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On the evaluation of intraday market quality in the
limit-order book markets: A collaborative filtering approach∗

Takaki HAYASHI† ‡ § and Makoto TAKAHASHI¶

Abstract
This study proposes a methodology for evaluating market quality of individual stocks in the high-

frequency domain (short term) by applying a recommender system that has become ubiquitous in our
daily lives, especially when running internet apps.

In the first place, it is not easy to evaluate market quality such as the “true” liquidity of individual
stocks. In particular, in situations where liquidity for a short-time period is to be evaluated using high-
frequency data, the lack of observations can become severe for numerous stocks. Since stocks that have
exhibited similar behavior in the past are expected to perform so in the future as well, one can expect that
collaborative filtering, which is nowadays the main approach of recommender systems, can work effectively for
the market quality measure “estimation” problem for stocks. However, in some occasions, “standard-type”
collaborative filtering methods may not work well, especially when data sparsity (or scarcity) is severe.

Specifically, in this paper we adopt a regression-based latent factor model (RLFM), a “hybrid-type”
collaborative filtering proposed by Agarwal and Chen (2009). It has a hierarchical linear structure designed
to address the so-called “cold-start problem” in the recommender systems literature.

In this study we take on liquidity and volatility as market quality measures. The liquidity measure
used in this paper is the ILOBS (Inverse Limit Order Book Slope) proposed by Deuskar and Johnson (2011).
For volatility, we adopt the realized volatility based on tick-by-tick mid-quote prices.

In order to investigate the effectiveness of the method in consideration, empirical analysis was per-
formed using high-frequency limit-order book data from the Tokyo Stock Exchange. The data period is
the first three months of the year 2019, with which regularly-spaced five-minute aggregate datasets were
formed. The explanatory variables in the regression term are six variables related to observed market
activities of individual stocks such as logarithmic return and share volume, three variables related to the
static attributes of individual stocks such as whether it is an ingredient of the Nikkei 225 Index, and the
industry category it belongs to. There are also time polynomial terms up to the order of 6 to capture the
average movements of the whole market along the time axis. As a result of the empirical analysis, various
characteristics that characterize market quality were identified from the estimated regression coefficients
obtained by fitting the RLFM model to the training dataset. The results suggest that our approach is robust
to the degree of sparsity (or scarcity) and flexible enough to deal with various data environments. There
was room for improvement of the methodology in terms of prediction accuracy.

Keywords: Collaborative filtering, high-frequency data, latent factor models, limit-order book, liquid-
ity, market quality, matrix completion, volatility, recommender systems.

1 Introduction

With the rapid development of information and communication technology (ICT), the “third-generation”
AI boom has arrived. Digital transformation (DX) has spread in corporate organizations, and cross-tech (x-
Tech) companies that provide customers with new products and services by applying ICT technologies have
∗This is a post-peer-review, pre-copyedit version of an article published in Japanese Journal of Statistics and Data Science. The final

authenticated version is available online at: http://dx.doi.org/10.1007/s42081-021-00116-0.
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emerged. Many FinTech companies have also appeared in the financial industry, providing more convenient
services, offered at lower costs, all of which has made the industrial landscape change drastically. Under
such circumstances, research on the application of AI/machine learning technology in various applications
of finance is being pursued by practitioners and academic researchers.

This study examines a methodology for evaluating market quality of individual stocks traded on the
limit-order book markets by using a recommender system approach. Recommender systems are “software
tools and techniques that provide suggestions for items that are most likely of interest to a particular user....
The suggestions relate to various decision-making processes, such as what items to buy, what music to listen
to, or what online news to read.” Mainly targeted are those individuals who “lack the sufficient personal
experience or competence in order to evaluate the potentially overwhelming number of alternative items
that a website, for example, may offer” (Ricci et al. (2015)). Today we are indeed surrounded by various
recommender systems that can make our daily lives more convenient and comfortable; e.g., Amazon.com,
YouTube, Netflix, Spotify, LinkedIn, Facebook, and so forth.

Beginning in the mid 90’s, academic research on recommender systems has progressed greatly in the
current century as practical applications have been wide spreading.1

One primary goal of recommender systems is to predict the unobserved (or missing) value of a target
user’s rating on a particular item. It is formulated as a matrix completion problem for a user-item combination
matrix, the (i, j)-th entry of which represents the user i’s rating on the item j; the entry is missing if she has
yet experience nor provided feedback on the item.

Recommender systems have two major approaches: content-based and collaborative filtering. The latter is
based on evaluation and usage history without using exogenous information about items or users. It is a
method of recommending items to individual users based on the patterns contained in the past behaviors
of the users in the dataset.

Collaborative filtering methods and its variants are nowadays widely implemented for recommender
systems. An epoch-making event that stimulated and advanced collaborative filtering methods was The
Netflix Movie Challenge launched in 2006 and ended in 2009. In this contest, more than 40,000 teams
of data scientists from 186 countries over the world participated with a newly developed algorithm to
compete for prediction accuracy in order to improve the company’s system called CineMatch algorithm for
recommending movies to their customers.2

There are two types of collaborative filtering commonly used in practice, memory-based methods and
model-based methods. In memory-based methods, ratings of target users are predicted on the basis of their
neighborhoods. The neighborhoods are defined in terms of either user-user distance or item-item distance.
User-based methods firstly identify peer users who are the closest to a target user regarding ratings of the items
they have already made and then predict ratings for the unobserved items of the target user by computing
weighted averages of the ratings of the peer group. Similarity functions are defined between the users, i.e.,
between the rows of the user-item rating matrix to find similar users. In the meantime, item-based methods
firstly identify a set of items that are most similar to a target unobserved item. Then, the ratings in the item
set, given by the target user, are used to predict the rating of the target item. Similarity functions are defined
between the items, or the columns of the user-item rating matrix to find similar items.

In model-based methods, a model to summarize user-item data is constructed a priori. In contrast to
memory-based, model-based methods do not need to hold the whole dataset on memory. In practice,

1According to ACM Digital Library (http://dl.acm.org/), the number of articles whose title contains “recommender systems” has
been on the surge; 26 in 1999–2003, 221 in 2004–2008, 943 in 2008–2013, and 1381 in 2013–2019 (cf. Ricci et al. (2015)).

2https://web.archive.org/web/20131030190759/http://www.netflixprize.com//index
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when dealing with large-scale datasets, that aspect is essential. For dimension reduction of matrices, matrix
factorization such as singular value decomposition (SVD) plays a key role. Since user-item rating matrix
data is extremely sparse in general, i.e., there are an enormous number of missing values, in the context of
recommender systems, dimension reduction and missing value imputation have to be done at once. It turns
out that matrix factorization methods can be employed to exploit row and column correlations together to
estimate/complete the whole data matrix. Latent factor models that rely on a low-rank matrix decomposition
are widely used. One supposes that the user i’s rating on the item j is expressed as

yi j = u′i v j + ϵi j,

where ui = (uil) and v j = (v jl) are both (r × 1)-vectors of latent factors and ϵi j is an “error” term. In a context
of movie reviews, there are r “genres” of movies, uil indicates “affinity” between user i and genre l, v jl does
so between item j and genre l.

