法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-12-11

STUDY ON THE ADAPTIVE GROWTH OF ESCHERICHIA COLI SUPPORTED BY TWO-COMPONENT SIGNAL TRANSDUCTION SYSTEMS

三宅, 裕可里 / MIYAKE, Yukari

(開始ページ / Start Page)
1
(終了ページ / End Page)
144
(発行年 / Year)
2020-03-24
(学位授与番号 / Degree Number)
32675甲第489号
(学位授与年月日 / Date of Granted)
2020-03-24
(学位名 / Degree Name)
博士(生命科学)
(学位授与機関 / Degree Grantor)
法政大学 (Hosei University)
(URL)
https://doi.org/10.15002/00022979

Doctoral Dissertation Reviewed by Hosei University

STUDY ON THE ADAPTIVE GROWTH OF ESCHERICHIA COLI SUPPORTED BY TWO-COMPONENT SIGNAL TRANSDUCTION SYSTEMS

YUKARI MIYAKE

Department of Frontier Bioscience

Graduate School of Science and Engineering

Hosei University

March, 2020

Table of contents

ABBREVIATIONS

SUMMARY

CHAPTER 1. INTRODUCTION	1
1-1. Adaptive growth of bacteria	1
1-2. Two-component system (TCS)	1
1-3. TCSs in Escherichia coli K-12	3
1-4. Autoregulation of TCS genes	7
1-5. Objective of this study	7
CHAPTER 2. REGULATORY ROLES OF PYRUVAYTE-SENSING TWO-COMPONENT SYSTEM PYRSR (YPDAB)	
2-1. Introduction	
2-2. Materials and Methods	8
2-2-1. Bacterial strains, plasmids and chemicals	8
2-2-2. Purification of PyrR and BtsR proteins	9
2-2-3. Genomic SELEX screening	9
2-2-4. Gel shift assay	9
2-2-5. DNase footprinting assay	10
2-2-6. Lux reporter assay	10
2-3. Results	11
2-3-1. Search for PyrR-binding locations by gSELEX screening: SELEX-clos analysis	11
2-3-2. Search for PyrR-binding locations by gSELEX screening: SELEX-chip analysis	12
2-3-3. Confirmation of PyrR binding to its targets: gel shift assay	14
2-3-4. Identification of the PyrR-binding sequence: DNase footprinting analysis	14
2-3-5. Effect of PyrR on expression in vivo of the target genes: reporter assay	16
2-3-6. Search for an inducer(s) affecting the expression of PyrR targets	17
2-3-7. Involvement of PyrSR in pyruvate-dependent regulation	17
2-3-8. Identification of the novel regulatory targets of PyrSR	18
2-4. Discussion	19
2-4-1. Metabolic roles of pyruvate as an exometabolite	19
2-4-2. Regulatory targets of PyrR	20
2-4-3. Cross-talk between PvrSR and BtsSR	21

CHAPTER 3. FUNCTIONAL CLASSIFICATION OF THE TCS PROMOTERS	23
3-1. Introduction	23
3-2. Materials and Methods	23
3-2-1. E. coli strains, plasmids, oligonucleotides, and culture conditions	23
3-2-2. Construction of Luciferase reporter plasmid	25
3-2-3. Lux reporter assay	25
3-2-4. Principal component analysis	25
3-3. Results	26
3-3-1. Comprehensive lux reporter analysis of all TCS genes (operons) in E. coli K-12	26
3-3-2. Functional grouping of TCS promoters by principal component analysis	27
3-3-3. Expression pattern of functional TCS promoter groups in vivo	29
3-3-4. Further classification from factor loadings	30
3-4. Discussion	32
CHAPTER 4. THE HOMOLOGOUS SEQUENCE INTEGRATION (HOSEI) METHOD F	
MULTI-GENE KNOCKOUT IN THE E. COLI GENOME	
4-1. Introduction	
4-2. Materials and Methods	
4-2-1. <i>E. coli</i> strains, plasmids, oligonucleotides, culture conditions	
4-2-2. Construction of sgRNA expression plasmid	
4-2-3. Multi-gene knockout in the <i>E. coli</i> genome by the HoSeI method based on CRIS Cas	
4-2-4. Identification of the whole genome sequence of <i>E. coli</i> strains	41
4-2-5. Growth kinetics	42
4-2-6. Phenotype Microarray	42
4-2-7. Computational analysis of designed sgRNAs	43
4-3. Results	43
4-3-1. Construction of multi-gene knockout strains in E. coli using HoSeI method	43
4-3-2. Comparison of the genome sequence of the isolated strains	46
4-3-3. The phenotypic analysis of the TCS gene-deprived strain	49
4-4. Discussion	53
4-4-1. The advantages of HoSeI method	53
4-4-2. Relationship of sgRNA sequences and the cleavage efficiency	54
4-4-3. Characterization of the parent strain <i>E. coli</i> K-12 W3110 type A	
4-4-4. The features of the TCS-deprived strains	57

