ∆Φ+

i+1) = 0 for all i. (3.3.30)

Every combination of ∆Φ+
i and ∆Φ+

i+1 that makes either the first or the second factor equal
to zero corresponds to a realizable phase locked pattern. If ∆Φ+

i in Eq. (3.3.30) is assumed
to be λ ∈ Z+

N , then ∆Φ+
i+1 in Eq. (3.3.30) should be λ or N/2− λ. On the other hand, for

all the phase differences ∆Φ+
i , the following equation always holds.

N∑
i

∆Φ+
i = Nk, (3.3.31)
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Figure 3.3.13: (a1) In-phase synchronized solution. (b1) Elementary solution. (c1) and (d1)

Traveling wave solution. ϕ = 0. (a2) Configuration of (a1) transformed by Eq. (3.3.41). (b2)

Configuration of (b1) transformed by Eq. (3.3.41). (c2), (d2) Configurations of (c2) and (d2)

transformed by Eq. (3.3.41).

where k ∈ {0, · · ·n − 1}. Therefore, we can take mλ and (n −m)(N/2 − λ) such that Eq.
(3.3.31) is satisfied as follows.

mλ+ (n−m)(N/2− λ) = Nk, (3.3.32)

where m ≤ n. It follows that every vector ∆Φ+ ≡ (∆Φ+
1 , · · ·∆Φ+

n ) that is a permutation
of the following vector corresponds to a realizable phase locked pattern.

∆Φ+ = (λ1, · · · , λm, N/2− λm+1, · · · , N/2− λn), (3.3.33)

where λi = λj for all i and j. A typical realizable phase locked pattern, described by the
following vector, is called an in-phase synchronized solution.

∆Φ+ = (0, · · · , 0), (3.3.34)

where an example configuration of the CA phase oscillators for the in-phase synchronized
solution is shown in Fig. 3.3.13(a1). If N = even number, then the following phase locked
pattern called an elementary solution [62] is realizable.

∆Φ+ = (0, · · · , 0︸ ︷︷ ︸
m

, N/2, · · · , N/2︸ ︷︷ ︸
n−m

), (3.3.35)
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(a) Synchronous coupling

(b) Asynchronous coupling

Figure 3.3.14: Steady-state solutions for synchronously and asynchronously coupled CA phase os-

cillators. The initial values of both the oscillators are Φ(0) = (24, 12, 0, 24, 12, 0), P (0) = (0, · · · , 0).
(a) Traveling wave solution with reverse oscillation for synchronously coupled CA phase oscillators.

ϕ = 0. The other parameter values are the same as those chosen in Fig. 3.3.6. (b) In-phase syn-

chronized solution for asynchronously coupled CA phase oscillators. ϕi = 0. The other parameter

values are the same as those chosen in Fig. 3.3.7.

where m ̸= n, and an example configuration of the CA phase oscillators for the elementary
solution is shown in Fig. 3.3.13(b1). Note that the every vector ∆Φ+ that is a permutation
of the vector Eq. (3.3.35) is the elementary solution. Further, if N mod n = 0, then the
following phase locked pattern called a traveling wave solution [62] is realizable.

∆Φ+ = (Nk/n, · · · , Nk/n), (3.3.36)

where k ∈ {1, · · · , n − 1}, and example configurations of the phase CA oscillators for the
elementary solution are shown in Figs. 3.3.13(c1) and (d1).

However, as demonstrated in Section 3.2, the synchronously coupled CA phase oscillators
may not oscillate properly even if they are synchronized. For example, when ∆Φ+ satisfies

∆Φ+ = (λ−, · · · , λ−) such that H(λ−) < 0, (3.3.37)

the synchronously coupled CA phase oscillators oscillate reversely in the phase locked pat-
tern, where P ∈ P ∗. In this case, the oscillation period is determined by T (1 +H(λ−))N .
Fig. 3.3.14(a) shows an example of the reverse oscillation for the synchronously coupled CA
phase oscillators, where ∆Φ+ = (24, · · · , 24), T = 4.347× 10−4, H(24) = −8, and N = 36,
and thus the oscillation period is 0.1408428. On the other hand, Fig. 3.3.14(b) shows the
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in-phase synchronized solution for the asynchronously coupled CA phase oscillators, where
the initial values are the same as those chosen in Fig. 3.3.14(a). As shown in this figure,
the asynchronously coupled CA phase oscillators do not have the traveling wave solution
∆Φ+ = (24, · · · , 24). Our extensive analyses have revealed that the asynchronously cou-
pled CA phase oscillators rarely have the reverse oscillation. Analysis of detailed occurrence
mechanism of the reverse oscillation is an important future problem.

3.3.5.4 Stability against perturbations
In order to quantify the in-phase synchronized solution, the following instantaneous

evaluation function is introduced.

rinphase(t) ≡
1

n

∣∣∣∣∣
n∑

i=1

ej(2π
Φi(t)

N
)

∣∣∣∣∣ , rinphase ∈ [0, 1]. (3.3.38)

The instantaneous evaluation function rinphase = 1 means the coupled CA oscillators in the
in-phase synchronized solution shown in Fig. 3.3.13(a1). Fig. 3.3.15(a) shows the instanta-
neous evaluation functions rinphase for the synchronously and asynchronously coupled CA
phase oscillators for

ϕ = 0, (3.3.39)

where the initial values are set on the in-phase synchronized solution, the elementary solu-
tion, or the traveling wave solution shown in Figs. 3.3.13(a1)–(d1). As shown in this figure,
for the asynchronously coupled CA phase oscillators, the in-phase synchronized solution is
dominant.

Let us consider the equivalence of the dynamics of the coupled CA phase oscillators
for the in-phase synchronized solution and the tripod gait pattern. Note that the coupling
function defined by Eq. (6) is basically characterized by Eqs. (3.3.8) and (3.3.9). Eq.
(3.3.9) for the in-phase synchronized solution (see also Eq. (3.3.39)) is as follows.

∆Φ+
i |ϕ=0 = Φi+1(t)− Φi(t) mod N. (3.3.40)

Let us introduce the following transformation of the phase variable (see also Figs. 3.3.13(a2)–
(d2)).

Φ′
i ≡

{
Φi for i = 1, 3, 5,

Φi − ⌊N/2⌋ mod N for i = 2, 4, 6.
(3.3.41)

Eq. (3.3.9) for the tripod gait pattern (see also Eq. (3.3.17)) can be transformed by Eq.
(3.3.41) into

∆Φ+
i |ϕ=π = Φ′

i+1(t)− Φ′
i(t) mod N. (3.3.42)

Therefore, the tripod gait pattern can be considered as the special case of the in-phase
synchronized solution via the change of variable. In fact, Fig. 3.3.15(a) and (b) shows
examples of this equivalence. Fig. 3.3.15(b) shows the instantaneous evaluation functions
rtripod defined by Eq. (3.3.19) for the synchronously and asynchronously coupled CA phase
oscillators for ϕ = π, where the initial values in Fig. 3.3.15(a) are transformed by Eq.
(3.3.41) for the initial values in Fig. 3.3.15(b). As shown in these figures, the coupled CA
phase oscillators has the same structure of attraction basins.
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(a) ϕ = 0 (b) ϕ = π

Figure 3.3.15: (a) Instantaneous evaluation functions rinphase for synchronously and asynchronously

coupled CA phase oscillators. The initial values are set on the in-phase synchronized solution,

the elementary solution, or the traveling wave solution, where (a1)–(d1) in this figure correspond

to (a1)–(d1) in Fig. 3.3.13 as follows: Φ(0) = (0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 18), (0, 0, 0, 0, 18, 18),

(0, 0, 0, 18, 18, 18), (0, 0, 18, 18, 18, 18), (0, 0, 18, 0, 0, 18), (0, 0, 18, 18, 0, 18), (0, 18, 18, 18, 18, 18),

(0, 6, 12, 18, 24, 30), (24, 12, 0, 24, 12, 0), and P (0) ∈ P ∗. ϕ = 0 and the other param-

eter values are the same as those chosen in Figs. 3.3.6 and 3.3.7. (b) Instantaneous

evaluation functions rtripod for synchronously and asynchronously coupled CA phase oscilla-

tors. The initial values Φ(0) in (a) transformed by Eq. (3.3.41) and the resulting val-

ues (0, 18, 0, 18, 0, 18), (0, 18, 0, 18, 0, 0), (0, 18, 0, 18, 18, 0), (0, 18, 0, 0, 18, 0), (0, 18, 18, 0, 18, 0),

(0, 18, 18, 18, 0, 0), (0, 18, 18, 0, 0, 0), (0, 0, 18, 0, 18, 0), (0, 24, 12, 0, 24, 12), (24, 30, 0, 6, 12, 18) are used

as the initial values. P (0) ∈ P ∗. ϕ = π and the other parameter values are the same as those chosen

in Figs. 3.3.6 and 3.3.7.

Further, Fig. 3.3.16 shows the instantaneous evaluation functions rinphase for the syn-
chronously and asynchronously coupled CA phase oscillators with random perturbations.
As shown in Fig. 3.3.16 (a), for the synchronously coupled CA phase oscillators, the in-
phase synchronized solution has stability against small perturbations. On the other hand, as
shown in Fig. 3.3.16 (b), for the asynchronously coupled CA phase oscillators, the in-phase
synchronized solution has stability against small and large perturbations.

3.3.5.5 Future development of implementation method for the cou-
pling functions

In the implementation of the presented CPG model in Section 4, the coupling function
H is directly implemented in LUTs. For further reduction of hardware resources, the
COrdinate Rotational DIgital Computer (CORDIC) algorithm [63] might be applied to
implement the coupling function. In addition, if the coupling function H is simplified to
three-valued function as proposed in [58], the presented CPG model is considered to be
implemented by fewer hardware resources. However, in this case, careful consideration
should be given to synchronous speed for practical use.

3.3.6 Conclusions
In this paper, the CPG model based on the asynchronous coupling of CA phase oscil-

lators for the hexapod robot was presented. Analyses using the evaluation functions for
the target gait patterns of the hexapod robot clarified that the asynchronously coupled
CA phase oscillators are more suitable to perform gait transitions than the synchronously
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(a) Synchronous coupling (b) Asynchronous coupling

Figure 3.3.16: Instantaneous evaluation functions rinphase for synchronously and asynchronously

coupled CA phase oscillators with random small perturbations and large perturbations to the phases

Φi. (a) Synchronous coupling. ϕ = 0 and the other parameter values are the same as those chosen

in Fig. 3.3.6. (b) Asynchronous coupling. ϕ = 0 and the other parameter values are the same as

those chosen in Fig. 3.3.7.

coupled CA phase oscillators. For example, as described in Remarks 1 and 2, the asyn-
chronously coupled CA phase oscillators mostly realize the proper gaits and their transi-
tions while the synchronously coupled CA phase oscillators often fail to realize them. Then,
the presented CPG model was implemented in the FPGA. It was verified that the hexapod
robot mounted with the FPGA can perform the smooth gait transitions between target gait
patterns. Our future work includes: (i) Systematic analyses (e.g., group theoretic approach)
of various phase locked patterns [64,65] and (ii) Investigation of how the pattern transitions
will be affected by incorporating external perturbations into the proposed CPG model such
as friction and floor reaction forces [66].
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Chapter 4

Neural Integrator Model based on
Asynchronous Cellular Automaton

4.1 Spiking Neuron Model1

4.1.1 Introduction
A wide variety of neuromorphic electronic circuits have been developed in circuits and

systems research societies, where two of their major applications are neural prosthetic device
and neurocomputing devise. Various kinds of neural prosthetic devices have been developed
so far, such as cochlear implants [1,2], retinal implants [3,4], and brain implants [5–7]. Brain
implants for various species have been developed year by year, such as brain implants for
mice [5] and brain implants for monkeys [6]. In addition, the state of the art of the neural
prosthetic device has reached a brain implant for human [7]. From the stand point of the fun-
damental circuit theory, one of the most important problems to design a high performance
brain implant is how to design a biologically plausible electrical circuit model of the major
building block of the brain – the neuron. Biological neurons have lots of nonlinear ionic
channels, which form various nonlinear vector fields. Due to such nonlinearities, biological
neurons exhibit various bifurcation phenomena and related various nonlinear input-output
characteristics. Fig. 4.1.1 illustrates typical nonlinear input-output characteristics of a bi-
ologically plausible Hodgkin-Huxley-type mathematical neuron model [8]. In each graph,
the horizontal axis is a stimulation strength (i.e., input DC current) and the vertical axis
is a firing frequency (i.e., average frequency of output spikes), and so the graph is called a
current-frequency curve. The differences of the shapes of the nonlinear current-frequency
curves are caused by differences of nonlinear dynamics of the neuron such as underlying
bifurcation mechanisms as follows [9].

• In Fig. 4.1.1(a), as the stimulation strength is gradually increased, the firing frequency
continuously increases. In such a case, the neuron is said to exhibit class 1 excitability.
As the stimulation strength is gradually decreased, the firing frequency continuously
decreases. In such a case, the neuron is said to exhibit class 1 spiking. Also, the
current-frequency curve in Fig. 4.1.1(a) has no hysteresis loop. As a result, the
neuron is said to exhibit ”class 1 excitability and class 1 spiking without hysteresis.”
This nonlinear current-frequency curve is caused by a saddle-node on invariant circle

1 c⃝ 2020 IEEE. Reprinted, with permission, from Kentaro Takeda and Hiroyuki Torikai, A Novel Asyn-
chronous CA Neuron Model: Design of Neuron-like Nonlinear Responses based on Novel Bifurcation Theory
of Asynchronous Sequential Logic Circuit, IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 67, no. 6, pp. 1989–2001, Jun. 2020.
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(a)

(b)

(c)

Figure 4.1.1: Three typical current-frequency curves of a biologically plausible Hodgkin-Huxley-

type neuron model [8]. (a) Class 1 excitability and class 1 spiking without hysteresis. (b) Class 2

excitability and class 1 spiking with hysteresis. (c) Class 2 excitability and class 2 spiking without

hysteresis.

bifurcation.

• In Fig. 4.1.1(b), as the stimulation strength is gradually increased, the firing fre-
quency discontinuously increases. In such a case, the neuron is said to exhibit class 2
excitability. As the stimulation strength is gradually decreased, the neuron exhibits
the class 1 spiking and the current-frequency curve has a hysteresis loop. As a result,
the neuron is said to exhibit ”class 2 excitability and class 1 spiking with hysteresis.”
This nonlinear current-frequency curve is caused by combination of a saddle-node
bifurcation and a saddle-homoclinic bifurcation.

• In Fig. 4.1.1(c), the neuron exhibits ”class 2 excitability and class 2 spiking without
hysteresis.” This nonlinear current-frequency curve is caused by a supercritical Hopf
bifurcation.
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Various biologically plausible analog and digital circuits models of neurons have been de-
veloped so far. From the stand point of the fundamental circuit theory, these circuits can
be classified into four classes based on continuousness of time and state variables as follows.

Class CTCS. A nonlinear differential equation model of a neuron having a continuous
time and continuous states (CTCS). Such a class CTCS system can be typically imple-
mented by an analog nonlinear circuit, e.g., [10–13].

Class DTCS. A nonlinear difference equation model of a neuron having a discrete time
and continuous states (DTCS). Such a class DTCS system can be typically implemented
by a switched capacitor circuit, e.g., [14–17].

Class DTDS. A numerical integration model of a neuron having a discrete time and
discrete states (DTDS). Such a class DTDS system can be typically implemented by a
digital signal processor or a sequential logic circuit, e.g., [18–21].

Class CTDS. An asynchronous cellular automaton model of a neuron having a continuous
time (state transition times defined on a real time axis) and discrete states (CTDS). Such
a class CTDS system can be typically implemented by an asynchronous sequential logic
circuit, e.g., [22–28].