See Aggarwal (2016) for further exposition on recommender systems and collaborative filtering.

By seeing analogy of the filling (predicting) of missing consumer movie reviews to that of unobserved
market quality measures of individual stocks, a collaborative filtering method can possibly be applied to
the behavior of market quality measures for the target stocks to be evaluated. It is expected that the market
quality measures of the target stock can be evaluated (predicted) by finding the “neighbors” and suitably
aggregating their observable information. So far as we are aware, the application of collaborative filtering
to the problem of market quality evaluation is new and hence is worth exploring its potentials.

2 The methodology

2.1 The “estimation” problems of market quality measures

“Market quality” is a concept that expresses the degree to which a securities market functions “properly,”
that is, the degree to which fair prices are formed in the market and efficient capital allocation is realized
through transactions (cf. Yano (2009)). Key elements that can determine (or measure) market quality include
transaction costs (bid-ask spread, etc.), execution speed, volatility, liquidity, order fill rate (the number of
traded shares divided by the number of ordered shares).3

In this paper, we will explore methodology to evaluate intraday market quality by use of high-frequency
data. In particular, we will take on liquidity and volatility, thinking of their importance both in practice and
in academic research. So far as we are aware, methodologies for the evaluation of intraday market quality
have yet to be well pursued in the literature, compared with those on daily basis.

Liquidity

Among the elements of market quality mentioned earlier, liquidity plays a central role; it is the degree to
which a market participant can trade the quantity she wishes to buy or sell in a short time without changing
the market price.

Major liquidity indicators used in research and practice include “depth” (limit order quantity present on
an order plate), trading volume (contract volume divided by amount), trading turnover (contract volume

3According to Nasdaq, market quality “is difficult to determine a common definition amongst market participants. At its core, it
can be defined generally as that which gives end customers a fair deal” (source: https://www.nasdaq.com/articles/assessing-market-
quality-2015-12-22).
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divided by number of shares issued), Kyle (1985)’s λ (Price Impact Indicator), Amihud (2002)’s ILLIO
(Illiquidity Indicator) and the forth.

In this study, we treat the evaluation of liquidity as a statistical problem. That is, we regard the observed
liquidity measure(s) is subject to contamination due to measurement error or random noise, hence the “true”
liquidity is to be “estimated” from the observed quantities.

In this study, we adopt the ILOBS (inverse limit order book slope) proposed by Deuskar and Johnson
(2011) as a measure of liquidity. It is defined as

ILOBS =
ΣK
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)2
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Here, P·k is the k-th best quoted price from the innermost quoted price (i.e., best bid-offer, or BBO) on either
side of the limit-order book, while CQ·k is the cumulative number of shares up to the k-th quoted price from
the BBO on the book. a, b are respectively ask quote, bid quote, while m is the mid quote.

ILOBS is a measure of illiquidity. It is designed to capture the expected effect of executable orders on
price. A larger value of ILOBS indicates that the market is less liquid; see Figure 2 of Deuskar and Johnson
(2011).

Deuskar and Johnson (2011) showed that the price impact (price change due to order) and ILOBS have
highly correlated. In other words, even when perfect information on the shape of the whole book is
unknown, ILOBS can predict quite well the price impact, hence it is a reasonable liquidity measure for the
purpose of this study.

There have been numerous empirical work on price impact for limit-order book, such as Bouchaud et al.
(2009), Eisler et al. (2012), Hautsch and Huang (2012), Cont et al. (2014). However, there seem far less
empirical studies on ILOBS irrespective of its potential usefulness. Takahashi (2018) is one of such studies.4

Assessing the impact of high-frequency trading (HFT) on market quality has been an important research
theme since the 2010 Flash Crush occurred (Litzenberger et al. (2012), Hasbrouck and Saar (2013), Menkveld
(2013, 2016), Brogaard et al. (2014), Kirilenko et al. (2017), etc.). Establishing a methodology that can possibly
evaluate liquidity properly – especially in the high-frequency domain – should be beneficial for studies on
the assessment of HFT’s impacts on market quality.

Volatility

Volatility is an unobserved state variable that represents variability of an asset price (or the whole market),
playing the key role for financial risk management and asset pricing. There is a thick literature on the
estimation of volatility with high-frequency data. Since simply applying the celebrated GARCH model to
high-frequency data turned out not working well, partly owing to the existence of stylized facts peculiar to
high-frequency data such as intraday periodicity (cf., Dacorogna et al. (2001, Sec.8.2.2)), various modeling
efforts have been made to accommodate such phenomena, e.g., Andersen and Bollerslev (1997). In the
meantime, realized volatility has been studied extensively; Andersen et al. (2001) and Barndorff-Nielsen and
Shephard (2002) are among early seminal work in the area.

In this paper, we take a different path from most of the existing literature on volatility estimation taking.
For the standard approaches such as ARCH/GARCH models and realized volatilities, past price series are

4According to Google Scholar, as of January, 22th, 2020, Deuskar and Johnson (2011) has been cited 33 times.
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essentially the only inputs to compute volatility estimates. These approaches are inherently infeasible when
prices are not observed. Meanwhile, we regard the estimation problem of volatility as an imputation – or
filling missing values – problem or a completion problem for a sparse volatility matrix, with the help of
supplementary information collected from itself and from others.

As a target quantity, here we utilize the realized volatility based on tick-by-tick mid-quote prices.5 Mid-
quote prices are used because, they change if and only if either of the best quotes change, possibly carrying
a new information arrival or perhaps an indication of a change of the fundamental value of the firm. We
note that we do not adjust the realized volatility for the so-called market microstructure noise; for one
thing mid-quotes are insensitive to bid-ask bounce, a major element of market microstructure noise, and
bias adjustments can be computationally burdensome when computation of a great number of stocks takes
place for another.

Recently, substantial research activities on sparse estimation have been conducted especially for covari-
ance matrices across multiple assets. Fan and Kim (2018), Kim et al. (2018), Belomestny et al. (2019), for
instance. See Fan et al. (2016) for a review on the estimation of large covariance and precision matrices.
They have different purposes and approaches to ours, however are worthy of mention here.

In summary, the purpose of this study is to examine a methodological framework by use of high-
frequency data for evaluating market quality in high-frequency domains (short-time period) of individual
stocks, which works effectively even for issues with relatively less trading activity.

We adopt ILOBS as the liquidity measure and the realized volatility for mid-quotes as the volatility
measure throughout the rest of the paper. However, these choices are arbitrary though we believe are
reasonable. They are essentially independent from the estimation framework under investigation, hence
other choices for market quality measures and the corresponding estimators are possible.

2.2 The model

In this study, we evaluate the two elements of market quality – liquidity and volatility – by using the
high frequency limit-order book data. The degree of scarcity can differ across stocks, especially, in the
high frequency domain, where missing values frequently occur depending on the stock and its degree of
occurrence changes greatly over time of the day and the market condition.

To fill in such missing values, we consider using auxiliary information such as various (micro) attributes
of individual stocks and external macro information surrounding the stock market and itself. In particular,
we adopt “hybrid-type” collaborative filtering to deal with the so-called “cold-start problem” where the
“standard-type” collaborative filtering may not work well.