GROWTH OF E. COLI	. 59
5-1. Introduction	
5-2. Materials and Methods	
5-2-1. <i>E. coli</i> strains, plasmids, and oligonucleotides	. 60
5-2-2. Growth condition of <i>E. coli</i>	
5-2-3. Multi-gene knockout in the <i>E. coli</i> genome by the HoSeI method	. 63
5-2-4. Time-lapse observation on microscope	
5-2-5. Construction of RR protein expression plasmid	. 63
5-2-6. Luciferase reporter assay in <i>E. coli</i>	. 64
5-2-7. Cluster analysis	. 64
5-2-8. Correlation of the number of COGs and the genome size with the Gompertz function	
5-3. Results	. 65
5-3-1. Estimation of highly conserved response regulator genes in the bacterial genome	. 65
5-3-2. Construction of multi RR or SK-gene knockout strains using HoSeI method	. 67
5-3-3. Contribution of the optimum adaptive growth of E. coli by RR genes	. 68
5-3-4. The adaptive growth of <i>E. coli</i> defected by a knockout of an arbitrary pair of <i>phoP</i> , <i>phoB</i> , and <i>ompR</i> genes	
5-3-5. The adaptive growth of <i>E. coli</i> not defected by a knockout of an arbitrary pair of <i>en phoR</i> , and <i>phoQ</i> genes	
5-3-6. A specific arbitrary pair of <i>phoP</i> , <i>phoB</i> , and <i>ompR</i> genes for the optimum adaptive growth of <i>E. coli</i>	. 73
5-3-7. The adaptive growth of the TCS gene-deprived strains	. 75
5-4. Discussion	. 79
5-4-1. Importance of OmpR family genes in bacteria	. 79
5-4-2. Epistatic requirement of the arbitrary pair of PhoP, PhoB, and OmpR	. 81
5-4-3. The role of TCSs on the adaptive growth	. 83
CHAPTER 6. CONCLUSIONS	. 84
REFERENCES	. 85
LIST OF PUBLICATIONS	101
ACKNOWLEDGEMENTS	102
APPENDIX	103

