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Abstract

With the breakthrough of deep learning techniques, many excellent applications for the

automated diagnosis of plant disease have been proposed. However, there are several

open issues for developing practical plant disease diagnosis systems in real cultivation.

Firstly, most conventional methodologies only accept narrow range images, typically

one or quite a limited number of targets are in their inputs. Applying these models to

wide-angle images in large farms would be very time-consuming, since many targets

(e.g., leaves) need to be diagnosed. In this work, we propose a two-stage system which

has independent leaf detection and leaf diagnosis stages for wide-angle disease diagnosis.

We show that our proposal attains a promising disease diagnostic performance that is

more than six times higher than end-to-end systems (state-of-the-art detection methods

like Faster R-CNN or SSD) with F1-score of 33.4 – 38.9% compared to 4.4 - 6.2% on

an unseen target dataset.

Secondly, the lack of image resolution (i.e., diagnosing from low-quality input im-

ages such as low-resolution, blur, poor camera focus, etc.) could significantly reduce

the diagnostic performance in practice. Also, high-resolution data is very difficult to

obtain and are not always available in practice. Deep learning-based techniques, and

particularly generative adversarial networks (GANs), can be applied to generate high-

quality super-resolution images, but these methods often produce unexpected artifacts

that can lower the diagnostic performance. In this paper, we propose a novel artifact-

suppression super-resolution method that is specifically designed for diagnosing leaf

disease, called LASSR. Our LASSR can detect and suppress artifacts to a considerable

extent. Thus, generating much more pleasing, high-quality images from low-resolution

inputs. Experiments show that training with data generated by our proposal signifi-

cantly boosts the performance on an unseen test dataset by over 21% compared with

the baseline.

Thirdly, collecting and labeling training disease data for these diagnosis systems
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requires solid biological knowledge and is very labor-intensive. Limited amount of dis-

ease training data leads to the fourth problem of model overfitting. The performance

of disease diagnostic models are drastically decreased when used on test data sets from

new environments. Meanwhile, we observe that healthy images are easier to collect.

Based on this, we propose LeafGAN, a novel image-to-image translation system. Leaf-

GAN generates countless diverse and high-quality diseased data via transformation

from healthy images, as a data augmentation tool for improving the performance of

plant disease diagnosis. Our model can transform only relevant areas from images with

a variety of backgrounds, thus enriching the versatility of the training images. Experi-

ments show that data augmentation with LeafGAN help to improve the generalization,

boosting the diagnostic performance on unseen data by 7.4% from baseline.

In summary, we show that our approaches significantly improve the diagnostic per-

formance under practical settings, confirming to be efficient and reliable methods for

real cultivation scenarios.
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Chapter 1

Introduction

Loss of crop yield due to plant diseases is one of the most serious and longstanding

problems in the development of agriculture worldwide. Early detection and appropriate

treatment are crucial steps to increase crop productivity. This is also essential in

ensuring global food security and the sustainability of agroecosystems [1, 2]. There are

several ways to analyze plant diseases including visual inspection by experts, biological

examination, or automatic computer-based diagnosis systems. The problem with visual

inspection by experts and biological examinations are that those analyses are often

time-consuming, expensive, and fail to identify diseases in a timely manner. In this

context, many automatic computer-based diagnosis methodologies which are capable

of identifying diseases in a rapid and reliable way have been recently proposed.

Qin et al. [3] used conventional image segmentation techniques and a support vector

machine (SVM) [4] to classify four types of alfalfa diseases in leaves. The SVM classifier

achieved an accuracy of 94.7% on images in a laboratory environment. Hallau et al.

[5] proposed a fast method to identify four sugar beet diseases using smartphones.

They extracted multiple hand-crafted features on sugar beet leaf images and trained

an SVM classifier. Their system achieved 82.0% classification accuracy. Mwebaze et

al. [6] built a smartphone-based system to diagnose five classes (four types of disease

and a healthy diagnosis) in cassava. The system used three classifiers (Linear SVM, K-

Nearest neighbor (KNN), and extremely randomized trees (ERT)) with a hand-crafted

feature called Color and Oriented FAST and Rotated BRIEF (ORB) [7] and achieved

over 99% accuracy. Es-Saady et al. [8] designed a system based on a serial combination

of two SVM classifiers to recognize six classes of disease. Image features such as colour,

shape, texture were fed to the two SVM classifiers to make decisions. Their system
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attained an overall recognition rate of 87.8%.

These methods successfully established preferable performance for their own target

task. However, since they were designed based on conventional pattern recognition

techniques, i.e., sequential process of (1) pre-processing including segmentation, detec-

tion of the regions of interests (ROIs), etc., (2) development of hand-crafted features

specially designed for that specific task, and (3) classification, they usually have con-

straints on their usage. For example, the selection of the pre-processing methods, the

hand-crafted features or classification algorithms is a tedious process and it is difficult

to find the combinations that yield the best results. Moreover, such methods often fail

when diagnosing on complex real-world plant images [9].

In recent years, convolutional neural networks (CNNs) have demonstrated tremen-

dous success in object recognition and image classification tasks. Since the break-

through of AlexNet [10] in the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC 2012) [11], many automatic plant diagnosis systems have used CNNs for

identifying plant diseases. Liu et al. [12] designed their own CNN model to classify

four types of apple diseases by combining AlexNet with Inception modules [13]. Un-

der a controlled environment, their model had considerably smaller parameters than

AlexNet while they achieved an overall accuracy of 97.6%. Mohanty et al. [14] ap-

plied CNN-based transfer learning. More specifically, they used pre-trained AlexNet

and GoogLeNet to to identify 14 crop species and 26 diseases on the PlantVillage

dataset [15] and attained a classification accuracy of 99.3%. With open access and

large number of disease images, the PlantVillage dataset has also been widely used for

plant disease classification systems. Wang et al. [16] applied transfer learning with

VGG-Net [17] and classified different stages of the apple black rot disease on the same

PlantVillage dataset, showing an accuracy of 90.4%. Durmuş et al. [18] investigated

transfer learning on AlexNet and SqueezeNet [19] to classify ten classes (nine diseases,

one healthy) of tomato leaves from the PlantVillage dataset. They showed a com-
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petitive accuracy of 94.3% on SqueezeNet compared to AlexNet with 95.6%. Thus,

the small size of SqueezeNet is well suited for mobile applications. Elhassouny and

Smarandache [20] also built a mobile application for classifying those ten tomato leaf

diseases using Mobilenet [21]. Their model attained 90.3% of recognition accuracy

while running on smartphones. In another work in the same tomato dataset, Atabay

[22] showed a test accuracy of 99.9% while classifying ten tomato diseases with deep

residual learning [23]. Barbedo [24] designed a system to identify disease from indi-

vidual lesions and spots images on 14 types of crops. Multiple GoogLeNet [13] models

were fine-tuned and achieved overall accuracy of 82.0% among multiple crops. The

advantages of the recent state-of-the-art EfficientNet model [25] was also exploited to

classify all classes of the PlantVillage dataset [26]. Their EfficientNet model reached

the highest classification accuracy of 99.97%. Although the above methods achieved

remarkable results, they have a major drawback in that most of the photographic im-

ages are taken in a laboratory setting (i.e., each leaf is manually cropped and placed

on a uniform background), not under real conditions in the cultivation field.

On the other hand, several other diagnosis systems have also proven the reliability

of CNN-based methods under practical conditions. In pioneering work, Kawasaki et

al. [27] trained a three-layer CNN to diagnose three classes of cucumber diseases (two

classes of diseased and one of healthy) on images from a real farm, in which the target

objects appear with complex backgrounds. Their model achieved an average accuracy

of 94.9%. Similar studies on cucumber [28–30] have also conducted. Sladojevic et

al. [31] designed a customized CNN model and got an overall accuracy of 96.3%

while identifying 13 types of disease in five crops using images downloaded from the

Internet. Ramcharan et al. [32] investigated on-site cassava leaves and reported an

overall accuracy of 93% while classifying six classes (five diseases and a healthy state)

using transfer learning and deployed a real-time mobile application. DeChant et al.

[33] proposed an automated system to identify northern leaf blight lesions on field-
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acquired images of corn plants and achieved 96.7% accuracy on test set. Ferentinos

[34] attained a 99.5% success rate in identifying the corresponding [plant, disease (or

healthy)] combination in 58 distinct classes using a dataset taken from both laboratory

settings and cultivation fields. On studies of diagnosing natural rice images, Lu et

al. [35] trained their system to identify ten common rice diseases. Under the 10-fold

cross-validation strategy, the proposed CNN model achieves an accuracy of 95.48%.

Chen et al. [36] combined the VGGNet [13] and Inception [37] to form the INC-VGGN

model for rice and maize disease classifications. Their proposal attained the average

accuracy of 92.0% on five-class in-field rice diseases and 80.4% on four-class maize

classification. Picon et al. [38] proposed several systems that incorporate contextual

non-image metadata such as crop information and high-level feature extracted from

a CNN for multi-crop disease classification. Their model classified total of 23 disease

classes from five crops namely winter wheat, rice, corn, rapeseed, and winter barley.

They obtained the best performance result of balanced accuracy of 98.0% on their

model.

In the meantime, CNNs also demonstrated brilliant performance in the simulta-

neous processing of object detection and localization. Many state-of-the-art object

detections methods have been proposed [46–56]. Inspired by that work, some inter-

esting diagnosis systems are not only detecting the diseases but also localizing their

involved areas. Fuentes et al. [39] used three CNN-based systems (i.e., Faster R-CNN

[48], R-FCN [49] and SSD [51]) which performed object localization and diagnosis pro-

cesses simultaneously. Their system achieved 86.0% mean average precision (mAP) on

annotated tomato leaf images. Lu et al. [40] designed a framework to do both localiza-

tion and diagnosis for wheat diseases with a fully convolutional network. Their system

achieved 98.0% mean recognition accuracy on a wheat disease database (WDD2017)

and can be deployed for mobile applications. Wang et al. [41] developed two different

models, Faster R-CNN [48] and Mask R-CNN [57] for identifying the types of tomato
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Table 1.1: Summary of recent works on leaf disease recognition

Article Crop
# of
class

Dataset
condition

Type Method
Performance

(%)
Qin et al. [3] Alfalfa 4 In-lab Classification SVM 94.7

Hallau et al. [5] Sugar beet 4
In-field
(background
removed)

Classification SVM 82.0

Mwebaze et al. [6] Cassava 5 In-field Classification SVM 99.0
Es-Saady et al. [8] Multiple 6 In-lab Classification SVM 87.8

Liu et al. [12] Apple 4 In-lab Classification
AlexNet with
Inception

97.6

Mohanty et al. [14] Multiple 38 In-lab Classification GoogLeNet 99.4
Wang et al. [16] Apple 4 In-lab Classification VGG 90.4
Durmuş et al. [18] Tomato 10 In-lab Classification SqueezeNet 94.3
Elhassouny et al. [20] Tomato 10 In-lab Classification MobileNet 90.3
Atabay [22] Tomato 10 In-lab Classification Customized CNN 99.9

Barbedo [24] Multiple 79
In-field
(background
removed)

Classification GoogLeNet 82.0

Atila et al. [26] Multiple 39 In-lab Classification EfficientNet 99.9
Kawasaki et al. [27] Cucumber 3 In-field Classification Customized CNN 94.9
Fujita et al. [29] Cucumber 9 In-field Classification VGG 93.6

Sladojevic et al. [31] Multiple 15
In-lab &
in-field

Classification Customized CNN 96.3

Ramcharan et al. [32] Cassava 6 In-field Classification Inception V3 93.0
DeChant et al. [33] Corn 1 In-field Classification Multiple CNNs 96.7

Ferentinos [34] Multiple 58
In-lab &
in-field

Classification VGG 99.5

Chen et al. [36]
Rice and
corn

9 In-field Classification
VGG with
Inception

92.0 on rice
80.4 on corn

Picon et al. [38] Multiple 23 In-field Classification
ResNet50 with
meta-data

98.0

Fuentes et al. [39] Tomato 10 In-field
Detection &
Classification

R-FCN mAP: 86.0

Lu et al. [40] Wheat 7 In-field
Detection &
Classification

Customized CNN 98.0

Wang et al. [41] Tomato 11 In-field
Detection &
Classification

Mask R-CNN mAP: 99.6

Ozguven et al. [42] Sugar beet 4 In-field
Detection &
Classification

Updated
Faster R-CNN

95.5

Bhatt et al. [43] Tea 2 In-field
Detection &
Classification

YOLOv3 mAP: 86.0

Jiang et al. [44] Apple 5
In-lab &
in-field

Detection &
Classification

SSD with
Inception

mAP: 78.8

Xie et al. [45] Grape 4 In-lab
Detection &
Classification

Improved
Faster R-CNN

mAP: 81.1

diseases and segmenting the locations and shapes of the infected areas. Their Faster

R-CNN and Mask R-CNN models showed the highest results of mAP of 88.5% and

99.6%, respectively. Ozguven and Adem [42] designed an updated version of the Faster

R-CNN for automatic detection of leaf spot disease in sugar beet. Their overall correct

classification rate was 95.5%. Bhatt et al. [43] proposed a diseases and pests detection
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from in-field tea images based on YOLOv3 model [54]. They reported that detection

using their YOLOv3 model achieved mAP of 86.0% while making the system usable in

real time. Jiang et al. [44] built a real-time detection system of apple leaf diseases by

combining SSD and Inception modules. Their model showed a detection performance

of 78.8% mAP on five disease classes. Xie et al. [45] proposed an improved version of

Faster R-CNN model for in-lab grape disease detection. The result of 81.1% mAP on

four grape leaf diseases was reported. Table 1.1 provides a summary of recent studies

on leaf disease recognition. Systematic reviews of automated leaf disease recognition

can be found in [58, 9, 59].