Specifically, we adopt the regression-based latent factor model (RLFM) proposed by Agarwal and Chen
(2009). It combines a latent factor model for the collaborative filtering with a regression model. The former
part incorporates the information on correlation with the market quality measures of other stocks and its
own past, and the latter complements the missing measures of some stocks at some time intervals by using
explanatory variables such as individual stock attributes and macro information.

Let yi j be an objective variable (liquidity measure) for stock i (= 1, . . . ,M) and time j (= 1, . . . ,N). Then,
the RLFM consists of two layers.

5The proposed framework accommodates alternative volatility measures such as Parkinson (1980) volatility estimator and others
discussed in Section 3.4.
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• The first layer (equation for the target variable):

yi j = x′i jb + αi + β j + u′i v j + ϵi j, ϵi j ∼ N(0, σ2). (2)

• The second layer (equations for the latent factors):

αi = g′0wi + ϵ
α
i , ϵ

α
i ∼ N(0, σ2

α), (3)

β j = d′0z j + ϵ
β
j , ϵ

β
j ∼ N(0, σ2

β), (4)

ui = Gwi + ϵ
u
i , ϵ

u
i ∼ N(0, σ2

uIr), (5)

v j = Dz j + ϵ
v
j , ϵ

v
j ∼ N(0, σ2

vIr). (6)

xi j is a (s × 1)-vector (observed market activities of individual stocks), wi a (p × 1)-vector (static attributes
of individual stocks), z j a (q × 1)-vector (overall market movements attached to the time bin of the day),
αi and β j are (latent) quantities representing stock and time attributes, respectively, and ui and v j are both
(r × 1)-vectors of latent factors.

As is evident from the appearance, the RLFM is not identifiable. As per a suggestion made in Agarwal
and Chen (2016, p. 160), we put the following constraints on the factor values:6∑

i

αi =
∑

j

β j = 0,
∑

i

ui =
∑

j

v j = 0. (7)

There remains another non-identifiability, u′i v j = (−ui)′(−v j). So, switching of the signs of ui and v j results
in switching of those of the corresponding regression parameters. However, it will not change the value of
the log-likelihood in estimation (Agarwal and Chen (2016, p. 171)).

Further, it is worth noting that we need to select the variables more carefully when we apply the RLFM
to economic and financial time-series data.7 Unlike the user-item data, which is a prime target of the most
recommender systems and typically a cross-sectional data collecting the information at the one point or
period of time, there is a natural ordering of observations and a possible time trend and/or periodicity in the
time-series data. In particular, a presence of a time trend/periodicity among the variables in xi j, wi, and z j

may cause a serious multicollinearity problem in estimating parameters although it should not be a problem
in predicting the target variable yi j. We can avoid the multicollinearity problem by selecting variables in xi j,
wi, and z j carefully and/or by conducting a suitable data processing in advance. In the empirical analyses
below, we remove periodicities (along the time j = 1, 2, . . . ,N) from xi j in advance and make z j capture a
common periodicity. The estimation methodology of the RLFM as well as the data processing is illustrated
in the next section.

Remarks:

• Dealing with nonlinearity (1): Agarwal and Chen (2016) formulate the linear regression functions (2)–(5)
in a general manner. That is,

αi ∼ N(g(xi), σ2
α), β j ∼ N(h(z j), σ2

β),

ui ∼ N(G(wi), σ2
uIr), v j ∼ N(H(z j), σ2

r Ir),

6From practical considerations, these constraints are enforced after sampling by subtracting the sample means. For example, after
sampling all factors αi, we compute ᾱ = 1

M
∑

i α̂i and set α̂i = α̂i − ᾱ, for all i. M is the number of users and α̂i is the posterior sample
mean of αi. See Agarwal and Chen (2016, p. 160).

7We thank an anonymous referee for pointing out this issue.
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for suitable functions g, h,G,H. Hence, the linear formulation in this study has room for extensions in
this regard.

• Dealing with nonlinearity (2): In case the response variable yi j is binary, logistic regression models can
be adopted in place of the linear regression model at the first layer.

• Scalability: One major advantage of the use of a model-based collaborative filtering approach is its
scalability. That is, a single model, such as the RLFM considered here, can apply to small-scale to large-
scale recommendation problems. For instance, in the case of The Netflix Movie Challenge, 2006–2009,
the dataset provided for participants had N=17,770 movies (columns) and M=480,189 customers
(rows), with 100,480,507 ratings. In Agarwal and Chen (2016, Sec.8.5), the authors illustrates an
application of a version of RLFM to a large-scale problem with a Yahoo! Front Page dataset, whose
training set includes “all pageviews by users with at least ten click ... and consist of 8 million users,
approximately 4,300 items, and 1 billion binary observations.” So, the model under consideration can
in principle apply to, for instance, a few thousands stocks traded on the Tokyo Stock Exchange.

• Shrinkage toward the regression means: One interpretation of the model is that, for stocks with fewer
observations, the expected value of yi j tends to shrink to the mean determined by the regression terms
(2)–(5), not to the origin. This feature can indeed handle the cold-start situations, shifting from the
warm-start in a seamless manner.

3 Empirical analysis

3.1 Data

Dataset and preprocessing

In this empirical analysis, we use the FLEX Full (time resolution is micro second) kindly provided by
Tokyo Stock Exchange (TSE), Japan Exchange Group. The data period ranges from January 4, 2019 to March
29, 2019 (58 business days). We divide the data into an estimation period from January 4 to February 28 (38
business days) and a prediction period from March 1 to March 29 (20 business days). Among those listed
on the First Section of TSE, we focus on ninety-eight stocks out of the TOPIX 100 ingredients and ninety out
of the Mid400 ingredients (M = 188).

First, we construct a limit-order book dataset (in micro seconds) updated every limit order, cancellation,
and transaction for each business day and each stock from 9:00 to 15:00 except the lunch break 11:30–12:30.
We divide the dataset into 60 sub datasets at 5 minute intervals (5× 60 =300 minutes) excluding the closing
records at 11:30 and 15:00. Then, we calculate the objective variables, ILOBS and realized volatility (denoted
by RV hereafter), and the explanatory variables in the RLFM for each sub dataset. Consequently, we obtain
60 observations of the variables for each business day and each stock.

Variables

For stock i (1 ≤ i ≤ M = 188) and time bin j (5 minute intervals, 1 ≤ j ≤ N = 60), we use the following
variables.

• yi j: liquidity/volatility measure:

7



(a) ILOBS in logarithms (logILOBS) calculated from the limit-order book up to 10 levels on both
sides.

(b) RV in logarithms (logRV) calculated computed on tick-by-tick mid quote prices during the time
bin.

• xi j: logarithmic return (logRet.D), the number of transactions in logarithms (lognD), transaction
volume (logDamt), imbalance between buy and sell transactions (ImbD), quoted spread (Spr), the
number of quotes in logarithms (lognQ) and constant term (s = 7).

• wi: Nikkei 225 Index (N225) dummy, TOPIX 17 series dummies (17 omitted), market capitalization
(trillion JPY) in logarithms (logMCAP) on the previous day (p = 18).