Almost neuromorphic electrical circuits belong to the classes CTCS, DTCS, and DTDS.
On the other hand, our group and some other groups have been developing neuromorphic
electrical circuits belonging to the class CTDS. It has been shown that class CTDS neu-
romorphic electrical circuits can realize various nonlinear vector fields and consume fewer
circuit elements compared to class DTDS neuromorphic electrical circuits [22–26]. These
results motivate us to design a class CTDS electrical circuit neuron model suited to be used
as a building block of a brain implant device. Then the purposes of this paper are (a) to
present a novel class CTDS neuron model capable of realizing various nonlinear dynamics;
(b) to present systematic design methods of the presented model so that the model can
reproduce not only nonlinear current-frequency curves of the biologically plausible neuron
model but also their underlying bifurcation mechanisms; and (c) to show the presented
model can be implemented by fewer circuit elements and consumes less power compared to
some typical conventional neuron models.

In Section II, a circuit diagram and dynamic equations of the neuron model are pre-
sented. It is shown the nonlinear dynamics of the presented model can be reduced into a
continuous-discrete hybrid Poincare map without any approximation. It is then shown the
presented model can reproduce fundamental properties of Poincare maps of the biologically
plausible neuron model [8]. In Section III, using the hybrid Poincare map, novel theoret-
ical results on stable and unstable fixed points of the presented model are provided. It
is then shown the presented model can reproduce fundamental bifurcation phenomena of
the biologically plausible neuron model for different parameter values of ionic channels. In
Section IV, using the theoretical bifurcation analyses in the previous section, step-by-step
systematic design methods of the presented model are proposed. It is shown the system-
atic design methods enables the presented model to reproduce the three typical neuron-like
current-frequency curves in Fig. 4.1.1 as well as their underlying bifurcation mechanisms
qualitatively. In Section V, the presented model is implemented in a field programmable
gate array (FPGA) and experiments validate the FPGA-implemented presented model can
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exhibit the three typical neuron-like current-frequency curves. For comparison, some typ-
ical conventional neuron models are implemented in the same FPGA device. It is shown
the presented model consumes fewer circuit elements and lower power compared to the
conventional neuron models. The significances and the novelties of this paper include the
following points.

(i) This paper provides the theoretical analysis tools for several bifurcations (e.g., saddle-
node bifurcation, saddle-node on invariant circle bifurcation, saddle-homoclinic bifurcation,
and border collision bifurcation) in an asynchronous sequential logic circuit for the first
time. In other words, this paper provides a new kind of nonlinear circuit theory – the bi-
furcation theory of asynchronous sequential logic circuit.

(ii) The theories in this paper are not useless theories working only on papers but are uti-
lized as rigid tools to design the presented model. Recall the presented model can reproduce
the nonlinear dynamics of the biologically plausible neuron model, can be implemented by
few circuit elements, and consumes low power. Hence the presented model is a ”theoreti-
cally designable, biologically plausible, and hardware-efficient neuron model,” which will be
a strong candidate to be used as a building block in a neural prosthetic device.

(iii) Several class CTDS neuron models capable of exhibiting various firings (e.g., tonic
spiking, bursting, quasi-periodic firing, chaos-like firing, and intermittent firing) have been
presented [24–27], whereas their systematic design methods have not been provided. On the
other hand, this paper provides the theoretical-analysis-based systematic design methods
of the class CTDS neuron model for the first time.

(iv) Several class CTDS cochlear models have been presented, where their nonlinear phe-
nomena (e.g., bifurcations and stochastic resonances) have been utilized to reproduce non-
linear signal processing functions of cochleae [22,28]. Hence the analysis and design methods
of the nonlinear phenomena of the class CTDS neuron model provided in this paper will
contribute to design class CTDS cochlear models as well as class CTDS nonlinear signal
processors.

(v) Various neuron models, spiking neural networks, and FPGA-based dynamical sys-
tems have been developed and their engineering applications such as image cryptography
have been also developed [29–34]. It has been shown that different classes of current-
frequency curves of neuron models can realize different functions of spiking neural networks,
e.g., [9, 35, 36]. Hence the design methods of the various current-frequency curves of the
FPGA-based neuron model provided in this paper will contribute to design various functions
of FPGA-based neuromorphic and other systems.

4.1.2 Model description

4.1.2.1 Circuit diagram and dynamic equations

In this subsection, a novel neuron model, the dynamics of which is described by an
asynchronous cellular automaton, is presented. Fig. 4.1.2(a) shows a circuit diagram of the
presented model. Fig. 4.1.2(b) shows meanings of elements of the model in a context of
neuron model and their relations to equations in this section. As shown in the diagram, the
model has an internal clock C(t), which is generated as follows.
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(a)

Elements of presented model Meanings as neuron model

Register storing V in Eq. (4.1.2) Membrane potential

LUT storing F (V ) in Eq. (4.1.4) Nonlinear vector field

Transitions of V Dynamic equation of
in Eqs. (4.1.6) and (4.1.10) membrane potential

Register storing P in Eq. (4.1.3) Auxiliary variable modulating
membrane potential

Transition of P in Eq. (4.1.7) Dynamic equation of
auxiliary variable

Output Y in Eq. (4.1.8) Action potential

(b)

Figure 4.1.2: Presented neuron model. (a) Circuit diagram. (b) Meanings of elements in a context

of neuron model and their relations to the equations. LUT stands for look-up-table. (c) Typical

time waveforms.
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(c)

Figure 4.1.2: Continued.
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Internal clock:

C(t) =

{
1 if Θ(t) = 0 (mod 1),
0 otherwise,

dΘ(t)

dt
= α, (4.1.1)

where t ∈ R is a continuous time, Θ(t) ∈ R is a phase, Θ(0) ∈ [0, 1) is an initial phase,
and α ∈ (0,∞) is a parameter. Fig. 4.1.2(c) shows a typical time waveform of the internal
clock C(t) with the following restricted phase:

θ = Θ (mod 1).

As shown in the figure, the slope of the restricted phase θ is α and thus the frequency of
the internal clock C(t) becomes α. As shown in Fig. 4.1.2(a), the presented model has two
registers, which store the following two discrete state variables.
Discrete membrane potential:

V ∈ ZN = {0, 1, · · · , N − 1}, (4.1.2)

Discrete auxiliary variable:

P ∈ ZM = {0, 1, · · · ,M − 1}. (4.1.3)

Also, the presented model has logic gates and/or look-up-tables, which work as the following
discrete function.
Discrete vector field function:

F (V ) : ZN → Z±
M = {−(M − 1), · · · , 0, · · · ,M − 1}. (4.1.4)

Adjusting the function F (or parameters of F ), the presented model can realize various
nonlinear vector fields. In order to realize the three typical neuron-like current-frequency
curves in Fig. 4.1.1, this paper proposes to use the following discrete vector field function
F (V ):

F (V ) =

⌊
1

a(V − b)2 + c

⌋
, (4.1.5)

where ⌊·⌋ is the floor function; F (V ) is saturated atM−1; F (V ) is −(M−1) if a(V −b)2+c =
0; and a ∈ [0,∞) and b ∈ R are parameters. Depending on the discrete vector field function
F (V ), the internal clock C(t) triggers transitions of the discrete states V and P as follows.
State transitions triggered by internal clock:

If C(t) = 1 and P (t) ≥ |F (V )|, then

V (t+) =


V (t) + 1 if F (V ) ≥ 0 and V (t) < N − 1,
V (t)− 1 if F (V ) < 0 and V (t) > 0,
B if F (V ) > 0 and V (t) = N − 1,

(4.1.6)
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If C(t) = 1, then

P (t+) =

{
P (t) + 1 if P (t) < |F (V )|,
0 if P (t) ≥ |F (V )|.

(4.1.7)

where t+ = limϵ→0 t+ ϵ and ϵ > 0. Typical state transitions triggered by the internal clock
C(t) are shown in Fig. 4.1.2(c). As shown in Fig. 4.1.2(a), the presented model generates
an output Y (t) as follows.
Output:

Y (t) =

{
1 if C(t) = 1 and V (t) = N − 1,
0 otherwise.

(4.1.8)

A typical output Y (t) is shown in Fig. 4.1.2(c). The presented model is said to exhibit
firing if a spike Y = 1 is generated and non-firing otherwise. As shown in Fig. 4.1.2(a), the
presented model accepts a stimulation spike-train, which is described as follows.
Stimulation spike-train:

S(t) =


1 if t ∈ {t+1 , t

+
2 , · · · },

−1 if t ∈ {t−1 , t
−
2 , · · · },

0 otherwise,
(4.1.9)

where t+n ∈ R and t−n ∈ R, t+n ̸= t−m for all n and m, are spike positions. The stimulation
spike-train S(t) triggers the following transition of the discrete membrane potential V .

State transition triggered by stimulation spike-train:

If |S(t)| = 1 and 0 < V (t) < N − 1, then

V (t+) = V (t) + S(t).
(4.1.10)

Typical state transitions triggered by the stimulation spike-train S(t) are shown in Fig.
4.1.2(c). Note that the presented model has the discrete state variables V and P whose
transitions are triggered by the asynchronous signals C(t) and S(t). So, the presented model
can be regarded as a special kind of asynchronous cellular automaton.

4.1.2.2 Neuron-like maps

In order to analyze bifurcations of the presented model, the following periodic stimula-
tion spike-train S(t) (corresponding to a DC stimulation current) is focused on hereafter:

S(t) =

{
σ if Φ(t) = 0 (mod 1),
0 otherwise,

dΦ(t)

dt
= β, (4.1.11)

where σ ∈ {−1, 1} is a parameter determining the sign of the stimulation, Φ(t) ∈ R is a
phase, Φ(0) ∈ [0, 1) is an initial phase, and β ∈ [0,∞) is a parameter. Fig. 4.1.2(c) shows
a typical time waveform of the periodic stimulation spike-train S(t) with the following
restricted phase ϕ:

ϕ = Φ (mod 1).

As shown in Fig. 4.1.2(c), the frequency of the periodic stimulation spike-train S(t) becomes
β. Then the periodic stimulation spike-train S(t) is characterized by the following scalar
value.
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(a) (a’)

(b) (c)

Maps and variables Meanings

Poincaré map (g, h) Dynamic equations (4.1.6), (4.1.7), (4.1.10),
in Eq. (4.1.12) and (4.1.11) are reduced into (g, h)
State v(n) of (g, h) Sample of membrane potential V
Projected map G One-dimensional approximation of (g, h)
in Eq. (4.1.13) describing major dynamics of v(n)
State φ(n) of (g, h) Noise to projected map G
Map h Ergodic map [37] producing noise φ(n)

(d)

Figure 4.1.3: (a)–(d) are figures of the presented model. (a) Projected map G of the
Poincaré map (g, h) of the presented model. N = 4,M = 4, a = 0.01, b = 7, c = 0, α =
0.05−1, β = 2, γ = 5−1, B = 0, σ = −1 and I = −0.4. (b) and (c) show the map h on the
(ϕ(n), ϕ(n + 1))-plane. The map h depends on v(n). (d) Meanings of maps and variables.
(a’) Poincaré map G of the biologically plausible Hodgkin-Huxley-type neuron model [8],
where its Poincaré section is a linear approximation of a center manifold. The parameter
values are CM = 20, ḡCa = 4, ḡK = 8, gL = 2, VCa = 120, VK = −80, VL = −60, V1 = −1.2,
V2 = 18, V3 = 12, V4 = 17.4, ϕ = 1

15 , Iext = 30, and VE = 0.
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Stimulation strength:
I = σβγ ∈ R,

which corresponds to a DC stimulation current input to a neuron and thus is referred to as
a stimulation strength, where γ ∈ [0,∞) is a scaling parameter. Since the time development
of the presented model is determined by the four states variables V , P , θ, and ϕ, their vector
(V, P, θ, ϕ) can be treated as a state vector of the presented model. Hence the presented
model has the following whole state space:

S0 = {(V, P, θ, ϕ) | V ∈ ZN , P ∈ ZM , θ ∈ [0, 1), ϕ ∈ [0, 1)}.

The following subset S of S0 has the same meaning as a Poincaré section [38].
Poincaré section:

S = {(V, P, θ, ϕ) | P = 0, θ = 0} ⊂ S0.

Fig. 4.1.2(c) shows a Poincaré section S. As shown in the figure, the state vector (V, P, θ, ϕ)
enters into the Poincaré section S repeatedly. Hence the following state variables sampled
on the Poincaré section S can be defined as shown in Fig. 4.1.2(c).

v(n) = V |P=0,θ=0, φ(n) = ϕ|P=0,θ=0,

where n = 1, 2, 3, · · · represents the n-th event when the state vector (V, P, θ, ϕ) enters into
the Poincaré section S. Since the time waveform of the state vector (V, P, θ, ϕ) starting
from a sampled point (v(n), 0, 0, ϕ(n)) ∈ S is uniquely determined, the next sampled point
(v(n+1), 0, 0, ϕ(n+1)) ∈ S is also uniquely determined. Hence, the following iterative map
can be uniquely determined, which has the same meaning as a Poincaré map [38].

Poincaré map:
v(n+ 1) = g(v(n), φ(n)),
φ(n+ 1) = h(v(n), φ(n)),

(4.1.12)

where g : ZN × [0, 1) → ZN and h : ZN × [0, 1) → [0, 1). The following projected map
G(v(n)) of the Poincaré map (g, h) onto the (v(n), v(n+ 1))-plane is also determined.
Projected map:

G(v(n)) = {v | v = g(v(n), φ), φ ∈ [0, 1)}. (4.1.13)

Fig. 4.1.3(d) summarizes meanings of the maps (g, h) and G as explained below.

Remarks on maps:
(i) In the context of a neurons model, the spike-train S(t) is treated as a stimulation input
applied to the presented model. On the other hand, in the context of the bifurcation
analysis, the phase Φ of S(t) in Eq. (4.1.11) is used as the state variable of the Poincaré
map.

(ii) The dynamics of the presented model with the stimulation spike-train S(t) corresponding
to the DC stimulation strength I is described by Eqs. (4.1.6), (4.1.7), (4.1.10), and (4.1.11).
These equations are reduced into the two-dimensional Poincaré map (g, h) described by Eq.
(4.1.12) without any approximation. The projected map G can be regarded as a one-
dimensional approximation of the Poincaré map (g, h).

(iii) The projected map G is multi-valued for some v(n). Since the difference of v(n + 1)
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(a) (a’)

(b)

(c)

Figure 4.1.4: (a)–(c) are figures of the presented model. The parameter values are the same as

those in Fig. 4.1.3(a). (a) Projected map G and its stable fixed point vs. The trajectories of v(n)

starting from va and vb enters into the stable fixed point vs and then ever stays at vs as guaranteed

by Proposition 1. (b) and (c) show time waveforms corresponding to the trajectories of v(n) in

(a) starting from va and vb, respectively. The time waveform of the membrane potential V passing

through the stable fixed point vs on the Poincaré section S corresponds to a persistent non-firing

behavior (so-called resting state) of a neuron. (a’) Poincaré map G of the biologically plausible

Hodgkin-Huxley-type neuron model [8], where its Poincaré section is a linear approximation of a

center manifold. The parameter values are the same as those in Fig. 4.1.3(a’). ps is a stable fixed

point.
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for a v(n) is small, the projected map G can be regarded to capture the major dynamics
of the membrane potential V . The precise value of v(n+ 1) is determined by the values of
v(n) and φ(n), and thus φ(n) is regarded to give a small change in v(n+ 1).

(iv) The dynamics of φ(n) is described by the map h, where ∂h/∂φ(n) = 1 for all φ(n)
and h has a finite number of discontinuities. This guarantees that the trajectory of φ(n)
becomes ergodic generically [37]. Hence, φ(n) can be regarded as a weak noise (i.e., ergodic
random trajectory) applied to the projected map G.

(v) Fig. 4.1.3(a) shows a projected map G of the presented model and Fig. 4.1.3(a’)
shows a Poincaré map G of a biologically plausible Hodgkin-Huxley-type neuron model [8].
These maps have qualitatively similar shapes. The similarity suggests that the projected
map G can reproduce properties of the Poincaré map G and thus the presented model
can reproduce the nonlinear dynamics of the biologically plausible neuron model. This
suggestion is discussed in detailed in Section III.