1.1 Motivations

Although the above diagnosis systems have achieved excellent performance on a wide

variety of in-field images, they are still far away from being practical and there are

several problems remained as follows:

Diagnosing from wide-angle images

The inputs of all abovementioned systems are narrow range images, which contain

few targets for diagnosis (i.e., the ROIs are generally located in the center of the

input). Applying these models to wide-angle images in large farms would be very

time-consuming, since many targets (e.g., leaves) need to be diagnosed. In practice,

wide-angle images are extremely complex with multiple leaves overlapping each other,

along with a wide variety of backgrounds, lighting conditions, distance between camera

and each leaf, etc. Furthermore, plant symptoms are highly diverse. In this study, we

define a narrow range image to be close-up to the camera which contains several targets

for diagnosis. On the other hand, a wide-angle image is far-off from the camera and

consists of dozen of targets to be diagnosed. Fig. 1.1 shows a comparison between

the narrow range input images of the abovementioned systems and the wide-angle

6



(a) (b) (c) (d) (e)

(g)(f)

Figure 1.1: The comparison between the narrowed range images (a, b, c, d, e) and
wide-angle images (f, g). Wide-angle images are often complex due to the heavily
overlapped of multiple leaves. Also, symptoms are scattered in different leaves (g).

images taken in practical situations. The images from (a-e) in [28, 31, 32, 39, 40]

with various backgrounds have a narrow range compared to the wide-angle images (f,

g). Thus, even though the simultaneous localization and identification systems worked

well on narrow range images [39–45], simultaneous processing for wide-angle images

is quite difficult. Developing diagnosis systems for wide-angle images (e.g., taken by

surveillance cameras) is, however, necessary in practical situations.

In this work, we propose a system that performs leaf detection and leaf diagno-

sis from wide-angle input images. Fig. 1.2 illustrates an overview of recent studies

on plant leaf disease recognition including our proposal (the wide-angle diagnosis sys-

tem). To the best of our knowledge, this system was the first investigation on plant

disease diagnosis from wide-angle images under practical settings (described in detail

in Chapter 2).
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Figure 1.2: An overview of recent studies on plant leaf disease recognition. Our pro-
posal was the first wide-angle plant disease diagnosis system under practical settings.

The lack of high-resolution resources

Several agricultural studies have pointed out that the lack of high-resolution of targets

in wide-angle images is the main reason for the relatively low performance. Sa et al.

[60] and Bresilla et al. [61] designed systems for the real-time counting of fruits on

trees, in order to support robotic harvesting. However, they reported that low-quality

test images could cause their detection systems to miss these fruits. Tian et al. [62]

developed an algorithm for in-farm apple fruit detection, but their scheme required im-

ages with high resolution (HR) and a high-level of detail for accurate detection. In the

case of diagnosing disease from wide-angle images, we have experienced that small leaf
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Figure 1.3: The comparison between the low-resolution (first row, 4× up-scaled using
Bicubic) and the original high-resolution images (second row). The loss of symptom
information from low-resolution images will largely reduce the disease diagnostic per-
formance.

sizes and low-quality input images (i.e., low-resolution, blur, poor camera focus, etc.)

could significantly reduce the diagnostic performance of their disease detection scheme

[63]. Fig. 1.3 shows a visual comparison between the low-resolution (4× up-scaled us-

ing Bicubic) and the original high-resolution images. Since practical wide-angle images

contain many small leaves, simply enlarging those leaves using conventional techniques

is not sufficient enough to recover the loss of disease symptom and will largely degrade

the diagnostic performance. We believe that recovering the high-frequency components

of images by applying super-resolution (SR) methods offers a promising solution for

addressing the abovementioned issue for practical agricultural applications.

Motivated by this, we propose a specially designed SR method namely leaf artifact-

suppression super-resolution (LASSR) to improve the performance of plant leaf disease

diagnosis from low-resolution (LR) data. Fig. 1.4 shows the difference of the LASSR
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Figure 1.4: An overview of SR studies for plant disease diagnosis.

among other studies of SR for plant disease recognition. Our LASSR is capable of

generating high-quality and reliable SR images for practical usages. More details of

LASSR will be described in Chapter 3.

The overfitting problem and the difficulty of collecting data

The overfitting problem is particularly long lasting and serious in plant diagnosis tasks,

since the image features that provide diagnostic clues (i.e., evidence for classification)

are typically much smaller than in general object recognition problems. In general, a

deep classifier such as a CNN tends to capture the image characteristics (i.e., brightness,

color) of a large area, rather than a faint feature that may indicate disease. In addition,

when evaluating a classifier using a dataset divided into training, validation, and test

sets (where cross-validation is applied), the “latent similarities” within the dataset

10



Table 1.2: Decreased discrimination performance on unseen data

Article Crop
# of
class

Dataset
condition

Type
Performance on

validation data (%)
Performance on
unseen data (%)

Mohanty et al. [14] Multiple 38 In-lab Classification 99.3 31

Ferentinos [34] Multiple 58
In-lab &
in-field

Classification 99.5 25-35

Cap et al. [63] Cucumber 2 In-field
Detection &
Localization

97.4 68.1

Saikawa et al. [64] Cucumber 8 In-field Classification 97.4 40.3

Suwa et al. [65] Cucumber 2 In-field
Detection &
Localization

F1-score: 86.0 F1-score: 19.5

(such as the background, brightness and/or distance between target and camera etc.)

works as a positive bias, and generally improves only the superficial diagnostic accuracy,

while the accuracy when evaluated on other unknown environments becomes very low

[14, 34, 63–65] (see Table 1.2). The evidence confirming the overfitting of models in

plant diagnosis tasks has been shown in our previous studies [29, 64] by using Grad-

CAM [66] to visualize the key regions of diagnostic evidence. Although these models

provided a high diagnosis accuracy, the backgrounds were sometimes considered as

diagnostic regions. The most plausible reason for this is that when collecting a dataset,

the foreground objects in each image class tend to be incidentally correlated with similar

backgrounds. A lack of background diversity could be a distractor, meaning that the

model sometimes responds to the background rather than discriminative targets (i.e.,

leaf regions).

On the other hand, unlike other general computer vision tasks, collecting and label-

ing disease datasets requires solid biological knowledge. In order to collect gold stan-

dard datasets with a wide-variety of diseases, the plants must be grown in a strictly

controlled and isolated environment to avoid contamination, which is generally labor-

intensive and very expensive. Disease development is also strongly influenced by am-

bient conditions such as weather, temperature and vector-borne insects. Therefore,

several diseases are difficult to collect. It should be noted that recently, several meth-

ods based on the generative adversarial networks (GANs) [67] have been proposed to

synthesize more artificial images for disease recognition tasks [68–72]. Fig 1.5 shows

11



c) Nazki et al. (2020)

b) Chen et al. (2021)

d) Wu et al. (2020)

a) Arsenovic et al. (2019)

Figure 1.5: Synthesized images by recent GAN-based methods for plant recognition
tasks. Images partly captured from above studies. They either used in-lab or close-up
images with simple backgrounds.

several examples of synthesized images generated by GAN-based methods for sup-

porting disease recognition. However, these techniques either used in-lab or close-up

images with blank backgrounds. Thus, they are impractical and cannot increase the

background diversity nor the variety of images. We believe that a method that can

realistically and effectively synthesize disease image data under practical settings could

greatly reduce the labor-intensive for experts on collecting datasets.

In this work, we propose a novel image-to-image translation method so-called Leaf-

GAN that effectively synthesizes a wide variety of high-fidelity training images as well

12
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Figure 1.6: An overview of GAN-based image generation studies for plant disease
diagnosis.

as reduces the burden of disease data collecting and the overfitting problem. Fig.

1.6 provides an overview of GAN-based image generation methods (abovementioned

studies) for plant disease diagnosis including our proposal. Our LeafGAN generates

countless diverse, high-quality images as an efficient data augmentation for the diag-

nosis classifiers. Such generated images can be used as useful resources for improving

the performance of disease diagnosis systems. We should note that recently, we have

proposed the PPIG method [73] (see Fig. 1.6) for generating disease images from noise

vectors. The PPIG is an update and a successor to LeafGAN. Therefore, we decide

to only discuss the LeafGAN method in this work. The details of LeafGAN will be

described in Chapter 4.
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1.2 Thesis structure

The remainder of this thesis is organized as follows:

Chapter 2 describes and discusses the whole schematic of our proposed wide-angle

plant diagnosis system for cucumber diseases.

Chapter 3 describes and discusses our proposed LASSR method for supporting disease

diagnosis from LR images.

Chapter 4 describes and discusses our novel image-to-image translation LeafGAN

model that realistically generate high-quality training data.

Chapter 5 contains the conclusion section.
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Chapter 2

The wide-angle plant disease diagno-

sis system

As mentioned earlier, most of the above systems were designed to diagnose a limited

number of targets (e.g., up to a dozen), meaning that there are still limitations when

applying these methods to large-scale farm environments. A system that can accurately

detect and diagnose diseases from wide-angle images is very important in order to

support agricultural practice. However, based on our experiences, it is not easy to

develop a practical plant disease diagnosis system for wide-angle images. There are

two major problems that need special attention.

The first problem is the overfitting that arises due to the latent similarities between

the training and test images, even though they were exclusive to each other. Where

the diagnostic performance on real unseen data is usually significantly reduced. This

problem is predicted to be more serious when wide-angle images are used, because the

same or similar objects may appear in different images.

The second problem is the labor cost and the required accuracy of the gold standard

assignment. When end-to-end diagnosis systems (i.e., simultaneous disease localization

and identification) are built, numerous training images with a huge number of bounding

boxes are required, along with the appropriate disease labels. Moreover, there are

innumerable objects in the images such as overlapping leaves, and their resolution is

often insufficient, making it very difficult to label each object with an appropriate

ground truth.

In this work, we propose a two-stage diagnosis system that performs leaf detection

and leaf diagnosis independently. We believe that two-stage diagnosis systems have
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The end-to-end strategy

The two-stage strategy
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Figure 2.1: Overview of the end-to-end and two-stage strategies (red and white boxes
indicate disease and healthy leaves, respectively).

several advantages over the end-to-end systems and that they can overcome the issues

on developing practical plant disease diagnosis system for wide-angle images. Firstly,

two-stage systems have the detection stage and the diagnosis stage separately; thus,

labeling of the bounding boxes of the objects (i.e., leaves, fruits) to be detected is easy,

since it does not require disease-specific knowledge and can be done by non-experts.

Secondly, labeling a single object or collecting labeled single-object images is much

simpler than for wide-angle images, as mentioned above. The diagnosis stage therefore

could be trained with a wider variety of data, boosting the robustness of the two-

stage system when new types of data are encountered. To this end, we examine and

compare two types of diagnosis strategy (i.e., end-to-end versus two-stage) for practical

wide-angle cucumber images in terms of disease diagnostic performance under different

evaluation environments.