– TOPIX 17 series: 1. Foods, 2. Energy Resources, 3. Construction & Materials, 4. Raw Materials
& Chemicals, 5. Pharmaceutical, 6. Automobiles & Transportation Equipment, 7. Steel &
Nonferrous Metals, 8. Machinery, 9. Electric Appliances & Precision Instruments, 10. IT &
Services, Others, 11. Electric Power & Gas, 12. Transportation & Logistics, 13. Commercial &
Wholesale Trade, 14. Retail Trade, 15. Banks, 16. Financials (excluding Banks), 17. Real Estate.

• z j: time bin polynomials ( j/N)k, k = 1, 2, . . . , 6 (q = 6).

Summary statistics

First, we compute averages of the variables for each stock i = 1, . . . ,M = 188, over time bins j = 1, . . . ,N =
60, and over T = 58 days. Specifically, let ai j,t be a variable in yi j or xi j for stock i and time bin j on
day t. Then, we compute its average as āi =

∑
j,t ai j,t/NT for each i and calculate summary statistics of āi

(i = 1, . . . ,M = 188).8 Table 1 presents the summary statistics for each variable in yi j and xi j and for logMCAP
in wi. The stock attributes used for the dummy variables in wi are summarized in Table 2.

Figure 1 shows the histogram of the averages āi for each variable colored by N225 ingredients and Other
stocks. We observe that the illiquidity (logILOBS), volatility (logRV), the number of transactions (lognD),
and quoted spread (Spr) tend to be smaller for N225 ingredients, whereas the transaction volume (logDamt),
the number of quotes (lognQ), and market capitalization (logMCAP) tend to be larger for them.

Second, we compute averages of the variables for each stock and each time bin, āi j =
∑

t ai j,t/T, and then
scale the averages as ˜̄ai j = (āi j − āi)/sd(ai), where sd(ai) is the standard deviation over time bins and days.
Figure 2 shows the boxplots of the scaled averages ˜̄ai j for each variable colored by N225 ingredients and
Other. We observe notable intraday periodicities. The illiquidity (logILOBS) is high around the time the
morning and afternoon sessions begin but decreases toward the end of the afternoon session. The number
of transactions (lognD) and the quoted spread (Spr) show similar patterns. Such intraday variations are in
line with that of the price impact (the coefficient of regressing price changes on order imbalances) observed
in Cont et al. (2014). In addition, those variables for the N225 ingredients are higher than other stocks when
they are high in the morning session and the beginning of the afternoon, but the relation is reversed in
the rest of afternoon session. That is, we observe stronger intraday periodicities for N225 ingredients than
Other.

On the other hand, the volatility (logRV), transaction volume (logDamt), and the number of quotes
(lognQ) exhibit a roughly W- shaped pattern. They take the highest values in the first time bin, decline at

8For a variable in wi, denoted by ai,t, we compute its average as āi =
∑

t ai,t for each i and calculate their summary statistics.
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Table 1: Summary statistics for variables in yi j, xi j, and wi.

Mean SD Min Median Max

yi j logILOBS 1.4713 1.7946 −6.3261 1.6740 5.6373
logRV −2.0052 0.3565 −2.7264 −2.0717 −0.7483

xi j logRet.D 0.0007 0.0033 −0.0087 0.0006 0.0139
lognD 3.6260 2.6912 0.7955 2.6905 16.7226
logDamt 7.4288 0.6147 6.1088 7.5542 8.8933
ImbD 0.2610 2.8760 −7.5759 0.0749 13.5832
Spr 8.2578 5.7738 1.7525 6.0097 33.4802
lognQ 2.7772 0.4188 1.7550 2.8651 3.6946

wi logMCAP −0.0602 1.2181 −2.3862 0.1018 3.0944

The summary statistics are obtained from 188 averages calculated by using all observations in the sample period for

each stock.

a decreasing rate, slightly increase around the end of the morning session, rise after the afternoon session
begins, decline at a decreasing rate, and then increase at an increasing rate until the end of the afternoon
session. Ignoring the effect of the lunch break unique in TSE, such a pattern is in line with a U-shaped
pattern of market activities observed in a number of previous studies.9 Similarly to the logILOBS, lognD,
and Spr, the logRV and logDamt for the N225 ingredients are larger (smaller) than Other stocks when they
are large (small), whereas the relation is not so clear for lognQ especially in the afternoon session.

Third, we compute correlation coefficients among the variables for each stock over time bins and days.
Table 3 summarizes them, where the means of 188 correlation coefficients are presented as lower triangular
elements while the maximum values (in absolute value) are in upper triangular elements. Reflecting
the similar intraday periodicity shown in Figure 2, the logILOBS is highly correlated wth Spr and lognD,
whereas logRV is highly correlated with logDamt and lognQ. Some variables in xi j are also highly correlated
with each other. In particular, the correlation between lognD and Spr is quite strong with up to 0.99 for
some stock. Considering the multicollinearity, we remove the intraday periodicities of the variables in xi j

prior to the estimation. The procedure of data processing is described in the following subsection.

3.2 Estimation and prediction procedures

Data processing

Prior to the estimation for each day, we process the data as follows:

1. Standardize xi j using an average and a standard deviation over j for each i.

9For example, Wood et al. (1985) analyze NYSE-listed stocks and report a U-shaped pattern for minute-by-minute average returns
and a reverse J-shaped pattern for the variability of returns. McInish and Wood (1992) report a crude J-shaped pattern for minute-
by-minute spreads and Lee et al. (1993) report a U-shaped pattern for half-hour volumes and spreads. Additionally, Andersen and
Bollerslev (1997) report a U-shaped pattern for five-minute absolute returns for S&P 500 stock index futures, although this drops and
rises sharply before the close.
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Figure 1: Histograms of averages for each variable colored by N225 ingredients and Other stocks.
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Figure 2: Boxplots of scaled averages for each variable and each time bin j = 1, . . . , 60. The vertical line
separates the morning and afternoon sessions.
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Table 2: Summary of stock attributes for wi.

TOPIX 17 series
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Total

N225 4 2 2 8 6 9 4 4 9 6 4 5 5 3 5 7 3 86
2.1 1.1 1.1 4.3 3.2 4.8 2.1 2.1 4.8 3.2 2.1 2.7 2.7 1.6 2.7 3.7 1.6 45.7

Other 5 0 6 11 4 4 1 6 10 19 2 6 5 10 7 5 1 102
2.7 0.0 3.2 5.9 2.1 2.1 0.5 3.2 5.3 10.1 1.1 3.2 2.7 5.3 3.7 2.7 0.5 54.3

Total 9 2 8 19 10 13 5 10 19 25 6 11 10 13 12 12 4 188
4.8 1.1 4.3 10.1 5.3 6.9 2.7 5.3 10.1 13.3 3.2 5.9 5.3 6.9 6.4 6.4 2.1 100

For each group of N225 ingredients, Other stocks, and in total (Total), the top row presents the number of stocks for

each industry (1, 2, . . ., 17) and in total (Total), whereas the bottom shows the proportion (%) to M = 188 stocks.