(vi) In Fig. 4.1.3, the resolutions of the state variables (V, P ) are (N,M) = (16, 16), which
lead to a visible figure of the projected map G and thus are suitable for understanding
theories of the map G. On the other hand, resolutions of the state variables suitable for
practical applications are discussed in Section V.

4.1.3 Theoretical bifurcation analyses
Since the projected map G is differ from traditional one-dimensional Poincaré maps, in

order to analyze the presented model, it is necessary to introduce new mathematical tools
(e.g., definitions and propositions) specialized for G.

4.1.3.1 Stable fixed point
A stable fixed point of G is defined as follows.

Definition 1: A point vs ∈ ZN is referred to as a stable fixed point if G(vs) = {vs}.

An example of the stable fixed point vs is shown in Fig. 4.1.4. Then the following proposition
is given.

Proposition 1: Once a trajectory of the state v(n) of the Poincaré map (g, h) enters into
a stable fixed point vs, the state v(n) ever stays at vs for any value of φ(n).

Proof: Assume v(n) = vs, where vs is a stable fixed point. G(vs) = {vs} in Definition 1
guarantees v(n + 1) = vs and thus v(n +m) = vs for all m ≥ 0. Hence Proposition 1 is
proven.

Fig. 4.1.4(a) shows an example of Proposition 1, i.e., the trajectories of v(n) starting from va
and vb enter into vs and then ever stay at vs. Figs. 4.1.4(b) and (c) show time waveforms of
the state variables (V, P, θ, ϕ) corresponding to the two trajectories of v(n) in Fig. 4.1.4(a).
In these figures, the time waveforms of the discrete membrane potential V starting from va
and vb on the Poincaré section S enter into the stable fixed point vs on S and then ever
repeat to visit vs on S. Hence, in a context of neuron model, Proposition 1 guarantees
existence of a persistent non-firing behavior (so-called resting state). Fig. 4.1.4(a’) shows a
Poincaré map G of the biologically plausible Hodgkin-Huxley-type neuron model [8]. The
map G has a stable fixed point ps, which has similar dynamic properties to the stable fixed
point vs of the projected map G. Hence, the presented model is regarded to reproduce the
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stable fixed point of the biologically plausible neuron model.

4.1.3.2 Unstable fixed point

An unstable fixed point of G is defined as follows.

Definition 2: A point vu ∈ ZN is referred to as an unstable fixed point if either (i) or (ii)
is satisfied: (i) vu /∈ G(vu) and there exist points w+ ∈ G(vu) and w− ∈ G(vu) such that
w+ > vu and w− < vu; and (ii) vu ∈ G(vu); there exist points w+ ∈ G(vu) and w− ∈ G(vu)
such that w+ > vu and w− < vu; and h(vu, ϕ) < ϕ and g(vu, ϕ) = vu for all ϕ or h(vu, ϕ) > ϕ
and g(vu, ϕ) = vu for all ϕ.

An example of the unstable fixed point vu is shown in Fig. 4.1.5. Then the following
proposition is given.

Proposition 2: Any trajectory of the state v(n) of the Poincaré map (g, h) starting from
an unstable fixed point vu escapes from vu for any value of φ(n).

Proof: Assume v(n) = vu, where vu is an unstable fixed point. First, assume (i) in Definition
2. Then vu /∈ G(vu) guarantees v(n + 1) ̸= v(u), and the existences of w+ ∈ G(vu) and
w− ∈ G(vu) guarantee existence of v(n + 1) ∈ {w+, w−}. Thus, v(n + 1) ̸= vu. Next,
assume (ii) in Definition 2 under the condition that h(vu, φ) < φ and g(vu, φ) = vu for all
φ. For contradiction, assume v(n +m) = vu for all m ≥ 1. Then, h(vu, ϕ) < ϕ guarantees
h(vu, φ(n)) < φ(n + m) for all m ≥ 1 meaning φ(n + m) ever increases. However, this
contradicts to the definition of ϕ = Φ (mod 1). Thus, v(n + m) ̸= vu for some m ≥ 1.
For the other case of the assumption (ii) in Definition 2, the similar consideration leads to
v(n+m) ̸= vu for some m ≥ 1. Hence Proposition 2 is proven.

Figs. 4.1.5(a) shows an example of the unstable fixed point, i.e., the state v(n) starting from
vu escapes from vu, where directions of the escape depend on the value of the phase φ(n).
Figs. 4.1.5(b) and (c) show time waveforms of the state variables (V, P, θ, ϕ) corresponding
to the two trajectories of v(n) in Fig. 4.1.5(a). In these figures, the time waveforms of
the discrete membrane potential V starting from vu on the Poincaré section S escape from
vu, where the escaped membrane potential V in Fig. 4.1.5(b) leads to the firing but the
escaped membrane potential V in Fig. 4.1.5(c) leads to the non-firing behavior. Hence,
in the context of a neuron model, Proposition 2 guarantees existence of a boundary (so-
called separatrix) of the membrane potential V between the firing and the non-firing. Fig.
4.1.5(a’) shows a Poincaré map G of the biologically plausible Hodgkin-Huxley-type neuron
model [8]. The map G has an unstable fixed point pu, which has similar dynamic properties
to the unstable fixed point vu of the projected map G. Hence, the presented model is
regarded to reproduce the unstable fixed point of the biologically plausible neuron model.

4.1.3.3 Saddle-node bifurcation

Fig. 4.1.6(a) shows a theoretically obtained bifurcation diagram of the presented model
and Figs. 4.1.6(b)–(d) show corresponding projected maps G. As shown in these figures,
as the stimulation strength I increases, a stable fixed point vs and an unstable fixed point
vu approach each other, touch, and disappear. This change of phenomena corresponds to a
saddle-node bifurcation observed in nonlinear dynamical systems [38]. Effects of parameters
to the saddle-node bifurcation are summarized in Table 4.1.1. Fig. 4.1.6(a’) shows a bifurca-
tion diagram of the biologically plausible Hodgkin-Huxley-type neuron model [8] and Figs.
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(a) (a’)

(b)

(c)

Figure 4.1.5: (a)–(c) are figures of the presented model. The parameter values are the
same as those in Fig. 4.1.3(a). (a) Projected map G and its unstable fixed point vu. The
trajectories of v(n) starting from the unstable fixed point vu escape from vu as guaranteed
by Proposition 2. The direction of the escape of v(n) depends on the value of the phase
φ(n). (b) and (c) show time waveforms corresponding to the trajectories of v(n) escaped
to va and vb, respectively. The unstable fixed point vu corresponds to a boundary of the
membrane potential V between the firing behavior in (b) and the non-firing behavior in (c).
(a’) Poincaré map G of the biologically plausible Hodgkin-Huxley-type neuron model [8],
where its Poincaré section is a linear approximation of a center manifold. The parameter
values are the same as those in Fig. 4.1.3(a’). pu is an unstable fixed point.
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Table 4.1.1: Effects of parameters to the bifurcations.

Param. Effect to saddle-node bif. Effect to border-collision bif.

a a > 0 leads to a = 0 leads to
saddle-node bifurcation border-collision bifurcation

b Horizontal position of No effect when a = 0
bifurcation diagram

c Vertical position of Vertical position of
bifurcation diagram bifurcation diagram

4.1.6(b’)–(d’) show corresponding Poincaré maps G. Comparisons between 4.1.6(a)–(d) and
Figs. 4.1.6(a’)–(d’) suggest that the presented model can reproduce the occurrence mecha-
nism of the saddle-node bifurcation of the biologically plausible neuron model qualitatively.

4.1.3.4 Border-collision bifurcation
Fig. 4.1.7(a) shows a theoretically obtained bifurcation diagram of the presented model

and Figs. 4.1.7(b)–(d) show corresponding projected maps G. In Fig. 4.1.7(b), the pro-
jected map G has the following two regions: the flat shape of the projected map G in the
region (i), which is caused by saturation of the membrane potential V at 0; and the non-flat
shape of the projected map G in the region (ii), which is caused by the asynchronous state
transitions in Eqs. (4.1.6), (4.1.7), and (4.1.10). As the stimulation strength I increases,
the border between the regions (i) and (ii) approaches a stable fixed point vs, the border
touches the stable fixed point vs, and the stable fixed point vs disappears. This change of
phenomena corresponds to a border-collision bifurcation observed in nonlinear dynamical
systems [39]. Effects of parameters to the border-collision bifurcation are summarized in
Table 4.1.1. Fig. 4.1.7(a’) shows a bifurcation diagram of the biologically plausible Hodgkin-
Huxley-type neuron model [8] and Figs. 4.1.7(b’)–(d’) show corresponding Poincaré maps
H. At Fig. 4.1.7(b’), the biologically plausible neuron model exhibits a Hopf bifurcation.
Comparisons between Figs. 4.1.7(a)–(d) and Figs. 4.1.7(a’)–(d’) suggest that the presented
model can reproduce the occurrence mechanism of the Hopf bifurcation of the biologically
plausible neuron model by the border-collision bifurcation qualitatively. In fact, at the bi-
furcation points in Figs. 4.1.7(c) and (c’), the maps G and H of the presented model and
the biologically plausible neuron model have almost diagonal shapes near the stable fixed
points vs and qs, respectively.

4.1.4 Design of neuron-like current-frequency curves utiliz-
ing theoretical bifurcation analyses

Based on the theoretical bifurcation analyses in Section III, parameter setting methods
to realize the three typical neuron-like current-frequency curves in Fig. 4.1.1 are proposed.
The firing frequency of the proposed model is defined by

f =
Number of firing spikes Y (t) = 1 during t ∈ [0, τ ]

τ
, (4.1.14)
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(a)

(a’)

Figure 4.1.6: Saddle-node bifurcation. (a)–(d) are figures of the presented model. (a) Theoretically

obtained bifurcation diagram of the presented model. The parameter values are N = 5, M = 10,

a = 0.001, b = 15, c = 0, α = 0.010014015−1, B = 1, and γ = 20−1. The projected maps G in (b)–

(d) correspond to (b)–(d) in (a). The presented neuron model exhibits a saddle-node bifurcation

at (c). (a’)–(d’) are figures of the biologically plausible Hodgkin-Huxley-type neuron model [8].

(a’) Bifurcation diagram. The parameter values are the same as those in Fig. 4.1.3(a’). The

Poincaré maps G in (b’)–(d’) correspond to (b’)–(d’) in (a’), where their Poincaré sections are linear

approximations of center manifolds. The biologically plausible neuron model exhibits a saddle-node

bifurcation at (c’).
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(b) (b’)

(c) (c’)

(d) (d’)

Figure 4.1.6: Continued.
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where τ is an appropriately large positive number.

4.1.4.1 Class 1 excitability and class 1 spiking without hysteresis
A step-by-step systematic design method of the presented model so that it exhibits class

1 excitability and class 1 spiking without hysteresis like Fig. 4.1.1(a) is proposed as follows.

Step 1: Set the values of the parameters a > 0, b, and c so that the presented model exhibits
a saddle-node bifurcation like Fig. 4.1.6(a), where effects of the parameters are in Table
4.1.1.

Step 2: Set the value of the parameter B on a stable fixed point vs, which can be theoretically
obtained by using Definition 1.

Step 3: Use the parameters α and (β, γ) to adjust the scales of the firing frequency f and
the stimulation strength I of the current-frequency curve, respectively.

Fig. 4.1.8(a2) shows a current-frequency curve of the presented model designed by the
above method and Fig. 4.1.8(a1) shows a corresponding bifurcation diagram obtained by
the theoretical bifurcation analysis. At the arrow (i) in Figs. 4.1.8(a1) and (a2), there exists
a stable fixed point vs, which corresponds to persistent non-firing. At the arrow (ii) in Figs.
4.1.8(a1) and (a2), the stable fixed point vs and an unstable fixed point vu touch. In this
case, the membrane potential V starting from the unstable fixed point vu increases, reaches
N − 1, is reset to B, increases, and enters into the stable fixed point vs. This situation
corresponds to a saddle-node on invariant circle bifurcation [9]. At the arrow (iii) in Figs.
4.1.8(a1) and (a2), the stable fixed point vs and the unstable fixed point vu vanish. In
this case, the presented model exhibits repeatedly firing, where the membrane potential V
passes through a region in which V increases very slowly. This slow transition leads to the
class 1 excitability and the class 1 spiking as shown in Fig. 4.1.8(a2).

4.1.4.2 Class 2 excitability and class 1 spiking with hysteresis
A step-by-step systematic design method of the presented model so that it exhibits class

2 excitability and class 1 spiking with hysteresis like Fig. 4.1.1(b) is proposed as follows.

Step 1: Set the values of the parameters a > 0, b, and c so that the presented model exhibits
the saddle-node bifurcation like Fig. 4.1.6(a), where effects of the parameters are in Table
4.1.1.

Step 2: Set the value of the parameter B on an unstable fixed point vu, which can be
theoretically obtained by using Definition 2.

Step 3: Use the parameters α and (β, γ) to adjust the scales of the firing frequency f and
the stimulation strength I of the current-frequency curve, respectively.

Fig. 4.1.8(b2) shows a current-frequency curve of the presented model designed by the
above method and Fig. 4.1.8(b1) shows a corresponding bifurcation diagram obtained by
the theoretical bifurcation analysis. At the arrow (i) in Figs. 4.1.8(b1) and (b2), there exists
a stable fixed point vs, which corresponds to persistent non-firing. At the arrow (ii) in Figs.
4.1.8(b1) and (b2), an unstable fixed point vu coincides with the value of the parameter B.
In this case, the membrane potential V starting from the point vu + 1 increases, reaches
N − 1, and is reset to B = vu. After this reset, the membrane potential V increases or
decreases depending on the value of the phase ϕ. Such an orbit of the membrane potential V
is called a homoclinic orbit [9]. At the arrow (iii) in Figs. 4.1.8(b1) and (b2), the homoclinic
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(a)

(a)

Figure 4.1.7: Border-collision bifurcation. (a)–(d) are figures of the presented model. (a) Theo-

retically obtained bifurcation diagram of the presented model. The parameter values are N = 5,

M = 10, a = 0, b = −1, c = −1, α = 1.25−1, B = 30, and γ = 20−1. The projected maps G in (b)–

(d) correspond to (b)–(d) in (a). The presented neuron model exhibits a border-collision bifurcation

at (c). (a’)–(d’) are figures of the biologically plausible Hodgkin-Huxley-type neuron model [8]. (a’)

Bifurcation diagram of the biologically plausible neuron model. The parameter values are CM = 20,

ḡCa = 4, ḡK = 8, gL = 2, VCa = 120, VK = −80, VL = −60, V1 = −1.2, V2 = 18, V3 = 12, V4 = 17.4,

ϕ = 1
15 , and VE = 55. The Poincaré maps H in (b’)–(d’) correspond to (b’)–(d’) in (a’), where their

Poincaré sections are v-axes passing through the centers of rotations. The biologically plausible neu-

ron model exhibits a Hopf bifurcation at (c’). Comparison between (b’)–(d’) and (b)–(d) suggests

that the presented model can reproduce the occurrence mechanism of the Hopf bifurcation of the

biologically plausible neuron model by the border-collision bifurcation qualitatively.



124 Chapter 4. Neural Integrator Model based on Asynchronous Cellular Automaton

(b) (b’)

(c) (c’)

(d) (d’)

Figure 4.1.7: Continued.
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(a1) (a2)

(b1) (b2)

(c1) (c2)

Figure 4.1.8: (a1) and (a2) show design of class 1 excitability and class 1 spiking without hysteresis.

