法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-01-15

画像認識手法による磁化特性の評価

大窪, 雄亮 / 遠藤, 久 / 早野, 誠治 / 齋藤, 兆古 / OKUBO, Yusuke / ENDO, Hisashi / HAYANO, Seiji / SAITO, Yoshifuru

(出版者 / Publisher) 法政大学計算科学研究センター

(雑誌名 / Journal or Publication Title)

法政大学計算科学研究センター研究報告 / Bulletin of Computational Science Research Center, Hosei University

(巻 / Volume) 16 (開始ページ / Start Page) 71 (終了ページ / End Page) 75 (発行年 / Year) 2003-03-20

(URL) https://doi.org/10.15002/00024977

大窪 雄亮 遠藤 久 早野 誠治 齋藤 兆古 法政大学大学院工学研究科

磁性材料は磁区構造を持つ事が知られている。今日では磁性体の磁区を直接観察する多くの方法が提案 され、磁性材料の品質評価に用いられている。磁性材料の品質評価は経験技術者の観察で行われるのが 通例である。本論文では画像認識手法を用いて、磁性材料の自動品質評価装置を実現することを究極の 目的として、磁性材料の最も基礎的な特性である磁化特性が磁区画像から生成可能である事を報告する。

1. はじめに

近年の小型・高性能なパーソナルコンピュータの普及 に伴って,デジタル映像機器の開発と普及は目覚しく, 従来型のアナログ映像機器を凌駕するのは時間の問題と 考えられる.

他方,我々は,小型・高性能パーソナルコンピュータ とデジタル映像機器を組み合わせて,人間の視覚情報処 理を機械で実現する人工眼球(Artificial Human Eye,以下, AHE と略記)計画を提案し,顔の表情を変えた同一人物の 識別,動作の異なる同一人物の識別をある程度限定され た環境下であるが,カラー画像のみならずモノクロ画像 に対しても実現することに成功した^{[1]-[3]}.

AHE は従来特定の訓練を積んだ熟練技術者を必要と する広汎な分野,例えば医学,非破壊検査,セキュリティなどへ応用可能で有る.いわゆる,完全なエクスパー トシステムの実現が AHE で可能となる.

我々は、AHEの具体的応用として、磁区画像から磁性 材料の特性評価を自動的に行う磁区画像評価エクスパー トシステムの開発を企画した.本論文では、磁区画像評 価エクスパートシステム開発の第一歩として、磁区の SEM(Scanning Electron Microscope,以下,SEMと略記)画 像へ画像認識手法を適用し、磁化曲線の上昇時と下降時 で同一磁区画像探査を試みる.

磁区画像を取得する方法は,比較的安価に装置が構成 可能なビッター(Bitter)法とSEM法があり、本稿で両者に ついて概説する.

本論文の構成は以下の通りである.1 章は,序章であ り,本論文の目的と構成について述べた.2 章ではビッタ ー法の測定方法,原理,そして測定の一例を示す.また, 同様に SEM による測定方法,原理,そして測定の一例を 示す.3 章では,モノクロ画像の濃淡分布をヒストグラム 分布で表しモノクロ画像の固有パターンを得る.得られ た固有パターンを用いて画像認識を行う方法について述 べる.さらに,2章で測定された SEM 画像より画像認識 手法を用いて,磁化曲線の上昇時と下降時で同一磁区画 像探査を行う.4章はまとめである.

2. 磁区画像の測定方法^{[4]-[5]}

2.1 ビッター法による磁区観察の原理

ビッター法による磁区可視化の原理について述べる. 強磁性微粒子(酸化鉄)のコロイド液を強磁性体表面につけると,コロイド液内に分散していた酸化鉄の微粒 子が,磁壁付近の急峻な磁化変化による表面への漏れ磁 束の傾斜に引き付けられて集まり,表面近くの磁壁の観 測ができる.この引き付けられた微粒子を光学顕微鏡で 観察する.

この原理は実際の製品へ生かされ,比較的面倒な実験 準備を必要とせずに,実行可能である.

2.2 ビッター法による磁区観察の測定方法

まず,被観察対象である強磁性体を機械研磨する.磁 区構造は表面の機械研磨によるひずみの影響を受けやす いので,ひずみの入った表面層を取り除く必要がある. 表面ひずみを削除するため,電解液中に機械研磨された 被観察対象磁性体を浸し電解研磨する.