Table 3: Summary of correlation coefficients among variables in yi j and xi j.

yi j xi j

logILOBS logRV logRet.D lognD logDamt ImbD Spr lognQ

yi j logILOBS – 0.78 −0.14 0.79 0.40 −0.12 0.84 0.58
logRV 0.40 – 0.13 0.76 0.86 −0.15 0.77 0.94

xi j logRet.D −0.01 0.00 – 0.28 −0.13 0.61 0.28 0.12
lognD 0.45 0.48 −0.01 – 0.51 −0.11 0.99 0.67
logDamt 0.05 0.69 0.00 0.22 – −0.18 0.49 0.90
ImbD −0.01 −0.00 0.45 −0.01 −0.00 – −0.10 −0.18
Spr 0.54 0.54 −0.00 0.82 0.18 −0.01 – 0.65
lognQ 0.25 0.81 0.00 0.30 0.75 −0.01 0.34 –

The lower and upper triangular elements present means and maximum values (in absolute value) of 188 correlation

coefficients calculated by using all observations in the sample period for each stock, respectively.

2. Replace missing or infinite values of yi j (we observe −∞ for logRV when RV is zero) with an average
over j for each i.10

3. Replace missing values of xi j with zero.

4. Remove intraday periodicities in xi j by regressing stacked vectors of xi j for each variable on z j.11

Figure 3 shows the boxplots of fitted values of the regressions of 58 days for each variable. We observe that
the intraday periodicity shown in Figure 2 are captured well. In addition, Table 4 summarizes the corre-
lation coefficients among the variables after removing the periodicities, where the means of 58 correlation
coefficients are presented as lower triangular elements while the maximum values (in absolute value) are in

10This is merely for convenience and is not necessarily the best way to treat them. There is room for exploring a better way but we
do not pursue it here because it is not the main focus of the paper.

11Specifically, let ai j,t be a variable in xi j for stock i and ai,t = (ai1,t, ai2,t, . . . , aiNt)′. Then, we regress the (MN × 1)-vector, at =
(a1,t, a2,t, . . . , aM,t)′, on the (MN × (q + 1))-matrix, Z j which is constructed by stacking a (N × 1)-vector of ones and the (N × q)-matrix
of time bin polynomials up to degree q = 6, z j, for M times. We implement the regression for each variable in xi j and each day t and
replace xi j with the standardized residuals.
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upper triangular elements. We confirm that all of the maximum correlation coefficients (in absolute value)
are less than 0.80 which is the most typical cutoff for multicollinearity mentioned in Berry and Feldman
(1985).

Figure 3: Boxplots of fitted values of 58 regressions on time bin polynomials for each variable and each time
bin j = 1, . . . , 60. The vertical line separates the morning and afternoon sessions.

Estimation

Adopting the Monte Carlo EM (MCEM) algorithm proposed by Agarwal and Chen (2016), we estimate
the model parameter Θ = (b, g0, d0,G,D, σα, σβ, σu, σv) and the (means of) latent factors ∆ = (αi, β j,ui, v j) for
each day of the estimation period. In the MCEM algorithm, E-step is implemented using samples generated
by Gibbs sampler. Following Agarwal and Chen (2016), we iterate 20 EM computations using 100 Gibbs
samples (drawn after 10 burn-in samples).
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Table 4: Summary of correlation coefficients among variables in xi j after removing the periodicities.

logRet.D lognD logDamt ImbD Spr lognQ

logRet.D – -0.08 0.12 0.52 0.08 0.12
lognD -0.01 – 0.19 -0.04 0.66 0.20
logDamt 0.00 0.14 – 0.10 0.17 0.77
ImbD 0.48 -0.01 0.00 – 0.04 0.08
Spr 0.00 0.58 0.12 0.00 – 0.25
lognQ 0.00 0.13 0.72 0.00 0.17 –

The lower and upper triangular elements present means and maximum values (in absolute value) of 58 correlation

coefficients calculated by using M×N = 188× 60 = 11, 280 observations for each day of estimation period, respectively.

Prediction12

The prediction procedure is as follows:

1. Extract p (= 20, 50, 80) % of prediction target pairs (i, j) randomly from the stock-time matrix (yi j).13

2. Standardize xi j and replace missing or infinite values of yi j and xi j as specified in the data processing
procedure 1-3.

3. Replace the corresponding yh and xh (h = 1, . . . ,H) with the average of yi j over j for each i and 0,
respectively.

4. Remove the intraday periodicities of xi j as specified in the data processing procedure 4.

5. Estimate the RLFM for each day of the prediction period as described above.

6. Given the estimated parameter values and latent factors, compute a predicted valued of yh, denoted
by ŷh, using actual values of xh.14

7. Calculate the root mean squared error (RMSE) and mean absolute error (MAE):

RMSE =

√√√
1
H

H∑
h=1

(yh − ŷh)2, MAE =
1
H

H∑
h=1

|yh − ŷh|

For model comparison, we estimate a linear regression model with regressors x, w, and z (LM0), LM0
with fixed effects of stocks and time bins (LMD), and LM0 with random effects of stocks and time bins
(LMM), as well as the user- and item-based collaborative filtering (UBCF and IBCF) and the singular value
decomposition (SVD).

All analyses are done by the statistical software R. We estimate the LMM using lmer function included in
‘lme4’ package and the UBCF, IBCF, and SVD by using Recommender function included in ‘recommenderlab’
package with parameter method specified as “UBCF", “IBCF", and “funkSVD", respectively.

12In this paper, the prediction means interpolation where we predict the missing target variable by using explanatory variables
observed at the same time. In the case of extrapolation where we predict the target variable in the future, we may use explanatory
variables on the previous day or the ones averaged over the last few days. We leave this for future research.

13We exclude the missing or infinite observations of yi j from the prediction target pairs.
14Intraday periodicities of xh are removed by subtracting the fitted values obtained in the prediction procedure 4.
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3.3 Results

(a) logILOBS

Figure 4 summarizes parameter estimates of the RLFM with r = 3.15 Because the objective variable is
the illiquidity measure, ILOBS in logarithms, high (low) values indicate low (high) liquidity. Among the
estimates of b, the number of transactions (lognD), quoted spread (Spr), and the number of quotes (lognQ) are
significantly positive (liquidity deteriorates when they increase) whereas the transaction volume (logDamt)
is significantly negative (liquidity improves when they decrease).

For the estimates of g0 (stock attributes), we observe different effects among TOPIX 17 series (trans-
formed to satisfy the sum to zero constraint for each of 38 estimation days16). In particular, series #5
(Pharmaceutical), #8 (Machinery), and #12 (Transportation & Logistics), are significantly positive whereas
#2 (Energy Resources), #15 (Banks), and #16 (Financials excluding Banks) are significantly negative. Fur-
ther, the N225 dummy and the market capitalization (logMCAP) are significantly negative and positive,
respectively (liquidity is higher for the N225 ingredients but is lower for the large stocks). For the estimates
of d0 (time attributes), all time bin polynomials are significant, suggesting nonlinear intraday periodicity in
the logILOBS.