The parameter values are the same as those in Fig. 4.1.6(a). (a1) Bifurcation diagram obtained

by the theoretical results in Section III. (a2) Current-frequency curve obtained by the step-by-

step design method in Section IV-A. (b1) and (b2) show design of class 2 excitability and class 1

spiking with hysteresis. The parameter values are N = 5, M = 10, a = 0.0003, b = 11, c = 0,

α = 0.010014015−1, B = 20, and γ = 4−1. (b1) Bifurcation diagram obtained by the theoretical

results in Section III. (b2) Current-frequency curve obtained by the step-by-step design method in

Section IV-B. (c1) and (c2) show design of class 2 excitability and class 2 spiking without hysteresis.

The parameter values are the same as those in Fig. 4.1.7(a). (c1) Bifurcation diagram obtained

by the theoretical results in Section III. (c2) Current-frequency curve obtained by the step-by-step

design method in Section IV-C.
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orbit is changed into repeatedly firing, where the membrane potential V passes through a
region in which V increases very slowly. This slow transition leads to the class 1 spiking
as shown in Fig. 4.1.8(b2). At the arrows (vi) in Figs. 4.1.8(b1) and (b2), the presented
model exhibits a saddle-node bifurcation, where the membrane potential V does not pass
through a region in which V increases very slowly at the arrow (v). This sudden start of
the fast repeatedly firing leads to the class 2 excitability as shown in Fig. 4.1.8(b2). The
co-existence of the repeatedly firing and the persistent non-firing between the arrows (ii)
and (vi) leads to a hysteresis as shown in Fig. 4.1.8(b2).

4.1.4.3 Class 2 excitability and class 2 spiking without hysteresis

A step-by-step systematic design method of the presented model so that it exhibits class
2 excitability and class 2 spiking without hysteresis like Fig. 4.1.1(c) is proposed as follows.

Step 1: Set a = 0. Also, set the values of the parameter c so that the presented model
exhibits the border-collision bifurcation like Fig. 4.1.7(a), where effects of the parameters
are in Table 4.1.1.

Step 2: Use the parameters α and B to adjust the scale of the firing frequency f of the
current-frequency curve.

Step 3: Use the parameters β and γ to adjust the scale of the stimulation strength I of the
current-frequency curve.

Fig. 4.1.8(c2) shows a current-frequency curve of the presented model designed by the
above method and Fig. 4.1.8(c1) shows a corresponding bifurcation diagram obtained by
the theoretical bifurcation analysis. At the arrow (i) in Figs. 4.1.8(c1) and (c2), there
exists a stable fixed point vs, which corresponds to persistent non-firing. At the arrow
(iii) in Figs. 4.1.8(c1) and (c2), the stable fixed point vs vanishes via the border-collision
bifurcation at the arrow (ii). In this case, the presented model exhibits repeatedly firing,
where the membrane potential V does not pass through a region in which V increases very
slowly. This sudden start of the fast repeatedly firing leads to the class 2 excitability as
shown in Fig. 4.1.8(c2).

Remarks on electromagnetic induction: Analysis of effects of an electromagnetic
induction to a neuron is one of the recent hot topic [8]. An impulsive electromagnetic
induction will move a membrane potential of a neuron instantaneously. In Figs. 4.1.8(a2)
and (c2), the current-frequency curve has no hysteresis and thus the presented model has
only one attractor for all I, whereas in Fig. 4.1.8(b2), the current-frequency curve has
the hysteresis and thus the presented model has two attractors for some I. Hence the
presented models in Figs. 4.1.8(a2) and (c2) have stronger resistivity against some impulsive
electromagnetic induction compared to the presented model in Fig. 4.1.8(b2). On the other
hand, a persistent electromagnetic induction will work as a persistent external force (e.g.,
constant stimulation current) induced to a neuron. In Fig. 4.1.8(a2), the current-frequency
curve is smooth, whereas in Figs. 4.1.8(b2) and (c2), the current-frequency curve has
discontinuity. Hence the presented model in Fig. 4.1.8(a2) has stronger resistivity against
some persistent electromagnetic induction compared to the presented neuron models in
Figs. 4.1.8(b2) and (c2).
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...

type arr is array(0 to N-1) of integer range -(M-1) to M-1;

signal C: std_logic; -- Eq. (1)

signal pre_C: std_logic;

signal V: integer range 0 to N-1; -- Eq. (2)

signal P: integer range 0 to M-1; -- Eq. (3)

signal F: arr := (4, 5,..., 4, 3); -- Eq. (4)

signal S: std_logic_vector (1 downto 0); --Eq. (9)

signal pre_S: std_logic;

begin

clk_gen_C: clk_gen port map(clk100MHz , C, pre_C);

input_gen_S: input_gen port map(clk100MHz , S, pre_S);

process(clk100MHz , C, pre_C , S, pre_S) begin

if rising_edge(clk100Mhz) then

if pre_C = ’0’ and C = ’1’ then -- Eq. (6)

if P >= abs(F(V)) then

if F(V) > 0 and V < N-1 then V <= V + 1;

if F(V) < 0 and V > 0 then V <= V - 1;

if V >= N-1 then V <= B;

end if;

end if;

if pre_C = ’0’ and C = ’1’ then -- Eq. (7)

if P < abs(F(V)) then P <= P + 1;

else P <= 0; end if;

end if;

if pre_S = ’0’ and S(0) = ’1’ then -- Eq. (10)

if S(1) = ’0’ and V < N-1 then V <= V + 1;

if S(1) = ’1’ and V > 0 then V <= V - 1;

end if;

end if;

end process;

...

Figure 4.1.9: Important parts of the register transfer level VHDL code and their relations to the

dynamics equations of the presented model.

4.1.5 Implementation and Comparison
4.1.5.1 FPGA implementation

Recall that the dynamic equations of the presented neuron model are Eqs. (4.1.2),
(4.1.3), (4.1.4), (4.1.6), (4.1.7), (4.1.8), and (4.1.10). The membrane potential V and the
auxiliary variable P are represented by unsigned integers to reflect Eqs. (4.1.2) and (4.1.3),
and are implemented by n-bit and m-bit registers, where n = ⌈log2N⌉ and m = ⌈log2M⌉.
The return values of the vector field function F (V ) are represented by two’s complement
signed integers to reflect Eq. (4.1.4) and thus F (V ) is implemented by look-up-tables hav-
ing n-bit unsigned inputs and (m + 1)-bit signed outputs. The values of n and m are
shortened as short as possible under the condition that the presented model can realize the
current-frequency curves and the bifurcation diagrams properly. The resulting values of
(N,M) are (32, 1024) (i.e., 5-bit and 10-bit), which can be viewed as the values of (N,M)
suitable for practical applications. The dynamics of the presented model is handwritten as
a register transfer level VHDL code, where its important parts and their relations to the
dynamic equations of the presented model are shown in Fig. 4.1.9. The VHDL code is
compiled by Xilinx’s design software environment Vivado 2018.3 and a resulting bitstream
file is downloaded to Xilinx’s FPGA Artix-7 XC7A100T-1CSG324C, where the FPGA has
15,850 slices and each slice contains four 6-input look-up-tables and eight flip-flops. Since
the FPGA device and the HDL compiler used in this paper do not support asynchronous
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Figure 4.1.10: Experimental measurements of the presented model. Repeatedly firing correspond-

ing to (e) in Figs. 4.1.8(a1) and (a2). The membrane potential V and the auxiliary variable P are

extracted from the FPGA via 5-bit and 10-bit ports, which output their unsigned integer represen-

tations (V4, · · · , V0) and (P9, · · · , P0), respectively.

triggering, the internal clock C(t) and the stimulation spike-train S(t) are generated from
a common clock with a high frequency (100[MHz]), where periods of C(t) and S(t) are
set so that their least common multiple is much longer than periods of typical repeatedly
firing of the presented model. Note that so generated spike-trains C(t) and S(t) do not
coincide during the least common multiple period and thus the resulting dynamics can be
regarded to be almost identical with the asynchronous dynamics of the presented model.
Fig. 4.1.10 shows measured waveforms of the FPGA-implemented presented model, which
is designed by the bifurcation-analyses-based systematic design methods proposed in the
previous section. In the figure, the membrane potential V and the auxiliary variable P
are extracted from the FPGA via n-bit and m-bit ports, which output their unsigned in-
teger representations (Vn−1, · · · , V1, V0) and (Pm−1, · · · , P1, P0), respectively. By extensive
experiments, we have confirmed that the FPGA-implemented presented model can exhibit
the three typical neuron-like current-frequency curves in Fig. 4.1.1. As shown in Table II,
the FPGA-implemented presented model consumes 38 look-up-tables, 23 flip-flops, and 16
FPGA slices. These results are compared with those of typical simple neuron models in the
next subsection.

4.1.5.2 Comparisons

Here the presented neuron model is compared with the following three typical simple
neuron models.
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Leaky integrate-and-fire (LIF) model [40]:

C
dv

dt
= gleak(Eleak − v) + I,

v(t+) = c if v(t) ≥ vpeak,
(4.1.15)

where v, C, gleak, Eleak, and I are a membrane potential, a membrane capacitance, an
ohmic conductance, a reverse potential, and an input DC current, respectively. When the
membrane potential v crosses vpeak from below, it is reset to c. It is known that the leaky
integrate-and-fire model (LIF model) can exhibit “class 1 excitability and class 1 spiking
without hysteresis.”

Quadratic integrate-and-fire (QIF) model [41]:

C
dv

dt
= k(v − vrest)(v − vthresh) + I,

v(t+) = c if v(t) ≥ vpeak,
(4.1.16)

where v, C, vrest, vthresh, k, and I are a membrane potential, a membrane capacitance, a
resting potential, an instantaneous threshold potential, a scaling parameter, and an input
DC current, respectively. When the membrane potential v crosses vpeak from below, it is
reset to c. It is known that the quadratic integrate-and-fire model (QIF model) can exhibit
“class 1 excitability and class 1 spiking without hysteresis” and “class 1 excitability and
class 2 spiking with hysteresis.”

Morris-Lecar (ML) model [8]:

CM
d(v + VE)

dt
= Iext − ḡCaM∞(v)(v + VE − VCa)

−gL(v + VE − VL)− ḡKN(v + VE − VK),

dN

dt
= ϕ(N∞(v)−N)/τN (v),

M∞(v) = 0.5(1+tanh((v − V1)/V2)),
N∞(v) = 0.5(1+tanh((v − V3)/V4)),
τN (v) = 1/cosh((v − V3)/(2V4)),

(4.1.17)

where v, N , CM, and Iext are a membrane potential, a potassium activation variable, a
membrane capacitance, and an input DC current, respectively. ḡCa, ḡK, and gL are con-
ductances of ionic currents, respectively. VCa, VK, VL are reverse potentials of calcium,
potassium, and leak current, respectively. Also, ϕ, V1, V2, V3, and V4 are scaling param-
eters. VE is an induced trans-membrane potential and consider CM(dVE/dt) = 0 in this
comparison [8]. It is known that the ML model can exhibit “class 1 excitability and class 1
spiking without hysteresis,” “class 2 excitability and class 1 spiking with hysteresis,”, “class
2 excitability and class 2 spiking without hysteresis,” and “class 2 excitability and class 2
spiking with hysteresis.”

The dynamic equations of LIF, QIF, and ML models are handwritten as register transfer
level VHDL codes using forward Euler formulae with two’s compliment fixed-point number
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representations, where the bit-lengths of the state variables are shortened as short as pos-
sible under the condition that the models can exhibit persistent non-firing and repeatedly
firing properly. The resulting representations of the state variables are summarized in Table
II. These codes are compiled by the design software environment used to compile the pre-
sented model. Then the resulting bitstream files are downloaded to the FPGA device used
to implement the presented model. Table II and Fig. 4.1.11(a) summarize comparisons of
implementation results. The table and the figure suggest the presented model consumes far
fewer circuit elements compared to the LIF, QIF, and ML models as follows.

Remarks on implementation: The number of circuit elements needed to construct a
flip-flop is far smaller than the number of circuit elements needed to construct a look-up-
table and thus it is more efficient to decrease the number of look-up-tables to decrease the
total number of circuit elements. Therefore, the total number of circuit elements used to
construct each neuron model can be estimated by the numbers of look-up-tables and FPGA
slices. As shown in Table II, the presented model uses far fewer look-up-tables and FPGA
slices compared to the comparison models.

In addition, Fig. 4.1.11(b) shows power consumptions of the FPGA-implemented neuron
models. The figure suggests the presented model consumes lower power compared to the
LIF, QIF, and ML models.

4.1.6 Conclusions

It is shown that the presented neuron model can realize the rich bifurcation phenomena
of the biologically plausible neuron model (e.g., saddle-node bifurcation, saddle-node on
invariant circle bifurcation, homoclinic bifurcation, and border-collision bifurcation) and
related three typical neuron-like current-frequency curves. The theoretical analysis tools
(e.g., the continuous-discrete hybrid Poincaré map and the two propositions) are utilized not
only for the bifurcation analyses but also for the systematic designs of the presented model.
It is shown that the presented model consumes fewer FPGA slices and lower power compared
to the LIF, QIF, and ML models. These results suggest the presented model is a theoretically
designable, biologically plausible, and hardware-efficient neuron model. So, the presented
model will be a strong candidate to be used as a building block in a neural prosthetic device.
In order to further develop the presented model, the following future problems should be
investigated. (i) This paper presents the novel neuron model and the novel theoretical
results. Since the development of the presented model is in such an early beginning phase,
this paper focuses on the comparisons based on standard implementation methods, i.e.,
implementations by the standard HDL compiler with standard handwritten register transfer
level HDL codes. Detailed comparisons using specific implementation techniques (e.g.,
pipelined circuit structure and single constant multiplication block) will be investigated in
the next development phase. (ii) This paper reveals the projected map G can be a strong
mathematical tool to design the presented model. However, the projected map G was used
to design relatively low-dimensional bifurcations (bifurcations occurring on at most two-
dimensional center manifolds). Hence the presented model and the theoretical results in
this paper will be extended to higher dimensional ones in the next development phase.
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(a)

(b)

Figure 4.1.11: Comparisons. The horizontal axis is the number of reproducible neuron-like nonlin-

ear current-frequency curves (reproducibility). (a) Number of FPGA slices used to implement each

neuron model. (b) Power consumption of each neuron model.
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4.2 Spiking Neural Network Model2

4.2.1 Introduction
Persistent neural activity refers to neural activity that persists in the absence of the

triggering stimulus. Various brain functions such as motor control, working memory, and
decision-making involve a persistent neural activity [42–44]. Fig. 4.2.1(a) shows a well-
known persistent neural activity, which is observed in position neurons of area I of the
goldfish oculomotor system during spontaneous saccade [42]. Saccades are initiated by
burst cells, where the on (off) burst cell activity triggers transient increases (decreases) in
the firing rate Fextra of position neurons. The position neurons persist with this firing rate
after the input burst cell activity disappears. The tonic drive to maintain eye positions
Econtra and Eipsi is supplied to motoneurons from the position neurons. Such a phenomenon
that calculates the temporal integration of the triggering stimulus as the firing rate is said to
be a neural integration, which has been observed in head direction cells [45] and entorhinal
cortex cells [46] as well as the oculomotor system [42]. Several neural integrator (NI) models
have been presented, e.g., [36, 47–51]. Koulakov et al. introduced a conceptual framework,
a NI with robustness against parameter mistuning, which can be modeled by a continuous
attractor network consisting of intrinsically bistable neurons [36]. They presented a recur-
rent spiking neural network based on NMDA-dependent bistability in [36]. Other studies
attempted to model in a multicompartment neuron and a single multistable neuron, which
are based on different biological perspectives but essentially the same mechanism, that is,
an ensemble of bistable units [48–51].

