
PDF issue: 2025-01-15

Researches on Automatic Techniques for
Specification-Based Testing and Fault
Localization

WANG, Rong / 王, 榕

(開始ページ / Start Page)
1

(終了ページ / End Page)
143

(発行年 / Year)
2022-03-24

(学位授与番号 / Degree Number)
32675甲第547号

(学位授与年月日 / Date of Granted)
2022-03-24

(学位名 / Degree Name)
博士(理学)

(学位授与機関 / Degree Grantor)
法政大学 (Hosei University)
(URL)
https://doi.org/10.15002/00025230

DOCTORAL DISSERTATION REVIEWED BY

HOSEI UNIVERSITY

Researches on Automatic Techniques for

Specification-Based Testing and Fault

Localization

Rong WANG

Research Supervisor:

Prof. Yuji SATO

Thesis Supervisor:

Prof. Hiroshi HOSOBE

The Graduate School of Computer and Information Sciences

This dissertation is submitted for the degree of Doctor of Philosophy

https://www.hosei.ac.jp/
https://cis.hosei.ac.jp/gs/

iii

Abstract

The existing specification-based techniques (SBT) has difficulty in generating an appropriate

test suite without the knowledge of code structure to trigger different kinds of unintended be-

haviours hidden in programs. Symbolic execution, a powerful technique for automating soft-

ware testing, instead takes advantage of internal code design to detect many types of errors

like out of memory and assertion violations. However, it can encounter severe path explosion

problem during the exhausted test data generation. Besides, by only using assertions, it may

ignore some faulty paths due to not going deep into checking the functional correctness of

a path. To address these problems, this research proposes a specification-based incremental

testing method with symbolic execution, called SIT-SE, to provide a much more rigorous way

to automatically check the functional correctness of all the discovered program paths within

limited time. In this method, we introduce theorems instead of assertions for checking path

correctness, and describe a Branch Sequence Coverage (BSC) algorithm together with check-

ing levels for guiding a moderate path exploration. The proposed method carefully treats

the relationship between a path condition and the specification in a theorem to reduce the

monotonous path exploration, whereas traditional symbolic testing methods use assertions

that are not sufficient to judge the correctness of a path during the long tedious path explo-

ration. Moreover, we present a strategy of fault localization called TRIACFL with the support

of the SIT-SE to give useful hints to pinpoint the faults in a small set of statements. To enrich

our methodology of testing used in practice, we also describe a test data generation method

that integrates formal specification with a genetic algorithm as supplementary to the SIT-SE

for dealing with exceptional cases where some code is not available to testers. We conduct

two experiments with the proposed methods, and the results demonstrate that these methods

together facilitate an effective automatic bug detection.

iv

There are three main contributions in our work. Firstly, we propose a method, SIT-SE, to

provide a systematic way to automatically verify the correctness of all the representative pro-

gram paths by integrating symbolic execution and formal specification. Secondly, we present

a fault localization method with the SIT-SE, namely TRIACFL, to provide useful clues for the

locations of real faults within a small scale of statements in programs. Thirdly, a test data gen-

eration method using the formal specification and a genetic algorithm (GA), is proposed to

cope with the situations where the SIT-SE is not applicable.

v

Acknowledgements
Foremost, I would like to express my sincere gratitude to my co-advisor Prof. Shaoying

Liu for the continuous support during my Ph.D. study and research. His patience, enthusiasm

and guidance helped me in all the time of research and writing of this dissertation. I would

also like to thank my research supervisor Prof. Yuji Sato and my thesis supervisor Prof. Hi-

roshi Hosobe, for supporting me administratively and technically. Without their guidance and

persistent help this dissertation would not have been possible.

Besides my advisors, I would like to thank Prof. Jianhua Ma and all the other professors of

CIS who have provided me with useful suggestions for my research work.

I am also very grateful to the members in the lab, who enrich my daily life and give me

kind assistance during my research period.

Last but not least, I wish to thank my parents. They have supported me unconditionally

and financially. Thanks for all of your support!

vii

Contents

Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xv

Nomenclature xvii

1 Introduction 1

1.1 Software Quality Assurance . 1

1.1.1 Software Verification . 1

1.1.2 Automatic Testing and Fault Localization 2

1.2 Motivation . 3

1.2.1 Path Explosion and False Paths Identification Problems 3

1.2.2 Low Precision and High Costs in Fault Localization 4

1.2.3 Problems in Test Selection for Unavailable Source Code 5

1.3 Contributions . 6

1.3.1 Bug Detection . 6

1.3.2 Fault Localization . 7

1.3.3 Test Selection . 8

1.4 Structure of the Thesis . 8

2 Related Work 11

2.1 Symbolic Execution and Specification-Based Techniques 11

2.1.1 Symbolic Execution Techniques . 11

viii

2.1.2 Specification-Based Techniques . 12

2.2 Fault Localization Techniques . 13

2.2.1 Spectrum-Based Fault Localization . 14

2.2.2 Program Slicing . 14

2.2.3 Assertions . 14

2.3 Test Data Generation Techniques . 15

2.3.1 Data Flow Analysis . 15

2.3.2 Mutation-Based Testing . 15

2.3.3 SBT with Heuristics . 16

3 Preliminaries 17

3.1 Formal Specification . 17

3.2 Symbolic Execution . 19

3.3 SBT with Symbolic Execution . 24

4 Grey-Box Testing: The SIT-SE for Bug Detection 29

4.1 Principle of the SIT-SE . 29

4.1.1 Theorem . 31

4.1.2 Path Exploration . 37

4.1.3 Incremental Testing . 44

4.2 Case Study . 48

4.3 Experiment . 53

4.3.1 Preparation . 55

4.3.2 Experimental Results . 56

4.3.3 Summary . 58

4.4 Threats to Validity . 60

4.5 Conclusion . 60

5 TRIACFL: Triple Interaction-Based Fault Localization 63

5.1 Principle of TRIACFL . 63

5.1.1 Elementary Fault Location Generation Algorithm 66

5.1.2 Attentional Shift-Based Review . 71

ix

5.2 Case Study . 75

5.2.1 Step-by-Step Analysis . 76

5.2.2 Experimental Result with Single Fault . 81

5.2.3 Evaluation and Summary . 85

5.3 Experiment with Multiple Faults . 85

5.3.1 Experiment Design and Preparation . 86

5.3.2 Experimental Result . 90

5.3.3 Evaluation and Summary . 98

5.4 Conclusion . 99

6 Supplement to the SIT-SE: A Mutated Specification-Based Approach with Genetic

Algorithm 101

6.1 Genetic Algorithm (GA) with Mutated Specification 101

6.1.1 Description for GA . 101

6.1.2 Mutation Testing . 102

6.1.3 Mutated Specifications . 102

6.1.4 Chromosome Formation . 105

6.1.5 Genetic Manipulations and Selection . 106

6.2 Algorithm Summary . 109

6.3 Case Study . 112

6.3.1 Case Study 1: Mod . 112

6.3.2 Case Study 2: Gcd . 118

6.3.3 Complexity of the Approach . 122

6.4 Conclusion . 123

7 Conclusion and Future Work 125

7.1 Conclusion . 125

7.2 Future Work . 126

A List of Research Paper 141

xi

List of Figures

3.1 Simple example for formal specification. 18

3.2 A small case 1. 21

3.3 Derivation of symbolic representation along one path in case 1. 22

4.1 Framework of the SIT-SE. 30

4.2 Checking the correctness of a path by theorem. 32

4.3 Checking an implication. 33

4.4 The specification for process spin. 34

4.5 The incorrect code for process spin. 35

4.6 Using assertions in KLEE. 35

4.7 Using theorems. 36

4.8 Using assertions in another way. 36

4.9 A program and its control flow diagram. 38

4.10 A traversed path and its branch sequence. 39

4.11 All the branch sequences that BSC requires. 40

4.12 Two paths that branch coverage requires. 40

4.13 A program, control locations and CFD. 42

4.14 Control-path tree for example 1. 43

4.15 Candidate paths from test data t1. 43

4.16 After symbolic execution for t2. 44

4.17 Pseudo-code for BSC. 45

4.18 Different settings of checking levels: various shades of gray represent different

checking levels. 46

4.19 Process Mod_le0 for inputs with x ∗ y < 0. 47

xii

4.20 The process Mod . 49

4.21 Four control locations from the program. 50

4.22 Derivation of symbolic representation for the path by test data t1. 50

4.23 Results of running the program with test data t1. 51

4.24 Apply SIT-SE to process Mod. 52

4.25 Performance on finding faulty paths . 56

4.26 Faulty paths rates . 57

4.27 Testing time by the two methods . 59

5.1 Framework of TRIACFL . 64

5.2 Incorrect paths in mutant 1 by SIT-SE . 77

5.3 Fault localization for mutant 1 . 78

5.4 Review process: the inspection order for mutant 1 79

5.5 Incorrect paths in mutant 2 by SIT-SE . 81

5.6 Fault localization for mutant 2 . 82

5.7 Review process: the inspection order for mutant 2 82

5.8 Costs by two methods in single fault experiment 84

5.9 Evaluation for two methods in single fault experiment 86

5.10 Design of a multiple faults experiment . 87

5.11 Circle 1 of TRIACFL . 88

5.12 Circle 2 of TRIACFL . 89

5.13 Results from phase 1 and 3: Mutant 1 and 2 . 90

5.14 Results from phase 1 and 3: Mutant 3 and 4 . 91

5.15 Results from phase 1 and 3: Mutant 5 and 6 . 92

5.16 Results from phase 1 and 3: Mutant 7 and 8 . 93

5.17 Results from phase 1 and 3: Mutant 9 and 10 . 94

5.18 Results from phase 2: Mutant 1-6 with 2 faults 96

5.19 Results from phase 2: Mutant 7-9 with 3 faults, Mutant 10 with 4 faults 97

5.20 Performance of methods in multiple faults experiment 98

6.1 The process A and process B. 105

6.2 Crossover operator. 107

xiii

6.3 Mutation operator. 107

6.4 The evolution in GA. 111

6.5 The grade of the mutated and original. 116

6.6 Results by four versions and the original for Mod. 117

6.7 The grade of the reformed and original. 121

6.8 Results by four versions and the original for gcd. 122

xv

List of Tables

4.1 Mutation operators used in the experiment. 54

4.2 Descriptions for programs under test . 55

4.3 The characteristics of programs under test . 55

4.4 Testing time by the two methods (Details). 59

5.1 Two program mutants for fault localization . 76

5.2 Test data generated for mutant 1 by SIT-SE . 76

5.3 The results by applying SIT-SE to mutant 1 . 77

5.4 Test data generated for mutant 2 by SIT-SE . 80

5.5 The results by applying SIT-SE to mutant 2 . 80

5.6 Mutant 1: SBFL-SSE, using Tarantula . 83

6.1 Chromosome forms for functional scenarios of process Mod. 114

6.2 Results for process Mod after applying GA. 114

6.3 Results for process Mod with original specifications. 115

6.4 Test data generated by the mutated/original specification to kill each of pro-

gram mutants in Mod. 115

6.5 Chromosome forms for functional scenarios of process gcd. 119

6.6 Results for process gcd after applying GA. 119

6.7 Results for process gcd with original specifications. 120

6.8 Test data generated by the mutated/original specification to kill each of pro-

gram mutants in Gcd. 120

xvii

Nomenclature

SE Symbolic Excution

SBT Specification-Based Testing

SBFL Spectrum-Based Fault Localization

SOFL Structured Object-Oriented Formal Language

CDFD Condition Data Flow Diagram

SPF Symbolic Java PathFinder

JPF Java PathFinder

CFG Control Flow Graph

BSC Branch Sequence Coverage

SIT-SE Specification-Based Incremental Testing Method with Symbolic Execution

TRIACFL Triple Interaction-Based Fault Localization

SBT Specification-Based Testing

GA Genetic Algorithm

FSF Functional Scenario Form

1

Chapter 1

Introduction

1.1 Software Quality Assurance

Software quality assurance is realized mostly by software verification and testing. This chapter

discusses the quality assurance issue by focusing on software verification and testing, respec-

tively.

1.1.1 Software Verification

Formal methods are established based on a variety of theoretical computer science funda-

mentals, including formal languages, logic calculi, automata theory, program semantics, type

systems, and discrete event dynamic system. They are a particular kind of mathematically

rigorous techniques frequently involving with the specification, development and verification

of software systems.

Formal methods inspire software engineers to develop domain models and requirements

specifications that are more rigorous and unambiguous than other conventional engineering

methods. In formal methods, program refinement further helps the engineers transform an

abstract formal specification (or domain model) into a concrete implementation (executable

program). Moreover, for software verification, the use of formal specifications significantly

strengthen the proof for the correctness of an implementation.

With the rapid deployment of safety-critical systems in many application domains [1],

there is a growing concern about the quality of software adopted for controlling and/or mon-

itoring of the systems [2]. Formal verification techniques, such as model checking [3, 4], and

2 Chapter 1. Introduction

theorem proving [5, 6], are developed to prove the correctness of a system against formal spec-

ifications based on mathematical methodologies. However, these techniques demand for a lot

of efforts made by well-trained experts to build and analyze an abstract mathematical model

that carefully describes the properties or the behavior of the system. Due to their intrinsic fea-

ture of abstraction, there always exists a gap between a model and an implementation under

a complicated execution environment. Thus they cannot be directly used in testing real pro-

grams. Furthermore, formal methods have to deal with different problems in larger projects,

such as the problem of state space explosion in model checking [7, 8], and the difficulty in

automating tedious intricate proofs in theorem proving [9, 10].

1.1.2 Automatic Testing and Fault Localization

Despite that formal methods demonstrate their power in analyzing a system by taking ad-

vantage of mathematics, they are popular and widely researched in academia rather than in

industry. Currently, as software development tends to be more of complexity and needs high-

speed iterations, it is almost impossible to employ formal methods that call for huge manual

effort for software verification in real world. Instead, automation of testing real programs has

been seen as a potential solution to ensure the quality of software with moderate human labors

[11].

On the one hand, testing automation techniques can be flexibly developed and applied

in various sophisticated environments to detect various kinds of bugs; on the other hand,

all the testing methods, intrinsically, cannot tell the absence of bugs even based on numerous

executions of programs. To enhance the confidence of software quality, it is common to employ

some exhausted path exploration strategies [12] or test selection techniques [13] in testing.

Moreover, many techniques have been developed to involve formal methodologies. There are

two main ways of such involvement: one is to derive tests from formal specifications [14, 15,

16, 17], and the other is to verify the correctness of executions based on formal specifications

[18, 19]. These efforts together improve the testing for bug detection.

Furthermore, fault localization is an activity to pinpoint the causes by analyzing the false

1.2. Motivation 3

executions identified in testing, which guides developers to fix bugs in right places. This ac-

tivity usually demands for much human intervention, which is tedious, expensive and time-

consuming [20]. Although a great many methods have been proposed to automatically pro-

duce a list of suspicious locations in the code, the precision of outcome is still quite a critical

issue in practice.

1.2 Motivation

1.2.1 Path Explosion and False Paths Identification Problems

Symbolic execution-based method is one of the attractive techniques for detecting bugs by

automatically searching various paths without predefined inputs. For every program path,

symbolic execution summarizes the representation for the outcome over symbolic inputs, and

continuously explores unchecked paths based on the solutions provided by a satisfiability

modulo theories (SMT) solver that consumes the collected path constraints (or path condition)

[21, 22]. Furthermore, specification-based symbolic execution, a technique that integrates for-

mal methods into the correctness of implementations, makes use of such representations of the

outcome to check whether or not they violate the assertions made from formal specifications

[23, 24].

Although the intention of symbolic execution is to exhaustedly find as many paths as pos-

sible so that it can increasingly hit bugs, path explosion remains a severe problem and actually

the correctness of each path is not well guaranteed. By using assertions, a path can be recog-

nized as faulty if a test data that traverses that path violates the assertions. However, a faulty

path cannot be recognized when the test data that traverses it satisfies the assertions. This

is because among all the input values on the same symbolic path, some of them may violate

the corresponding assertions and others not. The test data generated to introduce the faulty

path may not violate the assertions. Thus more test data have to be generated to traverse the

same path to trigger the violation of the assertions. For instance, suppose a program reaches

the assertion assert(x > 10) when the integer input x satisfies the path condition x > 8. The

path with the path condition x > 8 will be seen as correct one for most cases except when

4 Chapter 1. Introduction

x = 9. Due to the intrinsic limitation of these assertions, many faulty paths may be mistakenly

treated as correct ones and ignored for further testing.

To address these problems, we propose a specification-based incremental testing method

with symbolic execution, called SIT-SE, providing a more advanced automatic verification

for the correctness of each program path and in the meantime mitigate the heavy burden of

path exploration. Our method mainly makes several improvements on the KLEE tool [23], a

well-known symbolic execution engine which has been continually researched and updated

all these years 1. Compared to other testing methods that inevitably involve a great amount

of effort for test design or static analysis, KLEE is able to systematically (exhaustedly) ex-

plore many possible program paths without requiring specific concrete input values during

dynamic symbolic execution. We aspire to develop a method that takes advantage of KLEE

meanwhile enhances its capability in bug detection. Since KLEE always adds the conditions

from assertions into path constraints, a program path can be executed for several times in or-

der to reach different branches of the same assertions. Whereas in the proposed method, we

introduce theorems instead of assertions for checking the correctness of each path, and design

an algorithm called Branch Sequence Coverage (BSC) algorithm for a moderate incremental path

exploration.

1.2.2 Low Precision and High Costs in Fault Localization

Although many decades have witnessed great efforts that have been made to develop fault

localization techniques, it is still not an easy job in most cases to precisely pinpoint the faults

without human intervention [25]. In most ranking-based automated approaches, a long se-

quence of suspicious locations is first generated and then the reviewer comes up to inspect

these locations. The costs of human inspection increase when there are many non-faulty can-

didates with the same or higher suspiciousness scores than that of actual faulty locations. This

is a critical problem in existing techniques, especially when we deal with multiple-fault pro-

grams [26]. To mitigate the problem, we are motivated to propose a method, TRIACFL (Triple

Interaction-Based Fault Localization), that mixes the automatic processes of both suspicious

location generation and the human inspection. In this approach, the sequence of suspicious

locations is dynamically changed regarding to the occasional lightweight human inspection,

1https://klee.github.io/publications/

1.2. Motivation 5

which leads to a more effective fault localization within moderate costs of human inspection

of suspicious locations.

Additionally, as the SIT-SE provides a rigorous way to automatically testing an implemen-

tation by verifying the correctness of all the “representative” paths on a moderate-scale gen-

erated test suite, we are motivated to integrate the SIT-SE into our approach to further reduce

execution costs and improve the effectiveness of fault localization.

1.2.3 Problems in Test Selection for Unavailable Source Code

When it comes to testing a program containing some operations whose source code is unavail-

able, the SIT-SE may become less effective in this case because the symbolic execution cannot

reach third-party libraries. We are motivated to develop a specification-based testing (SBT)

method for test data generation as an supplement to the SIT-SE.

It is not easy for a pure SBT to generate various test data only from specifications to detect

various bugs that are contained in the program. This is because different features and effects

of the program output cannot be controlled and triggered by only input data suites that sat-

isfy some portion of the specification (constraints over only input variables). Consequently,

many faulty program paths would not be detected and thus the bug detection would be likely

to fail in many cases. Most existing SBT methods like in [27, 28] only use original formal

specifications as a pass/fail indicator of executions as well as for test data generation. The

input generation there only takes into account the constraints over input variables in formal

specifications without using the constraints over outputs.

To overcome the shortcomings of the existing SBT methods, we propose a new method that

do mutation on original formal specifications for further test data generation in this research.

The proposed method introduces dummy variables into some specified constraints in the spec-

ification to trigger bad behaviours of the program, and makes use of the constraints over both

input and output variables to guide the test data generation, in contrast to the conventional

SBT methods that concerns only constraints over input variables.

This method features the combination of three techniques, SBT, mutation testing, and ge-

netic algorithm (GA). It is to obtain the enhanced (mutated) formal specifications without

knowing the code structures by using a GA so that input data generated from those mutated

6 Chapter 1. Introduction

specifications are more likely to kill different kinds of mutants of the target program under test.

The expected effect of the test data generated in this way is to detect various bugs probably

occurring in the program that is being developed or optimized.

1.3 Contributions

We take great interested in finding functional bugs that distort the intention of formal specifi-

cation and thus may cause unexpected behaviors in programs. Generally, it is hard to generate

concrete input data to trigger the explicit violation for the output against the related formal

specification, since this kind of input values may be the minority along a faulty path. In this

research, we put forward a method with an advanced automatic analysis for each problem-

atic execution that can be derived from any input values without the effort of test design. This

method concentrates on effectively identifying false paths that may contain any incorrect arith-

metical conditions or assignments. Also, we propose a method for further fault localization

based on the discovered false paths and their summaries. Finally, we conduct experiments,

targeting at procedural programs mostly, for evaluation of various methods. The experimen-

tal results demonstrate that the proposals outperform the baseline methods.

In detail, this research contributes to three aspects of software quality assurance as follows.

1.3.1 Bug Detection

We propose a method, called Specification-Based Incremental Testing Method with Symbolic

Execution (SIT-SE), for verifying the correctness of program paths in a more rigorous way. By

rigorous here we mean that the SIT-SE follows a well-defined process to carry out a testing

that can achieve the effect the traditional SBT may not obtain in finding bugs. Compared with

traditional specification-based testing (SBT) technologies, the SIT-SE is able to detect bugs in

a more effective way with less effort. This advantage is reflected in three respects. Firstly, the

SIT-SE can find all the bugs on a path by only executing it once while the traditional SBT may

need to run more than one time to find them. Secondly, the SIT-SE can prove the correctness

of a traversed path while the SBT cannot do so. Thirdly, the SIT-SE can systematically find all

the representative paths in a given program but the SBT does not have any systematic way to

explore paths.

1.3. Contributions 7

In this method, we introduce checking levels for branch conditions to proceed an incre-

mental testing, as well as design a algorithm called BSC to mitigate the burden of exhausted

path exploration by chopping down redundant paths. This method outperforms conventional

methods as to identifying more false paths based on a small-scale generated test suite.

The proposed method SIT-SE has advanced the state of the art in the following two re-

spects: (1) KLEE is weak in checking the path correctness, whereas our method is more capa-

ble in that area; and (2) KLEE usually needs to generate considerable number of test cases, but

our method can produce a much smaller number of test cases, meanwhile recognizing more

faulty paths with bugs in relation to the correctness of the path that are sometimes mistakenly

ignored by KLEE.

1.3.2 Fault Localization

We propose a new fault localization method, TRIACFL (Triple Interaction-Based Fault Local-

ization) to enhance the precision of fault localization in the meantime reduce high costs of

inspection.

TRIACFL makes use of false symbolic paths provided by the SIT-SE and analyzes the con-

ditions and blocks along these paths. It provides a flexible framework for fault localization

with the integration of three main modules. The three main modules are the SIT-SE, an el-

ementary fault location generation algorithm, and an attentional shift-based human review,

respectively. They are intimately interacted with each other based on the prediction of the

number of faults in the code. According to the prediction, TRIACFL guides testers to either go

for the human review and exclusion or to go for the human review and fixing.

We have conducted experiments to evaluate the performance of TRIACFL against the most

commonly used technique called Spectrum-Based Fault Localization (SBFL) that has many

variations and extensions [29]. Similar to TRIACFL, SBFL also automatically generates a list of

ranked suspicious statements for further inspection. We use SBFL-SSE, a SBFL-based method

with some extension, sharing the same test data generated from the SIT-SE, for a fair com-

parison with TRIACFL. In both single fault experiment and multiple fault experiment, the

proposed method TRIACFL outperforms SBFL-SSE with respect to precisely pinpointing the

faults within moderate efforts of human inspection.

8 Chapter 1. Introduction

1.3.3 Test Selection

We propose a new method, featuring the integration of the functional scenario-based test-

ing [30], a genetic algorithm (GA) [31] and the mutation testing [32] without the knowledge of

internal code structure, to find useful mutated formal specifications for further test data gener-

ation. The idea behind is quite different from other similar work, such as methods that deploy

a GA to directly do mutation on input data for test selection [33, 34], and some researches that

are to mutate the control flows by analyzing the internal design of the code [35, 36]. The pro-

posed method mainly mitigate the problem when the SIT-SE may be ineffective or even not

applicable for testing a program that contains unavailable source code.

Specifically, this method uses a GA to obtain mutated specifications where appropriate

values are assigned to the unknown output and dummy variables in the variations of the

original specifications. These mutated specifications, sensitive to small syntactic structural

changes of program codes, are further used to generate tests for effective bug detection. The

proposed method can effectively generate useful tests from mutated specifications to kill as

many program mutants as possible (nearly 20% higher than the conventional) in our case

study, which outperforms the conventional SBT method.

1.4 Structure of the Thesis

This thesis is organized as follows.

Chapter 1 introduces several aspects of software quality assurance, and presents the main

motivation along with the contributions in this research.

Chapter 2 introduces related work in bug detection, fault localization, and test data gener-

ation, respectively.

Chapter 3 presents preliminaries in formal specification, symbolic execution, as well as the

combination of both them.

Chapter 4 proposes a method, SIT-SE (Specification-Based Incremental Testing Method

with Symbolic Execution), for bug detection.

Chapter 5 proposes a method that integrates the SIT-SE, TRIACFL (Triple Interaction-Based

Fault Localization), for fault localization.

1.4. Structure of the Thesis 9

Chapter 6 proposes a mutated specification-based method using a genetic algorithm, for

test data generation in regression testing.