2.1 Materials and methods

Fig. 2.1 shows an overview of the two different types of diagnosis strategy. The first

approach is an end-to-end strategy, which simultaneously performs leaf detection and

leaf diagnosis based on a sophisticated object detection framework such as the single

shot multibox detector (SSD) [51] or Faster R-CNN [48]. The second approach is a

two-stage strategy that performs these functions separately. In this study, we carry out
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diagnosis using these strategies in order to estimate whether each leaf in a wide-angle

image is healthy or diseased. The reason for using only two diagnostic classes is that it

is difficult to assign gold standard labeling to wide-angle images, as described earlier.

For both systems, we compare the final diagnostic performance on a test dataset from

the same farm and a dataset from different farms. This comparison is to examine

the effect of the latent similarities between the training and test datasets on the final

diagnostic performance. We then discuss which approach is more suitable for real

cultivation conditions.

2.1.1 Object detection methods

Recently, deep learning methods have achieved remarkable performance in object de-

tection. In general, there are two types of frameworks among deep learning-based

object detection models. The first framework is region proposal-based which consists

of a region proposal module to output a set of rectangular object proposals from input

image, and a classifier module to predict the final classes from those object proposals.

Models like R-CNN [46], Fast R-CNN [47], Faster R-CNN [48] are of this type. These

methods are high accuracy but relatively low in terms of inference speed. The sec-

ond framework is regression-based which does not depend on the region proposals but

straightly maps from image pixels to bounding box coordinates and class probabilities

for these boxes. Models like YOLO V1-V3 [50, 53, 54], SSD [51] are of this type. These

types of methods are extremely fast but at a cost of decreasing accuracy.

To study the model selection, in this work, we select one method from each object

detection type namely Faster R-CNN and SSD for our experiments.

Faster R-CNN

Faster R-CNN consists of two parts: a fully convolutional region proposal network

(RPN) that generates ROI proposals from input images, followed by a downstream
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Figure 2.2: Architecture of the Faster R-CNN object detection method (figure cap-
tured from [48]).

Fast R-CNN classifier for proposal classification and bounding boxes regression. Fig.

2.2 illustrates the overview of the Faster R-CNN method. In RPN, region proposals are

generated by sliding a small network over the feature maps from the last shared con-

volutional layer of an ImageNet pre-trained model. This small network takes as input

a 3 × 3 spatial window of the convolutional feature map. At each sliding-window lo-

cation, RPN simultaneously predicts multiple rectangular boxes with predefined ratios

and scales, where the number of boxes is denoted as k. Those boxes are called anchors.

Anchor coordinate offsets and objectness scores that estimate probability of object or

not object for each anchor are learned from the feature maps. Proposals are generated

by adjusting anchors with coordinate offsets. In the Faster R-CNN literature, number

of anchors is k = 9. For a convolutional feature map of a size W × H, there will

be W × H × k generated anchors in total. Fig. 2.3 shows the RPN architecture for
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Figure 2.3: The region proposal network (RPN). At each sliding-window location, k
anchors with predefined ratios and scales are predicted. k anchors correspond with 4k
coordinates and 2k scores (two-class of object vs. not object). (figure captured from
[48]).

generating region proposals.

For training RPN, an anchor which has the Intersection-over-Union (IoU) overlap

higher than 0.7 with any ground-truth box will be considered as positive. Anchors

with the IoU ratio is lower than 0.3 for all ground-truth boxes are considered as nega-

tive. Anchors that are neither positive nor negative do not contribute to the training

objective. The loss functions for RPN will be the log loss over two classes (an anchor

is an object or not) and the smooth L1 [47] for bounding box coordinate regression.

In the downstream Fast R-CNN classifier, the box proposals previously generated

by RPN are used to predict the class probability and bounding box for each region

proposal. Details of training this Fast R-CNN classifier can be found in [47].

Training Faster R-CNN consists of four steps. First step, the RPN is trained with a

backbone of an ImageNet pre-trained model for the region proposal prediction. Second

step, the separated Fast R-CNN classifier is trained using the proposals generated by

the RPN in the first step. The backbone of this network is also an ImageNet pre-trained

model but not the same as in step one. Third step, the fixed backbone network from

the second step is used to initialize RPN training. This time, the backbone network
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Figure 2.4: Architecture of the SSD object detection method. (figure captured from
[51]).

is fixed (not trainable) and only fine-tune the new RPN. Finally, the backbone and

the RPN networks from the third step are fixed and only fine-tune the Fast R-CNN

classifier. From this step, the whole network is trained jointly end-to-end. The final

detection results are formed by a non-maximum suppression step. More details of

training and implementation can be found in [48].

Single shot multibox detector

The single shot multibox detector (SSD) approach directly predicts a fixed-size collec-

tion of bounding boxes and scores for the presence of object class instances in those

boxes using a feed-forward convolutional network. SSD combines predictions from

multiple feature maps with different resolutions to naturally handle objects of various

sizes. Different from Faster R-CNN, SSD does not depend on the region proposals and

encapsulates all computation in a single network. Fig. 2.4 illustrates the architecture

of the SSD method. In the early network layers, SSD uses an ImageNet pre-trained

model (e.g., VGG-16 [17]) to obtain the meaningful image features. Based on these

features, several convolutional layers are added to allow predictions of detections at

multiple scales. Similar to Faster R-CNN, SSD slides a 3× 3 kernel over those feature

maps. At each feature map cell, SSD predicts k anchors of different aspect ratios. For

each anchor box, c class scores that indicate the presence of a class instance, and the 4
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Figure 2.5: Predicting anchors at different scales in SSD. At each feature map cell,
coordinate offsets and class scores of four anchors are computed. (figure captured from
[51]).

coordinate offsets are computed. For a m×n feature map, this yields (c+ 4)k×m×n

outputs. Fig. 2.5 shows an example of anchors prediction at different feature scales.

An anchor box which has the IoU overlap higher than 0.5 with any ground-truth

box will be considered as positive. Otherwise, they are considered as negative samples.

Since most of these boxes are negative, SSD introduces the hard negative mining at

training time to keep the ratio between the negatives and positives is at most 3:1. Loss

functions of SSD consists of a confidence loss and a regression loss similar to Faster

R-CNN. The confidence loss is the softmax loss over multiple classes confidences, and

the regression loss is the smooth L1 as in [47]. At inference time, a non-maximum

suppression step is used to produce the final detection results. More details of training

and implementation can be found in [51].

2.1.2 Datasets

In this work, we use the following two datasets to explore suitable configurations for au-

tomatic wide-angle diagnosis of plant disease. Table 2.1 shows the summary of datasets

used in our study.
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Table 2.1: Summary of datasets used in this study (wide-angle dataset and single-leaf
dataset)

Wide-angle dataset Single-leaf dataset

Train Test Unseen Cropped All

# of images 867 96 51
22,196 50,000

# of bounding boxes 22,196 2,369 1,829

The wide-angle dataset

A total of 963 wide-angle images of cucumbers were acquired from several farms, using

various digital cameras. Each wide-angle image contained numerous cucumber leaves

that overlapped each other and was taken under different light conditions (see Fig.

2.1, Fig. 2.6–2.7 for sample images). The images contained a total of 24,565 leaves, of

which 16,924 were healthy and 7,641 were diseased. All of the wide-angle images were

annotated by experts, and bounding boxes were created for each leaf. We randomly

divided the images, using 90% (867 wide-angle images containing 15,369 healthy and

6,827 diseased leaves) for training, and the rest for testing (96 wide-angle images con-

taining 1,555 healthy and 814 diseased leaves). We refer to these sets of images as the

wide-angletrain and the wide-angletest datasets, respectively.

In order to evaluate end-to-end systems and two-stage systems equally, we prepared

51 wide-angle cucumber images taken from completely different farms. A total of 1,829

single leaves (of which 820 are healthy and 1,009 diseased) were also annotated by

experts. We used this dataset only for the final diagnostic test and refer to it here as

the wide-angleunseen dataset.

Our wide-angle images mainly had two aspect ratios, 2:3 and 3:4, and the typical

resolution of these images was between 12 and 20 megapixels. They were resized to

either 512×512, 600×900 or 600×800 pixels, depending on the architecture of the

end-to-end models (as described in more detail in the experimental section).
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The single-leaf dataset

The single-leaf dataset was used for training the diagnosis stage of the two-stage sys-

tems. From the 867 images in the wide-angletrain dataset, we cropped all the gold

standard bounding boxes (a total of 22,196 images, 15,369 healthy and 6,827 diseased),

each containing one cucumber leaf, to form the dataset. We refer this dataset as the

single-leafcropped dataset. In addition, we combined these images with another set of

single-leaf images collected from Saitama Agricultural Technology Research Center,

Japan. Note that these images were not included in the abovementioned wide-angle

dataset. This formed the single-leafall dataset, which contains 50,000 images of single

cucumber leaves (25,000 healthy and 25,000 diseased).

The reason for building this larger single-leafall dataset is to verify the advantages

of the two-stage systems, as hypothesized earlier in the introduction. The end-to-end

systems only accept annotated leaf regions in wide-angle images in the training set,

while the two-stage systems could include additional single-leaf images in the training

of the diagnosis stage. Note again that the acquisition of labeled single-leaf images is

much easier than from wide-angle images. We believe that adding a variety of single-

leaf images to the dataset can improve the robustness of the diagnostic model. The

resolution of the single-leaf dataset was normalized to 224×224 pixels.

2.1.3 Wide-angle plant diagnosis systems

End-to-end systems

We first built our end-to-end systems using the SSD512 and Faster R-CNN models. The

input image size was resized to 512×512 pixels for the SSD model, while for the Faster

R-CNN, we resized the input images to sizes 600×900 or 600×800 pixels, corresponding

to images with aspect ratios of 2:3 or 3:4. The backbone of these models was basically

the VGG-16 [17] model pre-trained with the ImageNet dataset [11], and they were
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fine-tuned with the wide-angletrain dataset. The diagnostic performance of the end-

to-end systems was evaluated and compared on the wide-angletest and wide-angleunseen

datasets.

Two-stage systems

A two-stage system is a combination of a leaf detection stage and a leaf diagnosis stage.

In the leaf detection stage, we used the above end-to-end systems (i.e., SSD512 or Faster

R-CNN) as the leaf detectors to enable an unbiased comparison. In the subsequent

leaf diagnosis stage, the detected leaves were diagnosed using an additional CNN model

called DiagNet. This classifier was also fine-tuned based on the pre-trained VGG-16

network with two outputs, i.e., healthy or diseased. Our DiagNet model accepts a color

image with a size of 224×224 pixels. In this work, we froze the first ten convolutional

layers and fine-tuned the last six layers (three convolutional and three fully-connected

layers).

For experimental purposes, we trained two versions of the DiagNet model for per-

formance comparison. The first model, named DiagNetcropped, was trained only on

the single-leafcropped dataset (22,196 images), while the other, called DiagNetall, was

trained on the single-leafall dataset (50,000 images). The diagnostic performance of

the two-stage systems was also evaluated and compared using the wide-angletest and

wide-angleunseen datasets.

Training wide-angle plant diagnosis systems

To train the end-to-end systems, the Faster R-CNN and SSD512 models were fine-

tuned using the wide-angletrain dataset. We followed the training strategy used in

the original Faster R-CNN and SSD papers, fine-tuning the models using stochastic

gradient descent (SGD) with momentum [74] with an initial learning rate of 10−3 a

momentum of 0.9, and a weight decay of 0.0005. The mini-batch size was set to one
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to train the Faster R-CNN and 16 to train the SSD512. The training was terminated

after 50,000 iterations.

For the two-stage systems, the DiagNetcropped and DiagNetall were trained on the

single-leafcropped and single-leafall datasets, respectively. During the training, we applied

augmentation on the fly, using horizontal and vertical flipping, and random 90 degrees

rotations. We used the SGD momentum optimizer with the same hyper-parameters

when training both the end-to-end systems and our two-stage models. The minibatch

size was set to 256, and we terminated the training process after 30 epochs.

2.2 Experimental results

We compare the diagnostic performance of the two different diagnosis strategies for the

wide-angle pictures taken on the same farm and those from different farms. Again, it

should be noted here that the purpose of this experiment is to find a suitable config-

uration for practical systems based on this comparison. More specifically, we clarify

the effect of the latent similarities in the dataset, and propose a suitable solution to

this problem. In this experiment, diagnosis bounding boxes with an IoU ≥ 0.5 which

correspond to the ground-truth label are regarded as correct detection results. We use

the evaluation criteria of precision, recall and F1-score for both healthy and diseased

cases, and calculate the average diagnostic F1-score by averaging the F1-scores of the

healthy and diseased leaves as an indicator of the overall diagnostic performance.