Several circuit studies and engineering applications of a NI, such as an oculomotor
system, head direction system, and decision-making system have been presented [52–54].
Bio-inspired systems including the ones mentioned above must utilize few hardware re-
sources for circuit implementation and consume low power. In this study, we focused on
the conceptual framework of Koulakov et al.. We first derived a recurrent network for a NI
described by an ordinary differential equation (ODE) that can be solved with less computa-
tional resources than that of the previously presented NI models [36,48–51]. Considering the
implementation of a bio-inspired system on hardware, two important forms exist: analog
implementation and digital implementation. For example, spiking neuron models for effi-
ciently implementing on both the analog hardware [55,56] and digital hardware [25,57] have
been developed. This study focuses on digital implementation using a field-programmable
gate array (FPGA) because it is suitable for a highly scalable prototype implementation.
The FPGA is also suitable for comparing different implementation methods (e.g., a custom-
designed digital signal processor (DSP) and custom-designed CPU) of bio-inspired systems
as long as the same platform and design environment are employed. Then, based on the
above reduced ODE model, we present a novel hardware-oriented recurrent network model
consisting of asynchronous cellular automaton (CA) neurons, which is designed to be suit-
able for digital implementation. A comparison of the proposed model with the reduced
ODE and previously proposed NI models [36] reveals that the proposed model consumes
fewer hardware resources and lower power than those of the other two models.

This paper includes the following contributions. (i) Recently, we have been developing

2 c⃝ 2021 IEEE. Reprinted, with permission, from Kentaro Takeda and Hiroyuki Torikai, A novel
hardware-oriented recurrent network of asynchronous CA neurons for a neural integrator, IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 68, no. 8, pp. 2972–2976, Aug. 2021.



134 Chapter 4. Neural Integrator Model based on Asynchronous Cellular Automaton

(a)

(b)

Figure 4.2.1: Experimental data showing persistent neural activity of area I position neurons during

spontaneous saccades in goldfish oculomotor system adapted from [42]. (a) On (off) burst cell to

trigger transient increases (decreases) in firing rate Fextraof position neurons. (b) Horizontal eye

positions Econtra and Eipsi, firing rate Eextra, and extracellular voltage Vextra.

asynchronous CA models of bio-inspired systems with discrete states and continuous time,
which that can be implemented in an asynchronous sequential logic circuit, for example,
[22,25,57,58]. This paper presents a novel NI model implemented in such an asynchronous
sequential logic circuit for the first time. (ii) The presented model can be implemented
using fewer hardware resources for circuit implementation and consumes lower power than
a numerical integration model with discrete states and a discrete time. This is implemented
in a sequential circuit or a digital processor. (iii) The above advantage suggests that the
presented model will be useful for developing future applications such as neural prosthetic
devices and bio-inspired robots based on the novel asynchronous sequential logic circuit,
which is implemented as a small-scale circuit and has low power consumption.

4.2.2 Reduced ODE model for NI
In this section, based on the conceptual framework of Koulakov et al., we derive an

ODE model of a recurrent network for a NI that can be solved with fewer computational
resources. The network consists of one-dimensional integrate-and-fire-type neurons: Cv̇k =
g(vk)+I

syn
k +Iext, where vk(t+)← vresetk if vk(t) > vthk . A spike in the k-th neuron is assumed

to be generated instantaneously if vk reaches vthk . The following function, described by a
polynomial of the lowest degree that gives the neurons hysteresis characteristics, is employed
for the term g(vk): g(vk) = v2k + bk. This term causes a pair of saddle-node bifurcation and
a saddle-homoclinic bifurcation, which leads to the following nonlinear frequency-current
characteristics with hysteresis, as shown in Fig. 4.2.2. If the input current Iext increases
gradually, then the firing rate increases discontinuously at the white triangle. In such a
case, it is said that the neuron exhibits class 2 excitability [9]. If the input current Iext
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Figure 4.2.2: Class 2 excitability and class 1 spiking with hysteresis caused by saddle-node
bifurcation and saddle-homoclinic bifurcation.

Figure 4.2.3: Neural integration of reduced ODE model. C = 1, τ = 6, umax = 1, b1 = −0.2,
b2 = −1.2, b3 = −2.2. vresetk = 0.3 and vthk = 1 for all k. wk,l = 1 for all k and l. ∆ = 2.

decreases gradually, then the firing rate decreases continuously and the neuron stops spiking
at the white circle. In such a case, it is said that the neuron exhibits class 1 spiking [9].
Hence, the model is considered to be a neuron model exhibiting hysteresis frequency-current
characteristics that can be solved with minimal computational resources. Further, Isynk has
the following synaptic inputs: Isynk =

∑
l wk,luk,l, where wk,l and ul represent synaptic

weights and synaptic potentials, respectively. The dynamics of the synaptic potential ul are

described by a single exponential model as follows: u̇k,l = −τ−1uk,l + τ−1
∑

t
(i)
k <t

δ(t− t(i)k ),

where τ is a time constant, and δ : R→ {0, 1} is the unit impulse function δ(t) = 1 if t = 0
and δ(t) = 0 if t ̸= 0. The synaptic potential uk is assumed to be saturated at umax. We
refer to the model as the reduced ODE model throughout the paper. Fig. 4.2.3 shows the
neural integration of the reduced ODE model consisting of three neurons. The firing rate in
this figure is obtained from fi = Number of spikes of all neurons during t ∈ [hi, hi+1)/∆,
where ∆ > 0 is the bin width, and hi = i∆. In this figure, the firing rate fi implies an
integration value in which the input current Iext is temporally integrated as with Fextra in
Fig. 4.2.1(b).

4.2.3 Hardware-oriented model for NI
In this section, based on the reduced ODE model, a hardware-oriented recurrent network

model for a NI is presented. The presented model consists of n neuron units, where the k (∈
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Figure 4.2.4: Typical timing chart of discrete states.

{1, · · · , n}) th neuron unit has two registers that store a discrete membrane potentialX(k) ∈
ZX ≡ {0, 1, · · · , Xmax} and a discrete frequency divider P (k) ∈ ZP ≡ {0, 1, · · · , Pmax}. In
addition, the k th neuron unit has lookup tables and/or logic gates, which are used as the

following discrete vector field function F
(k)
X : ZX → Z±

P ≡ {−(Pmax + 1), · · · , 0, · · ·Pmax},
F

(k)
X (X) = ⌊(a(k)(X − b(k))2 + c(k))−1⌋, where ⌊·⌋ represents an integer part, F

(k)
X (X) is

clamped at ±Pmax; F
(k)
X (X) is −Pmax if a(k)(X − b(k))2 + c(k) = 0, and a ∈ R, b ∈ R,

and c ∈ R are parameters. The membrane potential X(k) and the frequency divider P (k)

accepts the internal clock CX ∈ {0, 1} generated as follows: CX(t) =
∑∞

i=0 δ(t−iTX), where
TX ∈ (0,∞) is a clock period. The state update of the membrane potential X(k) and the
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Figure 4.2.5: Hysteresis characteristics of presented individual neurons. N = 31, M = 1023,

TV = 0.00100314, c(1) = −0.032, c(2) = 0.016, and c(3) = 0. a(k) = 0.0003, b(k) = 11, and B(k) = 19

for all k.

frequency divider P (k) is driven by the internal clock CX as follows:

If CX(t) = 1, then

P (k)(t+):=

{
P (k)(t) + 1 if P (k)(t)<|P (k)

th |,
0 if P (k)(t)=|P (k)

th |, (1)

X(k)(t+):=

{
X(k)(t)+sgn(P

(k)
th ) if X(k)(t) ̸=Xmax and P

(k)(t)=|P (k)
th |,

B(k) if X(k)(t)=Xmax and P
(k)(t)=|P (k)

th |,

where P
(k)
th ≡ F

(k)
X (X(k)(t)); the symbol “t+” is defined as “limε→+0 t+ ε,” and the symbol

“:=” is defined as an “instantaneous state update”. Moreover, B(k) ∈ ZX is the parameter
representing a reset potential. Fig. 4.2.4(a) shows a typical timing chart of the membrane
potential X(k) and the frequency divider P (k) driven by the internal clock CX(t). The k th
neuron unit accepts an input stimulation Sext ∈ {−1, 0, 1}, which is described as follows:

Sext(t+) =
∑∞

i=0 δ(t− t
(i)
+ )− δ(t− t(i)− ), where t

(i)
+ ∈ R and t

(i)
− ∈ R are spike positions and

t
(i)
+ ̸= t

(j)
− for all i and j. The state update of the membrane potential X(k) is driven by the

input stimulation Sext(t) as follows:

If |Sext(t)| = 1, then

X(k)(t+) :=

{
X(k)(t) + Sext(t) if X

(k)(t) ̸=Xmax, (2)

B(k) if X(k)(t)=Xmax and Sext(t)=1.

Fig. 4.2.4(a) shows a typical timing chart of the membrane potential X(k) driven by the
input stimulation Sext(t). Then, the k th neuron unit produces an action potential Y (k)(t) ∈
{0, 1}:

Y (k)(t)=

1 if CX(t)=1 andX(k)(t)=Xmax and P
(k)(t)= |P (k)

th |,
1 if Sext(t)=1 andX(k)(t)=Xmax, (3)
0 otherwise.

Fig. 4.2.4(a) shows a typical timing chart of the action potential Y (k)(t). Let the in-
stantaneous pulse density of the three-state input stimulation Sext be proportional to the
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stimulation strength Iext ∈ R. Fig. 4.2.5 shows the frequency-current characteristics with
hysteresis. Based on the results of a recently reported paper [57], it can be ensured that
the asynchronous CA neuron exhibits a saddle-homoclinic bifurcation and a saddle-node
bifurcation. The combination of these bifurcations leads the neuron to class 1 spiking and
class 2 excitability with hysteresis, as shown in Fig. 4.2.2. Hence, the asynchronous CA
neuron is considered to be a bistable unit.

The neuron units are connected all-to-all by n2 synapse units. The l (∈ {1, · · · , n})
th synapse unit for the k th neuron unit has two registers that store the discrete synaptic
potential U (k,l) ∈ ZX = {0, 1, · · · , Xmax} and the discrete frequency divider Q(k,l) ∈ ZQ =
{0, 1, · · · , Qmax}. The l th synapse unit accepts the internal clock CX . The state update
of the synaptic potential U (k,l) and the frequency divider Q(k,l) are driven by the internal
clock CX as follows:

If CX(t)= 1, then

Q(k,l)(t+):=

{
Q(k,l)(t)+1 if Q(k,l)(t)<Qmax,

0 if Q(k,l)(t)=Qmax or Y (l)(t)= 1.

U (k,l)(t+):=

{
U (k,l)(t)+W

(k,l)
r if Y (l)(t)= 1, (4)

U (k,l)(t)−W (k,l)
d if Y (l)(t)= 0 andQ(k,l)(t)=Qmax,

where W
(k,l)
r ∈ ZX and W

(k,l)
d ∈ ZX are the rise and decay parameters of the synaptic

potential, and U (k,l) is saturated at Xmax. Fig. 4.2.4(b) shows a typical timing chart of
the synaptic potential U (k,l) and the frequency divider Q(k,l) driven by the internal clock
CX(t). To receive synaptic inputs, the k th neuron unit has the register storing the discrete

frequency divider R(k) ∈ ZP and the discrete coupling function F
(k)
U : {0, 1, · · · , nXmax} →

ZP , F
(k)
U (U) = ⌊(fUTU (U/nXmax))

−1⌋, where F (k)
U (U) is saturated at Pmax; F

(k)
U (U) is Pmax

if fUTU (U/nXmax) = 0; and fU ∈ [0,∞) is a parameter. The membrane potential X(k)

and the frequency divider R(k) accept the internal clock CU ∈ {0, 1} generated as follows:
CU (t) =

∑∞
i=0 δ(t − iTU ), where TU ∈ (0,∞) is a clock period. The state update of the

membrane potential X(k) and the frequency divider R(k) is driven by the internal clock CU

as follows:

If CU (t) = 1, then

R(k)(t+) :=

{
R(k)(t) + 1 if R(k)(t) < R

(k)
th ,

0 if R(k)(t) = R
(k)
th , (5)

X(k)(t+) :=

{
X(k)(t) + 1 if X(k)(t) ̸= Xmax and R(k)(t) = R

(k)
th ,

B(k) if X(k)(t) = Xmax and R(k)(t) = R
(k)
th ,

where R
(k)
th ≡ F

(k)
U (

∑n
l=1 U

(k,l)(t)). Fig. 4.2.4(c) shows a typical timing chart of the mem-
brane potential X(k) and the frequency divider R(k) driven by the internal clock CU (t). To
reflect the synaptic connection in the state update of the action potential Y (k), the follow-
ing state update equation is added to Eq. (3): Y (k)(t) = 1 if CU (t) = 1 and X(k)(t) =

Xmax and R(k)(t) = R
(k)
th . Fig. 4.2.6 shows the firing rate fi of the presented model in

response to the stimulations. It can be confirmed that the presented model reproduces the
neural integration, which is similar to that of the reduced ODE model (see also Fig. 4.2.3).
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Figure 4.2.6: Neural integration of proposed model. n = 3, N = 31, M = 1023, L = 255,
TV = 0.00100314, TU = 0.0050271, fU = 50, c(1) = −0.032, c(2) = −0.016, and c(3) = 0.
a(k) = 0.0003, b(k) = 11 and B(k) = 19 for all k. ∆ = 2.

Figure 4.2.7: Signals Y (k) in presented model running on FPGA (see also Fig. 4.2.1).

4.2.4 Implementation and comparison
4.2.4.1 FPGA implementation

The dynamics of the presented model are written as a register transfer level (RTL) code
using VHDL as follows: The discrete state variables (X(k), U (k)), (P (k), R(k)), and Q(k)

are implemented by registers as Xmax bit, Pmax bit, and Qmax bit unsigned integers, where
Xmax = ⌈log2Xmax⌉, P = ⌈log2 Pmax⌉, and Qmax = ⌈log2Qmax⌉, respectively. The function

F
(k)
X is implemented in lookup tables (LUTs) having a Xmax bit unsigned integer input and

a (Pmax+1) bit signed integer output in the two’s complement format. The function F
(k)
U is

implemented in LUTs having an nXmax bit unsigned integer input and a Pmax bit unsigned
integer output. The state updates in Eqs. (1), (2), (4), and (5) are written by sequential
statements driven by the clocks CX and CU . The RTL code is synthesized by Xilinx Vivado
Design Suite v2019.2, and a generated bitstream file is downloaded into Xilinx’s FPGA,
Kintex-7 XC7K325T-2FFG900C. Fig. 4.2.7 shows the waveforms measuring the signals
Y (k) of the presented model running on the FPGA. In this figure, the downward arrows
represent stimulations to the network for approximately 4 s, where Iext = 5 if “On burst
cell activity,”Iext = −35 if “Off burst cell activity,”and Iext = −15 otherwise, as in Fig.
4.2.6.

4.2.4.2 Comparison with reduced ODE model
For implementation on an FPGA, the reduced ODE model is discretized using the

forward Euler method with a step size of ∆t = 2−5, which is among the simplest numerical
integration methods, as follows: vk(t+∆t) = vk(t) + ∆t(g(vk) + Isynk + Iext), uk(t+∆t) =
uk(t) − ∆tτ−1uk(t) + τ−1δ

t,t
(i)
k

, where vk(t + ∆t) ← vresetk if vk(t) > vthk . The discretized
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Figure 4.2.8: Neural integration of circuit-based bistability model [36] consisting of three
neuronal units. Parameter value of NMDA synaptic conductance gNMDA,i is g2 = 5 µS/cm2

for interunit connections. Bias current values are 0 µA/cm2, 3.5 × 10−2 µA/cm2, and
7.5 × 10−2 µA/cm2, respectively, for each unit. Other parameters are the same as those
described in the Supplementary Methods of Koulalov et al. [36]. ∆ = 0.097.

equation is implemented on the same FPGA in the following two ways.

Custom-designed DSP The discretized equation is described as an RTL code using VHDL,
and the variables are represented by fixed-point numbers in two’s complement format,
where the bit lengths of the state variables are reduced to be as short as possible under
the condition that the model can exhibit the neural integration properly. The RTL code
is synthesized by the same development environment, and the generated bitstream file is
downloaded into the same FPGA.