Chapter 7 concludes the research and points out directions in future work.

11

Chapter 2

Related Work

2.1 Symbolic Execution and Specification-Based Techniques

Since the essentials of the research are concerned with symbolic execution and specification-

based testing (SBT), we briefly introduce and discuss some related work on both techniques.

2.1.1 Symbolic Execution Techniques

Symbolic execution analyzes a program through algebraic computation by assuming symbolic

values for inputs, against normal execution with concrete input values. Several approaches

based on symbolic execution have been proposed for testing programs or model checking.

Concolic testing performs dynamic symbolic execution of a program as the program is exe-

cuted on concrete input values [37, 38]. In concolic testing, there are two states, a concrete

state and a symbolic state for the input variables. The symbolic state is involved with sym-

bolic computation (e.g., computing the symbolic state for the left side of an assignment) while

the concrete state is used to evaluate the boolean conditional expressions to true or false for

choosing the branches to execute. However, concolic testing might not guarantee the com-

pleteness, that is, some feasible program paths could be missed [21]. Our approach primarily

performs the concolic execution driven by the BSC algorithm and can do advanced verifica-

tion for the correctness of each tested path. The details of the SIT-SE are explained in Chapter

4.

Many tools have been built to support concolic testing. DART is one of the tools proposed

in the work [39] and it was built to support concolic testing of C programs. CUTE (for C)

12 Chapter 2. Related Work

[40] and jCUTE (CUTE for Java) [38] are developed to handle multi-threaded programs with

complex data structures. CREST [41] is an open source tool for C programs with flexibility of

allowing users to heuristically explore all the program paths. EXE [42] is a symbolic execu-

tion tool for comprehensively testing complex software and KLEE [23] also performs mixed

concrete and symbolic execution with several improvements compared to EXE. Our approach

takes advantage of these tools and enhances their capability by combining concolic testing

with formal specification for correctness verification of paths.

Unlike the principle of concolic testing, Symbolic Java PathFinder (SPF) uses concrete ex-

ecution only for setting up the environment for symbolic execution [43]. It is a tool for per-

forming symbolic execution of Java bytecode and handles inputs and operations on booleans,

integers, reals, and compound data structures with a polymorphic class hierarchy [44]. In SPF,

the number of loops is determined by the tester, different from the way of executing loops by

a test data in our approach.

Some testing methods are proposed by using the engine of Java PathFinder (JPF). For exam-

ple, a framework (on the top of SPF) based on symbolic execution proposed in [45] is used for

checking concurrent systems with compound data structures. It mainly uses model checkers

to perform symbolic execution and analyzes the whole program by building symbolic execu-

tion trees. However, it becomes critical to build a huge symbolic execution tree due to the

high complexity of the path exploration. In comparison, our approach tests one path for one

execution at a time, thus reducing the complexity of exploring long paths (containing loops).

2.1.2 Specification-Based Techniques

As far as specification-based testing is concerned, our work is related to the following studies.

Offutt and Liu [27] describe a technique that can be used for automated test data generation

from SOFL specifications. The technique basically addresses the issue of developing formal-

izable and measurable criteria for generating test cases from specifications. This technique is

part of our approach to generating test data from predicates used in SOFL specifications.

A Java framework called Korat [46, 47] was developed by MIT Laboratory for Computer

Science for automated specification-based testing. To test a method, given a bound on the

2.2. Fault Localization Techniques 13

size of its inputs and its pre- and post-conditions, Korat can automatically generate all non-

isomorphic inputs up to a given small size. However, there are some limitations hindering the

use of Kerat, such as the fact that the instrumentation cannot be applied to inner classes and

multidimensional arrays cannot be processed.

TestEra [48, 49] is a framework for automated specification-based testing of Java programs.

It employs Alloy [50], a first-order relational language, and the Alloy Analyzer. It automati-

cally produces test cases based on the model of correctness criteria for the program in Alloy

and the specified relations between the Alloy models and Java data structures. However, there

are two primary difficulties when using TestEra in a real project: the testers are only allowed

to use two primitive data types, boolean and integers, and the tool lacks the support for inher-

itance and nested classes.

Testing-based formal verification (TBFV) proposed by Liu [51, 52, 53] is a backward-style

method derived from the integration of specification-based testing and Hoare logic for for-

mally verifying the correctness of program paths. Its essential idea is to convert the program

correctness verification problem into a problem of verifying theorems based on automatic test-

ing. However, this method becomes less ineffective in dealing with the assignments that has a

side effect as well as the pre-condition of simple form (e.g., pre-condition:=True). Furthermore,

the TBFV does not give clues to the fault locations along a path.

Different from the existing approaches on SBT, our approach not only combines black-box

testing, specifically specification-based testing, with white-box testing (by analyzing the code

for test data generation), but also has potential to automatically verify the correctness of all the

representative paths (that cover all the feasible branches of conditions) by using the concolic

testing tools.

2.2 Fault Localization Techniques

Next, we introduces several existing fault localization techniques that relate to our method,

and point out some differences between these techniques and the proposed fault localization

method with SIT-SE.

14 Chapter 2. Related Work

2.2.1 Spectrum-Based Fault Localization

Spectrum-based fault localization (SBFL) [29] has been developed to suggest which statements

of programs are likely to be faulty by using the characteristics of runtime executions. The

technique is mainly motivated by the assumption that faulty statements are more frequently

executed by test cases triggering the bugs of a program while less frequently by test cases

triggering no bugs. All the statements that are examined according to the executions would be

ranked through computing the suspiciousness score by using some ranking metrics including

Tarantula [54] and Zoltar [55] and others [56, 57, 58]. However, SBFL costs much time to analyze

all the singular statements without recognizing different roles of statements in the code and

also their execution orders. By contrast, our algorithm derived from the SIT-SE mainly works

on the sequence of specific statements that determine which branches to execute.

2.2.2 Program Slicing

Program slicing, proposed by Weiser [59], is a technique useful in debugging by narrowing

down the scale of incorrect statements. A slice, the reduced part of program, preserves all

the potential terminations of a program. For the debugging, Korel and Laski [60] proposed a

method to provide better information of faulty positions by considering some special slice that

preserves the program’s behavior for a specific input, which is well-known as dynamic slicing.

But this technique inspects only one execution to a specific failed test case one time, and the

analysis of other parts of the code still remains heavy work. As a comparison, the proposed

method systematically looks into various inputs and execution paths, as well as analyzes both

successful and failed test cases.

2.2.3 Assertions

Assertions are widely used in helping more precise fault localizations. An assertion inserted

in the code is executed at a specific program state. Any violations of the assertions indicate

that the faults are likely to locate in the statements before executing the assertions. Several

tools like ALADDIN [61] and Bug-Assist [62] have been developed to detect errors in runtime

executions. However, writing appropriate assertions for different points of a program calls for

great manual efforts, and many other faults cannot be found since the assertions only relate

2.3. Test Data Generation Techniques 15

to some specific program behaviors. To detect more bugs against specifications, our method

works based on the mechanism in SIT-SE that explores all the representative paths, and makes

further analysis for the correctness of specific statements or blocks along paths.

2.3 Test Data Generation Techniques

In this section, we introduce several advanced techniques that relate to our methodology for

test data generation.

2.3.1 Data Flow Analysis

Data flow analysis, a technique for computing the def-use associations for the control flow

graph (CFG) of a program, are often used to develop different strategies for test data genera-

tion over a long history [63, 64, 65]. Many research works have proposed promising methods

for automatic test data generation that integrates the data flow analysis with the heuristics,

such as GAs [66, 67, 36], particle swarm optimization [68], and ant colony optimization [69].

Different from these techniques, our approach conducts the testing under the circumstance

where the source code of thirty-party library under test cannot be accessed. Thus, these tech-

niques rely too much on the knowledge and analysis of internal design (or code structure),

but our approach focuses on generating test data without analyzing the source code when ap-

plying the GA to the formal specification. In addition, with respect to the usage of the GA, our

approach uses the GA to search for the optimal mutated specifications that are later used for

input data generation, while the techniques mentioned above use the GA to directly search for

good input data.

2.3.2 Mutation-Based Testing

The techniques of mutation-based test data generation [70, 71] are used to select a set of “good”

test data by executing designed incorrect versions of an original program with a great number

of test data from the domain. Test data are selected if it can cause unintended behaviors for a

16 Chapter 2. Related Work

certain number of incorrect versions. These techniques mainly concentrate on designing ap-

propriate mutation operators to introduce small modifications for different kinds of program-

ming languages such as Java [72], C# [73], and C++ [74]. The incorrect versions, also called

program mutants, are created by inserting the mutant operators into the original program.

Compared with these techniques, our method selects a set of “good” mutated specifications as

a seed for further test data generation by using not only program mutants but also the mutated

specifications with the GA.

2.3.3 SBT with Heuristics

The SBT techniques, some of them integrated with heuristic search strategies, have been well

developed to cope with different kinds of specifications, such as SOFL [27, 75, 28], Alloy [76,

28], protocol specifications [14, 77], and Object Constraint Language (OCL) specification [78,

79]. Among these specifications, we take an interest in the formal specification of pre-post

style like SOFL and Alloy. On the one hand, the SBT techniques for both SOFL and Alloy

generate test data only from the pre- and guard- conditions, and use the post-condition as an

oracle to check if the outcome is correct. On the other hand, the SBT with SOFL still needs

to be improved since a data suite generated only from the original SOFL specification is not

sufficient enough to trigger different kinds of bad behaviors of programs. On the contrary, our

approach uses both the pre- and post- conditions to generate input data, as well as selects the

optimal mutated specifications to enhance the bug detection.

17

Chapter 3

Preliminaries

In this chapter, we discuss two basic concepts used in our method SIT-SE, which are formal

specification and symbolic execution, respectively. Then we discuss how the existing tech-

niques of SBT with symbolic execution work in bug detection, as well as point out their limi-

tations in path correctness verification.

3.1 Formal Specification

In this thesis, we use the Structured Object-Oriented Formal Language (SOFL) to write formal

specifications for two reasons. One is that we are well experienced of using it for many soft-

ware development projects, and the other is that SOFL has offered a three-step specification

approach that makes SOFL practical enough to be widely learned [80] and applied in both

academia and industry [75].

In SOFL, a process is like an operation in general, representing a transformation from input

to output. Its functional behavior is defined by a formal specification with pre- and post-

conditions. Let S denote a process, then we use Spre and Spost to represent its pre-condition

and post-condition, respectively. The process specification prescribes that if the input vari-

ables satisfy Spre before process S, the output variables, which are defined in terms of input

variables, must satisfy Spost after the process. For the sake of readability, a formal specification

is suggested, by the SOFL method, to write in a way that the post-condition Spost is defined as

a disjunction Spost = ∨n
i=1(Gi ∧Di). Formally, the specification is converted into an equivalent

expression called functional scenario form (FSF).

18 Chapter 3. Preliminaries

Definition 3.1.1. FSF of a process is the disjunction of functional scenarios: ∨n
i=1(Ti ∧ Di) :=

Spre ∧ (∨n
i=1(Gi ∧ Di))(i = 1, · · · , N).

In this disjunction, Gi is a predicate called guard condition that contains only input vari-

ables and Di another predicate called defining condition that defines the output variables. Since

both Spre and Gi are the constraints only on input variables, Ti := Spre ∧ Gi is called a test

condition. The test condition in conjunction with a defining condition, for example Ti ∧ Di, is

called a functional scenario. Thus the formal specification of operation S can be written as the

disjunction of functional scenarios: ∨n
i=1(Ti ∧ Di). The functional scenario Ti ∧ Di describes a

single specific functional behavior: when test condition Ti is true, the output of the operation

is defined using defining condition Di.

Each functional scenario defines an independent function of the operation: when the test

condition holds on the input variables, the output variables will be defined by the defining

condition. According to the previous study by Liu and his colleagues in [81], such a functional

scenario is usually implemented by one or more program paths.

FIGURE 3.1: Simple example for formal specification.

Fig. 3.1 shows a simple process with its formal specification. Process Abs computes the

absolute value for an integer. It has pre-condition Spre := true and post-condition Spost :=

(x ≥ 0 ∧ y = x) ∨ (x < 0 ∧ y = −x). From the specification, we derive two functional

scenarios whose details are given as follows:

G1 := x ≥ 0, D1 := y = x,

G2 := x < 0, D2 := y = −x,

T1 ∧ D1 := (true ∧ x ≥ 0∧ y = x),

T2 ∧ D2 := (true ∧ x < 0∧ y = −x).

Formal specifications can be used for specification-based testing (SBT). In general, SBT

takes three steps to fulfill the task of testing a program: (1) generating test cases from the

specification of the program, (2) executing the program with the test cases, and (3) analyzing

3.2. Symbolic Execution 19

the test results to determine whether bugs are found. As described later in this research, the

SBT we discuss in this thesis emphasizes the importance of taking advantage of the “divide

and conquer” principle. Specifically, the whole pre-post style process specification is divided

into a set of functional scenarios and each functional scenario is used as the basis for test

case generation and for test result analysis. The test condition of a functional scenario, which

contains only input variables, is used to generate test cases and the defining condition of the

functional scenario, which contains output variables, is used to analyze the correctness of

outcomes.

In addition, we assume that the formal specifications are complete and every program path

is supposed to relate to the formal specifications. The completeness of formal specifications can

be ensured by other techniques proposed in our work before, such as specification inspection

or refinement [82, 83].

3.2 Symbolic Execution

Symbolic executions systematically explore multiple paths with symbolic input values, each

summarized by a first-order boolean formula that describes the conditional branches and out-

comes along that path. This is in contrast with a concrete (or normal) execution that results

in a single control flow path after being performed on a specific input. In general, static sym-

bolic execution simultaneously explores many possible paths to build a huge execution tree

without using concrete inputs. All the branch conditions can be assumed to be true or false

during path exploration. Especially, the iterations of a loop are determined by humans. The

symbolic execution used in this research refers to concolic execution. Concolic execution, also

called dynamic symbolic execution, performs mixed concrete and symbolic execution for pro-

grams. There are two states for variables: symbolic values and concrete values that are used

for symbolic computation and for deciding which branches to execute, respectively. For exam-

ple, when it comes to an assignment “y := 2 ∗ x− 1” where x is an input variable with concrete

value 2, a concrete execution simply stores 3 in the memory of y, whereas a concolic execution

additionally maps y to the symbolic expression “2 · x − 1” in the memory. We insert probes

into the source program to extract symbolic path condition (or constraints) and outputs with

expressions over symbolic input values.

20 Chapter 3. Preliminaries

We treat a program path as a sequence of statements (assignments and conditions used in

conditional statements), produced from one execution of the program with a concrete test data,

as illustrated below.

Program path.

1 : assignment1/condition1

2 : assignment2/condition2

· · ·

n : assignmentn/conditionn

We apply symbolic execution to such a path to derive the symbolic representation {Sta ∧

Cds}, where the state Sta :=
∧

z∈Z
(z = e) (e is an expression over symbolic inputs and Z is a

set of typed variables) and the condition (or constraint) Cds :=
∧

p∈P
p (P is a set of conditional

expressions over symbolic inputs).

The symbolic representation {Sta ∧ Cds} of a path indicates that when Cds is satisfied by

the input variables, Sta will be satisfied by both the input and output variables.

We explain how symbolic execution works next. Suppose the current symbolic represen-

tation derived from the path is {Sta ∧ Cds} := { ∧
v∈V

(v = e) ∧ ∧
p∈P

p} where e is an expression

over symbolic inputs and V a set of non-input variables, then computing the next symbolic

representation for the next statement i on the same path is illustrated by the following process:

{current symbolic representation}

i : assignment/condition

{next symbolic representation}.

The derivation of the next symbolic representation is divided into the following four situ-

ations:

1. After the assignment z := E, the current symbolic representation changes to

{z = e
′ ∧ ∧

v∈V\{z}
(v = e) ∧ ∧

p∈P
p},

where e
′
= E[e/v], which denotes the substitution that any variable v occurring in ex-

pression E has been replaced by the corresponding expression e if v can be found in

Sta :=
∧

v∈V
(v = e).

3.2. Symbolic Execution 21

2. After a condition q : true (i.e., q evaluates to true), the current symbolic representation

changes to { ∧
v∈V

(v = e) ∧ ∧
p∈P

p ∧ p
′}, where p

′
= q[e/v],

where q[e/v] denotes the substitution that any variable v occurring in condition q has

been replaced by the corresponding expression e if v can be found in Sta :=
∧

v∈V
(v = e).

3. After a condition q : f alse (i.e., q evaluates to false), the current symbolic representation

changes to { ∧
v∈V

(v = e) ∧ ∧
p∈P

p ∧ p
′}, where p

′
= ¬q[e/v].

4. After a RETURN statement that indicates the end of a program path, remove all the

v = e from Sta :=
∧

v∈V
(v = e) if v is a temporary (or local) variable not used in the

post-condition.

This symbolic execution is slightly different from the concolic execution, since it allows the

predicates over symbolic inputs to contain some algorithmic functions [19].

An algorithmic function is a function that is defined by an executable algorithm whose inter-

nal code structure is unknown or not available. For instance, the predicates y = x + f (x) and

y = x2− f (3x− 1) contain executable expressions f (x) and f (3x− 1), respectively, where x is

symbolic input, y is symbolic output and f is an algorithmic function (like a black-box). Such

predicates containing any algorithmic functions are called algorithmic predicates in this chapter.

As an example, we apply the symbolic execution to a small case in Fig. 3.2. In this case,

process f uc1 reads the external variable z and the input variable x and returns the modified z;

process f uc2 is invoked in a conditional statement of process f uc1. We assume that the code

of process f uc2 is unavailable and its formal specification is provided.

FIGURE 3.2: A small case 1.

22 Chapter 3. Preliminaries

Let ˜z denote the initial value of variable z before executing f uc1, thus ˜z can be regarded

as an input variable of f uc1. An effect of f uc1 is to change ˜z to the output value represented

by variable z. We make {z = ˜z} as the initial symbolic representation before executing the

first statement in f uc1.

Fig. 3.3 displays the process of deriving the symbolic representations for all the statements

on the path given in the figure. We explain the steps in the process next.

FIGURE 3.3: Derivation of symbolic representation along one path in case 1.

To obtain a program path, we assign concrete values for input variables x and ˜z: {x =

6 ∧ ˜z = 5}. After the first assignment y = x − z in the code, the symbolic representation

changes to {y = x− ˜z∧ z = ˜z}. Thus, temporary variable y can be represented by a symbolic

expression over inputs x and ˜z. The symbolic expression before and after the assignment is

illustrated as follows:

{z = ˜z}

1. y := x− z

{y = x− ˜z ∧ z = ˜z}.

Further, we derive the next symbolic representation for the second statement i f (f uc2(y) >

x) in the code. After substituting x− ˜z for y in f uc2(y), we obtain the new condition

f uc2(x− ˜z) > x.

Since the path is produced by the test case {x = 6 ∧ ˜z = 5}, this condition evaluates to

false because f uc2(1) > 6 evaluates to false based on the specification of f uc2. Thus, after the

3.2. Symbolic Execution 23

branch condition f uc2(y) > x : f alse, the symbolic representation changes to

{y = x− ˜z ∧ z = ˜z ∧ ¬(f uc2(x− ˜z) > x)}.

The process of obtaining the latest symbolic expression after the second statement is illus-

trated as follows:

{z = ˜z}

1. y := x− z

{y = x− ˜z ∧ z = ˜z}

2. i f (f uc2(y) > x) : f alse

{y = x− ˜z ∧ z = ˜z ∧ ¬(f uc2(x− ˜z) > x)}.

Then we come to the third statement z = z− 1 in the code. According to situation 1), the

symbolic representation changes to

{z = ˜z− 1∧ y = x− ˜z ∧ ¬(f uc2(x− ˜z) > x)}

Finally, after the return statement, temporary variable y is removed from current symbolic

representation. Thus for the path produced by executing the code with the test data, the final

symbolic representation is

{z = ˜z− 1∧ ¬(f uc2(x− ˜z) > x)}.

This indicates that when input variables x and ˜z satisfy ¬(f uc2(x − ˜z) > x), the input and

output variables will satisfy z = ˜z− 1.

After performing the dynamic symbolic execution on the path, the derivation for the sym-

bolic representation (where ˜z and x are symbolic inputs and z is the output) is finished as

follows.

{z = ˜z}

1. y := x− z

{y = x− ˜z ∧ z = ˜z}

2. i f (f uc2(y) > x) : f alse

{y = x− ˜z ∧ z = ˜z ∧ ¬(f uc2(x− ˜z) > x)}.

3. z := z− 1

{z = ˜z− 1∧ y = x− ˜z ∧ ¬(f uc2(x− ˜z) > x)}

4. return

{z = ˜z− 1∧ ¬(f uc2(x− ˜z) > x)}.

24 Chapter 3. Preliminaries

Note that f uc2 is instrumented as an algorithmic function. According to its specification

from Fig. 3.2, f uc2(x− ˜z) is equal to 2 ∗ (x− ˜z) because x− ˜z > 0 given the concrete input

values {x = 6 ∧ ˜z = 5} from Fig. 3.3. Thus the final symbolic representation can be further

inferred as {z = ˜z− 1∧ 2 ∗ (x− ˜z) ≤ x}.

However, if the specification of an algorithmic function is unknown or not precise enough

for such inference, the symbolic representation would be kept as before. In order to explore

next path, we do negation for the path condition ¬(f uc2(x − ˜z) > x). Then the next test

data should be generated to satisfy the condition f uc2(x− ˜z) > x. However, no SMT solver

can solve the predicate involving such an algorithmic function that is not defined using an

explicit mathematical expression because the SMT solver can only deal with predicate for-

mulas in which all of the terms (including function applications) must be explicitly defined

using mathematical expressions. In our method, we continuously generate test data from the

domain and invoke f uc2 until a suitable test data is found to satisfy f uc2(x− ˜z) > x.

The techniques that employ a symbolic execution usually explore all the possible program

paths by a depth-first search or other heuristic search strategies based on some stop criteria.

Except the first initial input data that is generated from the domain, all the other input data are

generated from the constraints formed based on the symbolic execution using an SMT solver.

Each time the constraints for generating an input data are collected from the previous explored

path with negation of some subexpression in the constraints. However, these techniques prefer

an exhausted path exploration and inevitably encounter the problem of path explosion. Every

path is explored by an input data, but the correctness of a path is not well verified. This

deficiency causes to generate numerous test data for exploring paths and thus cost much time.

In contrast to the existing techniques, we propose a method that provides both a more

rigorous way to verify the correctness of each path and the way to mitigate the problem of path

explosion by using a new search strategy. More details of the proposed method are illustrated

in the next section.

3.3 SBT with Symbolic Execution

Generally, the techniques of SBT with symbolic execution use assertions to verify the cor-

rectness of each path. An assertion, a boolean expression that relates to the specification, is

3.3. SBT with Symbolic Execution 25

inserted into some specific point in a program before a test. The use of an assertion varies in

performing different kinds of executions. When a normal execution reaches an assertion, an

error will be detected if the assertion is evaluated to false (i.e., is violated) by using the con-

crete values of variables. Unlike the normal execution, when a symbolic execution reaches an

assertion along a path, an SMT solver will be used to check if any values on that path violates

this assertion.

We take the process f uc2 in Fig. 3.2 as an example. Suppose we have an incorrect im-

plementation in C of f uc2 as follows. Two assertions, “q > 0 && r == 2 ∗ q” and “q <=

0 && r == −q”, are extracted from the specification, respectively. They are separately in-

serted into two different points near the exit of the code.

int fuc2(int q){

int r;

/* "q>2" should be "q>0" */

if(q > 2){

r = 2 * q;

assert(q > 0 && r == 2*q); /*1*/

}else{

r = -q;

assert(q <= 0 && r == -q); /*2*/

}

return r;

}

For a normal execution, concrete values are used to execute the code and determine if an

assertion is violated. In the worst-case scenario, two test data, t1 : q = 3 and t2 : q = −1

for example, are generated from the domain to execute two program paths. No error can be

detected at both asserts because neither t1 nor t2 violates the assertions.

By contrast, an SMT solver in symbolic execution (like in KLEE) is used to check if the

following claims are correct, respectively.

1. For all q that q > 2, q > 0∧ 2 ∗ q = 2 ∗ q is always true;

2. For all q that q ≤ 2, q ≤ 0∧−q = −q is always true.

26 Chapter 3. Preliminaries

Notice that r in the assertions will be replaced by its symbolic values 2 ∗ q or −q during

the symbolic execution for the two paths. Claim 1) is correct, but claim 2) is incorrect because

if q = 1 or 2, an error will be raised when the second assert (labeled by “/*2*/”) is accessed

during symbolic execution.

However, if the path with the second assert is found and explored by using symbolic input

q together with the concrete value that satisfies q ≤ 0, the second assert will never raise an

assertion error for such input data. In view of the mathematical logic, this path is incorrect

because q ≤ 2⇒ q ≤ 0 is false. Thus the related assert is supposed to raise an error regardless

of which kind of input data that fetches it. This limitation hinders bug detection if we intend

to test the program based on some specific functional scenarios to reduce time cost after an up-

date of software. For instance, we intend to test f uc2 based on the second functional scenario:

q ≤ 0∧ r = −q.

/* use fuc2 with assertions */

/* use symbolic input q that q<=0 */

int r = fuc2 (q);

In this test, the second assert in f uc2 will never report any assertion violation because all

the input data satisfying q ≤ 0 ∧ q ≤ 2 will not violate this assert. The use of assertions in

existing methods does not always precisely reflect the requirement of specification, and thus

these assertions are not sufficient enough to verify the correctness of a program path.