Figure 5 summarizes the estimates of latent factors αi and β j. We observe that N225 ingredients tend to
be liquid as expected from the estimates of g0. We also observe an intraday periodicity in the estimates
of β j (time effect) as suggested from the estimates of d0. In the morning session, the liquidity is relatively
high right after the opening and then gradually deteriorates, marginally improves around the middle, and
deteriorates again toward the lunch break. In the afternoon session, on the other hand, it reaches the worst
right after the opening and then gradually improves at an increasing rate toward the closing.

Figure 6 summarizes the model fit comparisons.17 There are no significant difference among the RLFM
with r = 3 and 7. Our approach (RLFM) is slightly inferior to other regression models. Specifically, the LMD
and LMM shows equally well performance in both RMSE and AIC and the RLFM follows with a narrow
margin.

Figure 7 summarizes the predictive performance.18 Our approach (RLFM) is comparable to the LMM,
UBCF, and SVD for the middle missing rate p (50%) and slightly inferior to some of them for other p’s.
Specifically, the SVD (r = 3) and UBCF perform well and the RLFM follows for small p (20%) whereas the
LMM does well and the RLFM follows with a narrow margin for large p (80%). These results show that our
approach is not uniformly optimal among the competing models, nevertheless they suggest that it is robust
to the change of p and is therefore capable of dealing with both the rich and scarce data reasonably well.

(b) logRV

Figure 8 summarizes parameter estimates of the RLFM with r = 3.19 Among the estimates of b, the
transaction volume (logDamt), quoted spread (Spr), and the number of quotes (lognQ) are significantly

15We also estimate the RLFM with r = 7. The results are qualitatively the same and thus are omitted.
16Specifically, let θ = (a1, a2, . . . , a16, a17)′ be a vector of parameter estimates on the industry dummies, where a1, a2, . . . , a16 are

estimated coefficients on 16 dummies (17 is omitted) and a17 is the estimate on a constant term. Then, we transform θ to θ̃ = θ − θ̄,
where θ̄ =

∑
k = 117ak/17.

17Because the LM0 is significantly worse than other models, its results are omitted.
18Because the LM0 and LMD are significantly worse than other models and other SVD with r = 2, . . . , 15 perform similarly to those

with r = 3 and 7, their results are omitted for brevity.
19We also estimate the RLFM with r = 7. The results are qualitatively the same and thus are omitted.
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Figure 4: Parameter estimates of RLFM (r = 3) for logILOBS. Boxplots are constructed from the estimation
results for 38 business days from January 4, 2019, to February 28, 2019. Top panel shows the coefficients
b on market activities of individual stocks xi j, middle g0 on static attributes of individual stocks wi, and
bottom d0 on time bin polynomials z j. The estimates of g0 on TOPIX 17 series dummies (I1, I2, . . ., I17)
are transformed to satisfy the sum to zero constraint for each of 38 estimation days (see footnote 16 for the
details).
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Figure 5: Latent factors of RLFM (r = 3) for logILOBS. Boxplots are constructed from the estimation results
for 38 business days from January 4, 2019, to February 28, 2019. Top panel shows the factors of stock
attributes αi, i = 1, 2, . . . ,M = 188, colored by N225 ingredients and Other stocks, whereas the bottom the
factors of time attributes β j with the vertical line separating the morning and afternoon sessions.
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Figure 6: Model fit for logILOBS. Boxplots are constructed from the estimation results for 38 business days
from January 4, 2019, to February 28, 2019. Left and right panels show the RMSE and AIC, respectively.

Missing rate p = 20%

Missing rate p = 50%

Missing rate p = 80%

Figure 7: Predictive performance for logILOBS. Boxplots are constructed from the prediction results for 20
business days from March 1, 2019, to March 29, 2019. Left and right panels show the RMSE and MAE,
respectively, for missing rates p equal to 20% (top), 50% (middle), and 80% (bottom).
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positive, and so is the number of transactions (lognD) to a lesser extent (volatility increases when they
increase).

For the estimates of g0 (stock attributes), we observe mostly marginal effects among TOPIX 17 series
except a few industries. series #2 (Energy Resources) and #17 (Financial excluding Banks). In particular,
series #2 (Energy Resources) is significantly positive whereas #12 (Transportation & Logistics) and #17 (Real
Estate) are significantly negative. The N225 dummy is significantly negative (volatility is lower for the N225
ingredients) as well. On the other hand, the effect of the market capitalization (logMCAP) is indeteminate.
For the estimates of d0 (time attributes), similarly to logILOBS, all time bin polynomials are significant,
suggesting nonlinear intraday periodicity in the volatility.

Figure 9 summarizes the estimates of latent factors αi and β j. We observe that N225 ingredients tend to be
less volatile as expected from the estimates of g0. We also observe an intraday periodicity in the estimates of
β j (time effect) as suggested from the estimates of d0. In the morning session, the volatility is substantially
high right after the opening and then gradually decreases toward the lunch break. In the afternoon session,
the volatility gradually decreases over time, reaches the lowest in time bin 48 (13:55–14:00) and increases
toward the closing.

Figure 10 summarizes the model fit comparisons.20 There are no significant difference among our approach
(RLFM) and other regression models (LMD and LMM).

Figure 11 summarizes the predictive performance.21 Our approach (RLFM) outperforms the other models
for small and middle missing rates (p = 20% and 50%) and comparable to the LMM for large one (p = 80%).
Compared to the results for logILOBS, the RLFM performs quite better than the LMM and the other models.
Again, these results suggest that our approach is capable of handling both the rich and scarce data reasonably
well though it does not always perform best.

In practical situations, one would not know a priori the precise degree of occurrences of “no liquidity”
situations resulting in missing observations of the market quality measures considered here. Since our
approach is robust to the variability of scarcity of observations, it can alleviate the burden of market
participants from selecting an “optimal” model among alternatives.

(c) logILOBS vs logRV

Figure 12 shows two dimensional box plots on the estimates of b and g0 illustrated in (a) and (b) above.
Among the estimates of b, the number of transactions (lognD), quoted spread (Spr), and the number of
quotes (lognQ) are significantly positive in both dimensions. This indicates that the market tend to be less
liquid and more volatile when there are more transactions or quotes with wider spread. On the other hand,
the transaction volume (logDamt) is significantly negative in logILOBS but positive in logRV, suggesting
that the market tend to be more liquid and more volatile when there are larger transactions. This is probably
because large transactions, which may cause price change and hence increase mid-quote RV, occur when
there are enough quotes on the limit order book, i.e., the market is liquid, resulting in higher volatility with
market more liquid in the same 5-minute interval.

Among the estimates of g0, we observe diverse effects. For example, the N225 dummy is significantly
negative in both dimensions, indicating that the N225 ingredients tend to be more liquid and less volatile.
In addition, the market capitalization (logMCAP) is significantly positive in logILOBS whereas its effect is

20Because the LM0 is significantly worse than other models, its results are omitted.
21Because the LM0 and LMD are significantly worse than other models and other SVD with r = 2, . . . , 15 perform similarly to those

with r = 3 and 7, their results are omitted for brevity.
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Figure 8: Parameter estimates of RLFM (r = 3) for logRV. Boxplots are constructed from the estimation
results for 38 business days from January 4, 2019, to February 28, 2019. Top panel shows the coefficients
b on market activities of individual stocks xi j, middle g0 on static attributes of individual stocks wi, and
bottom d0 on time bin polynomials z j. The estimates of g0 on TOPIX 17 series dummies (I1, I2, . . ., I17)
are transformed to satisfy the sum to zero constraint for each of 38 estimation days (see footnote 16 for the
details).