ABBREVIATIONS

A Adenine

AcP Acetyl-phosphate

Ap Ampicillin

ATP Adenosine triphosphate

bp Base pairC Cytidine

cAMP Cyclic adenosine monophosphate

Cas9 CRISPR associated protein 9

COGs The clusters of orthologous groups of proteins

CRISPR Clustered regularly interspaced short palindromic repeats

crRNA CRISPR-RNA

CTP Cytidine triphosphate

DBD C-terminal DNA-binding domain

DDW Deionized distilled water
FITC Fluorescein isothiocyanate

G Guanine

G6P Glucose-6-phosphate

gSELEX Genomic Systematic evolution of ligands with exponential enrichment

HK Histidine kinase

HoSeI Homologous sequence integration

IPTG Isopropyl β- d-1-thiogalactopyranoside

Km Kanamycin
LB Luria-Bertani

Mw Molecular weight

Ni-NTA Ni-nitrilotriacetic acid

NMR Nuclear magnetic resonance

nt Nucleotide

OD Optical density

ORF Open reading frame

PAGE Polyacrylamide gel electrophoresis

PAM Proto-spacer adjacent motif

PC Principal component

PCA Principal component analysis

PCR Polymerase chain reaction

PM Phenotype Microarray

PTS The phosphotransferase system

R Purine

RD, REC N-terminal receiver domain

RR Response regulator

SDS Sodium dodecyl sulfate

sgRNA single-guide RNA

SK Sensor kinase

T Thymine

TCA Tricarboxylic acid

TCS Two-component system
TF Transcription factor
TMAO Trimethylamine oxide

Transfer RNA

tracrRNA Trans-activating crRNA

UDP Uridine diphosphate

Y Pyrimidine

tRNA

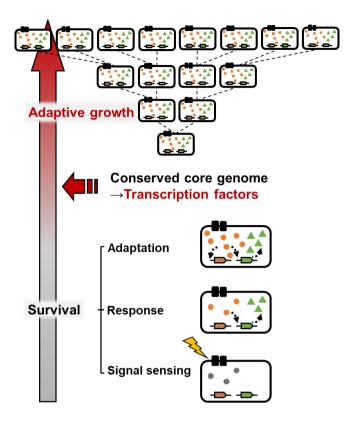
SUMMARY

Bacteria survive in the environment with three systems: a system for sensing environmental conditions, a system for responding to sensed signals, and an adaptation system for proper survival in the environment. An adapting bacterial cell performs cell division to increase the number of sister cells, termed adaptive growth. Two-component systems (TCSs), representing the signal transduction systems widely conserved in bacteria, consist of a pair of one sensor kinase (SK) and one response regulator (RR). One SK autophosphorylates with stimuli (stage-1), and the cognate RR is activated by the SK (stage-2), and the resulting activated RR regulates a set of gene expressions (stage-3). Most cognate pairs of one SK and one RR genes are expressed in the single transcription unit. The signal transduction of TCS mostly represents a high specificity, but a certain cross-regulation has been identified at three stages of the signal transduction pathways.

In this study, I have focused on revealing the contribution of TCSs for fast growth as an adaptive growth strategy of *Escherichia coli*. I first identified novel regulatory targets of a TCS YpdAB (PyrSR), predicted to participate in the regulation of utilization of exometabolites. For induction of PyrSR function, the major exometabolite pyruvate in growing *E. coli* K-12 was identified as the inducer. One unique feature of PyrSR is its cross-talk with another pyruvate-sensing BtsSR at the TCS stage 1 for fine-tuning of pyruvate reutilization. Next, I analyzed all of 36 TCS gene promoter activities in various environmental conditions to get the insight into the comprehensive TCSs expression profile in the *E. coli* K-12 genome. Systematic promoter assay and principal component analysis showed the functional classification of TCS gene promoters of *E. coli* growing under three different carbon source conditions. These results might be available to understand bacterial responses and adaptations via the TCS network.

In order to clarify the role of TCSs on an adaptive growth, multi-gene knockout strains are required in addition to single-gene knockout strains. Therefore, I developed the novel genome editing technology, the HoSeI (Homologous Sequence Integration) method, based on CRISPR-Cas9. The HoSeI method bred a set of gene-knockout strains, including single TCS gene knockout strains and all 34 RR gene- or 30 SK gene-deprived strains. The statistics of single-cell observation showed novel epistasis in which an arbitrary pair of *phoP*, *phoB*, and *ompR* genes, stably expressed by positive feedback regulation, support the optimum adaptive growth of *E. coli* in a manner independent of the cognate SK. According to the characterization of TCS-deprived strain, TCSs enable the cell to adapt to the environmental changes and to increase the cell population. TCSs also contribute to maintaining the cell fitness for environments to acquire a fast response speed, a fast-initial growth rate, and a larger cell mass.