金属試料の表面磁区を観察するには,反射型の金属光 学顕微鏡を用いる.倍率は 100~200 倍程度でよい.試料 台に試料を載せて,研磨面にスポイトで磁性コロイド溶 液を1滴たらし,カバーガラスを載せて観察する.コロ イドだけを強調したい場合には暗視野法を用いると,研 磨面に当たった光は視野の外に反射してしまい,コロイ ドからの乱反射だけが観察される.Fig.1 はこのようにし て観察された無方向性珪素鋼板の磁区画像の1例である. 2.3 SEM による磁区観察

金属に電子線を入射すると,弾性的反射を繰り返して 再び試料表面から飛び出す反射電子のほかに,入射電子 のエネルギーを受けて内部から飛び出す電子(二次電子) がある.これらのなかには,内殻準位の励起,伝導電子 のゆらぎによってエネルギー損失を受けるもの(特性損 失電子),また,内殻準位の励起と遷移を経て内殻から放 出されるもの(オージェ電子)など,金属内の電子構造 に関する情報を含んだ電子も放出される.電子線を試料 表面で走査し、このような反射電子、二次電子を検出す ることによって,表面近くの磁気に関する情報を得るこ とができる.ある方向の磁区から出る反射電子の方向に 検出器を置くと,磁区構造は明暗のコントラストとなっ て観測できる.さらに2個の検出器を差動型に配置し, 高周波磁場を参照信号にしてロックイン方式にすると, 高いコントラストが得られる.二次電子の放出は試料表 面垂直方向に対して cos の分布をもつが,入射電子にく らべて運動エネルギーが低いので,試料表面の磁場分布 を調べていることになる.なお,二次電子は,試料の磁 化方向に応じてスピン偏極していることになる、これは 強磁性体内のフェルミ面付近では,スピンの方向によっ て状態密度に差があるためである.このスピン偏極度を 検出することによって,試料より物理的な磁化状態を知 ることできる.これが SEM による磁区可視化の基本原理 である.

本論文で用いた SEM により観察された磁区画像を

Fig.1. Magnetic Domain Image by Bitter Method

Table 1 Applied Fields *H* and Flux Densities *B* of SEM Image to Be Used

8					
No.	H[A/m]	<i>B</i> [T]	No.	H[A/m]	B[T]
1	0.00	0.00	13	214.13	1.93
2	2.85	0.10	14	160.37	1.92
3	9.26	1.63	15	98.68	1.91
4	24.16	1.73	16	54.66	1.84
5	30.23	1.78	17	28.53	1.83
6	54.59	1.84	18	3.73	1.77
7	84.92	1.86	19	0.00	1.73
8	115.39	1.88	20	-4.60	1.73
9	160.69	1.90	21	-5.95	-0.06
10	236.32	1.92	22	-7.45	-1.43
11	324.31	1.95	23	-9.07	-1.56
12	269.64	1.95			

3. モノクロ画像認識手法による磁区画像認識

3.1 モノクロ画像の固有パターン抽出法

モノクロ固有ベクトルは,画像中の対象物の空間位相 や解像度に対して独立となるべきであるから、モノクロ 画像の画素値を一定のダイナミックレンジへ変換した後、 画素値、すなわち、反射光強度をヒストグラム化して得 られる.モノクロ成分分布 I_{Mono}は

$$I_{\text{Mono}} \in M_i$$
, $i = 1, 2, \cdots, p$ ⁽¹⁾

で与えられる.このモノクロ成分分布 *I*_{Mono}をダイナミックレンジ D の分布に正規化した正規化モノクロ分布 *I*_{Mono}^Dに変形する.

$$I_{\text{Mono}}^{D} \in \text{Round}\left[D \times \frac{Mi}{\text{Max}[I_{\text{Mono}}]}\right], i = 1, 2, ..., p$$
⁽²⁾

そして,得られた正規化モノクロ成分分布 *I*_{Mono} において, 0 から *D* までのそれぞれのモノクロ成分値を取る画素数 を計数して出現頻度を求め,ベクトル形式の配列データ としてモノクロ成分固有ベクトル E_{Mono} とする.これはス クリーンを構成する画素数や基準座標依存性などを削除 した対象映像固有の特徴量である. 3.2 システム方程式

各画像から画像の普遍量を固有パターンとして抽出し, n 個の固有パターン E_i i=1,2,...,n を得る.システム行列 C は n 個の固有パターンを列行列として次式で与えられる.

$$C = [\mathbf{E}_1, \mathbf{E}_2, ..., \mathbf{E}_n]$$

入力画像から得られる固有パターンをExとすれば次式の 線形システム方程式が得られる

(3)

$$\mathbf{E}_{\mathbf{X}} = C\mathbf{X} \tag{4}$$

3.3 システム方程式の解法

(4)式の解ベクトル X は,画像の各固有パターンの重み を要素とする n 次のベクトルである.固有パターンベク トルの次数 m が通常は固有パターンの個数 n よりも大き いと仮定すれば,システム行列 C は m 行 n 列の長方行列 となり,解ベクトル X の導出に(5)式の最小自乗法を適用 することができる^[6].