Experiment 1: Diagnosing the wide-angletest dataset

Table 2.2 shows a comparison of the performance in terms of leaf detection and leaf

diagnosis on the wide-angletest dataset (96 images, containing 1,555 healthy and 814

diseased leaves). These results show that the best leaf detection performance is achieved

by SSD512 with an F1-score of 91.5%, which is slightly better than the Faster R-

CNN with 90.4%. The diagnostic results show that the end-to-end systems give better
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Table 2.2: Performance comparison between end-to-end and two-stage systems on the
wide-angletest dataset

Leaf detector performance Leaf disease diagnostic performance

Healthy Disease
F1-score [%] Precision [%] Recall [%]

F1-score [%] Precision [%] Recall [%] F1-score [%] Precision [%] Recall [%]
Average

F1-score [%]

End-to-end 87.8 88.1 87.5 84.1 81.4 86.9 86.0
Two-stage (DiagNetall) 82.6 88.0 77.9 73.2 62.8 87.6 77.9SSD512 [51]

Two-stage (DiagNetcropped)
91.5 89.8 93.3

84.6 86.0 83.3 79.1 75.0 83.7 81.9

End-to-end 85.2 82.8 87.8 81.5 78.7 84.6 83.4
Two-stage (DiagNetall) 80.8 81.5 80.1 75.1 68.3 83.5 78.0Faster R-CNN [48]

Two-stage (DiagNetcropped)
90.4 86.7 94.4

82.8 81.6 84.1 77.7 73.2 82.9 80.3

The red and blue colors indicate the best performance of the end-to-end and two-stage systems on the wide-angletest dataset, respectively.

performance on diagnosing diseased leaves compared to the two-stage systems. The

best average diagnostic F1-score is 86.0% for the SSD512, while the best result for the

two-stage systems is 81.9% for the DiagNetcropped using SSD512 as the leaf detector.

The overall ranking indicates that of the end-to-end systems, the SSD512 performed

slightly better than the Faster R-CNN. For the two-stage systems, the DiagNetcropped

achieved higher results than the DiagNetall using both SSD512 and Faster R-CNN as

the leaf detectors. We should note here that the DiagNetall was trained with a much

larger leaf image dataset (roughly 2.3 times larger than the DiagNetcropped), but the

performance was consistently lower.

Fig. 2.6 shows some examples from this experiment. The red and white boxes

indicate diseased and healthy leaves, respectively. Based on the results, it can be

seen that although there is a slight difference in the performance for the two types of

system, both the end-to-end and two-stage systems can correctly diagnose almost all

leaf locations, giving reasonable diagnostic performance.

Experiment 2: Diagnosing the wide-angleunseen dataset

Table 2.3 shows a comparison of the performance of leaf detection and diagnosis for

the wide-angleunseen dataset, which contains 51 images (820 healthy and 1,009 diseased

leaves). Again, these images were taken in a completely different environment from

the above wide-angletest dataset.

The leaf detection performance for these unseen images was significantly reduced

with respect to the recall, but both SSD and Faster R-CNN maintained a very high
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Figure 2.6: Final diagnostic results of two diagnosis strategies on the wide-angletest
dataset. The first row represents the ground-truth images, the second and third rows
indicate the results of the end-to-end SSD512 system and the two-stage system with
DiagNetall, respectively. Note that the red and white boxes show diseased and healthy
cases, respectively.

value of precision (94.4 – 96.1%). From a practical point of view, this can be considered

reasonable, since we still can detect most leaves precisely. The best leaf detection

performance in this case is achieved by the Faster R-CNN model, with an F1-score of

54.2% as compared to the SSD512 with 51.8%. The final diagnostic performance was

totally dissimilar from the previous experiment, as showed in Table 2.2. Although all

systems showed a considerably reduced diagnostic performance, the two-stage systems

27



Table 2.3: Performance comparison on the wide-angleunseen dataset
Leaf detector performance Leaf disease diagnostic performance

Healthy Disease
F1-score [%] Precision [%] Recall [%]

F1-score [%] Precision [%] Recall [%] F1-score [%] Precision [%] Recall [%]
Average

F1-score [%]

End-to-end 34.5 39.4 30.7 4.4 66.7 2.3 19.5
Two-stage (DiagNetall) 36.2 53.9 27.2 33.4 81.2 21.0 34.8SSD512 [51]

Two-stage (DiagNetcropped)
51.8 96.1 35.5

35.4 44.1 29.6 17.4 80.6 9.9 26.4

End-to-end 35.1 38.2 32.4 6.2 84.6 3.2 20.7
Two-stage (DiagNetall) 35.6 53.2 26.7 38.9 79.9 25.7 37.3Faster R-CNN [48]

Two-stage (DiagNetcropped)
54.2 94.4 38.0

34.7 40.4 30.4 15.9 75.0 8.9 25.3

The red and blue colors indicate the best performance of end-to-end and two-stage systems on the wide-angleunseen dataset, respectively.

outperformed the end-to-end systems. The best average diagnostic F1-score for the

two-stage systems is 37.3% for the DiagNetall, while the best end-to-end system is the

Faster R-CNN diagnostic system with only 20.7%. It is notable that both the SSD512

and Faster R-CNN end-to-end systems were almost unable to detect the locations of

diseased leaves, with a very low F1-score of 4.4 – 6.2%.

In contrast, the two-stage system (DiagNetall) achieved much higher recall and

precision for the diseased cases, attaining F1-score of 33.4 – 38.9%. The diagnostic

performance of DiagNetall was also well balanced between the healthy and diseased

cases. Along with that, the DiagNetcropped still attained a desirable result in terms of

diagnosing disease, even with a smaller set of training data. The overall performance

ranking is opposite to that in the previous experiment, with the best result achieved

by DiagNetall, the second best by DiagNetcropped, and the lowest by the end-to-end

systems.

Fig. 2.7 shows typical examples of the final diagnostic results for the wide-angleunseen

dataset. As mentioned above, the end-to-end systems typically failed to diagnose the

positions of diseased leaves, while the two-stage systems could correctly identify the

important locations of diseased leaves for an unseen dataset, outperforming the end-

to-end systems.

2.3 Discussion

We investigated changes in diagnostic performance by experimenting with different

practical scenarios, and have shown that the final diagnostic performance varies greatly
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Figure 2.7: Final diagnostic results of two strategies on the wide-angleunseen dataset.
The first row shows the ground-truth images, while the second and third rows indicate
the results of the end-to-end Faster R-CNN system and the two-stage system with
DiagNetall, respectively. The end-to-end system completely failed to detect the diseased
leaves, while the two-stage system correctly diagnosed the important leaf locations in
the unseen dataset.

depending on whether the test data form part of the whole dataset (Table 2.2; Experi-

ment 1) or a completely different dataset (Table 2.3; Experiment 2). The results of both

experiments indicated that the end-to-end systems were overfitted to the wide-angletrain

dataset. The end-to-end Faster R-CNN and SSD512 models showed very high perfor-

mance for disease diagnosis on the wide-angletest dataset (F1-score 81.5 – 84.1%) but
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extremely poor performance on the wide-angleunseen dataset (F1-score 4.4 – 6.2%). The

primary reason for this huge gap is the large latent similarities between the training

and test data (i.e., there is a high possibility that the same or a similar object appears

in the wide-angle images in the same field). In addition, collecting a sufficiently large

and reliable wide-angle training dataset is difficult even for experts, because the leaf

objects that need to be labeled are often small, with unclear appearance. This lim-

its the scalability of the system, leading to non-generalization to the unseen dataset.

In this case, the end-to-end systems are not the best choice for practical automated

disease diagnosis.

In contrast, although the two-stage systems attained a slightly lower F1-score than

the end-to-end systems in Experiment 1, they showed superior performance in di-

agnosing disease cases from the wide-angleunseen dataset, which represented a more

practical scenario in Experiment 2 (with an F1-score of 33.4 – 38.9% compared to 4.4

– 6.2% for the end-to-end systems). We also showed that even when we used only the

cropped single-leaf images from the same training dataset (i.e., single-leafcropped dataset

is cropped from the wide-angletrain dataset) as in the end-to-end systems, DiagNetcropped

still achieved better results for diagnosing an unseen disease, with an F1-score ranging

from 15.9% to 17.4%, thus confirming the effectiveness of the two-stage strategy in real

situations. It should be noted that the performance of the leaf diagnosis stage of the

two-stage systems greatly depends on the performance from the leaf detection stage.

Designing a good leaf detector could further increase the performance of the overall

system and we tend to improve it in the future.

We achieved these results thanks to the advantages of the training method in the

two-stage strategy. First, the leaf diagnosis stage in a two-stage system accepts single-

leaf images as input, and can be trained with a wide variety of data. Second, the

collection of single-leaf images for the disease classifier is much more straightforward

than for end-to-end systems (i.e., wide-angle images). These two properties therefore
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contribute to improving the generalization of the two-stage systems and increasing

their scalability.

In general, although the detection of the location of a diseased leaf is very important,

it is unnecessary to accurately detect and diagnose all the leaves. Once the areas of

diseased leaves are detected, further inspection can be applied to the nearby locations,

since plant diseases often spread outwards from a given area. In this context, a two-

stage system is a suitable choice for the diagnosis of plant diseases from wide-angle

images in practical situations.
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Chapter 3

Effective super-resolution method for

plant disease diagnosis

It has been known that the lack of high-resolution (i.e., low-quality input images, blur,

poor camera focus, etc.) could significantly reduce the diagnostic/detection perfor-

mance of targets in wide-angle images [60, 61, 63]. One possible solution would be to

use HR camera devices to obtain high-quality images, but this is generally expensive

to deploy in practice.

In the main field of computer vision, a certain degree of resolution is necessary to

achieve high discriminative power. Most CNNs using ImageNet datasets [11] have long

used a resolution of 224×224, following the achievements of AlexNet [10], but recently,

higher resolution models have been more successful. AmoebaNet [75] and GPipe [76]

have achieved state-of-the-art levels of accuracy for ImageNet classification with reso-

lutions of 331 × 331 and 480 × 480, respectively. Tan and Le [25] proposed a scaling

method called the compound coefficient that balances the depth and width (number

of filters) of the network and the resolution of the input image. They demonstrated

that their EfficientNet achieved state-of-the-art results with significantly lower compu-

tational requirements. As these results show, image resolution is an important factor

in achieving high-accuracy recognition.

In practical agricultural applications, we believe that recovering the high-frequency

components of images by applying SR methods offers a promising solution for address-

ing the abovementioned issue. SR techniques can be divided into two broad types

called “registration-type” and “learning-type”. Registration-type SR techniques uti-

lize a large number of images in order to increase the pixel density of the image. In
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this way, the true high-frequency components of the image can be estimated using an

appropriate reconstruction algorithm. Typical registration-type SR techniques utilize

maximum likelihood (ML) [77], maximum a posteriori (MAP) method [78], or projec-

tion onto convex sets (POCS) [79] as a reconstruction algorithm. However, since these

classical methods require a relatively high number of observed images, precise correc-

tion of the positional deviations between images using sub-pixel image registration is

necessary for the successive reconstruction process. SR methods using multi-camera

devices [80, 81] also fall into this category; although these techniques have been com-

mercialized in recent years with the spread of high-end mobile phone cameras, they

were originally expensive.

Learning-type SR techniques usually utilize only one base image from the observed

set and predict unknown details. Before deep learning techniques were developed, they

often applied pre-trained database and/or estimators [82] or an interpolation approach

based on signal processing techniques [83]. The quality and resolution of SR images

generated by these methods were usually lower than the other and required appropriate

settings. However, thanks to the modeling power of CNNs, recent SR methods based on

a single image, known as single image super-resolution (SISR) techniques, have shown

excellent performance [84–86]. Dong et al. [84] first proposed the super-resolution

convolutional neural network (SRCNN), which provided end-to-end training between

low-resolution (LR) and HR images. Ledig et al. [85] then proposed SRGAN as the

first SR method to adopt a GAN [67] algorithm, resulting in indistinguishable super-

resolved images from high-resolution images. Recently, an improved version of SRGAN

called ESRGAN [86] with the proposed residual-in-residual dense block (RRDB) and

the relativistic average GAN (RaGAN) [87] loss, outperformed SRGAN in terms of

perceptual quality.