CHAPTER 1. INTRODUCTION


1-1. Adaptive growth of bacteria

Bacteria survive and then increase their population by binary cell division in a timely manner. Individual bacterial cells sense changing environmental signals, transduce those environmental signals into biological responses, and adapt to the environmental change by biological responses. Successful integration of these biological stress responses must induce adaptive growth to obtain a continuous chance for the production of offspring (Fig. 1-1). Bacteria are able to survive in various environments by changing the expression pattern of their genome, which takes place by controlling the promoter recognition properties of RNA polymerase by transcription factors (Ishihama 2010 and 2012). Transcription factors (TFs) are classified as those that facilitate direct sensing and indirect sensing of environmental signals. The Lac repressor and Crp activator are good examples of direct sensing TFs and sense lactose and cAMP, respectively. A response regulator (RR) is a typical example of an indirect sensing TF and is activated by phosphorylation by the cognate sensor kinase (SK), detecting environmental signals at the membrane (Egger et al. 1997; Hoch 2000). Direct sensing TFs temporally support bacterial growth because extracellular nutrients stimulate intracellular metabolism and produce signal metabolites that activate those TFs. Indirect sensing TFs, such as RR, are known to be important for temporal survival but are not known for aiding continuous growth.

Recent massive amounts of genomic information show the core genome, a set of species-specific genes, and pan genome, representing non-conserved genes (Touchon *et al.* 2009). Within the core genome, there is a set of genes involved in central and secondary metabolism, cell cycle, and gene expression, many of which are essential for growth (Touchon *et al.* 2009). In addition to genes coding for essential biological functions, regulatory genes are conserved in the core genome but are not essential for growth (Touchon *et al.* 2009) (Fig. 1-1). One of the core-genome regulatory genes is the RR gene, which is a unique signal transduction component that is only conserved among prokaryotes.

1-2. Two-component system (TCS)

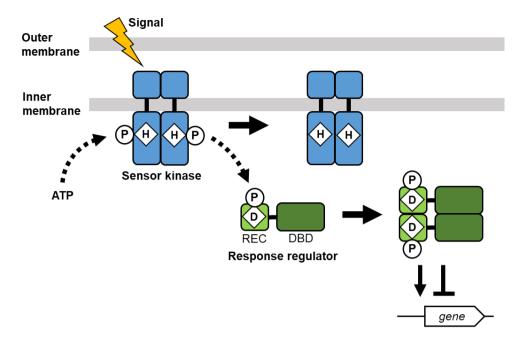
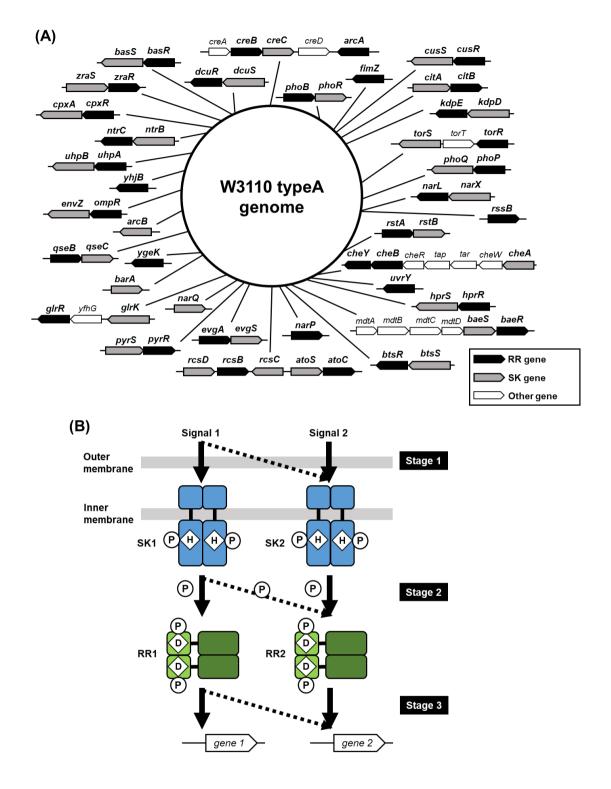