20



Figure 9: Latent factors of RLFM (r = 3) for logRV. Boxplots are constructed from the estimation results for
38 business days from January 4, 2019, to February 28, 2019. Top panel shows the factors of stock attributes
αi, i = 1, 2, . . . ,M = 188, colored by N225 ingredients and Other stocks, whereas the bottom the factors of
time attributes β j with the vertical line separating the morning and afternoon sessions.
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Figure 10: Model fit for logRV. Boxplots are constructed from the estimation results for 38 business days
from January 4, 2019, to February 28, 2019. Left and right panels show the RMSE and AIC, respectively.

Missing rate p = 20%

Missing rate p = 50%

Missing rate p = 80%

Figure 11: Predictive performance for logRV. Boxplots are constructed from the prediction results for 20
business days from March 1, 2019, to March 29, 2019. Left and right panels show the RMSE and MAE,
respectively, for missing rates p equal to 20% (top), 50% (middle), and 80% (bottom).
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indeterminate in logRV. These results suggest that the N225 ingredients are more liquid and less volatile
but become less liquid for stocks with larger logMCAP.

We also observe diverse industry effects. In particular, series #13 (Commercial & Wholesale Trade) and
#17 (Real Estate) are significantly negative in both dimension, indicating that stocks of these industries
tend to be more liquid and less volatile. On the other hand, several industries shows the opposite effects
in liquidity and volatility. For example, series #2 (Energy Resources) is significantly negative in logILOBS
but positive in logRV whereas #12 (Transportation & Logistics) is significantly positive in logILOBS but
significantly negative in logRV.

This time we fit the model separately to each of logILOBS and logRV, and paired the corresponding
estimated parameters to better understand the fitted results, as shown. However, the framework under
investigation is broad enough to treat the two, or even more, measures jointly into a single model. This can
be done by defining a new response variable as a tensor of mode 3, each element of which is denoted as
yi jk, representing the asset i’s j-th measure at time bin k , j = 1, 2. In this extended model, the dependency
between logILOBS and logRV can explicitly be incorporated.

(d) Illustrative examples

To illustrate how the models work in predicting yi j, we present the predicted values for some stocks on
some days. Based on the predictive performance, measured by RMSE, of the RLFM for each stock and each
day, we selected a pair of Japan Tobacco Inc. and Alfresa Holdings Corporation for logILOBS, and another
pair of Kyowa Exeo Corp. and SBI Holdings Inc. for logRV. The stock attributes are summarized in Table 5.

Figure 13 shows the predicted values, with observed (after data processing) and target (treated as missing
and replaced with the daily average in prediction) values, for logILOBS of Japan Tobacco and Alfresa
Holdings on March 25, 2019. The predictive performance for Japan Tobacco on that day is bad irrespective
of models and missing rates. In particular, for p = 80%, the RLFM performs the worst for Japan Tobacco
whereas it performs the best for Alfresa on the day. For Japan Tobacco, we observe that all the models failed
to capture the plummets and plunges in the afternoon session even for small missing rate p = 20%. For
Alfresa, on the other hand, the logILOBS is less volatile and moves around the daily average. These results
suggest that the models may not perform well when the target variable (logILOBS here) varies substantially
possibly due to unexpected/accidental market activities. In addition, the predicted values tend to shrink
toward the daily average as the missing rate increases from p = 20% to 80% because more target values are
replaced with the average in the data processing.

Figure 14 shows the similar ones for logRV of Kyowa Exeo and SBI Holdings on March 11, 2019. The
predictive performance for Kyowa Exeo on that day is bad irrespective of models and missing rates. In
particular, for p = 80%, the RLFM performs the second-worst for Kyowa Exeo whereas it performs the best
for SBI Holdings on the day.22 We observe that the models failed to capture the large fluctuations for Kyowa
Exeo. The results also suggest that they may not perform well when the target variable (logRV here) varies
substantially.

22We did not select the stock and day for which the RLFM performs the worst because there are only four observations for the stock
on the day.
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Figure 12: Parameter estimates of RLFM (r = 3) for logILOBS and logRV. Boxplots are constructed from
the estimation results for 38 business days from January 4, 2019, to February 28, 2019. The horizontal
and vertical axes correspond to the estimates for logILOBS and logRV, respectively. Top panel shows the
estimates of b, middle g0 on TOPIX 17 series #1–#9 (left) and N225 dummy (right), and bottom g0 on the
series #10–#17 (left) and logMCAP (right). The estimates of g0 on TOPIX 17 series dummies (I1, I2, . . ., I17)
are transformed to satisfy the sum to zero constraint for each of 38 estimation days (see footnote 16 for the
details).
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Japan Tobacco Alfresa Holdings
Missing rate p = 20%

Missing rate p = 50%

Missing rate p = 80%

Figure 13: Predicted values for logILOBS of Japan Tobacco Inc. (left) and Alfresa Holdings Corporation
(right) on March 25, 2019, with observed (after data processing) and target (treated as missing and replaced
with the daily average, indicated as the dashed line, in prediction) values. The vertical line separates the
morning and afternoon sessions.
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Kyowa Exeo SBI Holdings
Missing rate p = 20%

Missing rate p = 50%

Missing rate p = 80%

Figure 14: Predicted values for logRV of Kyowa Exeo Corp. (left) and SBI Holdings Inc. (right) on March
11, 2019, with observed (after data processing) and target (treated as missing and replaced with the daily
average, indicated as the dashed line, in prediction) values. The horizontal dashed line indicates the average
of logRV over the day. The vertical line separates the morning and afternoon sessions.
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Table 5: Attributes of selected stocks.

Stock N225 TOPIX 17 series MCAP Rank

Japan Tobacco Yes 1. Foods 5.5787 11th
Alfresa Hodings No 13. Commercial & Wholesale Trade 0.7630 107th

Kyowa Exeo No 3. Construction & Materials 0.3534 138th
SBI Holdings No 16. Financials (excluding Banks) 0.5716 118th

N225 indicates whether it is a N225 ingredient or not. MCAP and Rank present a value of market capitalization (trillion

JPY) averaged over 20 business days from from March 1, 2019, to March 29, 2019, and its rank (in descending order) in

188 stocks considered, respectively.

3.4 Discussion

Robustness to the data processing. In the empirical analyses above, we considered a possible multi-
collinearity and used the variables after removing the intraday periodicities. To check if this data process-
ing affects the main results, we conducted the same analyses using the variables without removing the
periodicities. For the logILOBS, the results were qualitatively the same. For the logRV, on the other hand,
the results for the RLFM were qualitatively the same again, whereas the predictive performance of the
LMM was considerably better than the one using the periodicity-adjusted data. That is, our framework was
robust to the data processing but the LMM was not. In addition, it is worth mentioning that the intraday
periodicities captured by the estimated latent factor β j, shown in Figures 5 and 9, were weaker when we
used the data without removing the periodicities. The details are available upon request.