Custom-designed CPU To calculate the discretized equation, a soft-core CPU called Mi-
croblaze is custom-designed using the same design environment. In this design,“Minimum
area”in the predefined configuration is selected, where an integer multiplier and a floating-
point unit are not included. The generated custom-designed CPU is implemented on the
same FPGA. The discretized reduced ODE model is written in the C language, and the
variables are represented by 32-bit floating numbers. The code is compiled by Xilinx Vitis
IDE v2019.2, and the executable file is downloaded into the custom-designed CPU on the
FPGA.

4.2.4.3 Comparison with circuit-based bistability model [36]
For further comparison, we implemented a circuit-based bistability model as presented

by Koulakov et al. [36] consisting of the following two-compartment conductance-based

neurons: CmV̇ s
i = −IsLeak,i−INa,i−IKDr,i− gc

p (V
s
i −V d

i ), Cm
˙V d
i = −IsLeak,i−

gc
1−p(V

d
i −V s

i )−
INMDA,i−Iext. The neurons, divided into a number of units (originally hundred) containing
three neurons each, are connected all-to-all by NMDA synapses as follows: INMDA,i =
gNMDA,i

∑
j sj(V

d
i − Esyn)/(1 + 0.3[Mg2+]exp(−0.08V d

i )), where strong and weak NMDA
synaptic conductances gNMDA,i are applied for synapses connecting in the same unit and
interunit connections, respectively. Further, sj represents an NMDA gating variable whose
dynamics are described by the following second-order kinetics: ẋj = F (V s

j )(1− xj)− 0.5xj ,
ṡj = 0.5xj(1− sj)− 0.01sj . More details of the model can be found in the Supplementary
Methods [36]. For a fair comparison, the number of units in the network is reduced from
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100 to 3. Bias current values and NMDA synaptic conductances for interunit connections
are arbitrarily chosen, while the other parameters are the same as those in [36]. Fig. 4.2.8
shows the neural integration of the circuit-based bistability model consisting of three units.
As with B-1) in this section, the model is discretized using the forward Euler method with
a step size ∆t = 2−6 and is described as an RTL code using VHDL, where the variables are
represented by fixed-point numbers in the two’s complement format. A natural exponential
function is approximated as a fifth-order Taylor polynomial. The bit lengths of the state
variables are reduced to be as short as possible under the condition that the model can
exhibit the neural integration properly in a simulation. The RTL code is synthesized by
the same development environment. As a result, the estimated number of LUTs exceeds
the available hardware resources on the FPGA. Thus, the number of slices and the power
consumption cannot be measured, while the number of FFs and LUTs can be estimated.
Table I summarizes the comparison results of hardware resources and power consumption.

4.2.5 Discussion
Because the integration value is represented by the number of firing neurons (or groups

for the circuit-based bistability model [36]), it can be close to a continuous representation
if the number of neurons is large. In the case of the implementations shown in Table I,
all models represent the integrated values at a resolution of three gradations in maximum
performance (see also Figs. 4.2.3, 4.2.6, and 4.2.8). Hence, it can be said that the presented
model achieves the same integration performance as that of the other two models while
reducing the required hardware resources and power consumption.

Further, the required hardware resources for implementing the presented model and the
reduced ODE model on the FPGA are proportional to the network scale. Fig. 4.2.9 shows
the relationships between the number of neurons in the network and the FPGA resource
utilization for the presented model and the reduced ODE model. The utilization of the
LUTs, FFs, and slices for the presented model tends to increase at the same rate as that for
the reduced ODE model. The utilization of the LUTs for the presented model is less than
that for the reduced ODE model, while the utilizations of the FFs are approximately the
same in both models. As a result, the number of slices (each slice contains four six-input
LUTs and eight FFs) for the presented model is lower than that for the reduced ODE model
independently of the network scales. The power consumption for the presented model is
also lower than that for the ODE model, which is expected to be owing to the significant
reduction in the number of LUTs.

Owing to the few required hardware resources, the presented model is suitable for im-
plementing two types of major future applications: a neural prosthetic device [7] and a
bio-inspired robot [59]. Specifically, an oculomotor system, head direction system, and
decision-making system in which NIs are involved are eligible for a range of potential ap-
plications in the presented model, and engineering studies have been conducted [52–54]. In
the presented model and the previous NI models [36, 47–50], it is necessary to choose the
appropriate network size (i.e., the number of bistable units) depending on the application.
However, the NI consisting of conductance-based neurons [36,47–50], while having biologi-
cal plausibility, is difficult to implement in terms of required hardware resources, as can be
seen in Section IV.

In the early stages of a modeling study of a NI, several network models of rate-code
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Figure 4.2.9: Utilization of LUTs, FFs, slices, and power consumption as number of neu-
rons increases. Dashed (solid) lines indicate reduced ODE model implemented in custom-
designed hardware DSP (presented model is implemented as asynchronous sequential logic
circuit).

neurons recurrently connected with positive feedback, of which the dynamics of firing rate
are described by an ODE, have been presented, for example, [60,61]. Such models work as a
first-order filter with a long leakage time constant and can be easily implemented on a circuit
in terms of the required circuit elements. However, the spike-timing mechanism cannot be
applied in these types of systems. A persistent activity in the absence of external inputs
exhibited by a NI is involved in working memory, as stated in Section I. In fact, several
studies have attempted to observe the working memory function that emerges spontaneously
by spike-timing-dependent plasticity, for example, [62, 63].

Hence, these results suggest that the presented model is reasonably implementable and
reasonably biologically plausible, that is, suitable for bio-inspired engineering applications.

4.2.6 Conclusions
In this study, a reduced ODE model was derived and a hardware-oriented recurrent

network of asynchronous CA neurons for a NI was proposed. Both the models and the
circuit-based bistability model were implemented on the same FPGA. It was shown that
the proposed model consumes fewer hardware resources and lower power than those of the
reduced ODE and circuit-based bistability models.
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Chapter 5

Neural Spike-Train Generator
Model based on Quantum-dot
Cellular Automaton

5.1 Neural Spike-train Generator Suitable for UWB-

IR Applications 1

5.1.1 Introduction
Most computer devices are basically operated on the basis of the metal-oxide semicon-

ductor field-effect transistor (MOSFET). The quantum-dot cellular automaton (QCA) is
nanoscale technology, which has been expected to be alternative to the conventional MOS-
FET based architecture [1–4]. Fig. 5.1.1(a) shows a basic element of the QCA called a
QCA cell. As shown in the figure, the QCA cell has four quantum dots arranged in a
square pattern, where two dots are assumed to have electrons and the other dots are as-
sumed to have no electrons. Due to Coulomb forces, there are two stable patterns of the
dots as shown in Fig. 5.1.1(a), where these patterns are said to have polarizations Pol = +1
and Pol = −1. Hence, the QCA cell can work as a binary memory, where the polarizations
Pol = +1 and Pol = −1 may represent binary states Logic = 1 and Logic = 0, respectively.
In Fig. 5.1.1(b), QCA cells are located adjacent to each other. As shown in the figure,
there are two stable patterns of the quantum dots in the located QCA cells due to the
Coulomb forces. These patterns can be switched by appropriately low potential barriers
among the dots and applying external Coulomb forces. Typically, the potential barriers
are controlled by four-phase synchronized clocks, where the QCA cells driven by the same
clock are said to belong to the same clock zone as shown in Fig. 5.1.1(c). By applying the
four-phase synchronized clocks to the four clock zones appropriately, binary information
can be transmitted through the QCA cells. It should be emphasized that the QCA cells
can transmit the binary information without using current flows, whereas the conventional
MOSFET based architecture can not avoid energy consumption due to current flows. This
ultra low energy consumption property is one of the most significant advantages of the QCA
based architecture. Then, using the QCA cells, many memory units and memoryless units
have been designed so far [5–11]. In order to realize proper functions of such QCA units,
designers are recommended to obey the following design guidelines [12–15].

1This section is based on “A novel spike-train generator suitable for QCA implementation towards UWB-
IR applications,” by the same author, which appeared in Nonlinear Theory and Its Applications, IEICE,
vol. 9, no. 4, pp.436–452, 2018, Copyright(C)2018 IEICE.
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(a) (b)

(c)

Figure 5.1.1: Quantum-dot cellular automaton (QCA) [1–4]. (a) QCA cell. The QCA cell has

four quantum dots and two of them have electrons. There are two stable states characterized

by polarizations Pol = +1 and Pol = −1, which correspond to binary states logic = +1 and

logic = −1, respectively. (b) QCA cells located adjacent to each other. There are two stable states

of the quantum dots. By changing potential barriers and applying external Coulomb forces, binary

information can be transmitted without using current flows. (c) QCA circuit design guidelines

(G1)–(G3) [12–15].

(G1) The number of adjacently located QCA cells in the same clock zone should be more
than or equal to 2 as shown in Fig. 5.1.1(c).

(G2) The number of adjacently located QCA cells in the same clock zone should be less
than or equal to 28 at a clock frequency of 1 THz as shown in Fig. 5.1.1(c).

(G3) The center-to-center distance between two adjacently located QCA cells should be
as short as possible as shown in Fig. 5.1.1(c).

The cellular automaton (CA) has been investigated intensively from both fundamental
scientific viewpoint and engineering application viewpoint. For example, since the CA
is different from traditional dynamical systems such as ordinary and partial differential
equations but can exhibit a huge variety of spatio-temporal phenomena, it is even called a
“new kind of science” [16–18]. Also, the CA has been applied to many engineering systems
such as traffic flow model, image classification, and music generation [19–21]. Among such
applications, this paper focuses on application of the CA to spike-train generators and ultra
wide band impulse radio (UWB-IR) communication, ranging, and positioning systems. The
UWB-IR systems have been applied to various engineering systems such as vehicular radar,
wireless sensor networks, and position estimation, where their advantages include high data
rate, low power consumption, and high resistivity to noise [22–24]. Recall that the QCA is
a nanoscale device and has the ultra low energy consumption property. So, if we design a
UWB-IR system based on the QCA, such a system is expected to have the ultra small circuit
area property and the ultra low power consumption property. An important building block
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of such a QCA based UWB-IR system is a QCA based spike-train generator that generates
spike-trains suitable for the UWB-IR. Our group has been developing design methods of
the CA to generate spike-trains suitable for the UWB-IR systems [25–27]. However, these
design methods can not be applied to the QCA based architecture since these methods can
not handle transmission delays among QCA cells and thus they can not satisfy the design
guidelines G1 and G2. In order to overcome this difficulty, this paper aims at

• proposing a novel CA spike-train generator that can be implemented by the QCA and
can generate spike-trains with various spike patterns;

• proposing a rigorous analysis method of the proposed spike-train generator; and

• proposing a stochastic algorithm for parameter tuning for the proposed spike-train
generator so that it can generate spike-trains suitable for UWB-IR systems.

This paper is organized as follows. In Section II, a novel spike-train generator suitable for the
QCA implementation is proposed. Also, a rigorous analysis tool of the proposed generator is
proposed. In Section III, a QCA layout of the proposed spike-train generator is designed and
its operation is verified by a QCA simulator called QCADesigner [28]. Using the analysis
tool, it is shown that the proposed generator can generate spike-trains with various spike
patterns in terms of periods of spike-trains, second peaks of auto-correlation functions, and
numbers of spikes. In Section IV, a parameter tuning algorithm for the proposed generator
is proposed, where the analysis tool is used as its subroutine to accelerate parameter tuning
speed. It is shown that the parameter tuning algorithm enables the proposed generator to
generate spike-trains suitable for applications to the UWB-IR systems. Also, the resulting
generator is designed as a QCA layout and its operation is verified by the QCA simulator.

5.1.2 Model description
5.1.2.1 Proposed spike-train generator

In this subsection, a novel spike-train generator suitable for quantum-dot cellular au-
tomaton (QCA) implementation is proposed. The proposed generator has the following
discrete time.

t = 0, 1, 2, · · · .

Fig. 5.1.2(a) shows a circuit diagram of the proposed generator. As shown in the figure,
the generator has M cells (M > 0) called p-cells, which have the following binary states.

pi(t) ∈ B = {0, 1},

where i ∈ {0, 1, · · · ,M − 1} is an index of the p-cell. For simplicity, the following vector
form of the binary states is introduced.

P (t) = (p0(t), · · · , pM−1(t))
T ∈ BM .

As shown in Fig. 5.1.2(a), the p-cells are ring-coupled and thus the dynamics of the p-cells
is described by

P (t+ 1) = (pM−1(t), p0(t), · · · , pM−2(t))
T. (5.1.1)
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In this paper, the initial conditions of the p-cells are fixed to P (0) = (1, 0, · · · , 0) and thus
the p-cells oscillate periodically with period M as shown in Fig. 5.1.2(b). As shown in Fig.
5.1.2(a), the proposed generator has reconfigurable wires from M left terminals (connected
from the p-cells) to N (N ≥M) right terminals (connected to the reset unit). It is assumed
that each left terminal has one wire and each right terminal can accept any number of
wires. Then the wires transform the binary state vector P (t) ∈ BM of the p-cells into the
following binary signal vector.

b(t) ∈ BN = (b0(t), · · · , bN−1(t))
T.

In order to characterize the transformation by the wires, the following function a(j, i) :
{0, 1, · · · ,M − 1} × {0, 1, · · · , N − 1} → B and its matrix form A are introduced.

a(j, i) =

{
1 if the j-th left terminal is wired to the i-th right terminal,
0 otherwise,

A =


a(0, 0) a(1, 0) · · · a(N − 1, 0)
a(0, 1) a(1, 1) · · · a(N − 1, 1)

...
...

. . .
...

a(0,M − 1) a(1,M − 1) · · · a(N − 1,M − 1)

 .

For example, the proposed generator in Fig. 5.1.2(a) is characterized by the following matrix
A.

A =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 . (5.1.2)

Then the binary state vector P (t) is transformed into the binary signal vector b(t) as follows.

b(t) = AP (t). (5.1.3)

In Fig. 5.1.2(b), black circles represent a time waveform of the binary signal vector b(t),
which corresponds to the pattern of the wires in Fig. 5.1.2(a). As noted in Fig. 5.1.2(a),
the signal b(t) = (b0(t), · · · , bN−1(t))

T is transmitted to the reset unit with delay ρ. Then
the reset unit accepts the following signal

b(t− ρ) = (b0(t− ρ), · · · , bN−1(t− ρ))T.

As shown in Fig. 5.1.2(a), the proposed generator has N cells called x-cells, which have the
following tri-state states.

xj(t) ∈ T = {0, 1, ϕ},

where j ∈ {0, 1, · · · , N − 1} is an index of the x-cell. Also, “0” and “1” correspond to those
in the binary set B, while “ϕ” is used to represent a delay in the reset unit. For simplicity,
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(a)

(b)

Figure 5.1.2: A novel spike-train generator suitable for quantum-dot cellular automaton (QCA)

implementation. (a) Circuit diagram. The generator consists of M p-cells, N x-cells, M reconfig-

urable wires with delay ρ, and a reset unit with delay δ, where M = N = 5 in this figure. The

wires are characterized by the matrix A in Eq. (5.1.2). (b) Typical time waveforms. ρ = 2 and

δ = 2. The white triangle represents pi(t) = 1. The black circle represents bj(t) = 1. The white

circle represents bj(t+ δ − ρ) = 1. The black box represents xj(t) = 1 and the gray box represents

xj(t) = ϕ. The generator outputs a spike-train Y (t) with the period T = 20 and the number Q = 4

of spikes.
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the following vector form of the tri-state states is introduced.

X(t) = (x0(t), · · · , xN−1(t))
T ∈ TN .

As shown in Fig. 5.1.2(a), the x-cells are basically ring-coupled and then obey the following
dynamics.

If X(t) ̸= (0, · · · , 0, 1), then X(t+ 1) = S(X(t)), (5.1.4)

where
S((x0, · · · , xN−1)

T) = (0, x0, · · · , xN−2)
T

is a shift operator. As shown in Fig. 5.1.2(a), the x-cells accept the binary signal vector
b(t− ρ) via the reset unit and then additionally obey the following dynamics.