In the next chapter, we put forward a method to provide a more rigorous and systematic

way for bug detection. In the proposed method, we use theorems instead of assertions for path

correctness verification. A faulty path can be mistakenly seen as a correct one by assertions due

to a single input data (with both symbolic and concrete states) that satisfies the post-condition.

Conversely, such a faulty path can be identified by using theorems even when this single input

data itself satisfies the related theorem. In our approach, a path is identified to be correct if

and only if all the input values existing on this path satisfy the related theorem. Besides,

there is no need to find every proper point of the code to insert assertions separately, which

sometimes cannot be done due to some complex implementations or specifications, like in the

case of testing a recursive function with multiple functional scenarios. The verification of the

correctness for a path will be done after the related symbolic execution completely finishes.

3.3. SBT with Symbolic Execution 27

As a comparison, for f uc2, the test for a specific path can proceed as follows.

/* use fuc2 with assertions */

/* use symbolic input q that q<=0 */

int r = fuc2 (q);

/* check a path with a theorem */

The explored path will be reported as false even if the second assert is never violated.

From the perspective of safety-critical systems, it is essential to detect such kind of fault where

the implementation mistakenly allows unexpected input data to exist on some specific paths

regardless of which kind of input data used in the test. More details of the proposed method

and theorems are described later.

29

Chapter 4

Grey-Box Testing: The SIT-SE for

Bug Detection

We propose a specification-based incremental testing method with symbolic execution, called

SIT-SE, to automate the verification of the correctness for each program path under a control

of a moderate path exploration.

4.1 Principle of the SIT-SE

In the proposed method SIT-SE, every test data except the initial one is generated from some

negation over a symbolic path condition, every path introduced by a test data is executed

only once, and the correctness of each path is determined by the validity of a related theorem

(mainly solved by an SMT solver) based on the specification.

The framework of the SIT-SE is illustrated in Fig. 4.1. To provide a proper environment

for performing the symbolic execution on a program with a specified configuration (e.g., the

checking levels used in the BSC algorithm), the program is instrumented manually by the

tester or automatically by a script. For each path, we use one arbitrary test data that traverses

this path to extract the symbolic representation as a summary of the path by performing sym-

bolic execution. The symbolic representation is then used to form a theorem that describes the

properties for all the input values on the path. Every path is found by a test data and checked

by a theorem regardless of whether or not this test data itself satisfies the related theorem.

30 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

FIGURE 4.1: Framework of the SIT-SE.

Initially, we use the first test data that is an arbitrary one from the domain to start the

process of bug detection. The BSC algorithm with predefined checking levels (determined by

human) is used to automatically find other possible paths, each derived from a test data that

is generated by using the existing path condition. In order to provide a more rigorous way to

check path correctness, it is necessary to use one test data for one path to extract the symbolic

representation for the path to make a theorem. We discuss how the theorem is formed and

checked, as well as how all the suggested paths can be covered by the BSC algorithm below,

respectively.

4.1. Principle of the SIT-SE 31

4.1.1 Theorem

A functional scenario may relate to many paths, and one path must refer to some functional

scenario. In SIT-SE, all the representative paths are expected to be discovered and the correct-

ness of each path needs to be checked by means of theorem proof.

A theorem in the SIT-SE is used to reason about the correctness of a program path, differing

from Hoare logic [84] used for the correctness of the whole program. Such a theorem can

be formed through the combination of the obtained symbolic representation and the formal

specification of the code.

In the SIT-SE, for a process S under test, the correctness of a path is defined by the theorem:

∃! f ∈ F · (Spre ∧ Cds⇒ f .T) ∧ (f .T ∧ Cds ∧ Sta⇒ f .D),

where F is the set of all functional scenarios of the related operation and each functional sce-

nario f has two attributes f .T (test condition) and f .D (defining condition).

According to this theorem, a path is correct if and only if there exists a unique functional

scenario f in the specification such that the path contributes to the implementation of f (rep-

resented by Spre ∧ Cds⇒ f .T) and the test condition of f (i.e., f .T) together with the symbolic

condition of the path (i.e., Cds) and its final state (i.e., Sta) will guarantee the defining con-

dition of f (i.e., f .D). Note that since the test conditions of all the functional scenarios in the

specification are pairwise exclusive, each path can only contribute to the implementation of

one functional scenario. The pairwise exclusive property of functional scenarios is guaranteed

by the algorithm for deriving the functional scenarios from a specification as described in [85].

On the other hand, if there does not exist any functional scenario for the path that satisfies the

theorem, it will imply the existence of bugs on the path.

Checking Theorems

After the theorem is formed for the path, the next objective is to verify its validity. Fig.

4.2 shows a workflow for the verification. The first step is to verify whether the predicate

∃! f ∈ F · Spre ∧ Cds ⇒ f .T holds or not, since it is the proviso given in the theorem for veri-

fying the correctness of the corresponding path. If it holds, the next step is to verify whether

the implication f .T ∧ Cds ∧ Sta⇒ f .D is satisfied by the symbolic representation of path. If it

32 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

FIGURE 4.2: Checking the correctness of a path by theorem.

does not hold, that will indicate the existence of bugs on the path; otherwise, the correctness

of the path will be ensured.

The theorem can either be formally proved (by human or a powerful theorem prover like

Z3 [86] from Microsoft Research) or be verified with some confidence using predicate-based

testing (that could be fully automated) like what has been done in [87].

To check an implication with the abstract form X ⇒ Y (e.g., X can be f .T ∧Cds∧ Sta and Y

can be f .D) obtained from Fig. 4.2, we employ two steps as shown in Fig. 4.3. Firstly, we use

an SMT Solver (Z3 in our work) to check the satisfiability of X ∧ ¬Y (the negation of X ⇒ Y).

There are three possible results: 1) the implication is proved to be true if X ∧¬Y is determined

to be unsatisfiable by Z3; 2) the implication is proved to be false if X ∧ ¬Y is determined to

be satisfiable by Z3; and 3) the satisfiability of X ∧ ¬Y cannot be determined by Z3. Since Z3

is a software tool, it must have a limit in its capability of dealing with all kinds of predicates,

but it is impossible for us as a user to estimate its capability quantitatively. When the proof

of an implication is beyond the capability of the SMT solver, we will use the predicate-based

testing to verify the implication instead. As discussed in [87], such predicate-based testing can

be powerful enough and fully automated. This alternative is not discussed in detail here since

4.1. Principle of the SIT-SE 33

the current SMT solver Z3 seems to be powerful enough to deal with almost all of the classic

cases in theorem proving.

FIGURE 4.3: Checking an implication.

A Feature

There is a main feature that distinguish theorems from assertions.

Feature. The correctness of a path is determined by the theorem for which the corresponding path

condition is used.

34 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

This feature ensures that the correctness of each path is verified through theorem proving.

As described in Section 4.1.1, the theorem to be proved is formed based on the related func-

tional scenario and the symbolic path condition and the final state of the related path traversed

using one test data. Since once a test data satisfying the test condition of a functional scenario

is used to run the program, one program path will be traversed and its symbolic path condi-

tion and final state can be automatically derived, as discussed previously. This ensures that the

theorem about the correctness of the traversed path can be formed precisely. In our method,

the SMT solver Z3 is used to prove the theorem. This is done by proving the conjunction of the

hypothesis and the negation of the conclusion of the theorem to be a contradiction. In other

words, the SMT solver concludes that no model for the conjunction can be found.

By contrast, KLEE checks if a single test data traversing that path violates the assertions.

To recognize a faulty path, it has to find and generate another test data that traverses the same

faulty path as well as violates the assertions when the previous test data that has introduced

that faulty path does not violate the assertions.

In a word, theorems are stronger than assertions in verifying path correctness. Specially, in

some cases, using assertions is not able to recognize a faulty path if the specification contains

multiple functional scenarios. The process spin in Fig. 4.4 helps illustrate this point.

The process spin consumes an input p of type Point and returns an output pt of the same

type. Two functional scenarios (Ti ∧ Di) (i = 1, 2) can be extracted from the specification. An

incorrect implementation of this specification is given in Fig. 4.5.

FIGURE 4.4: The specification for process spin.

To explain this feature, we use assertions and theorems to check the code, respectively.

First, Initialize a Point p and two symbolic values x (with name “x”) and y (with name “y”)

4.1. Principle of the SIT-SE 35

FIGURE 4.5: The incorrect code for process spin.

are assigned to the members of p, respectively. The input values are kept in [-20,20) to make

the output easier to read without affecting the test.

FIGURE 4.6: Using assertions in KLEE.

As shown in Fig. 4.6, we use an if expression and an assertion (according to the specification)

to test the output of process spin every time. However, the assertion would never be violated

for any paths of spin reaching it. In fact, KLEE generates two test data, t1 : x = 12∧ y = 12 and

t2 : x = −20∧ y = −20 to lead to two different paths, as well as reports no assertion violation

errors.

By contrast, the two paths can be found to be faulty by using theorems. Fig. 4.7 shows

that both paths are claimed to be incorrect because their path conditions cannot imply any test

conditions in the first step of checking the theorem using the Z3 solver.

Although we can use assertions in another way like in Fig. 4.8, this way may require much

36 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

FIGURE 4.7: Using theorems.

FIGURE 4.8: Using assertions in another way.

effort to work out the relationships between each exit of the process and the specification for

some cases, or it just cannot work for some complex post-conditions thus the use of if expression

is inevitable.

To test process spin in the way from Fig. 4.8, KLEE generates three test data,

t1 : x = 2∧ y = 2, goes along if else;

t2 : y = −20∧ x = 12 and

t3 : y = −20∧ x = 0, goes along if then.

Only test data t2 violates the assertion and the same path (that goes along if then) is exe-

cuted twice, whereas by using the theorems all the test data will fail and both two paths will

be claimed to be faulty.

4.1. Principle of the SIT-SE 37

Such a simple example vividly demonstrates the feature of theorems and also the effective-

ness of using theorems.

4.1.2 Path Exploration

Unlike the traditional concolic testing that exhaustedly explores as many paths as possible by

traversing all the nodes (each node represents a branch condition) along a path, we design

an algorithm for path exploration, called Branch Sequence Coverage algorithm (BSC algorithm in

short), doing negations for some representative constraints over a path condition and ensure

that each path is symbolically executed for only once. Thus compared to the depth-first search

used in KLEE, the BSC algorithm will cut off many uninteresting paths to explore.

Branch Sequence

To explain the BSC algorithm comprehensibly, we first need to introduce some necessary con-

cepts, such as control location and branch sequence.

Given a program, a control location is a branch node fixed in the code that contains a

condition. The condition can evaluates to true or false if the free variables are bound to specific

values. For instance, the abstract program in Fig. 4.9 has four control locations li (i = 1, 2, 3, 4)

and every li possesses a condition (the condition is not explicitly written there) that cause the

program to take different branches in its execution.

Every program path is related to a sequence of control locations:

@l1(N1), · · ·, @lm(Nm).

Where each element @li(Ni) of the sequence denotes the control location li for its Nith occur-

rence along this path; @ denotes either + or -, indicating a choice that the condition in li is

evaluated to true (+) or false (-).

A branch sequence, derived from such a sequence of control locations, is defined as:

@l1(1), · · ·, @lm(1).

Which only contains all the control locations for their first occurrence along the path (e.g., a

loop condition may appear more than once when the loop is unfolded during an execution).

Note that multiple symbolic program paths can share the same branch sequence, and the ele-

ments of a branch sequence can be symbolized differently according to the symbolic path.

38 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

For instance, suppose z > x is the condition of a control location l1 (for some “if”statement)

in a program where z is a temporary variable and x is an input variable. Suppose along a

specific symbolic path, z > x can be evaluated to false for the first time where z = x2 − 1, thus

the element of its branch sequence,−l1(1), can be symbolized as ¬(x2− 1 > x) (or x2− 1 ≤ x).

Every path corresponds to a sequence of control locations (recording all the branch choices

for the path), and a sequence of control locations can derive only one branch sequence.

Definition 1. BSC is a coverage criterion requiring that all the feasible branch sequences for the

code under test have been traversed.

A program may have a great number of long paths (can be infinite in many cases) due

to loops, but it has a relatively small scale of branch sequences for all of these paths. This is

because for a program path, its branch sequence is one of the feasible combinations of different

control locations occurring for the first time and the number of different control locations is

finite and relatively small.

The representative paths, except the first randomly produced path, are all iteratively pro-

duced through the previously obtained symbolic paths and their branch sequences.

BSC requires all of theses paths (each path relates to a different branch sequence) to be

traversed. Specifically, BSC will ensure that every statement of a sequential construct to be

covered, every branch statement of a conditional construct to be covered, and the body of an

iteration construct and the situation of its termination are covered.

FIGURE 4.9: A program and its control flow diagram.

For example, Fig. 4.9 shows a program with nested loops and its control flow diagram

4.1. Principle of the SIT-SE 39

(CFD). For a randomly generated test data t1, it may lead to a very long tedious path as showed

in Fig. 4.10.

FIGURE 4.10: A traversed path and its branch sequence.

In the visualization of this traversed program path, the diamond denotes a control location

li, the arrow labeled 1 starting from li denotes that the branch condition in li evaluates to true,

and the arrow labeled −1 starting from li denotes that the branch condition in li evaluates to

false. The grey diamonds refer to the control locations appearing for the first time along the

path.

Fig. 4.10 also shows the branch sequence of this path, and we can see the branch sequence

is quite shorter than the sequence of control locations for the program path. Although the

program in Fig. 4.9 may have extremely large number of paths due to its loops, the number

of branch sequences for all the paths is finite. All the feasible branch sequences referring to

different paths (they are produced by some test data) for the program are listed in Fig. 4.11.

According to BSC, all the five branch sequences in Fig. 4.11 should be used for generating

the five representative paths.

There are three primary characteristics for BSC. The first one is that BSC is inclined to

explore more program paths than a full branch coverage requires. For example, test data t1

and t2 from Fig. 4.11 can be used to meet the branch coverage that explores only 2 paths as

displayed in Fig. 4.12.

40 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

FIGURE 4.11: All the branch sequences that BSC requires.

FIGURE 4.12: Two paths that branch coverage requires.

While BSC further requires more test data covering all the branch sequences in Fig. 4.11 to

explore more paths. The second one is that BSC achieves the full path coverage for a program

that contains no loops. The third is that BSC requires a smaller scale of test suite for the path

exploration of a program with loops against to what a full path coverage requires (usually it is

impossible to achieve a full path coverage for a program with loops).

Next we introduce the concept control-path tree used to implement BSC.

Control-Path Tree

Definition 2. A control-path tree Tr is a binary tree established from branch sequences and it indicates

the possibility of any unchecked paths. The tree can be graphically represented using diamond nodes,

labeled arrows, and leaf nodes.

A diamond node represents a control location l and it has two out-arrows labeled 1 and

4.1. Principle of the SIT-SE 41

−1, respectively. For convenience in the discussions below, the out-arrow of l is represented

by out(l). The out(l) labeled with 1 denotes l[p], and the out(l) labeled with −1 denotes ¬l[p],

where l[p] denotes the symbolic condition p located in l. The out-arrow can point to a diamond

node or a leaf node.

The leaf node has two types, data node (relating to a test data that has been used to execute

the program) and null node (without any test data). The path between the root node and a

data node indicates the branch sequence for the related test data. The path between the root

node and a null node is called a seed track, meaning that currently no test data is generated

along this track.

Note that each seed track is the conjunction of the symbolized elements of the branch se-

quence, except where one symbolized element is negated.

Let Tkl be the set of all the control locations along a given seed track, P be the set of condi-

tions based on Tkl, and let Tk =
∧

l∈Tkl
out(l). Thus Tk for the seed track can be developed into

a new path with the end of a data node. The sequence of control locations, branch sequence,

symbolic path condition and seed track are obtained by executing the program with a test data

t.

In order to produce a new path, firstly after running the program with a test data t and

adding its branch sequence to the control-path tree, the symbolic path condition∧
i∈{1,...,m},p∈P

li[p]

and Tk for the seed track∧
l∈Tkl

out(l)

are obtained for this test data.

Then a candidate path used to generate a new test data is constructed from the integration

of both the symbolic path condition and the seed track:∧
i∈{1,...,r−1},li /∈Tkl,p∈P

li[p]
∧

l∈Tkl
out(l),

where 1 ≤ r ≤ m, and lr is the control location of the last diamond along this track and

it is also the control location of the rth position of the sequence of control locations; the set

{1, ..., r− 1} = ∅ if r < 2.

We can generate a new test data from such a candidate path to produce a new program

path. In the next subsection, we will formally describe an algorithm to obtain all these kinds

42 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

of candidate paths for test data generation. Before that, we use the example in Fig. 4.13 to

illustrate the process of developing a control-path tree and generating candidate paths.

FIGURE 4.13: A program, control locations and CFD.

The left hand side of Fig. 4.13 shows a program code while the right hand side presents

its three control locations and the control flow diagram (CFD). The control locations l1 and l3

relate to a “if” branch condition and l2 relates to a while loop condition.

We can obtain a symbolic path condition by running the program with a test data t1: x =

−4 (as an example). The control-path tree is established from the branch sequence of t1 in Fig.

4.14.

There are three seed tracks in the control-path tree. Developing them further, we obtain

three candidate paths as shown in Fig.4.15. For any new path derived from a new test data,

we carry out a symbolic execution for it and compute its branch sequence. The new branch

sequence will be added to the control-path tree.

For instance, Fig. 4.16 shows the modified control-path tree after incorporating the new

branch sequence of test data t2 that is generated from the candidate path ¬(x < 0).

Pseudo-code for BSC

The BSC requires that all the generated candidate paths are explored. This implies that all the

leaf nodes in the control-path tree are the nodes of test data. Such a tree is said to be complete.

4.1. Principle of the SIT-SE 43

FIGURE 4.14: Control-path tree for example 1.

FIGURE 4.15: Candidate paths from test data t1.

The pseudo-code in Fig. 4.17 shows an algorithm for generating test data satisfying the

BSC. The algorithm is characterized by the fact that only the initial test data is generated

randomly but all of the other test data for traversing new paths are generated based on an

available candidate path.

Both the BSC-based testing and the traditional concolic execution with depth-first search

strategy perform mixed symbolic execution and concrete execution, but generally the former

can explore fewer paths than the latter. This is due to the fact that the former has reduced the

complexity of the path exploration through negating on branch sequences rather than on all

the constraints over a symbolic path condition.

This means, as illustrated in Fig. 4.10, for a given traversed path, only the conditions ob-

tained from a branch sequence (the conditions in the gray diamonds) would be negated to

44 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

FIGURE 4.16: After symbolic execution for t2.

explore next paths in the BSC algorithm, but in the traditional concolic execution, the con-

ditions in all the control locations (the conditions in all the diamonds) would be negated to

explore next paths. We can see the BSC algorithm as a variant of the depth-first search. How-

ever, the BSC algorithm concentrates on searching for new paths with the undiscovered branch

conditions and also undiscovered branchings. Unlike the depth-first search with the conven-

tional concolic execution, the BSC algorithm only does the negations for the branch conditions

obtained from the branch sequences along a program path.

4.1.3 Incremental Testing

To facilitate the exploration of more paths from the available path and therefore achieve more

test data for their execution, the notion of checking levels to control locations needs to be intro-

duced.

Checking levels are used to guide incremental testing to control the path exploration. Be-

fore BSC algorithm is applied, checking levels can be set to some values according to both

experiences of testers and time limitation.

4.1. Principle of the SIT-SE 45

FIGURE 4.17: Pseudo-code for BSC.

A checking level, denoted by counti, is a non-negative integer. It is always attached to a

control location li in the code. If counti > 0, the first counti occurrences of control location li:

(±)li(1), · · ·, (±)li(counti) in a path will be added to the branch sequence; otherwise, counti =

0 means that all the occurrences control location li along a path should be added to the branch

sequence.

We use the example from Fig. 4.10 to help explain it. By default, the checking level for each

control location li is set to 1 so that only grey diamonds along the path will be used to form

the branch sequence, as showed in Fig. 4.10.

However, if the checking levels for l2 is specially set to 3, all the first three occurrences of

l2 will be used to form a different branch sequence, as displayed on the left side of Fig. 4.18;

or if the checking levels for l4 is further set to 2, all the first three occurrences of l2 and the first

two occurrences of l4 will be used to form the branch sequence, as displayed on the right side

of Fig. 4.18.

46 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

FIGURE 4.18: Different settings of checking levels: various shades of gray rep-
resent different checking levels.

In the BSC, branch sequences are used to build the control-path tree to explore paths. Since

checking levels can affect the structure and the length of a branch sequence, different settings

of them will lead to different ways of path exploration in the BSC.

We establish the basic rules for setting checking levels in a test:

Basic Rules for Settings.

1. Generally checking levels for all the control locations are set to 1 by default, except some cases

stated as follows.

2. For some control location relating to a loop condition, increase its checking level by 1 when the

previous test cannot find faulty paths.

3. For control location that has access to elements of some vector (or array), set its checking level to

0.

Rule 1) is used to guide a moderate path exploration meanwhile it assures that as far as

possible all the control locations and their feasible branchings are visited. Rule 2) is used to

incrementally explore new paths concerning loop conditions, because we think loop condi-

tions should have more careful check than if conditions. Rule 3) is used to record different

4.1. Principle of the SIT-SE 47

features of symbolic elements of a vector to branch sequences, because different occurrences

of the same control location can relate to different visits to that vector.

We use an example to illustrate how checking levels work by these rules. In Fig. 4.19,

process Mod_le0 is a variant of process Mod detailed in the next section, which is supposed to

implement nearly half paths in Mod to calculate the quotient q and remainder r from dividing

y by x. However, there is a fault in the control location l2 : x ∗ r <= 0, where <= should be <.

FIGURE 4.19: Process Mod_le0 for inputs with x ∗ y < 0.

To test Mod_le0, set checking level 1 for both l1 and l2. Suppose we get t1 : y = 10 ∧

x = −12, the first test data randomly generated from the domain x ∗ y < 0, and obtain its

branch sequence “+l1(1),+l2(1)”. With this test data and the traversed path, we can form the

following theorem for its correctness:

1) (x ∗ y < 0∧ x ∗ y <= 0∧ x ∗ (y + x) > 0⇒ x ∗ y < 0)∧

2) (x ∗ y < 0∧ x ∗ (y + x) ∧ r = y + x ∧ q = −1⇒

y = q ∗ x + r ∧ Abs(r) < Abs(x) ∧ x ∗ r ≥ 0).

However its branch sequence cannot lead to other paths in this process because “+l1(1),−l2(1)”

and “−l1(1)” are not feasible branch sequences. As a result, we obtain only one successful test

data t1 in the BSC algorithm.

According to the rule 2), here comes to increasing checking levels in the test. For instance,

we set the checking level to 2 for control location l2. Then the branch sequence obtained from

t1 will be “+l1(1),+l2(1),−l2(2)”. Based on the BSC algorithm, we can get a new derived

branch sequence “+l1(1),+l2(1),+l2(2)” to generate a test data to lead to a new path, e.g., the

48 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

second test data t2 : y = −4∧ x = 1. In this test, according to the BSC algorithm, two test data

t1 and t2 can be obtained, one is successful and the other is failing.

By contrast, traditional concolic testing methods exhaustedly explore as many paths as

possible using depth-first search or other heuristics (to change the order of paths to find). In

the case of KLEE, it generates a total of 17 test data with one failing test data in this test.

Aside from these rules, testers can make their own plans by making additional rules in bug

detection.

4.2 Case Study

This section uses a simple example, deliberately, to comprehensibly demonstrate how the SIT-

SE works on the code implementing a process specification. The process is called Mod, com-

puting the quotient q and remainder r from dividing y by x, and its specification is given in

Fig. 4.20a. In the specification, the function Abs is used to compute the absolute value of an

input. The implementation of the specification is also given in Fig. 4.20b in which the function

Abs is implemented as a inline function.

There are two functional scenarios derived from the specification of process Mod.

1. The first functional scenario is T1 ∧ D1, where the test condition T1 := (x 6= 0 ∧ y 6= 0)

and the defining condition D1 := (y = q · x + r ∧ Abs(r) < Abs(x) ∧ xr ≥ 0).

2. The second functional scenario is T2 ∧ D2, where T2 := (x 6= 0 ∧ y = 0) and D2 := (q =

0∧ r = 0).

There are four control locations according to the implementation code of the process Mod,

as illustrated in Fig. 4.21. According to the basic rules for setting checking levels, the checking

levels for all the control locations are set to 1.

In order to test all the program paths using the SIT-SE, let us start with an initial test data

t1 : y = 3 ∧ x = 2 (as an example) that is generated randomly to satisfy the pre-condition

x 6= 0.

The symbolic execution for the path traversed by test data t1 is shown in Fig. 4.22.

By executing the program with test data t1 and meanwhile carrying out a symbolic execu-

tion of the traversed path, we can get the final state Sta and the path condition Ct1 , as well

4.2. Case Study 49

(A) The specification of
Mod

(B) The implementation
of Mod

FIGURE 4.20: The process Mod

50 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

FIGURE 4.21: Four control locations from the program.

FIGURE 4.22: Derivation of symbolic representation for the path by test data t1.

as the sequence of control locations and branch sequence. We have also constructed a control

path-tree based on test data t1 from which three seed tracks (the path between the root node

and the null node) are obtained, as shown in Fig. 4.23.