The two-component system (TCS) is mostly conserved among bacteria and typically consists of a cognate pair of one sensor kinase (SK) and one response regulator (RR) (Stock *et al.* 1990). In general, SKs, which are localized on the bacterial membrane, sense physical or chemical signals at N terminus and then phosphorylate at the conserved histidine residue in the cytoplasmic transmitter domain of C terminus (Yamamoto *et al.* 2005) (Fig. 1-2). SKs stably form a homodimer,

Fig. 1-1. The adaptive growth of bacteria. Bacteria cells sense environmental signals, respond to environmental changes by regulation of the gene expression, and adapt to the environment by maintaining the gene expression profile for individual survival. Successful integration of these biological stress responses must induce adaptive growth to obtain a continuous chance for the production of offspring. It is, however, little known how such stress response contributes to bacterial growth for descendants. In addition to genes coding for essential biological functions, regulatory genes are conserved in the core genome but are not essential for growth (Touchon *et al.* 2009).

and each monomer in the dimer phosphorylate the other (Zschiedrich *et al.* 2016; Jacob-Dubuisson *et al.* 2018). The phosphate is transferred to the conserved aspartate residue of a receiver domain of the cognate RR (Yamamoto *et al.* 2005). Recent studies of the molecular structure of RRs believe that the monomeric unphosphorylated RR forms a closed conformation with an interaction between the REC and DBD effector domains. In contrast, the phosphorylated RR stimulates dimerization by the interaction between receiver domains and forms an extended conformation that altered the surface of DNA-binding domains in a dimer for recognition of the target promoters (Gao *et al.* 2019) (Fig. 1-2). The phosphorylated RR, which binds to the promoter, recruits, or inhibits RNA polymerase for the regulation of transcription reaction.

Although the general mechanisms and functions of TCSs are common in bacteria, the essentiality of them are different between gram-positive and gram-negative bacteria. In gram-positive bacteria, most of TCSs have been estimated as nonessential whereas the WalRK system is known as the highly conserved essential TCS for growth. The essentiality of WalRK has been revealed in *Bucillus* (e.g. *Bacillus suctilis*), *Streptococcus pneumoniae*, and *Staphylococcus aureus* (Fabret and Hoch 1998; Lange *et al.* 1999; Martin *et al.* 1999; Throup *et al.* 2000; Wagner *et al.*

Fig. 1-2. The overview of the two-component signal transduction system. The two-component system (TCS) is mostly conserved among bacteria. A TCS consists of a cognate pair of one sensor kinase (SK, shown by blue boxes) and one response regulator (RR, shown by green boxes) (Stock *et al.* 1990). In general, SKs, which are localized on the bacterial membrane, sense physical or chemical signals and then phosphorylate at the conserved histidine residue (shown as H) (Yamamoto *et al.* 2005). SKs transfer the phosphate (shown as P) to the conserved aspartate residue (shown as D) of a receiver (REC) domain of the cognate RR (Yamamoto *et al.* 2005). Recent studies of the molecular structure of RRs believe that the monomeric unphosphorylated RR forms a closed conformation with an interaction between the REC domain and DNA-binding domain (DBD). In contrast, the phosphorylated RR stimulates dimerization by the interaction between REC domains and forms an extended conformation that altered the surface of DBDs in a dimer for recognition of the target promoters (Gao *et al.* 2019) (shown with a white arrow). The phosphorylated RR, which binds to the promoter, recruits, or inhibits RNA polymerase for the regulation of transcription reaction.


2002). The WalRK system regulates the expression of major virulence genes, cell wall metabolism, and biofilm formation (Delaune *et al.* 2012; Dubrac *et al.* 2004 and 2007). Also, recent analysis of TCS-deprived *S. aureus* concluded the WalRK system is needed for growing cells but not for growth arrested cells (Villanueva *et al.* 2018). On the other hand, an essential TCS for growth is unknown in gram-negative bacteria. Since single knockouts of each TCS do not show a lethal effect when bacteria grow under the condition with no specific environmental changes, TCSs in gramnegative bacteria are thought as nonessential systems for growth (Baba *et al.* 2006).