$$\mathbf{X} = \begin{bmatrix} C^T C \end{bmatrix}^{-1} C^T \mathbf{E}_{\mathbf{X}}$$
(5)

ここで,(5)式を満たすベクトル X が第 j 番目の要素を 1 とし,他の要素をすべて 0 であれば,固有パターン Ex が 画像の固有パターン Ey に等しいことになり,対象画像を 固有パターン Ey の画像と同定できる.

現実には,(5)式の解ベクトル X で,特定の要素が1, 残りはゼロとなり得ることが無い.このような場合,最 大値を取る要素を認識された画像とする. 3.4 SEM 画像を用いた磁化特性の評価

Table 1のNo.1からNo.11は外部磁界をゼロから印加し,

Fig.3 は磁束密度分布認識結果である.これらは解ベクトルの要素で No.18 以降のそれは拡散が激しく,認識不可能であることを意味する.換言すれば,予めシステムに勘案されていない画像は認識出来ないのが当然である. 逆に No.12 から 17 までの認識精度は,多少の解要素の拡 散が見られるが,比較的良好である.

4. まとめ

本論文では磁区画像評価エクスパートシステム開発の 第一歩として,磁束密度の絶対値が同一となる磁区画像 認識を試みた.すなわち,磁区の SEM 画像へ画像認識手 法を適用し,磁化曲線の上昇時と下降時で同一磁区画像 探査を試みた.

その結果,予めシステムに勘案されていない画像は認 識不可能で有ったが,予めシステムに勘案されている画 像対する認識精度は,多少の解要素の拡散が見られたが, 比較的良好であった.

参考文献

- [1]若林健一,早野誠治,齋藤兆古,國井利泰、"画像の固有パ ターンと画像認識への応用"、可視化情報学会誌、Vol.19、 No.1、pp.91-94、1999年.
- [2]遠藤久,早野誠治,齋藤兆古、"電磁界の可視化手法に関する考察"、電気学会マグネティックス研究会資料、 MAG-01-069、2001 年.
- [3]若林健一,早野誠治,齋藤兆古、"磁界の固有パターンを 用いたコイル認識"、電気学会マグネティックス研究会 資料、MAG-00-262、2000年.
- [4]大田恵造、"磁気工学の基礎"、共立全書、1973年.
- [5]A. Hubert, R. Schafer、 "Magnetic Domains", Springer、2000 年.
- [6]G Strang、"Linear Algebra and its Applications"、Academic Press Inc、1976 年.

(a)Input Image No.12, Cognized No.10, Solution Vector

(b)Input Image No.13, Cognized No.10, Solution Vector

(c)Input Image No.14, Cognized No.10, Solution Vector

(d)Input Image No.15, Cognized No.9, Solution Vector

(e)Input Image No.16, Cognized No.9, Solution Vector

(g)Input Image No.18, Cognized No.7, Solution Vector

(h)Input Image No.19, Cognized No.7, Solution Vector

No. 0246810

(i)Input Image No.20, Cognized No.7, Solution Vector

(j)Input Image No.21, Cognized No.7, Solution Vector

0246810

No.

(f)Input Image No.17, Cognized No.9, Solution Vector (l)Input Image No.23, Cognized No.7, Solution Vector Fig.3 Results of Domain Image Cognition

<u>キーワード.</u>

モノクロ静止画像認識、磁化特性評価、磁区画像

Summary.

Magnetization Characteristics Evaluation By Means of Image Cognition

Yusuke Okubo Hisashi Endo Seiji Hayano Yoshifuru Saito Graduate school of Engineering Hosei University

Previously, we have proposed a method of image cognition based on the color component decomposing methodology, which has made it possible to cognize each of the human faces even though a different facial expression. Furthermore, we have succeeded in cognizing the monochrome images utilizing light intensity histogram approach. We are now planning to exploit a magnetization characteristics measurement instrument by applying the image cognition method to the Bitter magnetic domain images. As the first step, in this paper, we apply the monochrome image cognition method to the SEM (Scanning type Electron Microscope) images of silicon steel magnetic domains. As a result, it is revealed that the magnetic domain images take the similar ones at the highly saturated region but take the extremely different ones at the not saturated region.

Keywords.

Monochrome image cognition, Magnetization characteristics, Magnetic domain images