Because the symbolic path condition Ct1 implies test condition T1, i.e., Spre ∧ Ct1 ⇒ T1

where Spre := (x 6= 0), we can form the theorem

T1 ∧ Ct1 ∧Sta⇒ D1, that is,

x 6= 0∧ y 6= 0∧

xy > 0∧ Abs(x) ≤ Abs(y) ∧ Abs(x) > Abs(y− x)∧

4.2. Case Study 51

FIGURE 4.23: Results of running the program with test data t1.

r = y− x ∧ q = 1∧ y 6= 0

⇒ y = q · x + r ∧ Abs(r) < Abs(x) ∧ xr ≥ 0.

By replacing r with 1 and replacing q with y − x in the conclusion of the implication, re-

spectively, we simplify this theorem into the following:

x 6= 0∧ y 6= 0∧

xy > 0∧ Abs(x) ≤ Abs(y) ∧ Abs(x) > Abs(y− x)

⇒ Abs(y− x) < Abs(x) ∧ x(y− x) ≥ 0.

The theorem now involves only input variables and has been formally proved to be valid.

Therefore, the corresponding program path is also verified to be correct.

To verify other program paths, we generate one test data for each candidate path, respec-

tively. As a result, the following three new test data are generated:

t2 : y = 0∧ x = 2, satisfies y = 0.

t3 : y = 3∧ x = −2, satisfies y 6= 0∧ xy ≤ 0.

t4 : y = 3∧ x = 4, satisfies y 6= 0∧ xy > 0∧ Abs(x) > Abs(y).

To verify other program paths, do the similar thing to test data t2, t3, and t4, respectively.

In Fig. 4.24, we can see that a new test data t5 can be generated based on test data t3. After

completing the testing of using all the five test data, the control-path tree is completed and no

more new test data can be generated.

52 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

FIGURE 4.24: Apply SIT-SE to process Mod.

In summary, there are a total of 5 test data generated for the verification of five program

paths. Four test data (t1, t3, t4 and t5) are referred to functional scenario T1 ∧ D1 and one

test data (t2) is referred to functional scenario T2 ∧ D2. All the discovered program paths are

verified based on their theorems.

Different from these results, traditional concolic testing tool KLEE generates a total of 66

4.3. Experiment 53

test data for Mod according to our experience with the tool, much more than the proposed

method.

Now let us discuss how the SIT-SE can help uncover faults on a path. To this end, we first

inject some fault into the path of interest, and then explain how it helps identify the fault.

A fault on the first path. Suppose a fault is injected into the first path, such as modifying

Abs(x) ≤ Abs(r) to Abs(x) < Abs(r) in the code. Use the same first test data t1 to form a

different theorem:

x 6= 0∧ y 6= 0∧

xy > 0∧ Abs(x) < Abs(y) ∧ Abs(x) ≥ Abs(y− x)

⇒ Abs(y− x) < Abs(x) ∧ x(y− x) ≥ 0.

This theorem can be formally proved to be invalid by the Z3 prover. As opposed to this

result, KLEE incorrectly asserts t1 to be a successful test data by only confirming that this test

data satisfies the post-condition.

In addition, we can use the testing method to check the theorem. For instance, generate a

test suite like:

{y = −7∧ x = −5}, {y = 4∧ x = 4}, {y = 6∧ x = 3}.

We can see the first three test data (including t1) are not able to make the theorem false, but

the test data {y = 6∧ x = 3}makes the theorem to be invalid. This indicates that the SIT-SE is

able to effectively capture much information of a path and uncover faults without repeatedly

executing the faulty path.

4.3 Experiment

KLEE [23] is a well-known concolic testing tool that is commonly used for many researches

[88, 89, 90, 91]. Since KLEE supports assertions for specification-based testing and leads to

a per-path analysis like the SIT-SE, we mainly compare the performance of KLEE and the

proposed method in this experiment.

We employs the mutation testing in our experiment as the means for the comparison. Mu-

tation testing [92, 93] is used to design test data and measure the performances of existing

techniques. Some faults are injected into the original programs in advance and these modified

54 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

programs are known as program mutants. The faults are created by applying mutation opera-

tors to original programs, making syntactic changes to all kinds of programming languages

[94, 95, 96, 74]. For example, the mutation operator AOR describes an arithmetic operator re-

placement like replacing + with − in the original program. In our experiment, we selected

some faults that were made during implementation, and insert them into the correct versions

to make program mutants. The inserted faults reflect the effects of using traditional mutation

operators, including arithmetic operator replacement, boolean relation replacement, missing

of boolean subexpression, statement deletion, and swap of statements, as displayed in Table

4.1.

TABLE 4.1: Mutation operators used in the experiment.

Types of Bugs Mutation Operators
* The inserted faults Arithmetic Operator Replacement
has following features: Boolean Relation Replacement
a) cause functional bugs Missing of Boolean Subexpression
b) no crashes of programs Statement Deletion
c) no infinite loops Swap of Statements

Usually, a test data kills a program mutant if it makes the behaviour of the program mutant

abnormal against the original program. This general principle is specialized in our case that a

test data is regarded to kill a program mutant if the theorem for its path is proved to be invalid;

and a test data kills a mutant if any assertion is violated in KLEE. The test data that kills the

mutant is called failing test data and the corresponding generated path is called failing path;

otherwise, they are called successful test data and successful path, respectively.

We develop a prototype tool to implement the proposed method in Python for automating

the verification process in the experiment. But since the usability of the tool is not good enough

for general public to properly use our prototype tool, we believe that it is inappropriate to

publish it for now. But we will try to publish the tool in the future after it is developed to a

rather mature level. Both the SIT-SE and KLEE use the constraint solver Z3. Different from

KLEE working on LLVM bitcode, our tool works on the source code to facilitate quick and

flexible scripting.

4.3. Experiment 55

4.3.1 Preparation

We select 9 classic programs that implement various commonly used algorithms in most stan-

dard libraries (e.g., C++ standard library) for our experiments. These programs have different

features on inputs, outputs, the structure of the code and formal specifications, as shown in

Table 4.2 and in Table 4.3.

TABLE 4.2: Descriptions for programs under test

Programs Descriptions
Mod Get the remainder and quotient for 2 integers
Bsearch Binary search for array
BubbleSort Bubble sort for sorting array
HeapSort Heap sort for sorting array
QuickSort Quick sort for sorting array
Gcd_Stein Steins algorithm to find GCD for 2 integers
Dijkstra Algorithm to find the shortest paths between nodes
RedBlackTree The implementation of Red-Black Trees.

Check Red-Black Trees properties
on the operations of insertion and deletion.
Set operations for union,intersection,difference.

SetOp The code involves binary search, quick sort and
the check for several properties from set theory.

TABLE 4.3: The characteristics of programs under test

Programs Fucs S_Input S_Output
Mod 2 y,x:int r,q:int
Bsearch 1 v: array,x:int ind:int
BubbleSort 1 v: array v:array
HeapSort 3 v: array v:array
QuickSort 1 v: array v:array
Gcd_Stein 1 x,y:int r:int
Dijkstra 2 graph: 2-array dist:array
RedBlackTree 6 v: array bst: tree
SetOp 6 v1,v2:array v3:array

In Table 4.3, Fucs denotes the number of main functions involved in a program; S_Input

and S_Output denote the symbolized inputs and outputs, respectively; the left side of colon

“:” is variable and the right side of “:” is the type; and 2-array represents a two-dimensional

array.

56 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

For each specification, a program resulted from a signature-preserved implementation of

it is provided. The purpose is to ensure that all of the input and output variables used in the

specification are preserved in the program in order to facilitate the formation and verification

of the related theorems.

To evaluate the performance, three mutants are prepared for each program in the way that

the injected faults will not cause execution crash and infinite loops, since both our method and

the KLEE tool cannot manage those situations. We consider it reasonable to use 3 mutants

for each program because most programs are relatively small and all the 3 faults with each

being hidden in one or two statements are most likely to be made in practice. Additionally, all

the injected faults are collected from the mistakes that were committed during the process of

writing the programs by the programmers before our experiment.

4.3.2 Experimental Results

The experimental results are as follows.

FIGURE 4.25: Performance on finding faulty paths

Fig. 4.25 displays the comparison on the number of failing paths discovered by the two

methods. Each program label on the x-axis is surrounded by its own three mutants and the

4.3. Experiment 57

y-axis represents the number of failing paths. Based on that we can see the proposed method

is capable of identifying more faulty paths than KLEE. Moreover, KLEE only provides the

contents of the failing test data, but our method provides both the contents and the features (in

the form of theorems) of those faulty paths to help the tester clearly understand the locations

of bugs in the code.

Specially, KLEE fails to generate failing test data for the program RedBlackTree. Actually,

KLEE generates only one test data for each mutant that has a complex post-condition and data

structures. It seems that KLEE may not be able to cope well with branch conditions involving

some complex data structures.

FIGURE 4.26: Faulty paths rates

Fig. 4.26 exhibits the proportion of faulty paths to all the generated paths after using the

two methods. Compared to KLEE, the proposed method is better in recognizing faulty paths

when searching unchecked paths. Furthermore, KLEE can find few faulty paths for relatively

simple programs or cannot find any faulty paths for them (like the cases in BubbleSort and

Gcd_Stein).

For KLEE, each path condition is only used to generate one test data and the correctness of

a path is determined by whether or not such a test data satisfies the post-condition (through

58 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

assertions). Thus a faulty path can be mistakenly regarded as a correct one if the corresponding

test data is successful. This can be a reason that explains why KLEE found a small number of

failing test data.

By contrast, the path condition is further used in combination with the specifications to

make a theorem for more rigorous verification of the path correctness in our method. Thus, a

faulty path can be discovered even if the corresponding test data satisfies the theorem but a

constraint solver can prove this theorem to be invalid. For such case, the “successful” test data

is correctly regarded as failing by our method.

Furthermore, Fig. 4.27 and Table 4.4 show the comparison of both methods on the cost

of testing time. This evaluation experiment was repeated three times and the best results of

each method are recorded. Note that the testing time of the original correct program is also

displayed before the sequence of the mutants of each program for comparison. The result

shows that, our method can significantly reduce the testing time by KLEE when it comes to

deal with complex code structures and post-conditions. Specially, although the KLEE tool

rapidly completed the testing for program RedBlackTree, the test ended up generating only one

successful path for each mutant.

In most cases, the SIT-SE takes moderate time to generate relatively a smaller scale of test

suite that lead to the identification of more faulty paths. It is to sacrifice most time for ad-

vanced verification of each path while reducing heavy burden of dynamic executions due to

the disciplined path exploration strategy. This will be a big merit when testing larger pro-

grams in the real world. Moreover, the performance of the tool can be further improved by

optimizing the code in the future work.

4.3.3 Summary

The experimental results demonstrate that our method is able to generate more different fail-

ing test data with moderate cost of time by exploring relatively small scale of program paths.

It can also provide more information by means of theorems of the existing bugs for process

repairing. The result further shows that the proposed method can work well on both simple

and complicated programs compared with the KLEE tool.

4.3. Experiment 59

FIGURE 4.27: Testing time by the two methods

TABLE 4.4: Testing time by the two methods (Details).

Programs v0 v1 v2 v3
Mod 8.61/396.64 11.14/4.73 7.61/90.66 9.72/377.90
Bsearch 1.30/0.52 0.52/0.29 0.53/0.37 0.25/0.25
BubbleSort 0.50/0.17 0.48/0.17 0.84/0.17 0.56/0.17
HeapSort 0.72/0.32 0.95/0.47 0.84/0.23 0.86/0.47
QuickSort 1.16/0.25 0.77/0.18 1.06/0.18 1.09/0.17
Gcd_Stein 9.08/1300.10 4.34/3.37 8.02/1426.33 6.02/1672.69
Dijkstra 3.52/2.52 2.11/0.53 4.09/1.14 0.39/0.57
RedBlackTree 104.88/58.22 18.625/28.34 94.09/44.62 73.38/33.90
SetOp 4.86/1.91 0.68/2.20 5.30/1.73 5.13/1.11
a/b. a: the proposed method; b: the KLEE method,
vi: version i of the program.

Apart from the above good points, our method is of flexibility in controlling the check-

ing level for each control location by adding simple annotations, in contrast to KLEE. That can

minimize the burden of path explorations and lead to an incremental testing. Also, our method

is friendly to testers since it manipulates all the symbolic expressions in human-readable forms

and the theorems are in Z3-style mathematical forms or integrated with programming lan-

guage. Unlike our method, the KLEE tool performs the symbolic execution on LLVM bit-code

60 Chapter 4. Grey-Box Testing: The SIT-SE for Bug Detection

(not easily readable to humans) and consequently the way of negations for conditions to ex-

plore paths is quite different from the proposed method.

As formal specifications are not commonly used in most industries, the good experimental

results for the proposed method also encourage programmers to write specifications for bug

detection in practice. This can also help save testing time when the code is often modified

based on the same specification to improve its efficiency.

4.4 Threats to Validity

We admit that the programs and mutants used in the experiments are of small scales. How-

ever, It is hard to find the real big software systems with both available code and the related

formal specifications of pre-post style for every main process. This difficulty hinders the use of

both methods properly and the comparison on their performance. We select a small but classic

set of programs that differ from each other in several aspects. These programs cover various

features of inputs, outputs, the code structures and also various complex formal specifications.

The performance of the proposal can be further evaluated by a well-developed tool to support

it in the future.

Moreover, the experimental results have shown that KLEE lacks the ability to do well with

more complicated branch conditions and specifications for singular or multiple processes. For

this reason, comparison of both methods on large scale programs cannot be done at present.

Since the experiments are all conducted in almost full automation for both methods, we

have significantly reduced the human interference. It is a threat to validity that the formal

specifications (written in SOFL language) are transformed to the program language in test

by humans. We try to limit the threat by carefully implementing the program from the corre-

sponding formal specification and all of the programs are well reviewed to ensure their quality

before they are used for the experiment.

4.5 Conclusion

We propose a specification-based incremental testing method with symbolic execution (SIT-

SE) to automatically verify the correctness of all the discovered representative program paths.

4.5. Conclusion 61

The approach is characterized by providing a grey-box testing resulted from an appropriate

integration of formal specifications and the corresponding programs as well as an incremental

testing strategy with flexibility to limit the cost of time.

In this approach, due to the formed theorem for encoding the correctness of the entire pro-

gram path, the BSC algorithm adopted in the SIT-SE can considerably reduce the complexity

of the path exploration, particularly for the program with complex nested loops.

Compared with the traditional symbolic execution techniques with SBT, our method SIT-

SE has made new progresses by 1) offering a rigorous mechanism for proving the correctness

of program paths, 2) and adding checking levels on branch conditions, 3) as well as developing

the BSC algorithm to reduce the burden on exponential path exploration.

63

Chapter 5

TRIACFL: Triple Interaction-Based

Fault Localization

In this chapter, a new method called TRIACFL (Triple Interaction-Based Fault Localization), is

proposed to integrate the SIT-SE into further fault localization.

5.1 Principle of TRIACFL

To make use of the information on the correctness of program paths provided by the SIT-SE in

fault localization, we propose a new fault localization approach, TRIACFL (Triple Interaction-

based Fault Localization), featuring the integration of the three modules, the SIT-SE method,

an elementary fault location generation algorithm, and an attentional shift-based review. In

TRIACFL, four main steps are taken: 1) apply the SIT-SE to the implementation under test with

the related formal specification to generate a test suite and symbolic paths with verification

results; 2) if there is no false path found, finish the whole fault localization, otherwise, perform

the elementary fault location generation algorithm on the results from the SIT-SE to produce a

sequence of suspicious locations (statements and blocks); 3) proceed the attentional shift-based

review to locate faults, mark the checked positions, as well as remove the faults if necessary;

4) go to 1) or 2) according to different situations.

Figure 5.1 shows the general framework of TRIACFL with more details. The tester, and

three main modules including the SIT-SE (Module 1), elementary fault location generation al-

gorithm (Module 2), and attentional shift-based review (Module 3, separated to 3.1 and 3.2),

64 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

FIGURE 5.1: Framework of TRIACFL

collaborate closely with each other in a flexible way. The role of Module 1 is to test the pro-

gram and send error information to Module 2. Module 2 analyzes the discovered false paths,

and primitively produces a sequence of suspicious locations including branch conditions and

code blocks. If the reviewer makes a prediction about the number (at least one) of faults that

the program may contain, Module 3.1 is invoked with an expected number of faults, other-

wise, Module 3.2 is executed. Both Modules 3.1 and 3.2 involve efforts made by the reviewer.

The attention shifting mechanism in the review, taking as an argument the sequence of suspi-

cious locations, would guide the reviewer to navigate the program to inspect most suspicious

statements meanwhile mark checked positions for exclusion. In Module 3.1, if the reviewer

5.1. Principle of TRIACFL 65

finds the expected number of faults, the faults found in locations are supposed to be removed

and the revised program is to be tested again in Module 1. Otherwise, Module 2 is executed

with the updated exclusion to produce a new sequence of suspicious locations. On the other

hand, if no prediction is made, Module 3.2 suggests that a fault be removed once it is found

by the reviewer, then the revised program will be sent again to Module 1. Finally, the fault

localization will be over when there is no false path found by Module 1.

Due to the involvements of the prediction, inspection and fixing, these modules can be

combined in mosaic ways. The circulation between Modules 2 and 3.1 (named circle 1) contin-

ually updates the sequence of suspicious locations by analyzing the same set of false symbolic

paths form Module 1 and the iteratively increased exclusions for checked positions, until all

the expected faults are found or no more fault can be found in this circle. As opposed to circle

1, the circulation between Modules 1, 2 and 3.2 (named circle 2) advocates pinpointing and re-

moving the faults one by one, using different sets of false symbolic paths produced by Module

1. Both circulations can intertwine with each other through the prediction of flexibility from

the reviewer. In circle 1, the fault localization may be of difficulty due to the mixed information

of multiple faults, while in circle 2 extra costs will increase due to frequent executions of the

program. In order to balance the trade of two circles, the prediction, made from the reviewer’s

experience or designed prediction strategies, can play an important role in coordinating both

circles.

Spectrum-Based Fault Localization (SBFL) technique is one of the most popular approaches

in this area. It can be automated to produce a list of ranked suspicious elements (usually, state-

ments) by analyzing all the elements along paths. However, there may be too many statements

at the same level of suspiciousness, which make the reviewer take much effort to inspect too

many statements until pinpoint the faults. TRIACFL mitigates the burden of such labor costs

because of the interaction between these modules. We will later give the descriptions for the

elementary fault location generation algorithm, the attentional shift-based review, and the two

main circles.

66 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

5.1.1 Elementary Fault Location Generation Algorithm

We categorize suspicious locations into two types, branch conditions and conditional blocks.

For convenience, these locations are of following forms.

Definition 5.1.1 (Suspicious condition). A suspicious condition is designated as (lC,), where

lC is the line number of symbolic condition C, indicating that condition C at line lC may contain

some fault.

Definition 5.1.2 (Suspicious conditional block). A suspicious conditional block can be 1) des-

ignated as a basic block (lC, I), where I = 1 if the symbolic condition C is evaluated to true or

I = −1 otherwise, indicating that all the statements in “then” (I = 1) or “else” (I = −1) branch

of condition C at line lC may contain faults; or it can be 2) designated as [(lCi , Im), ..., (lCj , Ik)],

the overlapped area between basic blocks.

The two types of fault locations play different roles in our approach. A suspicious code

block, usually containing multiple suspicious lines, works as a guide to draw attention to the

block after a certain branch choice, rather than requires an instant close inspection for all these

suspicious lines. Such a code block (C, I) would become of smaller scale when the condition

C locates more closely to the end of the program. Different from that of suspicious blocks, a

suspicious condition calls for a close inspection of a certain line, which literally leads to take

moderate effort.

A sequence of branch conditions (shorten as conditions) depicts the feature of input data

along a path, conveying the abstract idea of the design from the beginning of the program.

The faults right in the conditions can deteriorate substantial logic of the implementation, thus

they influence the justifiability of the statements under these conditions. In our approach,

suspicious branch conditions are supposed to be carefully checked by the order of their oc-

currences in executions, in order to ensure that the design of the structure is correct from up

to bottom. Conversely, conditional code blocks (shorten as code blocks), each a set of all the

statements after a certain condition affecting the computation of the output in detail, are in-

spected in a bottom-up way. This is because suspicious code blocks near the end of executions

are of smaller scale of statements as well as are closer to the incorrect outcome against the

specification.

5.1. Principle of TRIACFL 67

We introduce two definitions before the description of the elementary fault location gener-

ation algorithm. Firstly, recall that a branch sequence from a symbolic execution of program is

defined as:

@l1(1), · · ·, @lm(1).

Where element @li(1) is the control location li at the first occurrence along the program

path, accompanied by a sign @, either + or -, indicating that the condition in li is evaluated

to true(+) or false(-). Besides, such a @li(1) can be symbolized to a predicate (over symbolic

inputs), the symbolized condition in li along a certain path.

Then two definitions are given as follows.

Definition 5.1.3 (Reduced path-condition array). A reduced path-condition array RConds :=

(c1, ..., ci, ..., cn), where each ci (i = 1, ..., n) is derived from symbolizing the ith element of a

branch sequence in a symbolic execution.

Definition 5.1.4 (Reduced path array). A reduced path array PVec := (v1, ..., vi, ..., vn), com-

puted from a reduced path-condition array RConds := (c1, ..., ci, ..., cn), where vi = 1 if ci is

evaluated to true, and vi = −1 if ci is evaluated to false.

Each reduced path array marks some key choices of branches along a symbolic path. All

these arrays, together with the information of theorems for paths, are used to find suspicious

fault locations.

Suspicious fault positions are checked and put in a sequence by the orders of occurrence

along execution paths. In the process of finding a sequence of suspicious locations ordered by

descending suspiciousness, several rules involve in making the sequence in the algorithm as

follows.

1. A suspicious location excluded from the inspection should not be put in the sequence.

2. If a condition is not considered to be correct, the condition itself as a suspicious location

should be put in the sequence and its related basic blocks are no longer considered to be

put in the sequence.

3. If a suspicious code block (Cr, 1) is found right behind the suspicious code block (Cl , Il)

in the current sequence, remove (Cl , Il) from the sequence and put (Cr, 1) in the se-

quence.

68 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

4. If a suspicious code block (Cr,−1) is found right behind the suspicious code block (Cl , Il)

in the current sequence, keep both (Cl , Il) and (Cr,−1) in the sequence.

5. If a suspicious code block (Cr, Ir) is found right behind a suspicious condition in the

current sequence, keep it in the sequence.

Rule 1) ensures that a suspicious location that is excluded by the tester should not be put

in the sequence. Rule 2) suggests that a condition that is not considered to be correct will be

inspected prior to the basic blocks of this condition. How to define an incorrect condition is

later described in detail. Rule 3) is used to draw attention to the code block of smaller scale that

is close to the incorrect outcome of the program. Particularly, if (Cr, 1) is nested inside (Cl , Il),

it is reasonable to first look into (Cr, 1), near the end of the execution and with fewer suspicious

lines, rather than check the whole lines inside (Cl , Il). Rule 4) is used to make a clear boundary

for (Cr,−1) by keeping (Cl , Il) in the sequence, because “else” part of a condition is sometimes

not explicitly specified by programmers. Rule 5) keeps both the suspicious condition and code

block in the sequence if they are next to each other.

The fault localization algorithm with the SIT-SE is given in Algorithm 1, where all the

rules are implemented in a well-organized structure. After checking all the positions along

faulty paths, the algorithm produces a sequence of suspicious fault locations Result, in which

each location features a dictionary of four elements. Two types of fault locations share first

three features in the dictionary: “Fault”, type of fault locations (a condition or block), “line”,

line number of branch condition, “Info”, reduced path-condition. Additionally, a suspicious

condition is with the forth feature “ToCheckLine”, suggesting the way to check, while suspi-

cious block is associated with other feature “ThenOrElse”, suggesting it be a “then” or “else”

branch. The value of its “ToCheckLine” will be assigned “self&up”, which suggests that a re-

viewer should carefully check this condition itself and meanwhile pay attention to some few

lines upon the condition (“up” region). This is because the code before the condition may af-

fect the correctness of this condition. Note that there is no certain restriction to “up” region

of a suspicious condition. The primary work on these suspicious conditions is to inspect the

conditions themselves, after which a reviewer can pay attention to the code surrounding the

suspicious conditions if no fault is found in conditions.

5.1. Principle of TRIACFL 69

Algorithm 1 Elementary Fault Location Generation
Path:=[line, TorF] is the information for a path from SIT-SE. Where line is a unique identity
number (line number) for each path, and TorF (valued True or False) indicates the verification
result for the path.
RConds, a reduced path-condition array for a specific path.
PVec, a reduced path array for a specific path.
ExcluLines, an external list of excluded lines.
ExcluBlocks, an external list of excluded blocks.
INPUT:

FTs, the results obtained from SIT-SE, a list of triple (Path,RConds,PVec).
OUTPUT:

Result, a list of suspicious fault locations.