1-3. TCSs in Escherichia coli K-12

In most of the bacterial genome, conserved RR genes are designed in core-genome, which are a set of genes involved in central and secondary metabolisms, cell cycle, and gene expression, many of which are essential for growth (Touchon *et al.* 2009). The genome sequence of *Escherichia coli* K-12 predicts 30 TCS systems (Fig. 1-3A) (Mizuno 1997; Yamamoto *et al.* 2005). The function

of responses by TCSs of E. coli K-12 divides into four response groups, the stress response, the metal response, the metabolic response, and the respirational response (Yamamoto 2014) (Table 1-1). The stress response group includes osmo-sensing EnvZ-OmpR, envelope stress-sensing BaeSR, CpxAR, and RcsCB, and pH-sensing EvgSA and RstAB, which control a set of genes involved in the homeostasis of the cellular osmolyte and proton and repair damage on the cell surface. The metal response group includes Fe-sensing BasSR, Cu-sensing CusSR, Mg-sensing PhoQP, and Ksensing KdpDE, which control a set of genes involved in the homeostasis of cellular metals. The metabolic response group includes acetoacetate-sensing AtoSC, nitrogen-sensing NtrBC, and phosphate-sensing PhoRB, which control the related genes for nutrient responses. The respiration response group includes reduction-sensing ArcBA, nitrate/nitrite-sensing NarQP and NarXL, TMAO-sensing TorSR, which control a set of genes involved in aerobic and anaerobic respiration. The signal transduction of TCS mostly represents a high specificity (Laub and Goulian 2007), but a certain cross-regulation has been identified at three stages of the signal transduction pathways: in the recognition of signals by SKs (stage-1); in the phosphorylation of RRs by SKs (stage-2); and in the recognition of target promoters by RRs (stage-3) (Yamamoto 2014; Yamamoto et al. 2005; Yoshida et al. 2015) (Fig. 1-3B). The cross-regulation among TCSs is thought to increase the flexibility of responses to complex environmental factors.

Phenotype microarray assays of TCS mutants show that 22 TCS mutants have altered growth phenotypes, including defective growth of the uhpAB mutant, which uses glucose-6phosphate and fructose-6-phosphate as carbon sources, and defective growth of the dcuSR mutant, which uses dicarboxylates as carbon sources (Zhou et al. 2003). In addition to such expected metabolic phenotypes in relation to carbon sources, at least 6 species of TCS single knockouts, arcA, atoSC, barA, ompR-envZ, phoPQ, and uvrY mutants, show increased growth or respiration in the presence of unused carbon sources based on the parent strain (Zhou et al. 2003). Growth phenotypes are thought to result from a sophisticated signal transduction network by cross-talk among TCSs in E. coli. Glucose is one of the favorite carbon sources in E. coli because glucose has a high affinity for the phosphotransferase system (Postma et al. 1993; Deutscher et al. 2006). Glucose is directly catabolized into glycolysis and then is consumed through the tricarboxylic acid cycle (Deutscher et al. 2006). Catabolism of glucose occurs prior to metabolism of other carbon sources, resulting in catabolite repression by the regulatory networks that are induced by glucose (Stülke and Hillen 1999; Bettenbrock et al. 2006). E. coli also catabolizes glycerol by enzymatic reactions, which are mainly involved in a glycerol kinase and two glycerol-3-phosphate dehydrogenases (Lin 1976; Booth 2005). Metabolic flux analysis of E. coli chemostat culture in the presence of both glucose and glycerol shows that a high dilution rate of culture increases the glucose consumption rate, in which the level of the arcA transcript increases (Yao 2016), implying that TCSs largely contribute to adaptive growth in the presence of different carbon sources.