SR techniques have been widely used in various fields, however, only limited ap-

plications in the agricultural sector have been reported thus far [88–91]. Kasturiwala
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and Aladhake [88] applied an iterative curvature-based interpolation method [92] to in-

crease the resolution of diseased leaf images. They claimed this approach could support

pathologists with better visual quality of the infected leaves, but have not yet tested

their method on any disease diagnosis tasks. Yamamoto et al. [89] and Dai et al. [91]

improved disease diagnostic performance by applying an SRCNN and a GAN-based

SR model called DATFGAN to tomatoes and other types of crops, respectively.

Although these methods showed promising results, they are not very realistic, since

they were applied to the impractical PlantVillage dataset [15] in which each leaf image

was taken under ideal conditions (e.g., manually cropped and placed on a uniform

background). Several reports have shown that the diagnostic performance of systems

trained on these images is significantly reduced when applied to real on-site images

[14, 34]. Hence, we cannot conclude from their results that their diagnostic schemes

can be used in practice, or that SR contributes to improving diagnostic accuracy in

practical situations.

In terms of the effectiveness of SR in practice, our previous GAN-based SR model

[90] with perceptual loss [93] dramatically helped to improve the diagnostic performance

under in-field LR cucumber images. The diagnostic result from our SR model was

20.7% better than the baseline which was the state-of-the-art SRResNet model [85] at

that time. However, we experienced that SR images generated using GAN often contain

artifacts like “rubber stamps”, especially in the leaf region (see Fig. 3.1). Leaves have

been most frequently targeted in the study of automatic diagnosis of plants, since they

exhibit more disease characteristics than other parts of the plant. We are particularly

mindful of the problem of artifacts occurring in the leaf region, as this could cause

difficulty in diagnosing some types of disease in practical situations. To address this

problem, we propose an effective artifact-suppression SR method specifically designed

for leaves, called leaf artifact-suppression super-resolution (LASSR).

One further aspect of this proposal should be emphasized. In the field of automated
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ESRGAN LASSR HR

Figure 3.1: Comparison of SR methods for leaf regions (4× up-sampling): (a) ES-
RGAN; (b) the proposed LASSR; and (c) the original HR image. The artifacts in
ESRGAN could obscure the symptoms of disease and make it difficult to detect certain
types of disease.

plant diagnosis, evaluation data are in most cases generated from a portion of the

training dataset. Recently, it has been noted that the reported diagnostic accuracy is

likely to have been superficially overstated due to latent similarities within the dataset

(i.e., similarities in image conditions such as background and light conditions) [14, 34,

63–65]. We therefore evaluate the performance of our LASSR method based on the

degree of improvement in diagnostic accuracy for a completely exclusive dataset, in
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addition to the image quality.

In this study, we found that the larger the size of the image input to the model, the

better the diagnostic accuracy achieved on an unseen dataset. However, HR training

resources are not always available in practice. We therefore believe that SR methods

can be used to generate high-quality training resources and can help to improve the

robustness of disease diagnosis systems on unknown test data to allow for more practical

use.

In summary, the contributions of this work are as follows:

• We propose LASSR as a specially designed SR method to improve the perfor-

mance of plant leaf disease diagnosis, with a novel artifact removal module (ARM)

that dynamically suppresses artifacts on-the-fly during training.

• LASSR provides visually pleasing images by effectively suppressing artifacts and

gives a better Fréchet inception distance (FID) [94] than the ESRGAN method.

• LASSR significantly improves the accuracy of plant diagnosis in unseen images

by over 21% from the baseline. This is more than 2% better than a model trained

on images generated by ESRGAN.

3.1 Materials and methods

3.1.1 Image datasets

In this work, we used two datasets, Dataset-A and Dataset-B. Dataset-A was used to

train and evaluate both LASSR and the ESRGAN model as a comparison. Dataset-B

was used to train and evaluate the classifiers, in order to assess the effectiveness of SR

in disease diagnosis. These datasets are independent of each other.
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Table 3.1: Statistics of Dataset-B
Class Dataset-BTrain Dataset-BVal Dataset-BTest

Healthy 13,089 4,394 1,276
Brown spot 5,142 1,668 2,786

CCYV 4,356 1,438 2,096
MYSV 10,451 3,512 1,550

Downy mildew 2,514 893 2,219
Total 35,552 11,905 9,927

Dataset-A for SR models

We used a cucumber dataset previously reported in the literature [30, 90] as Dataset-A.

This is a multiple infection dataset with 25 classes containing a total of 48,311 cucumber

leaf images, of which 38,821 show single infections, 1,814 show multiple infections, and

7,676 contain healthy leaves. Each image had a size of 316× 316 pixels (cucumber leaf

size is roughly 20-25cm, so pixel size is 0.63-0.79 mm/pixel in this case). We divided

this dataset into separate training and testing datasets. The training set contained

36,233 images (roughly 75% of the dataset, referred to here as Dataset-ATrain), while

the testing set contained 12,078 images (roughly 25% of the dataset, referred to as

Dataset-ATest).

Dataset-B for disease classifiers

Dataset-B was another cucumber leaf dataset collected from multiple locations in

Japan, taken during the period 2015–2019. Table 3.1 summarizes the statistics for this

dataset. It contains four classes of disease (Cucurbit chlorotic yellows virus (CCYV),

Melon yellow spot virus (MYSV), Brown spot, Downy mildew) and healthy. Each

image in this dataset had a size of 512 × 512 pixels (cucumber leaf size is roughly

20-25cm, so pixel size is 0.39-0.49 mm/pixel in this case). We divided this dataset into

two sets, Dataset-BTrain/Val and Dataset-BTest. Images in Dataset-BTest were taken at

different times and in different locations from those in Dataset-BTrain/Val in order to

avoid the problem of latent similarities among datasets, as mentioned earlier. Note
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Figure 3.2: The generator G consists of 23 RRDB blocks, followed by 4× upsampling
and convolutional layers to generate the SR images.

that the appearances of the images in these sets varied widely, due to the differences in

the circumstances (i.e., photographic conditions and background) in which they were

taken.

3.1.2 Proposed method - LASSR

The proposed leaf artifact-suppression super-resolution (LASSR) is a SISR framework

that is specifically designed to solve the problem of artifacts in SR images and hence

to improve the performance of plant disease diagnosis. LASSR is inherited from our

previous GAN-based network [90]. It is basically built on ESRGAN [86] with the

proposed artifact removal module (ARM) to guide the network in suppressing artifacts

on-the-fly during training. Fig. 3.1 shows examples of the artifacts generated by the

ESRGAN model; our proposed LASSR resolves this problem, resulting in natural and

convincing generated images.

LASSR is composed of two CNN models: the generator G, which generates SR

images, and the discriminator D, which distinguishes SR images from HR images. The

networks are trained together to solve an adversarial min-max problem.

The generator

Our scheme uses the architecture of a generator G in the same way as in ESRGAN

[86]. G is composed of 23 residual-in-residual dense (RRDB) blocks, resulting in a total

of 345 convolutional layers. Our network G up-scales 4× from the input LR image.
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Figure 3.3: Discriminator D, consisting of six conv blocks with corresponding number
of feature maps (n).

Fig. 3.2 illustrates the architecture of the generator G used in our experiments. More

technical details can be found in the ESRGAN paper.

The discriminator

Our discriminator D is designed in the same way as in our previous model [90]. It

is deeper than the discriminator used in ESRGAN, and has a larger input size of

192×192. The architecture of our discriminator D is illustrated in Fig. 3.3. We define

a convolution block as a block of two convolutional (Conv) layers. Following a Conv,

we use either a leaky rectified linear function (LReLU) [95] or a combination of LReLU

and batch normalization (BN) [96]. We use LReLU with α = 0.2 as the activation

function for all layers except for the last. More details are described in our previous

paper [90].

Loss functions of LASSR

The objective functions in LASSR are extended from ESRGAN. To train our generator

G, we minimize the loss function LG as follows:

LG = λLadv
G + Lpercep + η|IHR − ISR|1 + βLARM, (3.1)

where Ladv
G , Lpercep, and |IHR − ISR|1 appear in the original loss function in ESRGAN.

Here, Ladv
G is the adversarial loss for the generator G, and Lpercep is the perceptual

loss [93], which minimizes the similarity between the HR and SR images in the feature
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space of the VGG-19 model [17] pre-trained with the ImageNet dataset [11]. IHR and

ISR are the HR and SR images, respectively. LARM is our proposed novel loss term for

calibrating the artifact effects, and is formed based on our proposed ARM (described

in detail in the next section). λ, η, and β are coefficients used to balance the different

loss terms.

To train our discriminator D, we use the same adversarial loss LD as in ESRGAN:

LD = −EIHR
[log(D(IHR, ISR))]− EISR [log(1−D(ISR, IHR))]. (3.2)

Finally, the G and D networks are trained together to solve an adversarial min-max

problem [67]. More details of the loss functions can be found in the ESRGAN literature

[86].

The artifact removal module

In this work, we propose a novel artifact removal module (ARM) that detects and

suppress artifacts on-the-fly during the training of our SR model. The ARM acts like

a dynamic training strategy, and provides guidance allowing LASSR to suppress the

occurrence of artifacts. The key idea of the ARM is to detect artifacts and then to

minimize the differences between the areas of these artifacts and the corresponding

areas of the ground-truth HR images. In most cases, artifacts appear in the form of

similar specks or “rubber stamps”, as shown in Fig. 3.1. We refer to these artifact

regions as blobs, and apply the difference of Gaussians (DoG) to detect them. DoG is

an algorithm that finds scale-space maxima by subtracting different blurred versions

of an original image. These blurred images are obtained by convolving the original

images with Gaussian kernels with differing standard deviations. After obtaining the

scale-space maxima, the areas of blobs are defined by the local maxima points and

their corresponding Gaussian kernels.

Fig. 3.4 illustrates the steps in the process of detecting artifact areas (blobs) in
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SR HR Subtracted Detected blobs

Figure 3.4: SR and ground-truth HR images of a leaf. After obtaining the subtracted
image, the blobs can be detected by applying DoG.

SR images. Given a SR image and a ground-truth HR image, we first subtract two

images to obtain the subtracted version. DoG is then applied to detect the locations of

artifacts (blobs). Based on our preliminary experiments, artifact areas can be detected

effectively using only two Gaussian kernels with corresponding values of σ1 = 0.078×N

and σ2 = 0.104 × N , where N × N is the size of the cropped image used for training

(i.e., 192× 192 in our study).

Once the artifacts have been detected, we add a new loss term LARM in Eq. 3.1 to

LASSR to allow the network to suppress the artifact. LARM is defined as:

LARM =
∑
bi∈B

bi, (3.3)

where bi is the sum of the pixel values of a blob detected in the subtracted image, and

B =
{
b1, b2, ..., b|B|

}
is the set of detected blobs.

3.2 Experiments and results

We conduct two experiments. The first experiment is for comparing our LASSR with

ESRGAN by evaluating the quality of SR images. The second experiment evaluates

the improvement in diagnostic performance among disease classifiers which used images

obtained by SR techniques as training data. This evaluation is used due to the difficulty

in obtaining HR images, which usually provides high diagnostic accuracy, as mentioned
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earlier.

3.2.1 Implementation details

Training SR models

We trained our LASSR and ESRGAN using Dataset-ATrain. During training, HR im-

ages were obtained by random cropping from training images with the size of 192×192.

LR images were then created by 1/4× down-sampling from HR images, using bicubic

interpolation. Both LR and HR images were augmented with random horizontal flips

and random 90 degrees rotations on-the-fly. It should be noted that these are the same

conditions that were used in the original training of ESRGAN.

The ESRGAN model was trained using the loss functions from the original paper,

while our LASSR was trained using the loss functions in Eqs. 3.1 and 3.2, with λ =

β = 5 × 10−3 and η = 10−2. We set the mini-batch size to 32 images and used the

Adam optimizer [97] with the learning rate of 10−3 for both G and D models. The

training process was completed after 400 epochs.

Training disease classifiers

In this experiment, we trained similar plant disease classifiers using LR, HR and SR

generated images from both LASSR and ESRGAN for comparison. Specifically, we

trained the following five classifiers based on the pre-trained EfficientNet-B4 [25] model:

1. model LR: The classifier was trained on a 1/4× down-sampled Dataset-BTrain

(i.e., input size 128× 128) using bicubic interpolation.

2. model HR: The classifier was trained with Dataset-BTrain (i.e., input size 512 ×

512).