1 Elementary_Faul t_ locat ion_Generat ion (FTs) :
2 Resul t = []
3 v i s i t e d = [] #
4 f a l s e _ l i n e s = [] # i n c o r r e c t s u s p i c i o u s c o n d i t i o n l i s t
5 for l i n e , TorF , RConds , PVec in FTs :
6 # Check l i n e s on t h e f a u l t y p a t h s
7 i f TorF i s Fa lse :
8 for i in range (len (PVec)) :
9 i f (l i n e [i] not in v i s i t e d) and (l i n e [i] not in f a l s e _ l i n e s) :

10 i f l i n e [i] not in ExcluLines :
11 i f i s_Cond_fa lse (RConds [i] , PVec [i] , FTs) :
12 Resul t . append ({ ’ Faul t ’ : ’Cond ’ , ’ l i n e ’ : l i n e [i] ,
13 ’ In fo ’ : RConds [i] , ’ ToCheck ’ : ’ s e l f&up ’ }
14 f a l s e _ l i n e s . append (l i n e [i])
15 v i s i t e d . append (l i n e [i]) # l i n e v i s i t e d
16 i f (l i n e [i] not in f a l s e _ l i n e s) and
17 ((l i n e [i] , Pvec [i]) not in v i s i t e d) and
18 ((l i n e [i] , Pvec [i]) not in ExcluBlocks) :
19 i f Pvec [i] > 0 :
20 i f Resul t != [] and Resul t [− 1] [" Faul t "] == " Block " :
21 Resul t . pop ()
22 Resul t . append ({ ’ Faul t ’ : ’ Block ’ , ’ l i n e ’ : Line [i] ,
23 ’ In fo ’ : RConds [i] , ’ ThenOrElse ’ :V[i] })
24 e lse :
25 Resul t . append ({ ’ Faul t ’ : ’ Block ’ , ’ l i n e ’ : Line [i] ,
26 ’ In fo ’ : RConds [i] , ’ ThenOrElse ’ :V[i] })
27 e lse :
28 Resul t . append ({ ’ Faul t ’ : ’ Block ’ , ’ l i n e ’ : Line [i] ,
29 ’ In fo ’ : RConds [i] , ’ ThenOrElse ’ :V[i] })
30 v i s i t e d . append ((l i n e [i] , Pvec [i])) # b l o c k v i s i t e d
31 return Resul t

70 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

The suspicious fault locations are defined by a sequence Result of conditions and basic

blocks that are ordered by their descending suspiciousness. More details in dealing with

Result are given in the process of human review.

In this algorithm, function is_Cond_false invoked at line 11 for Rule 2) is used to verify

whether a branch condition on faulty paths is correct. This verification is mainly based on the

following assumption.

Assumption 1 (Correct condition). A condition itself is considered to be correct if all the discovered

paths going along ’then’ (or ’else’) branch of this condition have been verified to be correct by theorems

of the SIT-SE, otherwise the correctness of the condition remains undetermined.

As theorems are composed of branch conditions and specifications, their correctness can be

deteriorated by any faulty branch conditions. On the other hand, a suspicious branch condi-

tion can be temporarily ruled out of doubt if itself (or its negation) makes all the corresponding

paths correct. Note that such a branch condition can still be skeptical in a suspicious block even

if it is not regarded as a singular suspicious condition.

In is_Cond_false, a symbolic condition on a false path can be identified as a suspicious one

if its negation has occurred in a false path. We call it that this condition together with its

evaluation value matches a false path. The pseudocode of is_Cond_false is given as follows.

1 # pre − c o n d i t i o n : c i s on a f a l s e pa th

2 i s_Cond_fa lse (c , v , FTs) :

3 # l o o k a t t h e o p p o s i t e branch

4 re_v = −v

5 Flag = Fa lse

6 for _ , TorF , RConds , PVec in FTs :

7 i f TorF i s Fa lse :

8 for item in zip (RConds , Pvec)

9 # i f (c , v) Matches a f a l s e pa th :

10 i f (c , re_v) == item :

11 f l a g = True

12 return f l a g

13 return Flag

5.1. Principle of TRIACFL 71

Since the proposed algorithm mainly works on the reduced path-conditions for all the

paths, the complexity of the computation depends on the number of branch conditions located

in the code and the number of examined paths generated from SIT-SE. Fortunately, both are

relatively small against the number of total possible paths and the total lines of codes when

the softwares under the test are of great complex and large scale.

5.1.2 Attentional Shift-Based Review

As mentioned previously, suspicious conditions and code blocks constitute a sequence of pos-

sible fault locations. They play different roles in the review process: suspicious conditions are

mainly used for checking specific lines, while blocks are mainly used for attention shifting. We

introduce two kinds of review, one is attentional shift-based review and exclusion in Module

3.1, another is attentional shift-based review and fixing in Module 3.2, respectively.

In Algorithm 2 of attentional shift-based review and exclusion, the elementary fault location

generation algorithm first suggests a sequence of suspicious fault positions, then Review_Exclu_phase

comes to further check the code with a prediction (expected number of faults) and give feed-

back to Algorithm 1. Repeatedly, Algorithm 1 returns a new sequence of suspicious ones with

the feedback, and again calls for a review process. This kind of interaction aims to continually

shrink the scale of suspicious positions and guide a more precise analysis for the cause of the

faults within moderate effort.

The suspicious locations in Result is scanned and checked sequentially. When it comes

to a suspicious block, the block is supposed to be carefully inspected by the reviewer in

inspect_line1 if it is not excluded and can be straight-checked from straight_check. A block is

called straight-checked if the body of the block only contains unchecked simple assignments.

This kind of block is of simple form without conditional branches inside, thus it relieves

the stress of careful inspection. Otherwise, the block is used for attention shifting that re-

quires no inspection for its whole body. Different from suspicious blocks that are usually

used for orienting attention, suspicious conditions are supposed to be checked immediately

due to their short form of fewer lines. In inspect_line1, the review finishes if all the ex-

pected number of faults are found. The costs for all the faults are recorded in a dictionary

72 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

Algorithm 2 Attentional Shift-Based Review and Exclusion (Circle 1)
ExcluLines, an external list of excluded lines.
ExcluBlocks, an external list of excluded blocks.
INPUT:

Result, a list of suspicious fault locations.
Expected_NumOf_Fault, the expected number of faults (from the prediction).

OUTPUT:
FaultCosts, an external dictionary of form {FAULT_LOC: Times,...}.

1 ToTalCost = 0
2 Times = 0
3 Num_fault = 0
4 Review_Exclu_phase (Result , Expected_NumOf_Fault) :
5 for susLoc in Resul t :
6 i f susLoc i s a Block :
7 i f susLoc not in ExcluBlocks and
8 s t r a i g h t _ c h e c k (susLoc) :
9 for l i n e in susLoc . body :

10 i n s p e c t _ l i n e 1 (l i n e)
11 # i n s p e c t t h e c o n d i t i o n (head) in t h e b l o c k
12 i n s p e c t _ l i n e 1 (susLoc . head . cond)
13 put susLoc in ExcluBlocks
14 e lse :
15 s h i f t a t t e n t i o n to susLoc
16 e lse : # a c o n d i t i o n
17 i n s p e c t _ l i n e 1 (susLoc)
18

19 new_Result = Elementary_Fault_Locat ion_Generat ion (Resul t)
20 i f new_Result d i f f e r s from Resul t :
21 Review_Exclu_phase (new_Result , Expected_NumOf_Fault)
22 e lse :
23 EXIT Review_Exclu_phase
24

25

26 s t r a i g h t _ c h e c k (susLoc) :
27 Ignore excluded l i n e s and blocks in susLoc
28 return True i f input (i s _ p l a i n) e lse Fa lse
29

30 i n s p e c t _ l i n e 1 (l o c) :
31 i f l o c not in ExcluLines :
32 i f l o c i s input (f a u l t y) : # by human
33 Num_fault += 1
34 Faul tCosts . append ({ l o c : Times + 1})
35 i f Num_fault == Expected_NumOf_Faults :
36 ToTalCost = sum(Faul tCosts . i tems ())
37 put l o c in ExcluLines
38 END Review_Exclu_phase
39 e lse :
40 Times = 0
41 put l o c in ExcluLines
42 e lse :
43 put l o c in ExcluLines
44 Times += 1

5.1. Principle of TRIACFL 73

FaultCosts = {FAULT_LOC : Times, ...}where Times for each fault FAULT_LOC is the cost of

inspection for lines between the previous recognized fault and the current recognized fault.

When it comes to evaluate the performance of our approach, we mainly consider the cost

of finding all the faults, which is influenced by the positions of these fault locations in the

sequence Result. We record the time cost in Times for each fault once the fault is found. The

number of suspicious locations and statements will be counted into Times until a fault loca-

tion is encountered. For the careful inspection for a block, the head of the block, a condition,

is supposed to be checked after the entire body of the block is checked. In the counting, any

suspicious block will be ignored if it is rather to draw attention than to require a careful in-

spection (i.e., every statements inside the block are carefully checked). The total time cost of

finding all the faults for a program mutant is calculated by the formula as follows.

In the proposed approach TRIACFL:

TotalCost = ∑ f a∈FAULT_LOCS FaultCost[f a]

Since Algorithm 2 manipulates Result based on the same set of false paths from the SIT-SE,

it saves the execution cost of the program during the fault localization.

Another kind of review in Module 3.2, called attentional shift-based review and fixing, is de-

scribed in Algorithm 3.

The procedures in this review are similar to Algorithm 2, except the inspection procedure

inspect_line2. In inspect_line2, a fault is supposed to be removed once it is found. After fixing

the faulty line, we again apply the SIT-SE (Module 1) and elementary fault location generation

algorithm (Module 2) to the revised program and obtain new Result for the review. The circle

of Modules 1, 2 and 3.2 is repeatedly executed, until no more new false path found in Module

1. This kind of review requires frequent executions for the program when there are more than

one fault in the program. Despite such execution cost, we can benefit from that it provides

more precise information of fault locations by removing the faults one by one.

Next, we use a case study to demonstrate how TRIACFL works, as well as compare the

approach with the out-of-the-state fault localization technique called spectrum-based fault lo-

calization (SBFL). The case study is separated to two parts. First we experiment with several

mutants of which each with single fault, then we conduct a multiple fault experiment to show

how the approach effectively pinpoint all the faults.

74 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

Algorithm 3 Attentional Shift-Based Review and Fixing (Circle 2)
CODE, SPECS, the code under test and the related specification.
INPUT:

Result, a list of suspicious fault locations.
OUTPUT:

FaultCosts, an external dictionary of form {FAULT_LOC: Times,...}.

1 ToTalCost = 0
2 Times = 0 # Time c o s t f o r e a c h f a u l t t o be found
3

4 Review_fix_phase (Resul t) :
5 # no new f a u l t from SIT−SE
6 while (no_new_fault_found) :
7 Review_fix (Resul t)
8

9 Review_fix (Resul t) :
10 For susLoc in Resul t :
11 I f susLoc i s a Block :
12 I f susLoc not in ExcluBlocks and
13 s t r a i g h t _ c h e c k (susLoc)
14 for l i n e in susLoc . body :
15 i n s p e c t _ l i n e 2 (l i n e)
16 i n s p e c t _ l i n e 2 (susLoc . head . cond)
17 put susLoc in ExcluBlocks
18 e lse :
19 s h i f t a t t e n t i o n to susLoc
20 e lse : # a c o n d i t i o n
21 i n s p e c t _ l i n e 2 (susLoc)
22

23 # i f no bugs d e t e c t e d by SIT−SE , do :
24 ToTalCost = sum(Faul tCosts . i tems ())
25 END_ALL
26

27 i n s p e c t _ l i n e 2 (l o c) :
28 i f Loc not in ExcluLines :
29 i f l o c i s input (f a u l t y) : # by human
30 Faul tCosts . append ({ l o c : Times + 1})
31 Times = 0
32 put l o c in ExcluLines
33 Fix l o c in the CODE # by human
34 FTs = SIT_SE (CODE, SPECS)
35 Resul t = Elementary_Fault_Locat ion_Generat ion (FTs)
36 Review_fix_phase (Resul t)
37 e lse :
38 put l o c in ExcluLines
39 Times += 1

5.2. Case Study 75

5.2 Case Study

In this section, we apply TRIACFL to program mutants with single fault. Since there is only

one fault in each mutant, we perform Algorithm 2 in the work.

Again recall that process Mod is to find the quotient q and remainder r from dividing y by

x. The function Abs computes the absolute value of an input, would be invoked by Mod. Here

is the implementation of Mod and Abs in programming language Python.

1 def Mod (y , x) :

2 r = y ;

3 q = 0 ;

4 i f y ! = 0 :

5 i f x * y > 0 :

6 while Abs (x)<=Abs (r) :

7 r = r − x

8 q = q + 1

9 e lse :

10 while x * r < 0 :

11 r = r + x

12 q = q − 1

13 return r , q

14 def Abs (x) :

15 i f x >=0:

16 return x

17 e lse :

18 return −x

There is a total of five control locations that locate in line 4, 5, 6, 10 and 15, respectively.

4. if x>=0: # in Mod

5. if y!=0: # in Mod

6. if x*y > 0: # in Mod

10. while Abs(x)<=Abs(r): # in Mod

15. while x*r < 0: # in Abs

76 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

As the bottom-up verification process in SIT-SE suggests, the low-level process Abs is sup-

posed to be tested prior to that in Mod. Since Abs is of a simple structure, we suppose Abs

has been checked and its correct version is used in Mod under test. Therefore the code in Abs

is always excluded from suspiciousness, although they will participate in the derivation of

symbolic paths in testing Mod.

5.2.1 Step-by-Step Analysis

To work on fault localization, we start with two versions of Mod (also called program mutants

[97]) by injecting faults into two types of positions, a condition and an assignment in a block,

respectively. Two program mutants are shown in Table 5.1.

TABLE 5.1: Two program mutants for fault localization

Mutants Line (No.) Fault in statements
1 6 while Abs(x) < Abs(r):
2 8 q = q - 1

We obtain the first program mutant by modifying the statement at line 6 “while Abs(x) <=

Abs(r):” to the wrong one “while Abs(x) < Abs(r):”.

First of all, apply the SIT-SE method to mutant 1, and all the generated test cases are dis-

played in Table 5.2. Table 5.3 shows the related information of paths, where the column Th

represents the validity of theorems, and T and F denote true and false, respectively.

TABLE 5.2: Test data generated for mutant 1 by SIT-SE

Path Test data: (y,x)
1 (7,-2)
2 (0,1)
3 (-6,-16)
4 (7,6)
5 (1,1)
6 (-8,-3)

From the results of bug detection, we can see all the paths with incorrect theorems have

passed through the faulty statement “while Abs(x) < Abs(r)”.

Four incorrect paths with false theorems are founded, and all the underlined statements

from the four faulty paths may contain some faults, as displayed in Figure 5.2. Since Abs

5.2. Case Study 77

TABLE 5.3: The results by applying SIT-SE to mutant 1

Path RConds PVec Th
1 (y! = 0, x ∗ y > 0, x ∗ y < 0) (1, -1, 1) T
2 (y! = 0,) (-1,) T
3 (y! = 0, x ∗ y > 0, x >= 0,−x < −y) (1, 1, -1, -1) F
4 (y! = 0, x ∗ y > 0, x >= 0, x < y) (1, 1, 1, 1) F
5 (y! = 0, x ∗ y > 0, x >= 0, x < y) (1, 1, 1, -1) F
6 (y! = 0, x ∗ y > 0, x >= 0,−x < −y) (1, 1, -1, 1) F
Note: y! = 0, x ∗ y > 0,−x < −y, x < y, x ∗ y < 0 is from lines
4, 5, 6, 6, 10 in Mod, respectively; x >= 0 is from line 15 in Abs.

has been excluded from suspiciousness, there are actually 7 statements that probably contain

faults.

FIGURE 5.2: Incorrect paths in mutant 1 by SIT-SE

In order to further narrow down the scale of suspicious statements, we apply the proposed

fault localization algorithm to these results from SIT-SE.

Initially, the sequence of suspicious fault locations Result is set to be empty.

Start with the path 3 that has a false theorem. The first element of its reduced path-

condition array RConds is y! = 0 from line 4 in Mod. According to the related reduced path

array PVec, we can see that PVec[0] = 1, thus “then” branch of y! = 0 that is on the incor-

rect path would be suspicious. In Algorithm 1, either a condition itself or some branch of the

78 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

FIGURE 5.3: Fault localization for mutant 1

condition (a block) is put in the sequence of suspicious fault locations. The correctness of con-

dition y! = 0 is supposed to be checked by is_Cond_ f alse. After following the instruction from

Match, we can find that “else” branch of y! = 0 is not on any incorrect paths, due to the fact

that only path 2 contains this branch and it is with a true theorem. In addition, Result is empty,

and y! = 0 is not a condition that has been executed for more than once. Therefore, y! = 0 is

not a suspicious condition but “then” branch of y! = 0 is supposed to be put in the sequence.

This means that, Result:= [{’Fault’: ’Block’, ’line’:4, ’Info’:y! =0, ’ThenOrElse’:1}].

Next, the second condition on path 3 to check is x ∗ y > 0 at line 5 in Mod. The analysis for

this condition is almost the same as that for y! = 0. Because all the paths (only path 1 in this

case) that have passed through “else” branch of this condition are correct, x ∗ y > 0 is not seen

as a single faulty condition and the block (x ∗ y > 0, 1) is supposed to be put in the sequence.

5.2. Case Study 79

In the meantime, the previous block in the sequence should be removed according to Rule 3).

Thus the attention on the code can be drawn to a smaller block in the review process. Now,

we have Result:= [{’Fault’: ’Block’, ’line’:5, ’Info’:x ∗ y>0, ’ThenOrElse’:1}].

The third condition on path 3 is x >= 0 that is from function Abs. Since Abs has been

excluded from suspiciousness, here comes to check the next condition −x < −y on path 3.

This time path 6 with a false theorem is found to pass “then” branch of −x < −y, thus −x <

−y as a suspicious condition is put in the sequence. We have

Result:= [{’Fault’: ’Block’, ’line’:5, ’Info’:x ∗ y>0, ’ThenOrElse’:1},

{’Fault’: ’Cond’, ’line’:6, ’Info’:-x < -y, ’ToCheck’: ’self&up’}].

After all the conditions on path 3 have been checked, we turn to check incorrect path 4.

Since the first three conditions on this path are the same as those on path 3 and have been

checked, just skip to check the forth condition x < y at line 6. However, the condition−x < −y

at the same line has been put in the sequence, thus condition x < y at line 6 is not to be

inspected and Result remain unchanged.

Figure 5.3 describes key steps of fault localization.

The elementary fault location generation algorithm gives one suspicious block and one

suspicious condition. Although the block (′y! = 0′, 1) is the head of Result, its main role is

to shift the attention. In the human review process, the actual careful inspection order for the

suspicious fault locations is shown in Figure 5.4. In fact, the actual fault locates in the condi-

tion “while Abs(x) < Abs(r):” at line 6 in Mod, which would be removed after the reviewer

carefully inspect it.

FIGURE 5.4: Review process: the inspection order for mutant 1

To sum up, in our approach, firstly, the SIT-SE method detected a total of 4 incorrect paths

with 7 suspicious statements; then the elementary fault localization algorithm found 2 suspi-

cious fault locations by mainly checking 3 symbolic conditions on 1 incorrect paths; finally,

80 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

the human review process suggested line 6 (with two suspicious conditions), where the actual

fault locates, be the first one for careful inspection.

To make program mutant 2, we insert a fault into the original program by modifying the

assignment “q=q+1” in line 8 to “q=q-1”. Then we apply the interactive approach to mutant

2, showing how the approach finds the fault that is in a block but not in the branch condition.

The results of bug detection by applying SIT-SE to mutant 2 are displayed in Table 5.4 and

Table 5.5.

TABLE 5.4: Test data generated for mutant 2 by SIT-SE

Path Test data: (y,x)
1 (6,-2)
2 (0,1)
3 (-3,-5)
4 (1,1)
5 (2,4)
6 (-2,-1)

TABLE 5.5: The results by applying SIT-SE to mutant 2

Path RConds PVec Th
1 (y! = 0, x ∗ y > 0, x ∗ y < 0) (1, -1, 1) T
2 (y! = 0,) (-1,) T
3 (y! = 0, x ∗ y > 0, x >= 0,−x <= −y) (1, 1, -1, -1) T
4 (y! = 0, x ∗ y > 0, x >= 0, x <= y) (1, 1, 1, 1) F
5 (y! = 0, x ∗ y > 0, x >= 0, x <= y) (1, 1, 1, -1) T
6 (y! = 0, x ∗ y > 0, x >= 0,−x <= −y) (1, 1, -1, 1) F

There are two incorrect path 4 and path 6 with false theorems. The faulty paths made of

underlined statements are described in Figure 5.5. Similar to the case of mutant 1, there are

totally 7 statements that may contain the fault.

In order to reasonably further analyze all these paths and their theorems, we apply the

proposed fault localization algorithm to these false paths. The algorithm mainly works on the

two faulty theorems and their paths.

The procedure of applying the algorithm is described in Figure 5.6.

Because of Rule 3), the previous suspicious blocks in the sequence are removed, thus finally,

Result:= [{’Fault’: ’Block’, ’line’:6, ’Info’:-x <= -y, ’ThenOrElse’:1}. This suspicious block is

actually where the fault “q=q-1” locates, which is also the first one to be inspected in the

human review process, as shown in Figure 5.7.

5.2. Case Study 81

FIGURE 5.5: Incorrect paths in mutant 2 by SIT-SE

To sum up, in the interactive approach, firstly, the SIT-SE method detected a total of 2 incor-

rect paths with 7 suspicious statements; then the attentional shift-based review together with

the fault location generation algorithm found 2 suspicious fault locations by mainly checking 4

symbolic conditions on 2 incorrect paths; finally, the human review process suggested a block

starting from line 6, where the actual fault locates, be the first one for careful inspection. By

using the approach, 7 suspicious statements found by the SIT-SE are reduced to only 2 state-

ments. In the human review process, both suspicious statements are supposed to be inspected

and the faulty one to be fixed.

5.2.2 Experimental Result with Single Fault

To evaluate the performance of our algorithm for fault localization, we compare it with the cur-

rent technique of spectrum-based fault localization integrating with the SIT-SE (simply called

SBFL-SSE).

For SBFL-SSE, 1) all the test data are generated the same way of the SIT-SE; 2) the pass/-

failed information of a test data is determined by the validity of the related theorem, that is, a

test data is failed if its theorem is proved to false or otherwise the test data is passed; we use

three popular ranking metric Tarantula [54], Ochiai [56] and Dstar [98] to calculate the suspi-

ciousness score for statements.

82 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

FIGURE 5.6: Fault localization for mutant 2

FIGURE 5.7: Review process: the inspection order for mutant 2

In comparison, the time cost for each recognized fault, also designated Times, is set to the

rank of the faulty statement among all the suspicious statements. Thus for a program mutant,

5.2. Case Study 83

its total time cost is calculated by the formula as follows.

In SBFL-SSE:

TotalCost = max{ f sta→ Times} f sta∈Susp_Stats + NUM_OF_FAULTS− 1,

where Susp_Stats is a set of ordered suspicious statements, f sta→ Times is Times for the sus-

picious statement f sta, and NUM_OF_FAULTS is the number of total faults in the program

mutant.

For example, after applying SBFL-SSE to mutant 1, the rankings of suspicious statements

are displayed in Table 5.6.

TABLE 5.6: Mutant 1: SBFL-SSE, using Tarantula

No. Test data: (y,x) S R
line (7,-2) (0,1) (-6,-16) (7,6) (1,1) (-8,-3)
2 + + + + + + 0.5 5
3 + + + + + + 0.5 6
4 + + + + + + 0.5 7
5 + + + + + 0.67 4
6 + + + + 1.0 1
7 + + 1.0 2
8 + + 1.0 3
9 + 0.0 9
10 + 0.0 10
11 + 0.0 11
12 + 0.0 12
13 + + + + + + 0.5 8
P/F P P F F F F

Where P denotes that the test data is passed, and F denotes that the test data is failed

according to the theorems; the column S represents the suspiciousness score for the code lines,

and the column R denotes the ranking of checking priority for the code lines that are likely to

contain faults; + means that the code line is covered by the test data.

In mutant 1, SBFL-SSE calculates the scores for all the 12 statements. The most three suspi-

cious statements are line 6, 7 and 8. They are seen as the same level for inspection. Conversely,

our approach mainly checks 3 lines (conditions) and precisely pinpoints the fault in the most

suspicious location at line 6.

We make more single-fault mutants and apply both methods to them. Before the test, We

assume that there is only one fault to find for both methods. Thus we apply Review_Exclu_phase

84 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

FIGURE 5.8: Costs by two methods in single fault experiment

of circle 1 to all these single fault versions to evaluate TRIACFL. The results from both meth-

ods are shown in Figure 5.8. Since there is only one fault in each mutant, the total cost for each

mutant is just the value of Times for the first fault found. Three metrics, Tarantula, Ochiai and

Dstar used in SBFL-SSE produce the same result, indicating there is no difference of perfor-

mance between them in this experiment. Thus we mainly analyze the result from SBFL-SSE

with Tarantula. Except the cost in mutant 3, all the costs from TRIACFL are not higher than

that from SBFL-SSE.

5.3. Experiment with Multiple Faults 85

Here is the explanation for the exception in mutant 3. When applying TRIACFL, the con-

dition at line 10 is not recognized as a suspicious condition in the sequence. This is because

is_Cond_ f alse in the elementary fault location generation algorithm cannot conclude that this

condition is incorrect by analyzing only 1 false path of total 7. Besides, the attentional shift-

based review in TRIACFL always suggests that the body (line 11 and 12) of a block should

be inspected before the head (line 10) of the block. On the other hand, SBFL-SSE assigns the

same suspiciousness score to four statements at line 9, 10, 11 and 12, respectively. Although

the inspection order of these statements is not clarified in most existing SBFL techniques, the

statements with the same scores are inspected sequentially by their line number in SBFL-SSE.