If X(t) = (0, · · · , 0, 1), then

X(t+ 1 + d) =

{
(ϕ, · · · , ϕ) for d ∈ {0, 1, · · · , δ − 1},
b(t+ δ − ρ) for d = δ,

(5.1.5)

where δ ∈ {1, 2, · · · , ρ} is a parameter characterizing the delay of the reset unit, and is
called a reset delay. In Fig. 5.1.2(b), black and gray boxes represent a time waveform of the
tri-state state vector X(t), which corresponds to the pattern of the wires in Fig. 5.1.2(a).
When the black box is below the highest position N − 1, the black box is shifted upward
due to Eq. (5.1.4). When the black box reaches the highest position N −1, the black box is
reset to the white circle with the reset delay δ due to Eq. (5.1.5). Repeating such dynamics,
the state vector X(t) oscillates as shown in Fig. 5.1.2(b). In addition, depending on the
discrete state X(t), the proposed generator outputs the following spike-train Y (t) as shown
in Fig. 5.1.2(b).

Y (t) =

{
1 if X(t) = (0, · · · , 0, 1),
0 otherwise.

(5.1.6)

As a result, the proposed generator can be summarized as follows.

Time: Discrete time t
States: Binary states P (t) and Tri-state states X(t)
Dynamics: Eqs. (5.1.1), (5.1.3), (5.1.4), and (5.1.5)
Output: Spike-train Y (t) in Eq. (5.1.6)
Parameters: Numbers M and N of the cells,

Matrix A characterizing the wires,
Transmission delay ρ, and Reset delay δ

Remark 1 (Novelty): It should be emphasized that our previous spike-train generators
[25–27] can not be implemented by the QCA since they can not handle transmission delays
among QCA cells and thus they can not satisfy the design guidelines G1 and G2. In order to
overcome this difficulty, in this paper, the delays ρ and δ are introduced in the reconfigurable
wires and the reset unit, respectively. Due to the delays ρ and δ, the proposed spike-train
generators can not be analyzed by analysis methods in [25–27]. In order to overcome this
difficulty, in the next subsection, a novel rigorous analysis tool of the proposed generator is
proposed.
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(a) (b)

Figure 5.1.3: Spike maps corresponding to the proposed spike-train generator in Fig. 5.1.2(a),

where the wires are characterized by the matrix A in Eq. (5.1.2). (a) Spike position map g. (b)

Spike phase map G.

5.1.2.2 Novel spike maps for the proposed generator

As shown in Fig. 5.1.2(b), let tn denote the n-th spike position of the output Y (t) of
the generator. Then the dynamics of the spike position tn can be described by the following
spike position map g.

tn+1 = g(tn) = tn +M − β(tn + δ − ρ(mod M)) + δ,

g : {0, 1, 2, · · · } → {0, 1, 2, · · · },
(5.1.7)

where

β(j) = i if the j-th left terminal is wired to the i-th right terminal,
β : {0, 1, · · · ,M − 1} → {0, 1, · · · , N − 1}.

Fig. 5.1.3(a) shows an example of the spike position map g. Note that, by iterating the
spike position map g, the spike position tn ever increases and thus g is not suitable for
analysis of the proposed generator. So, the following spike phase θn is introduced.

θn = tn(mod M).

The dynamics of the spike phase θn can be described by the following spike phase map G
from a finite set into itself.

θn+1 = G(θn) = g(θn) (mod M),

G : {0, 1, · · · ,M − 1} → {0, 1, · · · ,M − 1}.
(5.1.8)
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Fig. 5.1.3(b) shows an example of the spike phase map G. Using the spike phase map
G, fundamental characteristics (e.g., cycle Q of a periodic orbit and number of co-existing
periodic orbits) of the spike phase θn can be analyzed rigorously. For example, it can be
shown that the spike phase map G in Fig. 5.1.3(b) has the following periodic orbit with
cycle Q = 4.

(θ1, θ2, θ3, θ4) = (1, 0, 3, 4).

Then, using the periodic orbit (θ1, · · · , θQ), the corresponding sequence of the spike position
tn can be derived as follows.

tn = θ1 +

n−1∑
k=1

(M − β(θk − ρ(mod M)) + δ). (5.1.9)

For example, using the periodic orbit (θ1, θ2, θ3, θ4) = (1, 0, 3, 4) of the spike phase map G
in Fig. 5.1.3(b), the following sequence of the spike position tn can be derived.

(t1, t2, t3, t4) = (1, 5, 8, 14).

It can be confirmed that these spike positions are identical with those in Fig. 5.1.2(b). In
addition, the period T of the spike train Y (t) can be derived as follows.

T = tQ+1 − t1 =
Q∑

k=1

(M − β(θk − ρ(mod M)) + δ)− θ1. (5.1.10)

For example, using the above mentioned periodic orbit (θ1, θ2, θ3, θ4) = (1, 0, 3, 4), the period
T = 20 can be obtained and it can be confirmed that so obtained period T = 20 is identical
with that in Fig. 5.1.2(b).

Remark 2 (Significance of the spike phase map): As explained in this subsection,
the spike phase map G can be used as a rigorous analysis tool for the proposed spike-train
generator. It should be emphasized that the spike phase map G will be also utilized as a
kind of subroutine to accelerate execution speed of a parameter tuning algorithm in section
4. As a result, it can be said that the spike phase map G is useful not only for analysis but
also for design of the proposed spike-train generator.

5.1.3 QCA implementation of the proposed spike-train gen-
erator

5.1.3.1 QCA basics
In this section, a brief of QCA basics is introduced. Fig. 5.1.4(a) shows a QCA layout

of a majority gate consisting of five QCA cells, where A, B, and C are inputs and M =
AB +BC + CA is an output. If C is fixed to 1 (i.e. polarization of the cell corresponding
to C is fixed to 1), the majority gate works as an OR gate as shown in Fig. 5.1.4(b). If C
is fixed to 0 (i.e. polarization of the cell corresponding to C is fixed to −1), the majority
gate works as an AND gate as shown in Fig. 5.1.4(c). Furthermore, by arranging QCA cells
appropriately, other logic gates and complicated logic functions can be designed [5–8]. In
order to design a D-type flip-flop by the QCA cells, we introduce the following definition.
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(a)

(b)

(c)

Figure 5.1.4: (a) QCA layout of a majority gate. The majority gate has three inputs A, B, and C,

and an output M = AB +BC +CA [1–4]. (b) and (c) show simulation results of the majority gate

obtained by the QCADesigner. (b) The majority gate works as an OR gate if the input C is fixed

to 0. (c) The majority gate works as an AND gate if the input C is fixed to 1.
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(a)

(b)

(c)

Figure 5.1.5: (a) QCA layout of a shift register consisting of D-type flip-flops DFF0, DFF1, and

DFF2. (b) Clocks C0(t), C1(t), C2(t), and C3(t). (c) Typical time waveforms obtained by the

QCADesigner. It can be seen that the QCA layout works as a shift register.
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Definition: Suppose R QCA cells are arranged in serial and is said to form a QCA subset
as shown in Fig. 5.1.5(a), where 2 ≤ R ≤ 28. Suppose four QCA subsets are arranged in
serial as shown in Fig. 5.1.5(a). Suppose a QCA cell Di is arranged next to an end point
of the four QCA subsets and a QCA cell Di+1 is arranged next to the other end point of
the QCA subsets as shown in Fig. 5.1.5(a). Suppose the clock C0(t) is applied to the QCA
subset next to the QCA cell Di as shown in Fig. 5.1.5(a). Suppose the clocks C1(t), C2(t)
and C3(t) are applied to the other QCA subsets in serial order as shown in Fig. 5.1.5(a).
The set of 4R+ 2 QCA cells arranged in the above manner is said to form a set DFFi.

The set DFFi works as the D-type flop-flop. Fig. 5.1.5(a) shows a QCA layout of a
shift register consisting of DFFi, where D0, D1, D2 are inputs of DFF0, DFF1, DFF2,
respectively, and D1, D2 and D3 are outputs of DFF0, DFF1, DFF2, respectively. Fig.
5.1.5(b) explains how to provide clocks to the flip-flop. When a tunneling barrier between
quantum-dots is high, the electrons in the dots are tightly confined and thus the polarization
is locked. On the other hand, when the tunneling barrier is low, the electrons can be
rearranged in the dots and thus the polarization can be changed. Hence, in order to work
the set DFFi of ten QCA cells as the flip-flops, it is necessary to provide four tunneling
barriers with appropriate temporal patterns, where such tunneling barriers are called clocks.
Fig. 5.1.5(b) shows examples of such clocks C0(t), C1(t), C2(t), and C3(t). Each clock Ck(t)
has four phases called Switch, Hold, Release, and Relax. If a clock Ck(t) is in the Hold
and the Relax phases, the tunneling barrier is high and low, respectively. As shown in
Fig. 5.1.5(b), the four clocks C0(t), C1(t), C2(t), and C3(t) are assumed to be synchronized
with different phases. Also, as shown in Fig. 5.1.5(a), these four clocks are applied to the
ten QCA cells in each set DFFi of QCA cells. This clocking method realizes that each
set DFFi works as a D-type flip-flop. As shown in Fig. 5.1.5(a), the D-type flip-flops are
connected in serial and then they work as a shift register. Fig. 5.1.5(c) shows a simulation
result of the shift register, which is obtained by the QCA simulator QCADesigner [28]. It
can be seen that the QCA layout in Fig. 5.1.5(a) works as a shift register, where D0 is its
input. Other types of sequential logics can be also designed in a similar fashion [9–11].

5.1.3.2 QCA implementation of the proposed spike-train generator

Fig. 5.1.6(a) shows a QCA layout of the proposed generator in Fig. 5.1.2(a). In this
layout, the upper loop and the lower loop correspond to the p-cells and the x-cells in Fig.
5.1.2(a), respectively. Also, crossover cells are introduced in order to realize crosses of
unconnected wires [4, 28], and delay cells (i) and (ii) are introduced in order to adjust the
phases of the clocks C0(t), C2(t), C3(t), and C4(t) appropriately. The delays caused by
the delay cells (i) correspond to the transmission delay ρ of the reconfigurable wires in
Fig. 5.1.2(a). The delays caused by the delay cells (ii) and the crossover cells correspond
to the reset delay δ of the reset unit in Fig. 5.1.2(a). Fig. 5.1.6(b) shows typical time
waveforms of the QCA layout in Fig. 5.1.6(a) obtained by the QCADesigner. Comparing
Fig. 5.1.6(b) with Fig. 5.1.2(b), it can be confirmed that the spike-train Y (t) generated
by the QCA layout in Fig. 5.1.6(a) is equivalent to the spike-train Y (t) generated by the
proposed generator in Fig. 5.1.2(a). It should be emphasized that the proposed generator
with other values of the parameters (M,N,A, ρ, δ) can be also implemented by the QCA
layout in the same fashion.
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(a)

(b)

Figure 5.1.6: (a) QCA layout of the proposed generator in Fig. 5.1.2(a). The upper loop and

lower loop correspond to the p-cells and the x-cells, respectively. The crossover cells realize crosses

of unconnected wires [4, 28]. The delay cells are introduced in order to adjust the phases of the

clocks. The delays caused by the delay cells (i) correspond to the transmission delay ρ. The delays

caused by the delay cells (ii) and the crossover cells correspond to the reset delay δ. (b) Typical time

waveforms obtained by the QCADesigner. By comparing with Fig. 5.1.2(b), it can be confirmed

that the QCA layout in (a) can realize the dynamics of the proposed generator in Fig. 5.1.2(a).
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(a) (b)

(c)

Figure 5.1.7: Generation of various spike-trains by the proposed generator. The numbers of the

p-cells and the x-cells are M = N = 5. The transmission delay and the reset delay are ρ = δ = 2.

(a) The reconfigurable wires are characterized by a(0, 4) = a(1, 4) = a(2, 4) = a(3, 4) = a(4, 4) = 1.

The spike-train Y (t) is characterized by the period T = 3, the number Q = 1 of spikes during

the period, and the second peak S = 0.33 of the auto-correlation function C(τ). (b) a(0, 0) =

a(1, 0) = a(2, 0) = a(3, 0) = a(4, 3) = 1. Y (t) is characterized by (T,Q, S) = (25, 4, 0.12). (c)

a(0, 4) = a(1, 3) = a(2, 2) = a(3, 1) = a(4, 0) = 1. Y (t) is characterized by (T,Q, S) = (20, 4, 0.095).
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5.1.4 Generation of various spike-trains and parameter tun-
ing for UWB application

Fig. 5.1.7 shows the proposed generator with different patterns of reconfigurable wires
(i.e., different values of the parameter A) and corresponding spike-trains Y (t). It can be
seen that the proposed generator can generate spike-trains with various spike patterns by
adjusting the pattern of the reconfigurable wires. In this section, a stochastic algorithm
for parameter tuning for the proposed generator so that it can generate spike-trains Y (t)
suitable for ultra wide band impulse radio (UWB-IR) communication, ranging, and posi-
tioning systems is proposed. In order to characterize the spike-train Y (t) of the proposed
generator, the following quantities and function are introduced.

• The period T of the spike-train Y (t), which can be obtained by using the spike phase
map G as explained in the section 2.2.

• The number Q of spikes of the spike-train Y (t) during the period 0 ≤ t < T , which is
identical with the cycle of the corresponding periodic orbit (θ1, · · · , θQ) of the spike
phase and thus can be obtained by using the spike phase map G.

• The autocorrelation function C(τ) of the spike-train Y (t) and its second peak S, which
are defined by

C(τ) =
1

T

T−1∑
t=0

Y (t)Y (t+ τ),

S =

{
max
0<τ<T

C(τ) for Q > 1,

C(0) otherwise.

For example, the spike-trains Y (t) in Figs. 5.1.7(a), (b), and (c) are characterized by
(T,Q, S) = (3, 1, 0.33), (25, 4, 0.12), and (20, 4, 0.095), respectively. Hence it can be con-
firmed that, by adjusting the pattern of the reconfigurable wires (i.e., the values of the
parameter A), the proposed generator can generate spike-trains with various spike patterns
in terms of the period T , the number Q of spikes, and the auto-correlation function C(τ)
and its second peak S.

Now, a parameter tuning algorithm for the proposed generator to generate spike-trains
Y (t) suitable for the UWB-IR systems is proposed. In the UWB-IR systems, the following
characteristics of the spike-train Y (t) are desired [29–31].

(C1) The second peak S of the autocorrelation function C(τ) of the spike-train Y (t) should
be lower in order to realize higher resistivity against noise.

(C2) The period T of the spike-train Y (t) should be longer in order to realize lower second
peak S of the autocorrelation function C(τ).

(C3) The number Q of spikes should be larger in order to realize higher resistivity against
noise.

Then, the following objective function F of the spike-train Y (t) is introduced.

F = αT + βQ− γS, (5.1.11)
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where α > 0, β > 0, and γ > 0 are parameters of the objective function F . Using the
objective function F , the following parameter tuning algorithm is proposed.

List 1. Stochastic Algorithm for Parameter Tuning.

Step 1: Initialization. The numbers M and N of the cells and the delays ρ and δ are
given. Prepare L matrixes (A1, · · · ,AL) as follows: al(j, j) = 1 for j = 0, · · · ,M − 1
and al(j, i) = 0 for j ̸= i, where al(j, i) is an element of the matrix Al. Also, initialize
an iteration counter k to 0.

Step 2: Evaluation. A spike-train generated by the matrix Al is denoted by Yl(t). The
values (F1, · · · , FL) of the objective function F of the spike-trains (Y1(t), · · · , YL(t))
are calculated.

Step 3: Selection and Mutation. The matrix Asel corresponding to the maximum value
Fmax = maxl{Fl} of the objective function F is selected. A column of the selected
matrix Asel is randomly selected and the position of “1” in the selected column is
randomly changed within the column.

Step 4: Termination. Let K be a given maximum iteration number. If k < K, then
increment k by 1 and go to Step 2. If k = K, then terminate this algorithm.