3. model Bicubic: As in (1), except with training images 4× SRed (i.e., 512× 512)

using bicubic interpolation.
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4. model ESRGAN: As in (1), except with training images 4× SRed (i.e., 512×512)

using ESRGAN.

5. model LASSR [proposed model]: As in (1), except with training images 4× SRed

(i.e., 512× 512) using the proposed LASSR.

All five EfficientNet-B4-based classifiers were fine-tuned at all layers using the Adam

optimizer [97]. The mini-batch size was set to 32 and the learning rate was 10−3. To

handle the class imbalance in Dataset-BTrain, we applied the softmax class-balanced

loss [98] with β = 0.9999 to all classifiers. During the training process, we applied

random horizontal and vertical flips to each image. Training was complete after 20

epochs.

3.2.2 Evaluation of image quality

Figs. 3.5 and 3.6 show the visual comparison and line profiles of the generated images

and the original HR image. Our LASSR successfully suppressed the artifacts, and

generated images that were more natural than the ESRGAN method. We also observed

that for Dataset-ATest, ESRGAN produced over 1,300 artifact images (11.39% of the

dataset), while our LASSR created only 177 cases (1.47%). On Dataset-B, which was

exclusive of Dataset-A, ESRGAN still produced 380 cases of artifacts (0.66%) while our

LASSR generated zero artifact (artifact-free) images. To quantitatively evaluate the

image quality, we used Fréchet inception distance (FID) [94] as our evaluation criteria,

in the same way as in other SR methods. This is because other standard quantitative

measures such as PSNR and SSIM have been reported as being unable to capture and

accurately assess the perceptual image quality which is highly correlated with human

perception [85, 99, 100]. Table 3.2 shows the FID scores of the images generated using

the bicubic, ESRGAN and LASSR techniques versus the original HR images. In a

similar way as for Dataset-ATest, we calculated the FID score for the entire Dataset-B,

since it is exclusive from Dataset-ATrain. Note that the test images were 1/4× down-
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Bicubic ESRGAN LASSR HR

Figure 3.5: Comparison between the generated SR results and the original HR images.
LASSR generates more a natural image with very suppressed artifacts compared to the
existing ESRGAN method.

Table 3.2: FID [94] scores for bicubic, ESRGAN, LASSR, and HR (lower is better)
Dataset (Bicubic, HR) (ESRGAN, HR) (LASSR, HR)

Dataset-A∗Test 104.49 2.98 2.90
Dataset-B∗∗ 45.36 2.42 2.38
∗, ∗∗ : Calculated for images of size 316×316 and 512×512, respec-

tively

sampled before being fed to the SR models. Our LASSR achieved better (lower) FID

scores than ESRGAN on both datasets.
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HR ESRGAN LASSR

Figure 3.6: Line profiles of the SR and the original HR images. We can see similar
profiles of LASSR and HR, while that of ESRGAN shows significant dissimilarities due
to the presence of artifacts.

3.2.3 Comparison of diagnostic performance on an unseen

dataset

Table 3.3 presents a comparison of the diagnostic performance of disease classifiers from

the second experiment. We can see that there is a large gap between the micro-average

accuracy of the Dataset-BVal and Dataset-BTest, since the two sets are inherently dif-

ferent in nature due to differences in the photographed locations of the images and

other factors as mentioned earlier. However, our LASSR model significantly helped

boosting the performance on the unseen dataset from the baseline model, achieving a

competitive result.
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Table 3.3: Summary of results on disease classification with different training images

a) Classification performance (in micro-average accuracy) on
Dataset-B

Model Dataset-BTrain Dataset-BVal Dataset-BTest

model LR 95.20 93.77 64.94
model Bicubic 98.27 97.35 72.81
model ESRGAN 96.36 95.95 83.53
model LASSR 98.32 97.42 86.00
model HR 99.77 99.17 91.71

b) Classification performance (in accuracy) on Dataset-BTest

Model Healthy Brown spot CCYV MYSV
Downy
mildew

Macro-
average

model LR 94.44 85.28 41.79 59.16 48.36 65.81
model Bicubic 97.26 85.18 67.70 63.29 54.71 73.63
model ESRGAN 94.12 92.53 79.25 84.58 69.45 83.99
model LASSR 89.42 93.72 84.88 87.81 74.13 85.99
model HR 97.57 90.09 94.13 89.03 89.95 92.16
∗ The input size of model LR is 128 × 128, and all other models is 512 × 512. Red

indicates the best performance and blue indicates the second-best performance

3.3 Discussion

We proposed a SR method for addressing the artifact problem and explored its potential

for improving the performance of an automated plant disease diagnosis system on

unseen data.

3.3.1 Improvement in image quality

Thanks to the introduction of the novel ARM, our LASSR effectively addressed the

problem of artifacts and produces more natural SR images compared to the results

from ESRGAN (see Figs. 3.1, 3.5 and 3.6), and achieves better FID scores (Table

3.2). Although some artifact cases remained in the images generated by LASSR on

Dataset-ATest, it should be noted that our LASSR produced much weaker artifacts

than ESRGAN (see Fig. 3.5, last row). Moreover, LASSR generated artifact-free SR

images on Dataset-B.
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The incidence of ESRGAN artifacts was 11.4% for Dataset-ATest, which consisted of

images taken in the same field as the training data. The rate was far lower for Dataset-

B at 0.66%, on the completely unknown dataset. In addition, the artifacts generated

by ESRGAN were almost all of the same size (where each side of the boundary box

was about 1/10th the size of the image) and had circle-like shapes, as if the image had

been stamped with a rubber stamp. This may be due to the particular combination of

the input image and kernels in a relatively forward convolutional layer corresponding

to a specific receptive field size. However, we have not been able to identify the reason

for this. Although our ARM effectively suppressed and reduced these artifact effects, it

seems likely that further investigation of the behavior of the convolutional layers could

be a way to be toward the artifact-free SR, and we aim to address this in the near

future.

3.3.2 Improvement in disease diagnosis performance

From the results in Table 3.3, although the diagnostic accuracy of all of the classifiers

on the two subsets Dataset-BTrain/Val was similar and very high, the performance was

significantly reduced on Dataset-BTest. As discussed above, this is due to the problem of

latent similarities between data [14, 34, 63–65]. As frequently reported in the literature,

the performance was higher for data from the same imaging environment (Dataset-

BTrain/Val) due to overfitting, but lower for data from a different environment (Dataset-

BTest). This reduction in performance is generally known as a covariate shift.

The model LR and model Bicubic models showed poor performance on Dataset-

BTest (with micro-average accuracies of around 65% and 73%, respectively, as shown in

Table 3.3.a). This was because the size of the LR input images was not sufficient for the

diagnosis of plant diseases. Our LASSR scheme successfully reconstructed the informa-

tion from LR images and helped the model LASSR model to achieve high diagnostic

performance, significantly outperforming the model trained on LR images (model LR)
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by over 21% in terms of micro-average accuracy (Table 3.3.a). Moreover, model LASSR

achieved performance that was 2.47% and 2% better than model ESRGAN in terms of

micro- and macro-average accuracy, respectively (Table 3.3).

For the healthy plants, model LASSR (89.42%) was less numerically accurate than

all other classifiers. However, in all other disease cases, our model LASSR performed

significantly better than model ESRGAN, achieving the closest result to the model

using the original HR images. To explain this, our LASSR successfully helped recover

the HR components of symptoms and largely increased the performance for diseases,

while it slightly increases false positives (i.e., slightly decreased performance on healthy

case). Despite this fact, the effects of eliminating false negatives of LASSR is much

larger than a little increment of false positives.

Above results reinforce our argument for the benefits of using the SR method.

Since high-quality training data are not always available in practice, SR techniques are

confirmed to be effective in generating reliable training resources and improving the

robustness of diagnosis systems. Note that we also trained another classifier with HR

images of size 224 × 224 (as commonly used in many disease classifiers) and recorded

a diagnostic of around 80% in terms of micro-accuracy. This implies that the quality

of the training image is important.

Although LASSR achieved promising results, we note that the selection of hyper-

parameters for the ARM is still done manually, as it depends on the input size. We

believe that the development of an ARM that dynamically adapts the training set will

further improve the effectiveness of LASSR.
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Chapter 4

Effective data augmentation method

for plant disease diagnosis

In recent years, deep learning has revolutionized the field of computer vision, and

is now becoming a standard tool for many applications. Many deep learning-based

techniques for the automated diagnosis of plant disease have been developed with the

aim of supporting farmers and reducing losses in terms of plant productivity [27, 14,

39, 32, 12, 34, 24, 38, 26, 36].

Despite the success of the above methods, several essential problems still remain.

Firstly, deep learning-based systems need a huge number of training images. Unlike

other general computer vision tasks, labeling disease datasets requires solid biological

knowledge. Moreover, in order to collect gold standard datasets of diseases, the plants

must be grown in a strictly controlled and isolated environment to avoid contamina-

tion, which is generally labor-intensive and very expensive. Secondly, practical plant

disease datasets are often imbalanced. Although the target plants are grown in a tightly

controlled environment as described above, disease development is also strongly influ-

enced by ambient conditions such as weather, temperature and vector-borne insects.

Therefore, several diseases are difficult to collect, and the obtained datasets often have

imbalanced amount on each class. Although several techniques have been proposed to

address this data imbalance problem [52, 98], disease classification models are gener-

ally biased toward classes with more samples and higher variation [101]. Thirdly, the

overfitting problem is particularly serious in plant diagnosis tasks, since the image fea-

tures that provide diagnostic clues (i.e., evidence for classification) are typically much

smaller than in general object recognition problems. Particularly in early-stage cases,
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the clues for diagnosis may consist only of a tiny dot or faint wrinkles in the image.

This is the main problem that is going to be addressed in this study. Image-based

plant diagnosis is a particularly difficult task due to the fine-grained object recogni-

tion required. In general, a deep classifier such as a CNN tends to capture the image

characteristics (i.e., brightness, color) of a large area, rather than a faint feature that

may indicate disease. In addition, when evaluating a classifier using a dataset divided

into training, validation, and test sets (where cross-validation is applied), the latent

similarities within the dataset (such as the background, brightness and/or distance be-

tween target and camera etc.) works as a positive bias, and generally improves only the

superficial diagnostic accuracy, while the accuracy when evaluated on other unknown

environments becomes very low [14, 34, 63–65]. For example, in the cucumber dis-

ease diagnosis from wide-angle images, the diagnostic performance on the same farm

showed 86.0% in F1-score, but it dropped to 20.7% on a different farm [63]. Other

evidence confirming the overfitting of models in plant diagnosis tasks has been shown

in our previous studies [29, 64] by using Grad-CAM [66] to visualize the key regions

of diagnostic evidence. Although these models provided a high diagnosis accuracy of

over 90% on this dataset, the backgrounds were sometimes considered as diagnostic

regions.

The most plausible reason for this is that when collecting a dataset, the foreground

objects in each image class tend to be incidentally correlated with similar backgrounds.

A lack of background diversity could be a distractor, meaning that the model some-

times responds to the background rather than discriminative targets (i.e., leaf regions).

One possible solution for this is to remove the background from the RoI as in our pro-

posal anti-overfitting pretreatment (AOP) network [64]. The network segments the leaf

areas before training disease classifiers, in order to reduce the negative impact of the

background in terms of causing overfitting. We confirmed that our AOP significantly

improved the classification performance in a practical setting. However, this approach
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requires a large amount of expensive masking data and may eliminate surrounding

information that is important for diagnosis (e.g., the lighting conditions of the picture,

indicators of infection). Furthermore, we believe that the latent similarities within the

dataset such as brightness, lighting, and/or distance between target and camera etc.

still remains even on the segmented images and could cause difficulties for diagnosing

on unseen data.

In general, the background diversity of disease images tends to be limited, especially

when plants are grown in a controlled environment to ensure the quality of training

labels. However, collecting healthy images is relatively easy. In these situations, we

can assume that if we could transform the wide variety of healthy images (including

backgrounds) into disease cases, we could build a more divergent and reliable disease

dataset. As a result, we expect to both improve the performance of diagnosis and to

reduce the cost of labeling.

Recently, an excellent image-to-image translation method called CycleGAN [102]

has been shown to have outstanding performance and has become a standard method

of generating appealing images. CycleGAN removes the need for paired label training

data by introducing the cycle-consistency loss, based on the assumption that the image

generated from the source domain should be able to be transformed back to its original

form.