Thus line 10 with a fault is the second suspicious statement to inspect in SBFL-SSE, against

that it is the third statement to inspect in our approach.

5.2.3 Evaluation and Summary

In the single fault experiment, we summarize the performance of two methods in terms of

several aspects, as shown in Figure 5.9. To pinpoint the faults, TRIACFL costs the same or

less time for inspection than that in SBFL-SSE in most cases. Additionally, TRIACFL outputs

a much smaller scale of suspicious fault locations by analyzing smaller number of both lines

and a small number of false paths, while SBFL-SSE produces much more suspicious locations

(each with a score over 0.00) by analyzing and calculating suspiciousness scores for all the

lines based on all the paths.

From the analysis of these results, our approach works more effectively and efficiently

in fault localization, due to the integration of both the elementary fault location generation

algorithm and the attentional shift-based human review. To sum, TRIACFL outperforms SBFL-

SSE in the single fault experiment.

5.3 Experiment with Multiple Faults

We conduct a multiple faults experiment for both methods.

86 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

FIGURE 5.9: Evaluation for two methods in single fault experiment

5.3.1 Experiment Design and Preparation

Figure 5.10 describes the framework of the multiple faults experiment.

First of all, we prepare 10 program mutants for Mod, each with either 2, 3 or 4 faults in dif-

ferent locations in the code. In order to reduce the nondeterministic influence by the prediction

in TRIACFL, we design two phases for TRIACFL, one implementing circle 1 of TRIACFL, and

another implementing circle 2 of TRIACFL, as depicted in Figure 5.11 and 5.12. Circle 1 with a

prediction (the number of inserted faults in a mutant) employs the attentional shift-based re-

view and exclusion algorithm, executing the SIT-SE only once; Circle 2 employs the attentional

shift-based review and fixing algorithm, considering no prediction from the reviewer.

5.3. Experiment with Multiple Faults 87

FIGURE 5.10: Design of a multiple faults experiment

As a comparison, phase 3 implements SBFL-SSE, which generates test data from the SIT-SE

and then analyzes and calculates the suspiciousness scores for all the lines (statements) with

metric formula Tarantula. Since both phase 1 and 3 apply the SIT-SE to each mutant once,

we record the results from both phases in the same figures as a comparison. Then we mainly

compare phase 1 and 2 to figure out how the prediction in phase 1 and the bug fixing in phase 2

affect the inspection costs in fault localization. Since there is no significant difference between

the metric formulas Tarantula, Ochiai, and Dstar in SBFL, we consider reporting the results

from Tarantula in this experiment.

All phases are executed independently, one by one. After all phases finish, compare their

performance.

88 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

FIGURE 5.11: Circle 1 of TRIACFL

5.3. Experiment with Multiple Faults 89

FIGURE 5.12: Circle 2 of TRIACFL

90 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

5.3.2 Experimental Result

The results from phase 1 and 3 are displayed in Figure 5.13, 5.14, 5.15, 5.16 and 5.17.

FIGURE 5.13: Results from phase 1 and 3: Mutant 1 and 2

5.3. Experiment with Multiple Faults 91

FIGURE 5.14: Results from phase 1 and 3: Mutant 3 and 4

92 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

FIGURE 5.15: Results from phase 1 and 3: Mutant 5 and 6

5.3. Experiment with Multiple Faults 93

FIGURE 5.16: Results from phase 1 and 3: Mutant 7 and 8

94 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

FIGURE 5.17: Results from phase 1 and 3: Mutant 9 and 10

5.3. Experiment with Multiple Faults 95

In these figures, for TRIACFL, the bold suspicious locations indicate that these locations are

to be inspected, and the underlined suspicious locations indicate that these locations contain

no faults after inspection and should be excluded from the sequence; for SBFL-SSE, the bold

suspicious locations (lines) contain the inserted faults. In comparison with SBFL-SSE, circle 1

of TRIACFL produces fewer suspicious fault locations, as well as costs less time for inspection

in all the multi-fault mutants.

Figures 5.18 and 5.19 display the results from applying circle 2 of TRIACFL to mutants,

respectively. This circle demands for too many executions of the SIT-SE when there are too

many faults in the program like mutant 10 with 4 faults. Although circle 2 doesn’t require

much effort made by human in the review, it may be inefficient due to frequently executing

the SIT-SE after a fix when these faults locate near each other in the sequence of suspicious

locations like that in mutant 7. Consequently, circle 2 generates more suspicious fault locations

in total for all the rounds of restarting the bug detection with the SIT-SE in most cases.

96 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

FIGURE 5.18: Results from phase 2: Mutant 1-6 with 2 faults

5.3. Experiment with Multiple Faults 97

FIGURE 5.19: Results from phase 2: Mutant 7-9 with 3 faults, Mutant 10 with 4
faults

98 Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

5.3.3 Evaluation and Summary

FIGURE 5.20: Performance of methods in multiple faults experiment

Since both circle 1 of TRIACFL and SBFL-SSE use one set of paths from SIT-SE for each

mutant in fault localization, we compare them on the number of paths that need to be ana-

lyzed. Intrinsically, circle 1 of TRIACFL always analyzes branch conditions along all the false

paths, while SBFL-SSE analyzes statements along all the paths. Thus circle 1 analyzes fewer

paths than SBFL-SSE, as shown in Figure 5.20. Moreover, compared to SBFL-SSE, both circles

1 and 2 cost less time for inspection to pinpoint all the faults on the smaller scales of gener-

ated suspicious fault locations. Note that all the suspicious fault locations are counted every

time the elementary fault location generation algorithm produces a sequence of them. Some

suspicious locations, usually used for shifting attention, would be counted multiple times in

5.4. Conclusion 99

a mutant. Even if the elementary fault location generation algorithm would be performed

multiple times on some mutants in both circle 1 and 2, our approaches still generate fewer

suspicious fault locations than SBFL-SSE.

Comparing circle 1 and 2 of TRIACFL, we find that circle 1 costs a little more time in some

two-fault mutants (mutant 1-2), but costs the same time as circle 2 in other two-fault mutants

(mutant 3-6). In most three-fault mutants, circle 1 costs less time than circle 2 meanwhile ana-

lyzes smaller scales of suspicious fault locations. In mutant 10 with four faults, although circle

2 costs a little less time than circle 1, it has to generates and analyze much more suspicious

fault locations due to more executions of both the SIT-SE and elementary fault location gener-

ation algorithm during the review and fixing. To sum, circle 1 takes the same labor costs for

inspection as circle 2 in most cases, but circle 2 generally costs more execution (although they

are automated) time than circle 1. It indicates that we would be better to make an appropriate

prediction of the number of faults when applying TRIACFL in real world.

5.4 Conclusion

We proposed a fault localization method TRIACFL, which integrates three modules, the SIT-

SE, the elementary fault location algorithm, and the attentional shift-based human review.

Our approach provides a rigorous way to systematically analyze the correctness of key branch

conditions and blocks based on the results from after applying the SIT-SE to programs.

We conduct a single fault experiment and a multiple faults experiment, respectively, to

compare our approach with another method SBFL-SSE. SBFL-SSE is one of the existing popu-

lar technique SBFL families, which uses all the test cases generated by the SIT-SE. Both experi-

mental results demonstrate that our approach can help testers to effectively pinpoint the fault

on a smaller set of suspicious locations in the meantime inspect fewer lines of codes and fewer

program paths. This sheds light on the effectiveness and efficiency of such approach when it

comes to more complex and larger softwares.

101

Chapter 6

Supplement to the SIT-SE: A

Mutated Specification-Based

Approach with Genetic Algorithm

In this chapter, a mutated specification-based approach with genetic algorithm is proposed to

mitigate the burden of test data generation in regression testing.

6.1 Genetic Algorithm (GA) with Mutated Specification

We first briefly introduce the basics of a genetic algorithm (GA) and then discuss how to obtain

reformed specifications.

6.1.1 Description for GA

GA is a heuristic search method inspired from evolutionary biology and was first proposed

by John Holland [99]. In general, a GA is involved in an iterative process with three steps:

(i) create an initial population of solutions (called individuals) represented by a pre-defined

chromosome that are typically encoded the solutions to a problem; (ii) in the existing popula-

tion, select a group of individuals by a specified selection strategy based on a fitness function,

102
Chapter 6. Supplement to the SIT-SE: A Mutated Specification-Based Approach with Genetic

Algorithm

and generate the next population from applying two key genetic operators, crossover and mu-

tation to those selected individuals; (iii) repeat step (ii) until the remaining individuals in the

generation are good enough according to both the fitness function and the stopping criteria.

Since GA works well in finding optimal solutions for nonlinear problems and the speci-

fications of pre-post style could be easily transformed to chromosomes with few efforts, we

employ GA to find the best mutated specifications in this chapter. Later, we will first describe

how to transform the original formal specifications into a chromosome, and then carefully

describe the evolution in step (ii) in detail for our specific goal: to obtain all the mutated func-

tional scenarios from the specification, each a constraint over only input variables.

6.1.2 Mutation Testing

Mutation testing, also called program mutation [92], is used to design test cases and evaluates

the quality of existing testing techniques. In mutation testing, some small modifications are

injected into the original program. Each mutated version is called program mutant and one test

case is regarded as the good one if it kills the program mutants, that is, it makes the behavior

of program mutants different from that of the original program.

In our approach, both programs and the specifications are mutated. The program mutants

are used to evaluate the quality of mutated specifications. We search for good mutated speci-

fications that can be used to effectively generate test data for bug detection.

6.1.3 Mutated Specifications

We use SOFL as the formal notation for specifications in this approach. There are two reasons:

one is that SOFL, as a formal notation, is more comprehensible than other formal notations

since it uses the comprehensible condition data flow diagrams for system structure as well as

pre- and post- conditions for defining individual operations in the system; another reason is

that SOFL is familiar to us and its use in industry has been increasing [100].

In SOFL, the defining condition describes the constraints over input and output variables

after a method in the program performs. Generally, the defining condition is not used for

directly generating input data in most of existing techniques because the values of outputs in

defining condition are unknown to us before the execution of the program. We consider the

6.1. Genetic Algorithm (GA) with Mutated Specification 103

defining conditions as an important factor for test data generation from which the test data are

sensitive to bad behaviors of the program.

Since defining conditions describe how output variables relate to input variables, they are

often used to check whether an execution of the program is correct or not, rather than being

used to directly generate input values. For a program, it is usually difficult to directly gener-

ate input values that satisfy a defining condition without knowing the corresponding output

values. For instance, suppose input variable x and output variable y satisfy the defining con-

dition (x ∗ y > x + y), we cannot generate input x from (x ∗ y > x + y) due to the unknown

output y. Thus, usually (x ∗ y > x + y) is not used to help generate the input values but can be

used to check the result of executing the program with input x.

Nevertheless, by assigning appropriate values to the output variables in the defining con-

ditions, we can get some useful mutated specifications that can be used to directly generate

input values. For the defining condition (x ∗ y > x+ y) mentioned above, input data generated

from (x ∗ 2 > x + 2) (when y = 2) may be more likely to trigger bugs than from (0 > x) (when

y = 0). Currently, it cannot be determined without further checking. However, (x ∗ 2 > x + 2)

is definitely better than (x ∗ 1 > x + 1) (when y = 1) because the latter is always false and

cannot be used to generate test data.

Our work mainly concentrates on developing a way to find appropriate output values for

the specification. These output values are then used to build the mutated specifications that

are the constraints over only input variables. Then, the mutated specifications can be directly

used to generate input values in regression testing. To achieve that, we employ GA to seek

such appropriate values of outputs from the defining condition.

Moreover, to obtain mutated specifications that are more powerful in bug detection, some

extension is considered for reforming defining conditions before applying GA. In this exten-

sion, we make a slight change in defining conditions so as to induce the generated test data

that satisfy those reformed ones to trigger as many bad behaviors of the program as possible.

In our method, mutated specifications are made from after applying GA to the original spec-

ification. More precisely, the mutated specifications can be obtained by following two rules:

1. Reforming the original specification by introducing dummy variables into defining con-

ditions so that test data that satisfy those reformed ones can trigger bad behaviors of the

104
Chapter 6. Supplement to the SIT-SE: A Mutated Specification-Based Approach with Genetic

Algorithm

program;

2. Finding appropriate concrete values through GA and assigning them to the output and

dummy variables that occur in the reformed specification.

Our goal is to obtain a new version of the specification from which the test suite can be

generated to trigger as many bugs as possible in the program. Next, we will define the chro-

mosome forms for the reformed specification, as well as describe the crossover operator and

mutation operator. Then, we apply the GA for gaining the suitable mutated specifications that

can do well in bug detection.

We define the form of chromosomes for a condition data flow diagram (CDFD) that is part

of the SOFL language.

A condition data flow diagram (CDFD) is a directed graph that specifies how processes

work together to provide functional behaviors [101]. Every process has its own pre- and post-

conditions. For instance, Figure 6.1 displays a small CDFD that consists of two processes A

and B where process A first consumes two input variables x and y and produces output z,

and then process B consumes z and produces w.

The two separately defined processes A and B may not be automatically combined into a

bigger process C since we can not always infer C_pre(x, y)∧C_post(x, y, w) just from A_pre(x, y)∧

A_post(x, y, z) ∧ B_pre(z) ∧ B_post(z, w) unless we know the expression z = Expr(x, y) in

A_post(x, y, z), since, in that case, we can easily replace z with Expr(x, y) and derive the fol-

lowing predicate expression:

C_pre(x, y) ∧ C_post(x, y, w) = A_pre(x, y) ∧ A_post(x, y, Expr(x, y)) ∧

B_pre(Expr(x, y)) ∧ B_post(Expr(x, y), w).

However, the intermediate variables between two processes like variable z can not always

be replaced in real CDFDs. Therefore, our discussion on test data generation from specifica-

tions focuses on a single process.

6.1. Genetic Algorithm (GA) with Mutated Specification 105

FIGURE 6.1: The process A and process B.

6.1.4 Chromosome Formation

In this approach, the specification is converted into an equivalent expression called functional

scenario form (FSF). Currently, test data generation from a functional scenario only takes the

test condition into account meanwhile leaving the defining condition untouched [27, 102, 33].

Now, we explain how to make a slight extension to change the form of defining conditions

so as to allow bad behaviors to occur. To obtain a more flexible and useful reformed specifica-

tion, we introduce dummy variables, di(i = 1, · · · , c), to the relationship of inputs and outputs

from the defining condition. Then, we build an output vector from both the dummy variables

and output variables.

Definition 6.1.1. An output vector o
′

is a vector constructed by output variables and dummy

variables: o
′
= (o1, · · · , on, d1, · · · , dc), where oi (i = 1, · · · , n) are output variables, and di

(i = 1, · · · , c) are dummy integer variables.

For example, let f (inputs, outputs)4 0 (where 4 is a operator such as =,>,< . . .) be a

relation in the defining condition Di, by introducing dummy variables d1 and d2, we can con-

struct an inequality d1 <= f (inputs, outputs) <= d2 and replace the relation f (inputs, outputs)4

0 with this new inequality in Di. Then, the output vector is formed as o
′
= (o1, · · · , on, d1,d2).

In our work, we mainly make such change to only equality relations.

We change an equality relation to such an inequality relation because an equality relation

is quite a strict condition that would drastically narrow down the exploration of input values

for a single functional scenario when output values are determined by GA. Therefore, dummy

variables need to be introduced for equality. For the inequality relation in the specification,

dummy variables are not introduced to them because, compared with equality relation, in-

equality relation is not a too strict condition for the generation of input values. Thus, this kind

106
Chapter 6. Supplement to the SIT-SE: A Mutated Specification-Based Approach with Genetic

Algorithm

of relations are used to preserve some original features of specifications. In addition, the ex-

perimental results in Section 6.3 also indicate that additional dummy variables for inequality

cannot help considerably improve the quality of the mutated specifications.

Definition 6.1.2. A chromosome [Ti ∧ Di]o′ (i = 1, · · · , N) is a reformed functional scenario

Ti ∧ Di, where some dummy variables are introduced to Di. An individual (a mutated speci-

fication) is a constraint over symbolic inputs, established from the chromosome [Ti ∧ Di]o′ by

assigning concrete values to the output vector o
′
= (o1, · · · , on, d1, · · · , dc). A population is

a group of such individuals. For convenience, the output vector o
′

is also called d-chromo,

and each element of o
′

is called a genetic.

From this definition, a d-chromo o
′

with concrete values determines an individual formula

[Ti ∧ Di]o′ that is a constraint on symbolic inputs. Such an individual is a reformed specifica-

tion that can be used to generate test data for the program. Note that every time running the

program on each test data, the correctness of the outcome is always verified by the original

formal specification. In order to obtain good individuals to generate test data that are useful

for bug detection, we apply the genetic manipulation to a group of individuals [Ti ∧ Di]o′ and

find the appropriate d-chromo o
′
. Each individual will be scored by evaluating the quality of

the test data that are generated from it.

6.1.5 Genetic Manipulations and Selection

The genetic manipulation refers to the change of genetic structure in biology, but, in the GA, it

indicates that a “child” solution is produced from a pair of “parent” solutions by using genetic

operators like crossover and mutation.

In the existing population, a pair of individuals (solutions) are selected as parents to per-

form the crossover operator to produce their offspring. More specifically, as illustrated in Fig-

ure 6.2, first select two individuals [Ti ∧ Di]o′1
and [Ti ∧ Di]o′2

from the current population as

parents and get their d-chromos o
′
1 and o

′
2, then swap each two genetics of the two d-chromos

with possibility p (0 < p < 1) to obtain two new individuals.

To perform the mutation operator, each genetic of an individual is mutated with possibility

q (0 < q < 1), as displayed in Figure 6.3. More clearly, for one individual [Ti ∧ Di]o′ with its

d-chromo o
′
= (o1, · · · , on, d1, · · · , dc), each genetic of it has the possibility q to be mutated:

6.1. Genetic Algorithm (GA) with Mutated Specification 107

FIGURE 6.2: Crossover operator.

o
′
i := o

′
i +4, where4 is a different scalar of small value.

FIGURE 6.3: Mutation operator.

Fitness function Grade is used to evaluate an individual (a solution) [Ti ∧Di]o′ by assigning

a fitness value. Let Datas = data_suite_ f rom([Ti ∧ Di]o′) where data_suite_ f rom generates a

suite of input data from [Ti ∧ Di]o′ by using a constraint solver. Let N_killi,o′ = (k1, . . . , km)

where k j is the number of test data that have been generated from [Ti ∧Di]o′ and have killed the

program mutant muj as well. A test case that kills a program mutant indicates that it fails based

on the original specifications after it is executed by the program mutant. We consider both the

killing rate of program mutants Kill_rate, and the killing rate of a data suite as important

factors to compute the grade for [Ti ∧ Di]o′ :

Grade([Ti ∧ Di]o′) =
Kill_rate(N_killi,o′) · Sum(N_killi,o′)

(m · (length(Datas) + 1))
(6.1)

where



Kill_rate(N_killi,o′) =
Σm

j=1 I(k j > 0)

length(N_killi,o′)
,

I(k j > 0) =

 1 k j > 0

0 k j ≤ 0

(6.2)

The factor Σm
j=1 I(k j > 0) in Kill_rate is intended to encourage each mutated functional

scenario to generate a test suite that can kill as many different kinds of program mutants as

possible. The factor Sum(N_killi,o′) as part of the numerator in Grade would inspire every

108
Chapter 6. Supplement to the SIT-SE: A Mutated Specification-Based Approach with Genetic

Algorithm

mutated functional scenario to generate a test data suite where most test data are effective

enough to kill as many program mutants as possible. Grade is referred to the product of “the

percentage of killed mutants per test suite” Kill_rate(N_killi,o′)/m and “the percentage of test

cases that were able to kill mutants” Sum(N_killi,o′)/length(Datas). To motivate each mutated

functional scenario to produce a small scale of test suite Datas that is more capable of killing

various program mutants, we add a penalty to Grade by using length(Datas) + 1 instead of

length(Datas) in the denominator.

For a given chromosome [Ti ∧Di]o′ , its individual with appropriate d-chromo o
′
i,best is con-

sidered the best if and only if this individual possesses the highest value of Grade in the whole

population. The GA is to find such best individuals for all these chromosomes [Ti ∧ Di]o′

(i = 1, · · · , N).

After all the individuals from the current population are evaluated, GA would select most

of the best ones to form a new population for the next generation. This process is called selec-

tion. In our approach, we evaluate all the individuals and sort them by descending, then select

individuals in the top 50 percent of the current population to breed the next generation.

As we can see, GA is used to find the best individuals separately for each chromosomes

[Ti ∧Di]o′ (i = 1, · · · , N). In order to evaluate all the best individuals represented by different

chromosomes, the final formula of evaluation is made as follows:

Grade(∨n
i=1[Ti ∧ Di]o′i,best

) =
Kill_rate(N_kill) · Sum(N_kill)

(m · length(Datass))
(6.3)

where


N_kill = Σn

i=1N_killi,ó′i,best
,

Datass = {data_suite_ f rom([Ti ∧ Di]o′i,best
)}i

(6.4)

We use the final formula to find all the mutated functional scenarios that together hit the

highest final grade (i.e., do the best in bug detection), each mutated one with well-tuned val-

ues for dummy variables and output variables. Additionally, this final grade is also used for

comparison between our approach and other techniques. In the case study, our method is com-

pared with the conventional specification-based method with respect to test data generation

for bug detection.

6.2. Algorithm Summary 109

6.2 Algorithm Summary

Our approach that incorporates GA accomplishes the goal of obtaining the mutated specifica-

tions by taking three key steps:

1. Inject faults into the original program to obtain a set of program mutants;

2. Use reformed specification [Ti ∧ Di]o′ as seed chromosomes. Each chromosome corre-

sponds to a group of individuals that are generated by assigning concrete values to the

output vector in the chromosome;

3. Apply the GA to each chromosome and select the best individuals (the best mutated

specifications). According to the original specifications, determine whether or not a test

case from a mutated specification (a constraint over inputs) kills the program mutants.

Figure 6.4 displays the whole evolution process of the GA. In the first round of evolution,

a group of individuals are initialized and evaluated. Then, the best individuals in the top k

(k = 50% in this chapter) of the group are selected to perform both crossover and mutation op-

erators to produce their offspring for the next round. In the next round, all of the individuals

are evaluated and the top k of them again prepare to breed a new generation by performing ge-

netic manipulations. The population iteratively evolves in this process until there has been no

improvement in the population or it reaches the predefined maximum number of generations.

In the mutation testing, we use Z3 [86], a widely used satisfiability modulo theories (SMT)

solver, as our constraint solver to generate the data suite for each individual formula (i.e., each

mutated functional scenario). The generation for a data suite takes three steps: (1) use Z3

to generate a test data that satisfies the logical formula, (2) exclude all the test data obtained

previously from the logical formula; (3) go to step (1) to obtain another piece of test data unless

enough test data are obtained. Each individual formula is evaluated by the fitness function

that measures the quality of the test suite.

The pseudo-code of the algorithm is given in Algorithm 1.

110
Chapter 6. Supplement to the SIT-SE: A Mutated Specification-Based Approach with Genetic

Algorithm

Algorithm 1 GA to obtain mutated specifications.

Inputs: the functional scenarios from the specification: Ti ∧ Di
Individuals: o

′
= (o1, · · · , on, d1,··· ,dm) with concrete values

Outputs: the reformed specification [Ti ∧ Di]o′
run(){

result = list()
for [Ti ∧ Di]o′ in functional scenarios:

spec = Ti ∧ Di
population = initial(o

′
)

while(not enough iterations){
one_step(spec)

}
best_individual = select_best_individual(population)
reformed_specification = (spec, best_individual)
result.append(reformed_specification)

}
one_step(spec) {

This function selects top 50% of the current population
population = keep_good_individuals(population)
do:

father, mother = random_select_two(population)
child1, child2 = crossover_operation(father,mother)
child1, child2 = mutation_operation(child1,child2)
population.put(child1,child2)

until population increases enough
do_valuation(population,spec)

}
do_valuation(population,spec){

for individual in population:
datas = data_suite_from(individual,spec)
statistic_sum = kill_program_mutants(datas)
individual.value = Grade(statistic_sum)

}

6.2. Algorithm Summary 111

FIGURE 6.4: The evolution in GA.

112
Chapter 6. Supplement to the SIT-SE: A Mutated Specification-Based Approach with Genetic

Algorithm

6.3 Case Study

In this section, we apply the GA to two classic examples to demonstrate the effectiveness of the

proposed method. The original specifications are used as test oracles for determining whether

the outputs are correct or not during the evaluation of individuals.

We compare our method with the conventional method, called original specification-based

method, which directly generates input data from the original specifications by using Z3. In the

original specification-based method, neither dummy variables nor defining condition are used

to generate input values, since the defining condition contains output variables with unknown

values. The input data are directly generated from only test conditions (pre-condition and

guard-condition over only input variables) by using Z3.

Sixteen program mutants are prepared for each program in the way that the injected faults

will not cause execution crash and infinite loops since we only focus on the functional bugs in

this research. Both methods generate a test suite of the same size 20 every time to execute these

program mutants in the evaluation process. In configurations of the GA, we set the number of

GA individuals to 20, the upper limit of the number of generations 100, the crossover rate 0.5,

and the mutation rate 0.2.

6.3.1 Case Study 1: Mod

In this program, process Mod is to find the quotient q and remainder r from dividing y by x.

For Mod, we give its formal specification in SOFL and the implementation in Python.