Note that calculation speed of the objective functions (F1, · · · , FL) can be accelerate by the
spike phase map G (the calculation speed of T and Q becomes M times higher). Fig. 5.1.8
shows an example of parameter tuning result. Fig. 5.1.8(a) shows the proposed generator
just after the initialization in Step 1. In this case, the period of the spike-train Yl(t) is
Tl = 5, the second peak of the auto-correlation function Cl(τ) is Sl = 0.167, the number
of spikes during the period is Ql = 1, and the value of the objective function is Fl = 4.08,
where α = 0.8, β = 0.1 and γ = 0.1. Fig. 5.1.8(b) shows the proposed generator after the
parameter tuning. In this case, the period of the spike-train Yl(t) is Tl = 30, the second peak
of the auto-correlation function Cl(τ) is Sl = 0.066, the number of spikes during the period
is Ql = 5, and the value of the objective function is Fl = 24.49. It can be seen that, after
the parameter tuning, the proposed generator generates the spike-train Yl(t) with better
characteristics, i.e., longer period Tl, larger number Ql of spikes, and lower second peak Sl of
the auto-correlation function. Fig. 5.1.9 shows the characteristics of the parameter tuning
algorithm, where the dots indicate the characteristics of the proposed generator after the
parameter tuning shown in Fig. 5.1.8(b). It can be seen that, as the iterations proceed, the
parameter tuning algorithm can find patterns of the reconfigurable wires (i.e., values of the
parameter Al), which lead to better characteristics of the spike-trains Yl(t). It can be also
seen that the average characteristics of the spike-trains almost converge after the parameter
tuning. Fig. 5.1.10(a) shows a QCA layout of the proposed generator in Fig. 5.1.8(b) whose
pattern of the reconfigurable wires is obtained by the parameter tuning algorithm. Also,
Fig. 5.1.10(b) shows time waveforms of the QCA layout obtained by the QCA simulator
QCADesigner. It can be confirmed that the QCA layout generates a spike-train Y (t), which
is equivalent to the spike-train Yl(t) in Fig. 5.1.8(b).

Remark 3 (Application): The above result suggests that the QCA layout in Fig. 5.1.10(a)
can generate a spike-train suitable for the UWB-IR systems in terms of the period T , the
number Q of spikes, and the second peak S of the auto-correlation function. Potential



164 Chapter 5. Neural Spike-Train Generator Model based on Quantum-dot Cellular

Automaton

(a) (b)

Figure 5.1.8: An example of parameter tuning result. The numbers of the cells are M = N = 5

and the delays are ρ = δ = 2. The number of the prepared matrixes is L = 5 and the maxi-

mum iteration number is K = 5000. The parameters of the objective function F are α = 0.8,

β = 0.1 and γ = 0.1. (a) After initialization in Step 1. The spike-train Yl(t) is characterized

by (Tl, Ql, Sl, Fl) = (5, 1, 0.167, 4.08). (b) After tuning. The spike-train Yl(t) is characterized by

(Tl, Ql, Sl, Fl) = (30, 5, 0.066, 24.49).
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(a) (b)

(c) (d)

Figure 5.1.9: Parameter tuning characteristics. The numbers of the cells are M = N = 5 and

the delays are ρ = δ = 2. The number of the prepared matrixes is L = 5 and the maximum

iteration number is K = 5000. The parameters of the objective function F are α = 0.8, β = 0.1

and γ = 0.1. An execution of the parameter tuning for K iterations is called a trial. The graphs

in (a)–(d) are averages for 1000 trials, where the dots indicate the characteristics of the proposed

generator after the parameter tuning shown in Fig. 5.1.8(b). (a) Average of the maximum value

Fsel of the objective function F . (b) Average of the period Tsel leading to the maximum value Fsel

of the objective function F . (c) Average of the number Qsel of spikes leading to the maximum value

Fsel of the objective function F . (d) Average of the second peak Ssel of the auto-correlation function

leading to the maximum value Fsel of the objective function F . The influence of the parameters α,

β and γ is explained in Appendix.
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(a)

(b)

Figure 5.1.10: (a) QCA layout of the proposed generator in Fig. 5.1.8(b), where the pattern of

the reconfigurable wires is obtained by the parameter tuning algorithm. (b) Time waveforms of the

QCA layout obtained by the QCADesigner.
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Figure 5.1.11: Comparison of parameter tuning characteristics for several parameters values.

applications of such QCA based UWB-IR systems include: intra and inter QCA chip wired
communications, ultra low power wireless QCA based communications, and ultra low power
QCA based ranging and positioning.

5.1.5 Conclusions

Recall that the purposes of this paper were to propose a QCA based spike-train generator
that can generate spike-trains with various spike patterns, to propose an analysis tool of
the generator, and to propose a parameter tuning algorithm for the generator so that it can
generate spike-trains suitable for the UWB-IR systems. These purposes were achieved as
the followings. The novel spike-train generator the dynamics of which is described by the
cellular automaton with the delays ρ and δ was proposed. Also, as its analysis tool, the spike
phase map G was derived. Using the spike phase map G, it was shown that the proposed
generator can generate various spike-trains in terms of the period, the number of spikes,
and the auto-correlation function. Also, the parameter tuning algorithm for the proposed
generator was proposed, where the spike phase map G is used as its subroutine, where the
spike phase map G accelerates execution speed of the parameter tuning algorithm. It was
shown that the parameter tuning algorithm enables the proposed generator to generate
spike-trains suitable for the UWB-IR systems, i.e., spike-trains with longer period T , larger
number Q of spikes, and lower second peak S of the auto-correlation function. Furthermore,
the proposed generator after the parameter tuning was implemented as the QCA layout
and its operation vas validated by the QCA simulator. Future problems are including (a)
calculation of bit error rates under specific pulse modulations, (b) more detailed analysis
of the spike-train of the proposed generator, (c) development of more efficient parameter
tuning algorithm, and (d) design of QCA based synchronizer and inverse spreader for UWB-
IR communication applications.
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Appendix: Influence of the parameters in the tuning algo-
rithm

Let us clarify influence of the parameters (α, β, γ) of the objective function F in Eq.
(11) used in the parameter tuning algorithm in List 1. It has been shown that lower
auto-correlation (lower second peak of the auto-correlation function) of a spike-train leads
to lower bit error probability in a UWB-IR communication system [32]. Therefore, the
proposed parameter tuning algorithm searches values of the parameters A, which lead to
a lower second peak S of the auto-correlation function of the spike-train Y (t). Fig. 5.1.11
shows the influence of the parameters (α, β, γ) in the characteristics of the second peak S.
It can be seen in the figure that the parameter values (α, β, γ) = (0.8, 0.1, 0.1) lead to a
better characteristics of the second peak S (see the green dashed curve). So, the parameter
values (α, β, γ) = (0.8, 0.1, 0.1) are used in the paper, e.g., Figs. 5.1.9–5.1.11 are obtained
by the parameter tuning with these parameter values.

Bibliography
[1] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum cellular au-

tomata,” Nanotechnology, vol. 4, no. 1, pp. 49–57, 1993.

[2] P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular
automata,” Journal of Applied Physics, vol. 75, no. 3, pp. 1818–1825, 1994.

[3] C. S. Lent and P. D. Tougaw, “A device architecture for computing with quantum
dots,” Proceedings of the IEEE, vol. 85, no. 4, pp. 541–557, 1997.

[4] K. Walus and G. A. Jullien, “Design Tools for an Emerging SoC Technology: Quantum-
Dot Cellular Automata,” Proceedings of the IEEE, vol. 94, no. 6, pp. 1225–1244, 2006.

[5] V. Pudi and K. Sridharan, “Low Complexity Design of Ripple Carry and Brent–Kung
Adders in QCA,” IEEE Transactions on Nanotechnology, vol. 11, no. 1, pp. 105–119,
2012.

[6] S. Perri and P. Corsonello, “New Methodology for the Design of Efficient Binary Ad-
dition Circuits in QCA,” IEEE Transactions on Nanotechnology, vol. 11, no. 6, pp.
1192–1200, 2012.

[7] S. Perri, P. Corsonello, and G. Cocorullo, “Design of Efficient Binary Comparators
in Quantum-Dot Cellular Automata,” IEEE Transactions on Nanotechnology, vol. 13,
no. 2, pp. 192–202, 2014.

[8] D. Abedi, G. Jaberipur, and M. Sangsefidi, “Coplanar Full Adder in Quantum-Dot
Cellular Automata via Clock-Zone-Based Crossover,” IEEE Transactions on Nanotech-
nology, vol. 14, no. 3, pp. 497–504, 2015.

[9] M. Mustafa and M. R. Beigh, “Novel linear feedback shift register design in quantum-
dot cellular automata,” Indian Journal of Pure & Applied Physics, vol. 52, pp. 203–209,
2014.



Bibliography 169

[10] S. Angizi, M. H. Moaiyeri, S. Farrokhi, K. Navi, and N. Bagherzadeh, “Designing
quantum-dot cellular automata counters with energy consumption analysis,” Micro-
processors and Microsystems, vol. 39, no. 7, pp. 512–520, 2015.

[11] V. Vankamamidi, M. Ottavi, and F. Lombardi, “A Line-Based Parallel Memory for
QCA Implementation,” IEEE Transactions On Nanotechnology, vol. 4, no. 6, pp. 690–
698, 2005.

[12] K. Kim, K. Wu, and R. Karri, “Quantum-Dot Cellular Automata Design Guideline,”
IEICE Transactions on Fundamentals of Electronics, vol. E89-A, no. 6, pp. 1607–1614,
2006.

[13] W. Liu, L. Lu, M. O’Neill, and E. E. Swartzlander Jr, “Design Rules for Quantum-Dot
Cellular Automata,” in Proc. of the 2011 IEEE International Symposium of Circuits
and Systems (ISCAS), Rio de Janeiro, Brazil, 2011, pp. 2361–2364.

[14] V. Vankamamidi, M. Ottavi, and F. Lombardi, “Two-Dimensional Schemes for Clock-
ing/Timing of QCA Circuits,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 27, no. 1, pp. 34–44, 2008.

[15] A. Roohi, R. Zand, S. Angizi, and R. F. DeMara, “A Parity-Preserving Reversible
QCA Gate with Self-Checking Cascadable Resiliency,” IEEE Transactions on Emerg-
ing Topics in Computing, vol. 6, no. 4, pp. 450–459, 2018.

[16] L. O. Chua, A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science
Volume I, ser. World Scientific Series on Nonlinear Science Series A, 2006, vol. 57.

[17] ——, A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Volume
II, ser. World Scientific Series on Nonlinear Science Series A, 2006, vol. 57.

[18] ——, A Nonlinear Dynamics Perspective of Wolfram’s New Kind of Science Volume
III, ser. World Scientific Series on Nonlinear Science Series A, 2009, vol. 68.

[19] H. T. Zhao, S. Yang, and X. X. Chen, “Cellular automata model for urban road traffic
flow considering pedestrian crossing street,” Physica A: Statistical Mechanics and its
Applications, vol. 462, pp. 1301–1313, 2016.
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Chapter 6

Overall Conclusions and Future
Work

6.1 Overall conclusions
This thesis has used asynchronous cellular automata (ACA) to design hardware efficient

CTDS-class biological system models which produce smoother nonlinear vector fields than
those of DTDS-class models.

Chapter 2 presented hardware-efficient ACA-based cochlea models. It was shown that
the proposed cochlea models can reproduce the characteristics of the nonlinear bandpass
filters and the two-tone distortion products of the mammalian cochlea, and that these mod-
els can be implemented using fewer hardware resources than required for implementing the
numerical integration formula of the conventional Hopf oscillator cochlea model.

Chapter 3 presented hardware-efficient ACA-based CPG models and showed that these
CPG models can reproduce serpentine, tripod and wave gaits for snake-like and hexapod
robots. It was also shown that the proposed CPG models can be implemented using fewer
hardware resources than needed to implement the numerical integration formula of the con-
ventional CPG model.

Chapter 4 presented a hardware-efficient ACA-bawed neuron model and demonstrated
that this model is able to reproduce the typical nonlinear response curves of a biologi-
cal neuron. Additionally, the proposed neuron model was successfully implemented using
fewer hardware resources than required for conventional neuron models (i.e. the leaky
integrate-and-fire model, quadratic integrate-and-fire model, and Morris-Lecar model). It
was shown that the proposed coupled ACA-based NN model can reproduce neural inte-
gration as observed in biological neural networks. Furthermore, the proposed NN model
was demonstrated to require fewer hardware resources in implementation than required
for the conventional NN models based on coupled quadratic integrate-and-fire neurons and
Hodgkin-Huxley neurons.

To further explore hardware-efficient biological system models, this thesis also investi-
gated a biological system modeling approach based on the quantum-dot cellular automata
(QCA). Chapter 5 demonstrated that a neural spike-train generator based on QCA is able
to generate spike trains able to produce neural spike patterns varying in period, density, and
correlation. Additionally, it was shown that the parameter-tuning algorithm can enable the
proposed generator to generate spike trains suitable for UWB-IR communication, ranging,
and positioning systems. After implementation of the parameter-tuning algorithm, a QCA
layout for the proposed generator was designed, and its opearation verified using a QCA
simulator.
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Figure 6.1.1: Non-periodic clock-driven CA.

It can be concluded from the obtained results that CTDS-class biological system models
are more suitable for integrated circuit implementation than DTDS-class biological system
models. Furthermore, this thesis has analyzed theoretically the following nonlinear phenom-
ena in CTDS-class biological system models: the supercritical Andronov-Hopf bifurcation
(Chapter 2) and the saddle-node on invariant circle (SNIC) bifurcation (Chapter 4). Using
a dynamical system theory lens indicates that these bifurcation phenomena are important
for biological systems, and those observed in CTDS-class models have not yet received
sufficient analysis. The presented biological oscillators can be conceptualized as Hopf and
SNIC oscillators, both typical types of nonlinear biological oscillators, while nonlinear phe-
nomena were analyzed for coupled Hopf oscillators (Chapter 3), coupled SNIC oscillators
(Chapter 4), and coupled phase oscillators (Chapter 3). Chapter 3 investigated coupled
CTDS-class phase oscillators in addition to the Hopf oscillators and the SNIC oscillators
described above. It is hoped that these results will contribute to the development of a
theoretical framework for CTDS-class biological system models and prove useful in future
neuromorphic hardware designs.

6.2 Future work
As introduced in Section 1.1.2, the biological system model belonging to class CTDS

treated in this thesis can be described as follows.
X1(t+ h1) = X1(t) + F1(X1(t), X2(t+ h1)),

X2(t+ h1) = X2(t) + F2(X1(t), X2(t))s(ϕ2(t)),

ϕ2(t+ h1) = ϕ2(t) + h1 (mod h2).

(6.2.1a)

(6.2.1b)

(6.2.1c)

Eq. (6.2.1c) is regarded as an irrational rotation, which generates a quasiperiodic sequence if
h1/h2 ∈ Q. Roughly speaking, the map in (6.2.1c) works as a weak noise for the transitions
of the discrete states X1 and X2. The system in Eq. (6.2.1) can be realized by a sequential
logic circuit to which uncoupled periodic clocks are supplied. In the future work, the
generator of the quasiperiodic sequence ϕ2 in Eq. (6.2.1c) will be replaced by other types
of non-periodic clock generators. Such a system is considered to be realized by a sequential
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logic circuit to which the following generators are supplied (see Fig. 6.1.1):

• Chaotic signal generator,

• Stochastic random number generator,

• Pseudorandom number generator,

Future work includes the generalization of the ACA treated in this thesis to the non-
periodic clock-driven cellular automaton (NCA). The author intends to investigate whether
the NCA can be applied to biological system models such as a cochlea model, a CPG
model, and a SNN model. One of my goals in the future is to analyze the NCA-based
biological system models and find their advantages. Furthermore, it would be desirable
if the findings, including those made in this thesis, could be applied to a cryptographic
generator and QCA.
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