Based on the superiority of CycleGAN, several methods have been developed for

application in the field of plant science. Tian et al. [69] applied CycleGAN as a data

augmentation method to generate more data on diseased apples to train their apple

lesion detection system. However, since CycleGAN generates images that are close

to the distribution of the original training data, the effect of adding these generated

images to the training set was limited. In addition, because the original CycleGAN

itself has no explicit attention mechanism, it tends to transform the entire image from

the source to the target domain, rather than transforming the specific objects (i.e., the
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apple in this case). As a result, a significant number of the generated images are of

low quality.

Nazki et al. [70] improved CycleGAN by introducing an additional perceptual loss

[93] in order to generate more natural images. Their model so-called AR-GAN trans-

formed healthy tomato leaves into six different kinds of disease, and they claimed that

their proposal could significantly improve disease classification performance compared

to other classical data augmentation techniques. However, AR-GAN was trained on

tomato images which have no complex backgrounds (i.e., almost entire area of each

image is tomato leaves) and based on our preliminary experiments, it mostly failed

to transform the symptoms on the images which include practical backgrounds like

ours. Moreover, their disease classifier was tested on a dataset that was split from the

same population as the training dataset, the results must be biased due to the latent

similarities among the datasets as mentioned earlier. Therefore, no essential results

have been confirmed.

In order to overcome these limitations and achieve a practical method of image

augmentation, we propose an image-to-image translation system named LeafGAN for

generating images of leaves from diseased plants. LeafGAN determines the area of the

image that is relevant for diagnosis, and translates only that area from the source to the

target domain. The key idea is to develop a segmentation module that segments the

area of interest (i.e., the leaf region) from the background, and which can help in guiding

our LeafGAN model to pay attention to the RoIs. Similar to our study, there have

been studies to improve CycleGAN by introducing the attention mechanism [103–105].

All of those studies added an attention network to each generator in CycleGAN and

produce attention maps to guide the generator transforming the most discriminative

regions between the source and target domains only. The attention networks are then

trained simultaneously with CycleGAN model. Different from their works where those

attention networks are sensitive to initialization and require careful care in training,
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Healthy HealthyBrownSpot

CycleGAN LeafGAN

Figure 4.1: Comparison of the original CycleGAN and our LeafGAN to transform
images of healthy plants to diseased ones (brown spot in this case). The CycleGAN
model transforms not only the leaf regions but also the background, and as a result,
the generated images have an unrealistic quality compared to the proposed LeafGAN
method.

our segmentation module can be trained very quickly, and easily to achieve effective

segmentation results. Moreover, our segmentation module is trained separately, and

we use only one segmentation network for both generators in our LeafGAN.

We observe that LeafGAN not only generates high-quality images compared to

CycleGAN, but also makes disease diagnosis systems more robust against unseen data

by adding these generated images as training resources. Our contributions can be

summarized as follows:

• We propose the LeafGAN model for practical plant disease diagnosis. This is an

effective and easy-to-implement data augmentation tool that generates natural,

high-quality disease images from healthy images while preserving a wide variety
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of backgrounds.

• As a key module of LeafGAN, we introduce a novel label-free leaf segmentation

module called LFLSeg, composed of a weakly supervised segmentation network

that learns how to segment the leaf region without the need of expensive masking

data. LFLSeg provides guidance during training that helps the network to focus

attention on the leaf regions for image-to-image translation in LeafGAN.

• We demonstrate the effectiveness of LeafGAN in terms of improving the gener-

alizability of diagnostic systems. Training with the augmented data generated

by our system improves the average diagnostic performance by 7.4% on differ-

ent unseen images taken from other farms while generated images from Cycle-

GAN only help improve by 0.7%. The code of LeafGAN is available publicly at

https://github.com/IyatomiLab/LeafGAN.

4.1 Materials and methods

4.1.1 Cucumber diseases dataset

In this work, we train our LeafGAN models to generate new images of cucumber

disease. We collected cucumber leaf images from multiple locations in Japan, taken

during the period 2015–2019. Each image contains a single cucumber leaf, roughly in

the center and against various backgrounds. These images are of healthy (H) leaves

or leaves infected with one of three diseases: Melon yellow spot virus (MYSV) (M),

brown spot (B), or powdery mildew (P). Table 4.1 summarizes the datasets used in

our study. We divided these images into Datasets A and B. Images in these datasets

were exclusive, and were taken on different farms. Dataset A was used for training and

validation, and Dataset B was used to test performance. Note that the appearance of

the images in those two sets varied due to the differences in the circumstances (e.g.,
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Table 4.1: Details of cucumber datasets (Datasets A and B)

Class
Dataset A Dataset B

Training Validation Testing
Healthy (H) 4,000 717 1,046
MYSV (H) 4,000 745 2,034

Brown Spot (B) 2,000 784 1,220
Powdery Mildew (P) 2,000 796 89

Total 12,000 3,042 4,389

photographic conditions and background) in which they were taken.

4.1.2 Proposed method - LeafGAN

LeafGAN is an image generation network that is specially designed to mitigate the

serious overfitting problem in image-based plant diagnosis tasks via the effective gener-

ation of high-quality and widely varying pseudo training images. LeafGAN is built on

CycleGAN and our proposed label-free leaf segmentation module (LFLSeg) to guide

the network in transforming the relevant regions (i.e., leaf areas) while preserving the

backgrounds. Fig. 4.1 shows the limitations of the vanilla CycleGAN compared to

LeafGAN; while CycleGAN transforms the entire image along with the background,

LeafGAN focuses only on the leaf regions, resulting in natural and convincing generated

images.

Similar to CycleGAN, LeafGAN has two mapping functions G : X→Y and F :

Y→X corresponding to two data domains X and Y . The training of G requires a

discriminator DY to discriminate the generated image G(x) from the real samples

yi ∈ Y . The mapping F and the corresponding discriminator DX , which discriminates

the generated image F (y) from the real samples xi ∈ X, are also trained simultaneously.

We assume here that X and Y are the sets of healthy and arbitrary target disease

images, respectively.

Fig. 4.2a shows an overview of the framework for LeafGAN. For the transformation

X→Y (Fig. 4.2b), the proposed LFLSeg module first produces two binary masking

images Sx and Sy, which represent the leaf areas from input images x ∈ X and y ∈
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Figure 4.2: a) Overview of the proposed LeafGAN scheme; b) Dataflow when trans-
forming the sample x ∈ X to the domain Y . Note that the dataflow from domain Y
to X is the reverse of that from X to Y . We use the same LFLSeg network in both
transformations.

Y , respectively, where Sx = LFLSeg(x) and Sy = LFLSeg(y). After generating the

image x′ = G(x), we obtain the masked leaf images x′s = Sx�x′ and ys = Sy�y,

where � denotes the element-wise product. These images x′s and ys are then fed into

the discriminator DY rather than feeding x′ and y. In this way, the discriminator

is guided to discriminate only in terms of the leaf areas, instead of the backgrounds.

Consequently, due to the adversarial training scheme for the GANs [67], the generator

G is also forced to minimize its losses by paying attention to the leaf regions when

generating (i.e., transforming) the images.

Note that the dataflow for the transformation Y→X is the reverse of that for X→Y ,

since they are symmetric.

Label-free leaf segmentation module (LFLSeg)

In practice, the segmentation of in-field leaf images using conventional techniques such

as thresholding, clustering, edge detection, etc. is inefficient due to the complex ap-

pearance of the leaf and the diversity of the backgrounds as well as lighting conditions.

A better option involves using the power of modern deep learning-based supervised

56



[106–109] or weakly supervised segmentation techniques [110–113]. However, the for-

mer approach usually requires pixel-level annotation datasets in order to get a reliable

result, and is therefore labor-intensive. As mentioned previously, our AOP model

achieved an F1-score of 98.1% for cucumber leaf segmentation, although this score was

established using 8,000 masked images for training [64]. The latter approach extracts

the segmentation information from feature maps produced by a deep network trained

for image classification. Although the advantage of these weakly supervised models

can be trained without extra labeling data, the models are often complex and require

a lot of implementation.

In this work, we propose a simple but effective weakly supervised label-free leaf

segmentation module (LFLSeg) that helps the classification model to learn the dense

and interior leaf regions implicitly. From an architecture point of view, the backbone of

LFLSeg is a simple CNN, and is designed to discriminate between “full leaf”, “partial

leaf”, and “non-leaf” objects. Specifically, “full leaf” objects are images that contain a

single full leaf, while “partial leaf” objects are images that contain part of a “full leaf”,

and “non-leaf” objects do not contain any part of a leaf.

The segmented leaf region is obtained using a heatmap with respect to the “full

leaf” class by applying the Grad-CAM [66] technique. This heatmap is a probability

map representing the contribution of each pixel to the final decision of the “full leaf”

class, and thus can be used as a binary mask after thresholding with a specific threshold

value δ.

The key idea underlying LFLSeg is the introduction of the “partial leaf” class for

training. As mentioned in [112], a heatmap of a classifier that is trained to discriminate

between an object and its background will only cover small and most discriminative

regions of the object of interest. Hence, if we train our LFLSeg only to classify “full

leaf” and “non-leaf” objects, the network will not be able to cover the “full leaf” area.

The introduction of a “partial leaf” class leverages the model to seek a larger leaf-
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Original W/o "partial leaf" With "partial leaf"

Figure 4.3: The heatmaps comparison between different classifiers trained with and
without the “partial leaf” images. The warmer color region, the more it contributes to
the final decision for a class (i.e., “full leaf” in this case).

shaped region in order to classify the “full leaf” image correctly.

Fig. 4.3 shows a comparison of the heatmaps between classification models with

and without the “partial leaf” training data. The warmer the color of a region, the

more it contributes to the final decision for the “full leaf” class. These heatmaps show
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that our network, which was trained with the strategy described above, is able to focus

on the whole shape of “full leaf” images, while the other model without the “partial

leaf” class (i.e., which only classifies “full leaf” or “non-leaf” images) focuses on small,

scattered leaf regions.

Loss functions for LeafGAN

We design the loss functions for LeafGAN with reference to CycleGAN. The adversarial

losses for the two mapping functions G : X→Y and F : Y→X are expressed as:

Ladv(G,DY ) = Ey∼pdata(y)[(DY (ys)− 1)2] + Ex∼pdata(x)[(DY (x′s))
2]. (4.1)

Note again that ys = Sy�y is the masked version of the image y ∈ Y , where Sy =

LFLSeg(y) is the masking which represents the leaf area after feeding image y to the

LFLSeg module. Likewise, the adversarial loss Ladv(F,DX) for the mapping F : Y→X

is defined as follows:

Ladv(F,DX) = Ex∼pdata(x)[(DX(xs)− 1)2] + Ey∼pdata(y)[(DX(y′s))
2]. (4.2)

Please note that we use the same LFLSeg to segment the inputs from both domains X

and Y . The cycle consistency loss is as follows:

Lcyc(G,F ) = Ex∼pdata(x)[|F (G(x))− x|1] + Ey∼pdata(y)[|G(F (y))− y|1]. (4.3)

Since the purpose of our study is to enrich the backgrounds of images of diseased

leaves, we need to prevent generating similar backgrounds as the images in the target

domain and keep the generated backgrounds as close to the original input images as

possible. To meet this requirement, we introduce a new loss term called background

similarity loss (Lbs). The objective of Lbs is to minimize the L1 distance between the
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background of the generated image and the original source image. The background

can be easily obtained by calculating the element-wise product between the inverted

version of the mask image S (i.e., 1− S) and the input leaf image. Therefore,

Lbs(G,F ) = Ex∼pdata(x)[|(1− Sx)�(G(x)− x)|1] + Ey∼pdata(y)[|(1− Sy)�(F (y)− y)|1].

(4.4)

Our final objective function is:

L(G,F,DX , DX) = Ladv(G,DY ) + Ladv(F,DX) + λ[Lcyc(G,F ) + Lbs(G,F )], (4.5)

where λ is a coefficient that controls the balance of different loss terms.

4.2 Experiments

4.2.1 Training the LFLSeg module

We used the fine-tuned ResNet-101 model [23] as the backbone of LFLSeg, and replaced

the last layer of the network with a three-node layer. Using a deeper model (i.e.,

ResNet-152) yielded slightly better results, but we decided to use the ResNet-101 model

for cost reasons. To train the LFLSeg module, we built datasets corresponding to the

“full leaf”, “partial leaf”, and “non-leaf” classes. For the “full leaf” class, we used all

12,000 single leaf training images from Dataset A. During training of the network, we

used a rotation with a step increment of 90 degrees and horizontal and vertical flips

for data augmentation, giving a resulting dataset that was six times larger than the

original one (i.e., 72,000 images).