The formal specification of Mod is:

process Mod (y: int, x: int) r: int, q: int

pre x 6= 0

post x > 0∧ y 6= 0∧ y = q ∗ x + r ∧ Abs(r) < x ∧ xr ≥ 0∨

x < 0∧ y 6= 0∧ y = q ∗ x + r ∧ Abs(r) < −x ∧ xr ≥ 0∨

y = 0∧ q = 0∧ r = 0

end_process

Its implementation in Python is:

def Abs(x):

6.3. Case Study 113

if x>=0:

return x

else:

return -x

def Mod(y, x):

r = y;

q = 0;

if y!=0:

if x*y > 0:

while Abs(x) <= Abs(r):

r = r - x

q = q + 1

else:

while x*r < 0:

r = r + x

q = q - 1

return r, q

In this specification, Abs is a function for calculating the absolute value of its input. To shorten

the explanation of each step, assume Abs is an inline executable predicate. Both −7 mod 5 = 3

and −7 mod 5 = −2 satisfy the classic definition y = q ∗ x + r ∧ Abs(r) < Abs(x). To avoid the

ambiguity, the specification of Mod puts an additional condition xr ≥ 0 in order to get only

one result of −7 mod 5 = 3.

In the specification, the pre-condition, guard-conditions, and defining conditions are listed

as:

Spre := x 6= 0;

G1 := x > 0∧ y 6= 0; D1 := y = q ∗ x + r ∧ Abs(r) < x ∧ xr ≥ 0;

G2 := x < 0∧ y 6= 0; D2 := y = q ∗ x + r ∧ Abs(r) < −x ∧ xr ≥ 0;

G3 := x > 0∧ y = 0; D3 := q = 0∧ r = 0.

We can obtain the functional scenarios Ti ∧ Di := Spre ∧ Gi ∧ Di as follows:

T1 ∧ D1 := x > 0∧ y 6= 0∧ y = q ∗ x + r ∧ Abs(r) < x ∧ xr ≥ 0;

114
Chapter 6. Supplement to the SIT-SE: A Mutated Specification-Based Approach with Genetic

Algorithm

T2 ∧ D2 := x < 0∧ y 6= 0∧ y = q ∗ x + r ∧ Abs(r) < −x ∧ xr ≥ 0;

T3 ∧ D3 := x 6= 0∧ y = 0∧ q = 0∧ r = 0.

For T3 ∧ D3, the input x and y are not related to the output q and r, so we do not need to

apply GA to it. Since there is an equality y = q ∗ x + r in which inputs and outputs are related,

we introduce two dummy variables d1 and d2. The chromosomes of Mod are displayed in

Table 6.1.

TABLE 6.1: Chromosome forms for functional scenarios of process Mod.

Chromosome D-Chromo Dummy Vars
[T1 ∧ D1]o′ : x > 0∧ y 6= 0∧ o

′
=

d1 ≤ q ∗ x + r− y ≤ d2∧ (q, r, d1,d2) d1,d2
Abs(r) < x ∧ xr ≥ 0

[T2 ∧ D2]o′ : x < 0∧ y 6= 0∧ o
′
=

d1 ≤ q ∗ x + r− y ≤ d2∧ (q, r, d1,d2) d1,d2
Abs(r) < −x ∧ xr ≥ 0

Apply Algorithm 1 to these chromosomes. The results are displayed in Table 6.2.

TABLE 6.2: Results for process Mod after applying GA.

The Best Individual Grade
[T1 ∧ D1]o′

o
′
= (q, r, d1,d2) 0.58

o
′
1,best = (−4, 0,−6,−6)
[T2 ∧ D2]o′

o
′
= (q, r, d1,d2) 0.55

o
′
2,best = (−7, 0, 9, 13)

Total : ∨2
i=1[Ti ∧ Di]o′i,best

0.59

To illustrate the effectiveness of data generation from the mutated specifications, Table 6.3

displays the results of the conventional method that generates the test data directly from the

original specifications. For the original specification, we generate test data only from the test

condition Ti consisting of both pre-condition Spre and guard-condition Gi meanwhile ignor-

ing the defining condition Di because the defining condition Di involves unknown output

variables that can not directly help to generate test data.

For the proposed method, the final Kill_rate of ∨2
i=1[Ti ∧ Di]o′i,best

is 100%, same as the con-

ventional method. It means that every program mutant has been killed by at least one piece of

test data. The corresponding final Grade is 0.59, larger than the Grade of 0.37 with the original

6.3. Case Study 115

TABLE 6.3: Results for process Mod with original specifications.

Original Specification Grade
T1 : x > 0∧ y 6= 0 0.32
T2 : x < 0∧ y 6= 0 0.38
Total : ∨2

i=1Ti 0.37

specification-based method, indicating that the test data generated from ∨2
i=1[Ti ∧ Di]o′i,best

are

of high quality that are more likely to kill all the program mutants. The result suggests that it

is plausible to use these best individuals of chromosomes to make four mutated specifications

for test case generation in the further maintenance of the original program.

TABLE 6.4: Test data generated by the mutated/original specification to kill
each of program mutants in Mod.

Two kinds of Specs N_killi,o′ = (k1, . . . , km)

Mutated Spec: 1. d-chromo: (1, 16, 19, 3, 1, 19, 19, 1, 16, 20, 18, 1, 18, 19, 4, 19)
(-4, 0, -6, -6)
2. d-chromo: (4, 14, 20, 2, 4, 16, 4, 4, 14, 20, 16, 4, 16, 20, 6, 20)
(-7, 0, 9, 13)

Original Spec: 1. original: (6, 3, 7, 4, 6, 7, 7, 10, 3, 13, 5, 3, 5, 8, 10, 11)

2. original: (6, 6, 18, 6, 6, 12, 6, 6, 6, 18, 3, 4, 3, 7, 12, 9)

Both methods generate test data with different characteristics of killing program mutants,

as shown in Table 6.4. Compared to the original specification, a single mutated functional

scenario in the proposed method tends to produce a test suite that concentrates on killing the

majority of program mutants, leaving the others that are to be further killed by other mutated

functional scenarios. In this way, not only is a single mutated functional scenario more capable

of generating effective test data, but all the mutated functional scenarios as a whole can be used

to uncover as many faults as possible.

Comparing the reformed specifications with the original ones in Figure 6.5, we can find

the Grade of reformed ones that are always larger than that of original ones. It means that the

data suite generated from the mutated specifications is more likely to pinpoint bugs than that

of original ones, although both of them share the same Kill_rate of 100%.

116
Chapter 6. Supplement to the SIT-SE: A Mutated Specification-Based Approach with Genetic

Algorithm

FIGURE 6.5: The grade of the mutated and original.

The Effect with Dummy Variables

We conduct additional experiments to figure out how dummy variables introduced into the

different parts of defining conditions would affect the quality of the obtained mutated specifi-

cations. We make three versions of modifications to our approach as follows.

1. Version V1: Introducing dummy variables into only inequality relation;

2. Version V2: Introducing dummy variables into both equality and inequality relation;

3. Version V3: Putting no dummy variables in defining conditions.

For convenience, the approach with no modification, that is, having dummy variables for

only equality relation, is called Version V0.

The previous experimental result for V0 and the original, as well as the results from after

applying variations of the approach V1,V2, and V3 to process Mod, are together displayed in

Figure 6.6.

According to Figure 6.6, three approaches with dummy variables V0, V1, and V2 gain

higher Grades than the approach without dummy variables V3, and even V3 seems to behave

6.3. Case Study 117

FIGURE 6.6: Results by four versions and the original for Mod.

better than the conventional method. There are no significant differences between the evalu-

ation of V0 and V2. However, V2 would occupy more computation resources than V0 due to

the consideration of more dummy variables. It seems that V1 gains a little better final Grade

than V0, though its Grade for each single mutated functional scenario is not good enough.

In addition, by using an approach without dummy variables V1 and V3, every obtained

single mutated functional scenario demonstrates the strong capability to kill some specific

program mutants while leaving other program mutants not killed, though the combination

of all the functional scenarios in V1 can reach 100% total Kill_rate while, for V3, the total

Kill_rate unfortunately remains in 87.5%. This result demonstrates the importance of intro-

ducing dummy variables into equality relation in order to accomplish both good single and

total Grades and Kill_rates.

In summary, it is necessary to introduce dummy variables into equality relations, and the

additional dummy variables for inequality relation cannot significantly improve the proposed

approach.

118
Chapter 6. Supplement to the SIT-SE: A Mutated Specification-Based Approach with Genetic

Algorithm

6.3.2 Case Study 2: Gcd

Process gcd is to compute the greatest common divisor of two inputs by using Stein’s algo-

rithm.

The formal specifications of gcd is:

process gcd (x: int, y: int) r: int

pre x ≥ 0∧ y ≥ 0

post x > 0∧ y > 0∧ x ≥ y ∧ r = gcd(y, x%y) ∨

x > 0∧ y > 0∧ x < y ∧r = gcd(y, y%x) ∨

y = 0∧ r = x ∨

x = 0 ∧ r = y

end_process

The implementation of process gcd in Python is:

def gcd(x, y):

if x < y:

x, y = y, x

if (0 == y):

return x

if x % 2 == 0 and y % 2 == 0:

return 2 * gcd(x//2, y//2)

if x % 2 == 0:

return gcd(x // 2, y)

if y % 2 == 0:

return gcd(x, y // 2)

return gcd((x - y) // 2, y)

Process gcd is a recursive process and its post-condition contains itself, so it is difficult to

generate data from this kind of post-condition. We transform the original post-condition to

the following ones:

T1 ∧ D1 := x > 0∧ y > 0∧ x ≥ y ∧ x%r = 0∧ y%r = 0∧ x%y%r = 0;

T2 ∧ D2 := x > 0∧ y > 0∧ x < y ∧ x%r = 0∧ y%r = 0∧ y%x%r = 0;

6.3. Case Study 119

T3 ∧ D3 := x ≥ 0∧ y = 0∧ r = x;

T4 ∧ D4 := y ≥ 0∧ x = 0 ∧ r = y.

Table 6.5 shows the chromosomes of process gcd.

Apply the algorithm to all of the chromosomes; in the meantime, make use of the original

post-condition to determine whether the outputs of codes are correct or not. The results are

displayed in Table 6.6.

The final Kill_rate of ∨4
i=1[Ti ∧ Di]o′i,best

is 100%. The corresponding Grade is 0.46, which

means roughly 46 percent of test data that are randomly generated from ∨4
i=1[Ti ∧ Di]o′i,best

can

kill all the program mutants.

TABLE 6.5: Chromosome forms for functional scenarios of process gcd.

Chromosome D-Chromo Dummy Vars
[T1 ∧ D1]o′ : x ≥ y ∧ o

′
=

(d1 ≤ x%r ≤ d2)∧ (r, d1,d2, d3 d1,d2, d3,
(d3 ≤ y%r ≤ d4)∧ d4, d5, d6) d4, d5, d6
(d5 ≤ x%y%r ≤ d6)

[T2 ∧ D2]o′ : x < y ∧ o
′
=

(d1 ≤ x%r ≤ d2)∧ (r, d1,d2, d3 d1,d2, d3,
(d3 ≤ y%r ≤ d4)∧ d4, d5, d6) d4, d5, d6
(d5 ≤ y%x%r ≤ d6)

[T3 ∧ D3]o′ : y = 0 ∧ o
′
= d1, d2

(d1 ≤ x− r ≤ d2) (r, d1, d2)

[T4 ∧ D4]o′ : x = 0 ∧ o
′
= d1, d2

(d1 ≤ y− r ≤ d2) (r, d1, d2)

TABLE 6.6: Results for process gcd after applying GA.

The Best Individual of Chromosome Grade
[T1 ∧ D1]o′

o
′
1,best = 0.72
(0, 1, 10, 10, 10, 3, 6)
[T2 ∧ D2]o′

o
′
2,best = 0.58
(8, 4, 6, 2, 2, 0, 8)
[T3 ∧ D3]o′

o
′
3,best = (5,−1, 20) 0.0037
[T4 ∧ D4]o′

o
′
4,best = (4,−3, 16) 0.0037

Total : ∨4
i=1[Ti ∧ Di]o′i,best

0.46

120
Chapter 6. Supplement to the SIT-SE: A Mutated Specification-Based Approach with Genetic

Algorithm

Conversely, the result for applying the method that generates test data directly from the

original specification is displayed in Table 6.7.

TABLE 6.7: Results for process gcd with original specifications.

Original Specification Grade
T1 : x > 0∧ y > 0∧ x ≥ y 0.29
T2 : x > 0∧ y > 0∧ x < y 0.49
T3 : x ≥ 0∧ y = 0 0.0035
T4 : y ≥ 0∧ x = 0 0.0035
Total : ∨2

i=1Ti 0.25

TABLE 6.8: Test data generated by the mutated/original specification to kill
each of program mutants in Gcd.

Two kinds of Specs N_killi,o′ = (k1, . . . , km)

Mutated Spec: 1. d-chromo: (0, 19, 20, 19, 19, 9, 20, 20, 19, 19, 19, 19, 19, 19, 9, 9)
(0, 1, 10, 10, 10, 3, 6)
2. d-chromo: (0, 1, 1, 18, 18, 16, 19, 19, 2, 18, 19, 4, 18, 18, 19, 19)
(8, 4, 6, 2, 2, 0, 8)
3. d-chromo: (20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(5, -1, 20, 7, 6, 3, 0)
4. d-chromo: (20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(4, -3, 16, 7, 8, 5, 3)

Original Spec: 1. original: (0, 1, 13, 1, 1, 10, 14, 15, 10, 2, 2, 2, 7, 7, 8, 10)

2. original: (0, 7, 7, 9, 9, 12, 14, 15, 10, 10, 6, 11, 19, 19, 12, 15)

3. original: (19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

4. original: (19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Like that in Mod, the experimental result in Gcd goes the same way in Table 6.8. The

test data generated by both methods has different characteristics of killing program mutants.

Compared to the original specification, a single mutated functional scenario in the proposed

method tends to produce a test suite that concentrates on killing the majority of program

mutants, leaving the others that are to be further killed by other mutated functional scenarios.

In addition to that a single mutated functional scenario is more capable of generating effective

test data for all program mutants, all the mutated functional scenarios as a whole can used to

kill as many faults as possible.

Comparing the reformed specifications with the original ones in Figure 6.7, we can find that

the first two reformed ones [T1 ∧D1]o′ and [T2 ∧D2]o′ have very high values of Grade, 0.72 and

6.3. Case Study 121

0.58, respectively, higher than 0.29 and 0.49 with the original specifications. In addition, the

Kill_rate of a sole [Ti ∧ Di]o′ (i = 1, 2) is 94%, indicating that the test data generated from the

first two reformed specifications are likely to pinpoint most bugs probably occurring in the

program. Only a few program mutants (6% of total), with some faults that directly relates to

the last two functional scenarios T3 ∧ D3 and T4 ∧ D4 (where x = 0 or y = 0), cannot be killed

by the test data generated from either the first two reformed specifications or the first two

original specifications. Due to the very simple forms and the limited functionality of the last

two functional scenarios, there is no improvement of test data generation using our method

against the original ones.

FIGURE 6.7: The grade of the reformed and original.

The results from both classic examples demonstrate that the input data generated from

the mutated specifications are more likely to kill the mutants of programs than that from the

original specifications.

The Effect without Dummy Variables

Like what we have done for process Mod, we conduct additional experiments with the ap-

proach without using dummy variable V3 since gcd only has equality relations in the defining

122
Chapter 6. Supplement to the SIT-SE: A Mutated Specification-Based Approach with Genetic

Algorithm

conditions. The results are shown in Figure 6.8.

FIGURE 6.8: Results by four versions and the original for gcd.

The experimental results are similar to that in Mod. V0 performs better than V3. V3 still

encounters the problem that every single mutated functional scenario is not able to kill all the

program mutants. It shows that the test data generated from those strict equality relations are

less likely to trigger some bad behaviors of program.

6.3.3 Complexity of the Approach

We present an abstract analysis of the complexity for our approach. Generally, a GA com-

plexity is on the order of O(g ∗ n ∗m) without the effect of the fitness function, where g is the

number of generations, n the population size, and m the number of functional scenarios. Since

our approach uses a fitness function involved in the mutation testing, we should take both the

program execution time and the data suite generation time into consideration.

As the speed of the constraint solver to solve an individual formula (to generate a test suite)

depends on the complexity of the functional scenarios (logical formulas) whose complexity

cannot be easily determined, we associate the cost of using the constraint solver for a singular

6.4. Conclusion 123

individual with the number of input variables in, the number of output variables out, and the

number of dummy variables d. In addition, the number of dummy variables relies on the

number of equality relation in each functional scenario, which varies in different kinds of

programs. We simply assume that each functional scenario has at least one equality relation.

Thus, the complexity of using the constraint solver for each individual is O(in + out + 2 ∗

d ∗m). Moreover, the complexity of all the executions for program mutants is approximately

O(mu ∗ sui) with mu the number of program mutants and sui the size of test suite. Finally,

considering the complexity of the GA together with the mutation testing, the complexity for

our approach is

O(g ∗ n ∗ ((in + out + 2 ∗ d ∗m) ∗ (mu ∗ sui)) ∗m).

6.4 Conclusion

We propose a new method for effective test data generation based on mutated pre-post style

formal specifications. The method is characterized by the integration of the functional scenario-

based testing, a genetic algorithm and the mutation testing. In the approach, by assigning

appropriate values to the unknown output and dummy variables to the variations for the

original specifications, we can obtain useful mutated specifications that are sensitive to small

syntactic structural changes of program codes.

We have also carried out two classic cases to evaluate the performance of our method.

The results of case studies demonstrate that, for a complicated functional scenario, the pro-

posed approach is capable of effectively generating useful test data to kill as many program

mutants as possible, which outperforms the conventional data generation method.

In spite of the advantages of our method as mentioned above, there are also some limi-

tations and disadvantages in the application of our method. First, the proposed method can

only work on arithmetical relationships between inputs and outputs in which outputs affect

the generation of inputs. Second, as the GA usually iterates many times and executes all the

program mutants for every iteration, the cost would not be low. However, if we have enough

computing resources for applying our method, it might be worth taking time to obtain good

reformed specifications for the further maintenance of software.

124
Chapter 6. Supplement to the SIT-SE: A Mutated Specification-Based Approach with Genetic

Algorithm

In order to cope well with complex real programs, some additional extensions can be made

to our approach. Firstly, by using the character encoding standard like US-ASCII [103], we can

convert a String to a byte array so that the relationship that contains string variables can also

be manipulated by our method. Moreover, since many research works exist concerning about

the techniques of encoding complex data [104, 105, 106] that may occur in specifications like

images and videos, it is possible to transform these specifications into appropriate arithmetical

relationships so that our approach can be used in such cases. Secondly, although there exist

specifications where the input and output variables are not specified by some explicit arith-

metical equality relation, our method would still be applicable. Because instead of directly

using these specifications, we can design some mutated arithmetical relationships (in form of

inequality) of input and output that can not only approximate to the real properties of pro-

gram but also leave open the possibility of occurrence of unexpected behaviors. Thirdly, when

testing a big complex system, we can decompose it into a set of subroutines and focus on test-

ing small procedures one by one using our approach. Thus, there is no need to repeatedly

executing the whole system with our algorithm.

125

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The SIT-SE contributes to a more rigorous testing of the consistency between an implemen-

tation and its formal specification by associating the correctness of symbolic paths with func-

tional scenarios. This method can incrementally explore a moderate number of paths mean-

while strengthens the verification for each path by using theorems with a prover. The SIT-SE

can significantly reduce the testing time due to the facts that test case generation can be fully

automated and the number of test cases for detecting bugs is much smaller than that of tra-

ditional path testing. This is opposed to the general idea around most testing methods with

expensive strategies of exhausted path exploration and weaker solutions to path correctness,

as well as opposed to that in formal methods with expensive intricate proofs (sometimes no

proof found) for an entire system.

More specifically, the SIT-SE provides a rigorous way to verify the correctness of paths by

using theorems. It sets up checking levels for branch conditions to facilitate an incremental

testing, as well as integrates the BSC algorithm that is designed to relieve the path explosion

problem by cutting down redundant uninteresting paths. This method outperforms conven-

tional methods as to identifying more false paths based on a small-scale test suite that is gen-

erated for checking program correctness.

Further, we have also developed a novel fault localization technique called TRIACFL. It

utilizes false symbolic paths provided by the SIT-SE and analyzes the conditions and blocks

along these paths. This method provides a flexible framework for fault localization where

126 Chapter 7. Conclusion and Future Work

the three modules, the SIT-SE, elementary fault location generation algorithm, and attentional

shift-based human review are intimately interacted with each other. According to the predic-

tion of the number of faults in the code, the approach guides testers to either go to the route

of review and exclusion, or go to the route of review and fixing. TRIACFL outperforms the

existing technique SBFL in both single- and multiple-fault experiments. It guides testers to ef-

fectively pinpoint the faults in a small sequence of suspicious fault locations within moderate

human inspection costs.

When testing a program that contains some unavailable source code, the SIT-SE may be

ineffective or even not applicable. A black-box testing method, featuring the integration of

functional scenario-based testing, a genetic algorithm (GA) and mutation testing, is proposed

to handle such situation. This method uses a GA to obtain mutated specifications where ap-

propriate values are assigned to the unknown output and dummy variables in the variations

of the original specifications. These mutated specifications, sensitive to small syntactic struc-

tural changes of program codes, are further used to generate tests for effective bug detection.

7.2 Future Work

In order to build a tool to support the SIT-SE for automatic bug detection, the most challenging

thing is to write a mature interpreter for a variety of syntax types of formal specifications

(SOFL in this thesis). Such an interpreter can facilitate a fully automated integration for formal

specifications into symbolic program paths for further verification.

Besides, there are other promising topics for the tool to support the SIT-SE. Firstly, our

method is inevitably influenced by the technique of symbolic execution. Although over last

decades have seen many improvements on symbolic execution for managing all kinds of sit-

uations, it is still hard to work on many complex data structures and non-primitive types.

Extending the symbolic execution would be a very challenging work in the future. Secondly,

the effectiveness of our method is also confined by the limited capability of the constraint

solver involved. To effectively use the constraint solver, we must develop some additional

strategies for simplifying the quires to the solver. Thirdly, if the execution of the program does

not terminate, for example, due to infinite loops, our method cannot be applicable in this sit-

uation. How to improve the capability of our method to deal with this challenge will be part

7.2. Future Work 127

of our future work. Finally, our method is limited to dealing with the testing of sequential

programs, but it may be extended to deal with the testing of concurrent programs in the fu-

ture. The key issues to address would be how to carry out symbolic execution to derive the

necessary information of the traversed program path and how to form the necessary theorem

for the verification of the path correctness.

For example, in some cases, if we set up an appropriate test environment, the proposed

method can be extended to be applied in that area. Specifically, suppose process S under test

operates a shared variable x, and there is a program where multiple threads call S simultane-

ously, we suggest testing the program together with S by the following settings.

• Make a version of specification for the program where S is to be tested in the concurrency

environment.

• For each branch condition that contains any shared variables, set its checking level to 0,

so that all the accesses to such branch condition can be used to form a path condition for

the program.

• Additionally, if one would like to check the behavior (against the specification) of a spe-

cific block (e.g., S or a thread) during symbolic execution of the program, one can moni-

tor carefully both entry and exit of this block, as well as check the correctness of the path

(only in this block) by forming theorems in runtime.

For more technical details, we will report the progress elsewhere after a serious investiga-

tion in the future.

Furthermore, it would be an attractive work to enrich the tool by adding the support of

TRIACFL in fault localization. As the prediction of the number of faults in a program plays an

important role in TRIACFL, we aspire to explore a variety of fault prediction models of high

precision. For example, we can develop such models with the aid of many kinds of machine

(and deep) learning techniques [107, 108]. Finally, we consider making some improvements

to the proposed black-box testing method with a GA: 1) enhancing its capability of dealing

with more complicated relationships between inputs and outputs where the values of outputs

may not directly determine the inputs; 2) extending it by designing more useful mutated op-

erators for formal specification. Achievement of effective solutions to all those challenges will

128 Chapter 7. Conclusion and Future Work

pave the way for us to develop a mature software tool to efficiently support all the proposed

methods in the real world.

129

Bibliography

[1] C. Hobbs, Embedded Software Development for Safety-Critical Systems. Auerbach Publica-

tions, 2015.

[2] J. Din, R. Din, and Y. Y. J. . M. B. Jasser, “Towards employing metrics in measuring the

quality of software safety critical systems and managing their development,” Interna-

tional Journal of Engineering and Technology, vol. 7, no. 4.31, pp. 135–139, 2018.

[3] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite-state con-

current systems using temporal logic specifications,” ACM Transactions on Programming

Languages and Systems (TOPLAS), vol. 8, no. 2, pp. 244–263, 1986.

[4] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model checking. MIT

press, 2018.

[5] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communications of the

ACM, vol. 12, no. 10, pp. 576–580, 1969.

[6] J. M. Schumann, Automated theorem proving in software engineering. Springer Science &

Business Media, 2001.

[7] A. Valmari, “The state explosion problem,” in Advanced Course on Petri Nets, pp. 429–528,

Springer, 1996.

[8] E. M. Clarke, W. Klieber, M. Nováček, and P. Zuliani, “Model checking and the state

explosion problem,” in LASER Summer School on Software Engineering, pp. 1–30, Springer,

2011.

[9] M. Kaufmann and J. S. Moore, “Some key research problems in automated theorem

proving for hardware and software verification.,” RACSAM, vol. 98, no. 1, pp. 181–195,

2004.