Robustness to the data period. We also checked if the data period affects the main results by using the
data for the last three months of the year 2018.23 We obtained qualitatively the same results and confirmed
that our methodology worked fine in a different data period. Again, the details are available upon request.

Motivation and potential applications of the model. A natural question may arise about the motivation
of “estimating” the “true” liquidity of an illiquid stock when there is indeed “no depth,” or no single order
placed on the limit-order book. Market participants usually see such situations as “no liquidity”; there might
then be no use for her to assess a “theoretical” value because she can never initiate a trade against nothing
on the book. We argue that computing theoretical values for liquidity can be useful especially when it is
carried out in a prediction context. That is, after the closure of the market on the preceding day, by predicting
the intraday liquidity of all the stocks in the trading universe for the following day, she can simulate and
develop more realistic and feasible, finer trading strategies along with the time axis. In the meantime,
volatility prediction for all the stocks in the universe shall certainly be of practical importance. Considering
of covariances/correlations between pairs of the stocks is in principle possible in an extended framework,
for instance, by introducing a new axis to represent another asset against which covariance/correlation is
to be computed and by defining a new response variable as a tensor of mode 3, each element of which is
denoted as yi jk, representing the covariance between assets i and j at time bin k. However, implementation
can be challenging.

23We thank an anonymous referee for raising this issue.

27



Inherent discontinuity between existence/non-existence of liquidity. Quotes missing, or “liquidity evap-
oration” may occur perhaps due to certain fundamental reasons; there may exist something discontinuous
in such a situation. It is a hard problem and beyond the scope of the current research to develop a theoretical
microstructure model that produces theoretically sound and convincing explanations. The current statis-
tical model does not take such an underlying structure into consideration; however, we could incorporate
the feature by extending the model by utilizing Torbit-type modeling.

Dynamic modeling of market quality measures. The current approach does not explicitly model dy-
namics of intraday liquidity nor volatility. However, the time of the day information is treated in a static
manner, specifically through the observed responses yi j as well as the predictors xi j and z j. So, we could
possibly draw some useful insights about the dynamic relationships among, say, liquidity, bid-ask spreads
and price changes by carefully examining results obtained by the current model. We postpone the task to
future work.

Other selections of variables. There is substantial room for variable selection regarding xi j,wi, z j. For
instance, widening of bid-ask spreads may reduce liquidity, which can concern some institutional investors.
So it might be reasonable to introduce a dummy variable which takes the value of 1 when the spread exceeds
a pre-specified threshold value. Besides, volatility on the specific return (individual asset return minus the
market return) might also be a candidate, in place of the two volatilities included in the current model as
distinct predictors. Variables about cancellation (such as order-to-cancellation ratio) can be useful as well.
In a preliminary analysis, we included volatility of the target stock (based on trade prices) in xi j; logarithmic
market return, market volatility, market dollar volume in logarithms in z j, where as proxies of the first two
we used a logarithmic return and volatility of a liquid Nikkei 225-linked ETF (code 1321), while as a proxy
of the last we used the total transaction volumes of the M stocks in logarithms. In any case we have to
obey the following simple “principle:” If the objective of the analysis is to improve the goodness of fit in
the training sample or to facilitate ease of interpretation, there are virtually no restrictions on candidacy.
However, if prediction of yi j is the objective, careful selections of the predictor variables have to be made
regarding the timing of their availability.

Alternative measures of volatility. For computing realized volatility, we may use micro-prices in place of
mid-quote prices in order to reflect activities involving the best quotes (e.g., Hayashi (2017)). Mid-quotes
can be motionless (“stale price”) not only for illiquid stocks but also for very liquid stocks i.e., if the stock has
extremely thick orders placed on the best quotes. This phenomenon can often be observed for those with a
large tick size compared to the price, e.g, Mizuho FG (code 8411) prior to July 22nd of 2014. Alternatively to
realized volatility, we may adopt range-based volatility such as Parkinson (1980), Garman and Klass (1980);
Rogers and Satchell (1991). These types use only the highest and lowest prices during the measurement
period for volatility, possibly with open and close prices added to improve accuracy, whence they are
immune to market microstructure noise contained in high-frequency data, due to price discreteness and
bid-ask bounce. Besides, in order to compute them one needs to keep only a few or several values over
the preceding period, hence it can save both memory storage and computational time. This salient feature
yields a great advantage in the current context. We will consider their use in the future.

Limitation of the approach. As elaborated, our approach can handle datasets with various degrees of
sparsity or scarcity, seamlessly from “warm-start” to “cold-start” situations. In particular, it can in principle
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apply to datasets containing lots of illiquid stocks virtually with no modification. However, in the above
analysis we only used stocks taken out of most liquid 500 stocks listed on the TSE. This is simply because,
if we instead choose to use illiquid stocks for the analysis, then we could rarely observe the “true” values
thus would not be able to evaluate the overall prediction accuracy of the model. This situation may contrast
with usual applications of recommender systems such as movie reviews. There, the system can trace
the target user a posteriori to check whether she/he has followed its recommendation such as viewing the
recommended movie or purchasing the recommended item. In our context, however, a posteriori evaluation
of the performance of the approach is essentially impossible, which is certainly a limitation and a challenge
of the study.

4 Conclusion

This paper examines a methodology for market quality evaluation (“estimation”) in the high-frequency
domain – over short-time period – of individual stocks, by applying collaborative filtering.

Specifically, we adopted the regression-based latent factor model (RFLM) proposed by Agarwal and
Chen (2009). This approach addresses the known weakness of the standard collaborative filtering methods,
namely the “cold-start problem.” It is a “hybrid”-type collaborative filtering method that can be used even
when the observation data is very sparse, by performing regression using exogenous variables representing
the characteristics of individual stocks and time zones as explanatory variables.

As the concrete market quality measures, we focused on liquidity and volatility. For liquidity, the ILOBS
proposed by Deuskar and Johnson (2011) was adopted as the liquidity measure to be evaluated in this
study. In the meantime, the realized volatility based on tick-by-tick mid-quote returns was adopted for
the volatility measure. These choices were made mostly for an illustrative purpose, and irrelevant to the
framework under investigation, hence other choices for market quality measures are possible.

In order to confirm the effectiveness of the methodology, empirical analysis was conducted using high-
frequency limit-order book data obtained from the Tokyo Stock Exchange. Ninety-eight stocks out of the
TOPIX 100 ingredients and ninety out of the Mid400 ingredients were used in the analysis. The data period
ranges from January 4, 2019 to March 29, 2019 (58 business days), with data aggregated over every 5-minute
interval.

As a result of the analysis, it was found that various factors that characterize market quality can be
identified by the investigated methodology. The prediction results show that our approach performs stably
and reasonably well compared to alternative models regardless of the percentage ratio of missing values,
whence suggesting its robustness to the degree of sparsity or scarcity of observation data as intended. In
the future we need to extend the data period and coverage to draw general empirical findings, and also to
improve the methodology for better prediction accuracy.
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