For the “partial leaf” class, we randomly selected 8,000 images from Dataset A (the

training set) and divided each image into nine equally overlapping patches (i.e., 72,000

images). Given a “full leaf” image of size N×N, we used a sliding window with size

N/2×N/2 to crop a training sample for “partial leaf” class with a step size of N/4×N/4
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from both the vertical and horizontal directions. In our preliminary experiments, we

found that this setting showed the best performance.

For the “non-leaf” class, 72,000 images were collected randomly from the ImageNet

dataset [11]. In total, the training data for LFLSeg module consisted of 216,000 images.

The dataset was divided randomly, with 70% allocated as the training set and 30% as

the testing set. Our LFLSeg module was fine-tuned using momentum optimization [74]

with a mini-batch size of 128. The training process was terminated after 30 epochs.

4.2.2 Training the disease translation models

We used LeafGAN to build three types of healthy↔diseased translation models: (i)

healthy↔MYSV (H↔M); (ii) healthy↔brownspot (H↔B); and (iii) healthy↔powderymildew

(H↔P). For comparison purposes, we also built three more corresponding disease trans-

lation models using CycleGAN.

Since there were only 2,000 training samples for each of the brown spot (B) and

powdery mildew (P) classes, we randomly selected 2,000 images from 4,000 images of

healthy leaves (H) to train the (H↔B) and (H↔P) models (i.e., we used a total of

2,000 healthy images in this case). Note that we only used one-way translation from

healthy→diseased at test time, since our target was to generate more data for diseased

leaves.

We applied the same parameters as described in [102] to train both the CycleGAN

and LeafGAN models. For the LeafGAN model, we set the segmentation threshold

value for LFLSeg to δ = 0.35. Training of both the LeafGAN and CycleGAN models

was terminated after 200 epochs. Please refer to the CycleGAN article for more details

of the training process.

At test time, we generated new three types of disease images from healthy images

from the validation set of Dataset A (i.e., 717 images for each disease type in our

experiments). These images were then used as augmented data for further training of
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the disease classifiers.

4.2.3 Training the disease classification models

To carry out a qualitative evaluation of the effectiveness of LeafGAN in terms of improv-

ing the generality of disease diagnosis performance on an unseen dataset, we trained

the disease diagnosis models with and without images newly generated by LeafGAN,

and compared the performance in each case. Specifically, we trained the following

classifiers:

- The first classifier was trained using only the training images from Dataset A.

We refer to this as our baseline model.

- The second classifier was based on the above baseline model but was trained with

additional disease images generated by the CycleGAN models. We refer to this

as baseline+CycleGAN.

- The third classifier was similar to the second classifier, but was trained with

additional disease images generated by the LeafGAN models. We refer to this as

the baseline+LeafGAN. Note that this is the proposed model.

All classifiers were fine-tuned from the pre-trained ResNet-101 model, and we ap-

plied horizontal and vertical flip augmentation on the fly during training. The SGD

momentum optimizer with a minibatch size of 128 was used to train these models. The

training process was terminated after 30 epochs.

4.3 Results

4.3.1 Segmentation performance of LFLSeg

Our LFLseg module achieved an accuracy of 99.8% in classifying the three classes

(“full leaf”, “partial leaf”, “non-leaf”) on the validation set from Dataset A. Fig. 4.4
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Original Heatmap Masking

Figure 4.4: Leaf segmentation results of the LFLSeg module. The heatmaps from our
network can be used as the useful segmentation masks without the need of pixel-label
data.

shows several examples of leaf segmentation using our proposed LFLSeg module, with

heatmaps for the “full leaf” class and their corresponding segmented results.

We confirmed that LFLSeg works well on different in-field images with complex

backgrounds. However, when the images contain multiple and overlapping leaves, the
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Table 4.2: Performance comparison (in accuracy) of the three classifiers in disease
diagnosis on the unseen Dataset B

Class # of test images
Baseline

(%)

Baseline+
CycleGAN

(%)

Baseline+
LeafGAN

(%)
Healthy (H) 1,046 85.1 84.7 84.6
MYSV (M) 2,034 75.4 76.0 83.3

Brown Spot (B) 1,220 62.8 65.4 75.9
Powdery Mildew (P) 89 61.8 61.8 70.8

Average 71.3 72.0 78.7

LFLSeg fails to correctly segment the leaf area (Fig. 4.4 last row). Despite this fact, we

do not expect the input which contains multiple leaves to be the case since we assume

the input of the disease classifier is a single leaf image in this study.

We also compared the segmentation performance of our LFLSeg module with the

previous AOP network [64] using 1,000 full leaf images. Our module achieved an F1-

score of 83.9% while the AOP network achieved 98.1%. Even though LFLSeg showed

poorer performance than the AOP network with pixel-level labeled training images,

our network which requires no masking training data still achieved a reliable result

that was sufficient for our task.

4.3.2 Results from disease translation models

Examples of diseased images generated by the CycleGAN and LeafGAN models are

shown in Fig. 4.5. Without the explicit attention mechanism, CycleGAN tended to

transform the whole area of the image, including the background, giving implausible

results. In contrast, our LeafGAN models learned to pay attention to the leaf regions

rather than the backgrounds, which gives more realistic disease images.

4.3.3 Improving the generality of disease diagnosis systems

The baseline, baseline+CycleGAN, and baseline+LeafGAN models obtained average

accuracies of 97.2%, 97.7%, and 97.9%, respectively, on the validation images from
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Figure 4.5: Comparison of the images generated by CycleGAN and LeafGAN. The
segmented leaves are the outputs of our LFLSeg module. LeafGAN preserves the
background from the original, meaning that the generated images are more realistic
than those of CycleGAN.

Dataset A. We then used the trained classifiers to test Dataset B. Table 4.2 presents a

comparison of the diagnostic performance of the three classifiers on the unseen Dataset

B.
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We can see that there is a large gap between the average accuracy for the Dataset

A validation set and Dataset B, since the two sets are completely different. Although

the baseline model was trained on 2,000 images per class, the average diagnostic per-

formance only reached 71.3%. The LeafGAN models helped to boost the performance,

and achieved the best result of the three classifiers with an average accuracy of classi-

fication of 78.7%.

4.4 Discussion

In this study, we investigated the effectiveness of using image-to-image translation

models as a data augmentation tool to improve the performance of an automated

diagnosis system for cucumber plant disease. In this experiment, the baseline model

was overfitted to its training dataset and did not generalize well to the unseen samples.

We also observed a large performance gap on training and testing datasets as noted

in former studies [14, 34, 63–65]. The visual results in Fig. 4.5 demonstrated that our

LeafGAN model could generate more persuasive and realistic images than the original

CycleGAN. Since CycleGAN learns to transform the whole content of the training

images, the backgrounds of the generated results appear closer to the samples from the

target domain. Specifically, the backgrounds of the healthy images are transformed to

be as close as possible to the images from the real disease datasets (see Fig. 4.5).

Using the proposed LFLSeg module, our LeafGAN is guided to focus on transform-

ing only the leaf area, and can generate more compelling results. Although LFLSeg

does not perfectly segment the leaf region, it is sufficiently effective to guide the Leaf-

GAN models, thanks to the introduction of the “partial leaf” class. The results in

Table 4.2 showd that using LeafGAN as a data augmentation tool could improve the

diagnostic performance by 7.4% on the unseen Dataset B. This is because the prob-

ability distribution of the generated images is significantly different from that of the

original training data, due to the integration of images by the segmentation mask.
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Real PM Healthy LeafGAN CycleGAN

Figure 4.6: Symptoms of the PM disease in different stages (left column) and the
failure cases of the H→P models from both LeafGAN and CycleGAN when translating
from healthy images (second to last column).

The intrinsic variety of the training data therefore increases from a stochastic point of

view. In addition, symptoms appear only in the relevant region, and we believe this

is an advantage in boosting the classification performance. We believe that improving

the performance of LFLSeg or combining LeafGAN with a sophisticated segmentation

system such as AOP could improve the quality of the generated images.

The results from the baseline+CycleGAN model showed that if we simply trained

the disease classifier with the generated images from the CycleGAN models, which have

no attention mechanism, the diagnostic performance improved only slightly (+0.7%)

compared to the baseline model. This is because the disease images generated by Cy-

cleGAN are intended to have a close probabilistic distribution to the training disease

data, and thus the variety of training data is increased only a little. This is also dis-

cussed in the literature [114–117]. From a visual assessment, it can be more intuitively

seen that because CycleGAN tries to generate overall images that are probabilistically
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similar to the training disease images, the symptoms are often generated in the sur-

rounding areas, meaning that the disease classifier may use background areas as the

discriminative regions.

Although our system achieved promising results, we still observed two remain limi-

tations. First, the proposed LFLSeg may incorrectly detect “partial leaf” as “full leaf”

if the “partial leaf” image has a different shooting distance than images in our training

dataset. Even though we rarely encounter this extreme case, applying data augmen-

tation techniques such as random resize/scale is expected to increase the robustness

of this module and thus, boosting the performance of our system for future usage.

Second, due to the complex characteristics of the training dataset, both LeafGAN and

CycleGAN sometimes transformed the color rather than the disease symptom. Fig.

4.6 shows the characteristics of the powdery mildew (PM) disease in different stages

(left column) and the failure cases of the H→P models from both LeafGAN and Cycle-

GAN when translating from healthy images (second to last column). The PM dataset

contained leaf images (left column) that were mostly in early and middle stages (first

two images) with many of them are in dark blue color, while the later stage of PM

disease (last image) is a typical case, but there is little in our dataset. Therefore, in

several cases, the models generated images with a different color and few signs of PM

symptoms. We believe that there is room for improvement in our system by addressing

these practical problems, and we intend to investigate this in future work.
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Chapter 5

Conclusion

In this work, we proposed three approaches to overcome the remaining practical prob-

lems on in-field plant disease diagnosis. As our knowledge, we were the first to explore

the difficulties of establishing practical plant disease diagnosis systems for wide-angle

images, and have compared two diagnosis strategies to solve these issues. Our experi-

ments demonstrated that even sophisticated end-to-end systems still fell into overfitting

and could not achieve the desired performance for an unknown dataset. On the other

hand, although they required further improvement, our two-stage systems attained

promising disease diagnosis performance for the unseen target dataset. These results

showed that it is preferable to use two-stage systems due to the greater ease of col-

lecting training data and assigning ground-truth labels, and due to the performance

improvement they gave. We are continuing to improve our system and expect it will be

applied to practical automated plant diseases diagnosis applications in the near future.

For improving the diagnostic performance from low-quality data, we have proposed

an artifact-suppression SR method called leaf artifact-suppression super-resolution

(LASSR), which was specifically designed for the automatic diagnosis of plant disease.

Our LASSR model with the novel ARM effectively addressed the artifact effects pro-

duced by a GAN-based network and helped to improve the performance of automated

plant leaf disease diagnosis. The proposed LASSR is capable of generating high-quality

images and significantly improved disease diagnostic performance on unknown images

in practical settings. From this perspective, we have confirmed that LASSR can be

used as an efficient and reliable SR tool for real cultivation scenarios. Further research

on the application of LASSR to other food crops is currently being carried out.

Lastly, we proposed the LeafGAN method as an effective data augmentation tool
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for improving the robustness of an automated plant disease diagnosis system. Our

LeafGAN generates countless diverse and high-quality training diseased images via

transformation from healthy images. Thanks to its own attention mechanism, our

model can transform only relevant areas from images with a variety of backgrounds,

thus enriching the versatility of the training images. LeafGAN demonstrated significant

improvements in the quality of the generated images and boosting the overall disease

diagnosis performance on practical unseen data. We believe that our LeafGAN method

is a reliable data augmentation tool and will make a significant impact on the field of

automated crop disease diagnosis.

Currently, the above three approaches were developed independently. We argue

that combining the LASSR and LeafGAN with the two-stage system could greatly

improve the overall performance of diagnosing wide-angle plant images. The LASSR

and LeafGAN work with single-leaf input images, and it is a suitable combination with

the two-stage system. However, we believe there is still work to be done in order to

realize this idea. For example, even LASSR and LeafGAN perform well on fixed scales

practical in-field images, improvements are still crucial for the more complex wide-angle

images where leaves are in various sizes, different shooting angles or distances, etc. We

intend to develop this idea in the future.
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