130 BIBLIOGRAPHY

[10] V. D’silva, D. Kroening, and G. Weissenbacher, “A survey of automated techniques for

formal software verification,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 27, no. 7, pp. 1165–1178, 2008.

[11] P. M. Bueno, W. E. Wong, and M. Jino, “Automatic test data generation using particle

systems,” in Proceedings of the 2008 ACM symposium on Applied computing, pp. 809–814,

2008.

[12] J. C. King, “Symbolic execution and program testing,” Communications of the ACM,

vol. 19, no. 7, pp. 385–394, 1976.

[13] G. Rothermel and M. J. Harrold, “Analyzing regression test selection techniques,” IEEE

Transactions on software engineering, vol. 22, no. 8, pp. 529–551, 1996.

[14] E. Martins, S. B. Sabião, and A. M. Ambrosio, “Condata: a tool for automating

specification-based test case generation for communication systems,” Software Quality

Journal, vol. 8, no. 4, pp. 303–320, 1999.

[15] G. Wimmel and J. Jürjens, “Specification-based test generation for security-critical

systems using mutations,” in International Conference on Formal Engineering Methods,

pp. 471–482, Springer, 2002.

[16] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Ničković, and S. Sankara-

narayanan, “Specification-based monitoring of cyber-physical systems: a survey on the-

ory, tools and applications,” in Lectures on Runtime Verification, pp. 135–175, Springer,

2018.

[17] S. Liu and S. Nakajima, “Automatic test case and test oracle generation based on func-

tional scenarios in formal specifications for conformance testing,” IEEE Transactions on

Software Engineering, 2020.

[18] S. Liu and S. Nakajima, “Combining specification-based testing, correctness proof, and

inspection for program verification in practice,” in International Workshop on Structured

Object-Oriented Formal Language and Method, pp. 3–16, Springer, 2013.

BIBLIOGRAPHY 131

[19] S. Liu, “Testing-based formal verification for algorithmic function theorems and its ap-

plication to software verification and validation,” in 2016 International Symposium on Sys-

tem and Software Reliability (ISSSR), pp. 1–6, IEEE, 2016.

[20] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on software fault local-

ization,” IEEE Transactions on Software Engineering, vol. 42, no. 8, pp. 707–740, 2016.

[21] C. Cadar and K. Sen, Symbolic execution for software testing: three decades later. ACM, 2013.

[22] D. Monniaux, “A survey of satisfiability modulo theory,” in International Workshop on

Computer Algebra in Scientific Computing, pp. 401–425, Springer, 2016.

[23] C. Cadar, D. Dunbar, D. R. Engler, et al., “Klee: Unassisted and automatic generation of

high-coverage tests for complex systems programs.,” in OSDI, vol. 8, pp. 209–224, 2008.

[24] A. Giantsios, N. Papaspyrou, and K. Sagonas, “Concolic testing for functional lan-

guages,” Science of Computer Programming, vol. 147, pp. 109–134, 2017.

[25] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. Van Gemund, “A practical evaluation

of spectrum-based fault localization,” Journal of Systems and Software, vol. 82, no. 11,

pp. 1780–1792, 2009.

[26] J. Sohn and S. Yoo, “Fluccs: Using code and change metrics to improve fault localiza-

tion,” in Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing

and Analysis, pp. 273–283, 2017.

[27] A. J. Offutt and S. Liu, “Generating Test Data from SOFL Specifications,” Journal of Sys-

tems and Software, vol. 49, pp. 49–62, December 1999.

[28] A. Sullivan, K. Wang, R. N. Zaeem, and S. Khurshid, “Automated test generation and

mutation testing for alloy,” in 2017 IEEE International Conference on Software Testing, Veri-

fication and Validation (ICST), pp. 264–275, IEEE, 2017.

[29] H. A. de Souza, M. L. Chaim, and F. Kon, “Spectrum-based software fault localization: A

survey of techniques, advances, and challenges,” arXiv preprint arXiv:1607.04347, 2016.

132 BIBLIOGRAPHY

[30] S. Liu, “Testing-Based Formal Verification for Theorems and Its Application in Software

Specification Verification,” in Proceedings of the 10th International Conference on Tests and

Proofs (TAP 2016), (Vienna, Austria), pp. 112–129, LNCS 9762, Springer, July 5-7 2016.

[31] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing, vol. 4, no. 2, pp. 65–

85, 1994.

[32] M. R. Woodward, “Mutation testing—its origin and evolution,” Information and Software

Technology, vol. 35, no. 3, pp. 163–169, 1993.

[33] Y. Sato and T. Sugihara, “Automatic generation of specification-based test cases by ap-

plying genetic algorithms in reinforcement learning,” in International Workshop on Struc-

tured Object-Oriented Formal Language and Method, pp. 59–71, Springer, 2015.

[34] L. You and Y. Lu, “A genetic algorithm for the time-aware regression testing reduction

problem,” in 2012 8th International Conference on Natural Computation, pp. 596–599, IEEE,

2012.

[35] P. B. Nirpal and K. Kale, “Using genetic algorithm for automated efficient software test

case generation for path testing,” International Journal of Advanced Networking and Appli-

cations, vol. 2, no. 6, pp. 911–915, 2011.

[36] M. R. Girgis, A. S. Ghiduk, and E. H. Abd-Elkawy, “Automatic generation of data

flow test paths using a genetic algorithm,” International Journal of Computer Applications,

vol. 89, no. 12, pp. 29–36, 2014.

[37] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing Engine for C,” in Pro-

ceedings of the 10th European Software Engineering Conference held jointly with 13th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, (New York),

pp. 263–272, ACM Press, 2005.

[38] K. Sen and G. Agha, CUTE and jCUTE: Concolic Unit Testing and Explicit Path Model-

Checking Tools. Springer Berlin Heidelberg, 2006.

[39] P. Godefroid, N. Klarlund, and K. Sen, “Dart: directed automated random testing,” in

ACM Sigplan Notices, vol. 40, pp. 213–223, ACM, 2005.

BIBLIOGRAPHY 133

[40] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing engine for c,” in ACM

SIGSOFT Software Engineering Notes, vol. 30, pp. 263–272, ACM, 2005.

[41] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,” in Proceedings of

the 2008 23rd IEEE/ACM international conference on automated software engineering, pp. 443–

446, IEEE Computer Society, 2008.

[42] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “Exe: automatically

generating inputs of death,” ACM Transactions on Information and System Security (TIS-

SEC), vol. 12, no. 2, p. 10, 2008.

[43] C. S. Păsăreanu and N. Rungta, “Symbolic pathfinder: symbolic execution of java byte-

code,” in Proceedings of the IEEE/ACM international conference on Automated software engi-

neering, pp. 179–180, ACM, 2010.

[44] C. S. Pasareanu and N. Rungta, “Symbolic pathfinder:symbolic execution of java byte-

code,” in ASE 2010, Ieee/acm International Conference on Automated Software Engineering,

Antwerp, Belgium, September, pp. 179–180, 2010.

[45] S. Khurshid, C. S. Păsăreanu, and W. Visser, “Generalized symbolic execution for model

checking and testing,” in International Conference on Tools and Algorithms for the Construc-

tion and Analysis of Systems, pp. 553–568, Springer, 2003.

[46] C. Boyapati, S. Khurshid, and D. Marinov, “Korat: Automated testing based on java

predicates,” in ACM SIGSOFT Software Engineering Notes, vol. 27, pp. 123–133, ACM,

2002.

[47] D. Marinov, Automatic testing of software with structurally complex inputs. PhD thesis,

Massachusetts Institute of Technology, 2005.

[48] S. Khurshid, Generating structurally complex tests from declarative constraints. PhD thesis,

Massachusetts Institute of Technology, 2003.

[49] D. Marinov and S. Khurshid, “Testera: A novel framework for automated testing of

java programs,” in Proceedings 16th Annual International Conference on Automated Software

Engineering (ASE 2001), pp. 22–31, IEEE, 2001.

134 BIBLIOGRAPHY

[50] D. Jackson, I. Shlyakhter, and M. Sridharan, “A micromodularity mechanism,” in ACM

SIGSOFT Software Engineering Notes, vol. 26, pp. 62–73, ACM, 2001.

[51] S. Liu, “Utilizing Hoare Logic to Strengthen Testing for Error Detection in Programs,”

in Proceedings of The Turing Centenary Conference, (Manchester, UK), pp. 229–238, EPiC

Series, June 2012.

[52] S. Liu, “A tool supported testing method for reducing cost and improving quality,” in

IEEE International Conference on Software Quality, Reliability and Security, pp. 448–455,

2016.

[53] S. Liu, “Testing-based formal verification for algorithmic function theorems and its ap-

plication to software verification and validation,” in International Symposium on System

and Software Reliability, pp. 112–129, 2017.

[54] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test information to assist fault

localization,” in Proceedings of the 24th International Conference on Software Engineering.

ICSE 2002, pp. 467–477, IEEE, 2002.

[55] A. Gonzalez, “Automatic error detection techniques based on dynamic invariants, mas-

ter’s thesis,” Delft University of Technology, The Netherlands, 2007.

[56] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “An evaluation of similarity coefficients

for software fault localization,” in 2006 12th Pacific Rim International Symposium on De-

pendable Computing (PRDC’06), pp. 39–46, IEEE, 2006.

[57] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold, “Lightweight fault-localization using

multiple coverage types,” in 2009 IEEE 31st International Conference on Software Engineer-

ing, pp. 56–66, IEEE, 2009.

[58] W. E. Wong, V. Debroy, Y. Li, and R. Gao, “Software fault localization using dstar (d*),”

in 2012 IEEE Sixth International Conference on Software Security and Reliability, pp. 21–30,

IEEE, 2012.

[59] M. Weiser, “Program slicing,” IEEE Transactions on software engineering, no. 4, pp. 352–

357, 1984.

BIBLIOGRAPHY 135

[60] B. Korel and J. Laski, “Dynamic program slicing,” Information processing letters, vol. 29,

no. 3, pp. 155–163, 1988.

[61] R. E. Fairley, “Aladdin: Assembly language assertion driven debugging interpreter,”

IEEE Transactions on Software Engineering, no. 4, pp. 426–428, 1979.

[62] M. Jose and R. Majumdar, “Bug-assist: assisting fault localization in ansi-c programs,”

in International conference on computer aided verification, pp. 504–509, Springer, 2011.

[63] S. Rapps and E. J. Weyuker, “Selecting software test data using data flow information,”

IEEE transactions on software engineering, no. 4, pp. 367–375, 1985.

[64] E. J. Weyuker, “More experience with data flow testing,” IEEE transactions on software

engineering, vol. 19, no. 9, pp. 912–919, 1993.

[65] U. Khedker, A. Sanyal, and B. Sathe, Data flow analysis: theory and practice. CRC Press,

2017.

[66] R. P. Pargas, M. J. Harrold, and R. R. Peck, “Test-data generation using genetic algo-

rithms,” Software testing, verification and reliability, vol. 9, no. 4, pp. 263–282, 1999.

[67] M. R. Girgis, “Automatic test data generation for data flow testing using a genetic algo-

rithm.,” J. UCS, vol. 11, no. 6, pp. 898–915, 2005.

[68] N. Nayak and D. P. Mohapatra, “Automatic test data generation for data flow testing

using particle swarm optimization,” in International conference on contemporary computing,

pp. 1–12, Springer, 2010.

[69] S. Biswas, M. S. Kaiser, and S. Mamun, “Applying ant colony optimization in software

testing to generate prioritized optimal path and test data,” in 2015 International Confer-

ence on Electrical Engineering and Information Communication Technology (ICEEICT), pp. 1–

6, IEEE, 2015.

[70] M. Harman, Y. Jia, and W. B. Langdon, “Strong higher order mutation-based test data

generation,” in Proceedings of the 19th ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering, pp. 212–222, ACM, 2011.

136 BIBLIOGRAPHY

[71] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman, “Mutation test-

ing advances: an analysis and survey,” in Advances in Computers, vol. 112, pp. 275–378,

Elsevier, 2019.

[72] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated class mutation system,”

Software Testing, Verification and Reliability, vol. 15, no. 2, pp. 97–133, 2005.

[73] A. Derezinska and K. Kowalski, “Object-oriented mutation applied in common interme-

diate language programs originated from c,” in 2011 IEEE Fourth International Conference

on Software Testing, Verification and Validation Workshops, pp. 342–350, IEEE, 2011.

[74] P. Delgado-Pérez, I. Medina-Bulo, F. Palomo-Lozano, A. García-Domínguez, and J. J.

Domínguez-Jiménez, “Assessment of class mutation operators for c++ with the mucpp

mutation system,” Information and Software Technology, vol. 81, pp. 169–184, 2017.

[75] S. Liu, Formal Engineering for Industrial Software Development: Using the SOFL Method.

Springer Science & Business Media, 2013.

[76] D. Jackson, “Alloy: a lightweight object modelling notation,” ACM Transactions on Soft-

ware Engineering and Methodology (TOSEM), vol. 11, no. 2, pp. 256–290, 2002.

[77] K. L. McMillan and L. D. Zuck, “Formal specification and testing of quic,” in Proceedings

of the ACM Special Interest Group on Data Communication, pp. 227–240, 2019.

[78] S. Ali, M. Z. Iqbal, A. Arcuri, and L. C. Briand, “Generating test data from ocl con-

straints with search techniques,” IEEE Transactions on Software Engineering, vol. 39, no. 10,

pp. 1376–1402, 2013.

[79] A. Jalila and D. J. Mala, “Automated optimal test data generation for ocl specification

using harmony search algorithm,” International Journal of Business Intelligence and Data

Mining, vol. 16, no. 2, pp. 231–259, 2020.

[80] S. Liu, K. Takahashi, T. Hayashi, and T. Nakayama, “Teaching Formal Methods in the

Context of Software Engineering,” Inroads SIGCSE Bulletin, vol. 41, pp. 17–23, June 2009.

[81] S. Liu, A. J. Offutt, C. Ho-Stuart, Y. Sun, and M. Ohba, “SOFL: A Formal Engineer-

ing Methodology for Industrial Applications,” IEEE Transactions on Software Engineering,

vol. 24, pp. 337–344, January 1998. Special Issue on Formal Methods.

BIBLIOGRAPHY 137

[82] S. Liu, “Capturing complete and accurate requirements by refinement,” in Eighth IEEE

International Conference on Engineering of Complex Computer Systems, 2002. Proceedings.,

pp. 57–67, IEEE, 2002.

[83] S. Liu, “Utilizing test case generation to inspect formal specifications for completeness

and feasibility,” in 10th IEEE High Assurance Systems Engineering Symposium (HASE’07),

pp. 349–356, IEEE, 2007.

[84] C. Hoare, “An Axiomatic Basis of Computer Programming,” Communications of the ACM,

no. 12, pp. 576–580, 1969.

[85] S. Liu, T. Hayashi, K. Takahashi, K. Kimura, T. Nakayama, and S. Nakajima, “Automatic

Transformation from Formal Specifications to Functional Scenario Forms for Automatic

Test Case Generation,” in 9th International Conference on Software Methodologies, Tools and

Techniques (SoMet 2010), (Yokohama city, Japan), p. to appear, IOS International Pub-

lisher, Sept. 29- Oct. 1 2010.

[86] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in International conference on

Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340, Springer,

2008.

[87] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, “Generating test data from state-based

specifications,” Software testing, verification and reliability, vol. 13, no. 1, pp. 25–53, 2003.

[88] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D. Ernst, “Hampi: a solver for

string constraints,” in Proceedings of the eighteenth international symposium on Software test-

ing and analysis, pp. 105–116, 2009.

[89] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-vivo multi-path

analysis of software systems,” Acm Sigplan Notices, vol. 46, no. 3, pp. 265–278, 2011.

[90] S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel symbolic execution for auto-

mated real-world software testing,” in Proceedings of the sixth conference on Computer sys-

tems, pp. 183–198, 2011.

138 BIBLIOGRAPHY

[91] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline program patch

synthesis via symbolic analysis,” in Proceedings of the 38th international conference on soft-

ware engineering, pp. 691–701, 2016.

[92] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection: Help for the

practicing programmer,” Computer, vol. 11, no. 4, pp. 34–41, 1978.

[93] W. E. Wong, Mutation testing for the new century, vol. 24. Springer Science & Business

Media, 2001.

[94] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “Mujava: a mutation system for java,” in Proceedings

of the 28th international conference on Software engineering, pp. 827–830, ACM, 2006.

[95] A. M. R. Vincenzi, J. C. Maldonado, M. E. Delamaro, E. S. Spoto, and W. E. Wong,

“Component-based software: An overview of testing,” Component-Based Software Qual-

ity, pp. 99–127, 2003.

[96] A. Derezińska and A. Szustek, “Cream-a system for object-oriented mutation of c# pro-

grams,” in Annals Gdansk University of Technology Faculty of ETI, vol. 13, pp. 389–406,

Information Technology, 2007.

[97] Y. Jia and M. Harman, “An analysis and survey of the development of mutation testing,”

IEEE transactions on software engineering, vol. 37, no. 5, pp. 649–678, 2010.

[98] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for effective software fault

localization,” IEEE Transactions on Reliability, vol. 63, no. 1, pp. 290–308, 2013.

[99] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with ap-

plications to biology, control, and artificial intelligence. MIT press, 1992.

[100] J. Luo, S. Liu, Y. Wang, and T. Zhou, “Applying sofl to a railway interlocking system

in industry,” in International Workshop on Structured Object-Oriented Formal Language and

Method, pp. 160–177, Springer, 2016.

[101] S. Liu, Formal Engineering for Industrial Software Development Using the SOFL Method.

Springer-Verlag, ISBN 3-540-20602-7, 2004.

BIBLIOGRAPHY 139

[102] K. Sen, “Concolic testing,” in Proceedings of the twenty-second IEEE/ACM international con-

ference on Automated software engineering, pp. 571–572, ACM, 2007.

[103] C. E. Mackenzie, Coded-Character Sets: History and Development. Addison-Wesley Long-

man Publishing Co., Inc., 1980.

[104] B. Basavaprasad and M. Ravi, “A study on the importance of image processing and its

applications,” IJRET: International Journal of Research in Engineering and Technology, vol. 3,

p. 1, 2014.

[105] V. Barannik, S. Podlesny, D. Tarasenko, D. Barannik, and O. Kulitsa, “The video stream

encoding method in infocommunication systems,” in 2018 14th International Conference

on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TC-

SET), pp. 538–541, IEEE, 2018.

[106] T. Hur, J. Bang, J. Lee, J.-I. Kim, S. Lee, et al., “Iss2image: A novel signal-encoding tech-

nique for cnn-based human activity recognition,” Sensors, vol. 18, no. 11, p. 3910, 2018.

[107] Z.-Q. Zhou, Q.-X. Zhu, and Y. Xu, “Time series extended finite-state machine-based rele-

vance vector machine multi-fault prediction,” Chemical Engineering & Technology, vol. 40,

no. 4, pp. 639–647, 2017.

[108] O. Al Qasem, M. Akour, and M. Alenezi, “The influence of deep learning algorithms

factors in software fault prediction,” IEEE Access, vol. 8, pp. 63945–63960, 2020.

141

Appendix A

List of Research Paper

Refereed Journal Papers

First Author

[1] R. Wang, S. Liu, and Y. Sato, “SIT-SE: A Specification-Based Incremental Testing Method

with Symbolic Execution.” IEEE Transactions on Reliability, vol. 70, no.3, pp. 1053-1070,

2021. (DOI: https://doi.org/10.1109/TR.2021.3078714)

[2] R. Wang, Y. Sato, and S. Liu, “Mutated Specification-Based Test Data Generation with a

Genetic Algorithm.” Mathematics, vol. 9, no. 4, p. 331, 2021. (DOI: https://doi.org/10.

3390/math9040331)

[3] R. Wang, Z. Ding, N. Gui, and Y. Liu, “Detecting bugs of concurrent programs with pro-

gram invariants.” IEEE Transactions on Reliability, vol. 66, no.2, pp. 425-439, 2017. (DOI:

https://doi.org/10.1109/TR.2017.2681107)

Refereed Conference Papers

First Author

[4] R. Wang, S. Liu, and Y. Sato, “A Fault Localization Approach Derived From Testing-

based Formal Verification.” in 2020 25th International Conference on Engineering of Complex

Computer Systems (ICECCS), pp. 165-170, IEEE, 2020.

[5] R. Wang, Y. Sato, and S. Liu, “Specification-based Test Case Generation with Genetic

Algorithm.” in 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 1382-1389,

IEEE, 2019.

https://doi.org/10.1109/TR.2021.3078714
https://doi.org/10.3390/math9040331
https://doi.org/10.3390/math9040331
https://doi.org/10.1109/TR.2017.2681107

142 Appendix A. List of Research Paper

[6] R. Wang, and S. Liu, “Branch Sequence Coverage Criterion for Testing-Based Formal Ver-

ification with Symbolic Execution.” in 2019 IEEE 19th International Conference on Software

Quality, Reliability and Security Companion (QRS-C), pp. 205-212, IEEE, 2019.

[7] R. Wang, T. Wakahara, “Practice in Caption Generation with Keras: The Design and

Evaluation for Attention Models.” in Proceedings of the 2019 3rd International Conference

on Deep Learning Technologies, pp. 11-15, 2019.

[8] R. Wang, and S. Liu, “Tbfv-se: Testing-based formal verification with symbolic execu-

tion.” in 2018 IEEE International Conference on Software Quality, Reliability and Security

(QRS), pp. 59-66, IEEE, 2018.

Corresponding Chapters with Papers

Chapter 1. Introduction

Chapter 2. Related Work

[8] R. Wang, and S. Liu, “Tbfv-se: Testing-based formal verification with symbolic execu-

tion.” in 2018 IEEE International Conference on Software Quality, Reliability and Security

(QRS), pp. 59-66, IEEE, 2018.

[6] R. Wang, and S. Liu, “Branch Sequence Coverage Criterion for Testing-Based Formal Ver-

ification with Symbolic Execution.” in 2019 IEEE 19th International Conference on Software

Quality, Reliability and Security Companion (QRS-C), pp. 205-212, IEEE, 2019.

[5] R. Wang, Y. Sato, and S. Liu, “Specification-based Test Case Generation with Genetic

Algorithm.” in 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 1382-1389,

IEEE, 2019.

Chapter 3. Preliminaries

Chapter 4. Grey-Box Testing: The SIT-SE Method for Bug Detection

[1] R. Wang, S. Liu, and Y. Sato, “SIT-SE: A Specification-Based Incremental Testing Method

with Symbolic Execution.” IEEE Transactions on Reliability, 2021. (DOI: https://doi.

org/10.1109/TR.2021.3078714) (Accepted)

Chapter 5. TRIACFL: Triple Interaction-Based Fault Localization

https://doi.org/10.1109/TR.2021.3078714
https://doi.org/10.1109/TR.2021.3078714

Appendix A. List of Research Paper 143

[4] R. Wang, S. Liu, and Y. Sato, “A Fault Localization Approach Derived From Testing-

based Formal Verification.” in 2020 25th International Conference on Engineering of Complex

Computer Systems (ICECCS), pp. 165-170, IEEE, 2020.

Chapter 6. Supplement to SIT-SE: a Mutated Specification-Based Approach with a Ge-

netic Algorithm

[2] R. Wang, Y. Sato, and S. Liu, “Mutated Specification-Based Test Data Generation with a

Genetic Algorithm.” Mathematics, vol. 9, no. 4, p. 331, 2021. (DOI: https://doi.org/

10.3390/math9040331)

https://doi.org/10.3390/math9040331
https://doi.org/10.3390/math9040331

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Software Quality Assurance
	Software Verification
	Automatic Testing and Fault Localization

	Motivation
	Path Explosion and False Paths Identification Problems
	Low Precision and High Costs in Fault Localization
	Problems in Test Selection for Unavailable Source Code

	Contributions
	Bug Detection
	Fault Localization
	Test Selection

	Structure of the Thesis

	Related Work
	Symbolic Execution and Specification-Based Techniques
	Symbolic Execution Techniques
	Specification-Based Techniques

	Fault Localization Techniques
	Spectrum-Based Fault Localization
	Program Slicing
	Assertions

	Test Data Generation Techniques
	Data Flow Analysis
	Mutation-Based Testing
	SBT with Heuristics

	Preliminaries
	Formal Specification
	Symbolic Execution
	SBT with Symbolic Execution

	Grey-Box Testing: The SIT-SE for Bug Detection
	Principle of the SIT-SE
	Theorem
	Path Exploration
	Incremental Testing

	Case Study
	Experiment
	Preparation
	Experimental Results
	Summary

	Threats to Validity
	Conclusion

	TRIACFL: Triple Interaction-Based Fault Localization
	Principle of TRIACFL
	Elementary Fault Location Generation Algorithm
	Attentional Shift-Based Review

	Case Study
	Step-by-Step Analysis
	Experimental Result with Single Fault
	Evaluation and Summary

	Experiment with Multiple Faults
	Experiment Design and Preparation
	Experimental Result
	Evaluation and Summary

	Conclusion

	Supplement to the SIT-SE: A Mutated Specification-Based Approach with Genetic Algorithm
	Genetic Algorithm (GA) with Mutated Specification
	Description for GA
	Mutation Testing
	Mutated Specifications
	Chromosome Formation
	Genetic Manipulations and Selection

	Algorithm Summary
	Case Study
	Case Study 1: Mod
	Case Study 2: Gcd
	Complexity of the Approach

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Research Paper