Fig. 1-3. Two-component system genes in the *E. coli* **K-12 W3110 genome.** [A] All two-component system genes in the *E. coli* K-12 W3110 genome (4.6 Mb) are shown with arrows. Each arrow shows sensor kinase genes (gray), response regulator genes (black), and other genes in the operon (white), respectively. The direction of arrows shows the direction of genes in the *E. coli* genome. [B] A cross-regulation among TCSs. A certain cross-regulation has been identified at three stages of the signal transduction pathways: in the recognition of signals by SKs (stage-1); in the phosphorylation of RRs by SKs (stage-2); and in the recognition of target promoters by RRs (stage-3) (Yamamoto, 2014; Yamamoto *et al.* 2005; Yoshida *et al.* 2015). Each of SKs, RRs, and target genes are shown with a blue box, a green box, and a white arrow, respectively. Each residue is shown as H (histidine) and D (aspartate), and the phosphate is shown as P.

Table 1-1. Two-component systems in E. coli.

Signal		SK		RR	Target
Respiration					C
Redox condition	\rightarrow	ArcB	\rightarrow	ArcA	icdA p and other 70 gene promoters
Citrate	\rightarrow	CitA	\rightarrow	CitB	appYp, $citC$ p, $dpiB$ p, $exuT$ p, mdh p
C4 dicarboxylates	\rightarrow	DcuS	\rightarrow	DcuR	dctA p, dcuB p, dcuS p, dpiB p, frdA p
Nitrate, Nitrite	\rightarrow	NarQ	\rightarrow	NarP	<i>nrfA</i> p and othter 13 gene promoters
Nitrate, Nitrite	\rightarrow	NarX	\rightarrow	NarL	<i>nirB</i> p and other 33 gene promoters
TMAO	\rightarrow	TorS	\rightarrow	TorR	torCp and other 9 gene promoters
Metabolism					
Acetoacetate	\rightarrow	AtoS	\rightarrow	AtoC	atoD p, $atoS$ p
Short chain aliphatic carboxylic acids	\rightarrow	BarA	\rightarrow	UvrY	csrB p, $csrC$ p, $luxS$ p, $uhpT$ p, $ydeP$ p
Glycolytic carbon products	\rightarrow	CreC	\rightarrow	CreB	<i>creD</i> p and other 7 gene promoters
Nitrogen limitation	\rightarrow	NtrB	\rightarrow	NtrC	glnA p and other 19 gene promoters
External Pi Limitation	\rightarrow	PhoR	\rightarrow	PhoB	phoA p and other 30 gene promoters
Glucose-6-phosphate	\rightarrow	UhpB	\rightarrow	UhpA	uhpTp
Carbon starvation, Extracellular pyruvate	\rightarrow	BtsS	\rightarrow	BtsR	<i>yjiY</i> p
Extracellular Pyruvate	\rightarrow	YpdA	\rightarrow	YpdB	mglA p?, $srlD p?$, $yjhT p?$, $yhjX p$
Metal response					
High Fe(III)	\rightarrow	BasS	\rightarrow	BasR	ais p and other 11 gene promoters
High Cu(II)	\rightarrow	CusS	\rightarrow	CusR	cusC p, $cusR$ p, $cyoA$ p, $yedX$ p
Low K(I)	\rightarrow	KdpD	\rightarrow	KdpE	kdpFp
Low Mg(II)	\rightarrow	PhoQ	\rightarrow	PhoP	mgtA p and other 33 gene promoters
High Zn(II) and Pb(II)	\rightarrow	ZraS	\rightarrow	ZraR	<i>zraP</i> p, <i>zraS</i> p
Stress response					
Envelope stress	\rightarrow	BaeS	\rightarrow	BaeR	acrD p, $mdtA$ p, spy p, $ycaC$ p
Envelope stress	\rightarrow	CpxA	\rightarrow	CpxR	cpxP p and other 40 gene promoters
Extracellular osmorality	\rightarrow	EnvZ	\rightarrow	OmpR	<i>ompC</i> p and other 13 gene promoters
Low pH, high alkali metal (Na+, K+)	\rightarrow	EvgS	\rightarrow	EvgA	ydeOp and other 9 gene promoters
Bacterial hormone?	\rightarrow	GlrK	\rightarrow	GlrR	glmYp, $yfhK$ p, $rpoE$ p
Bacterial hormone	\rightarrow	QseC	\rightarrow	QseB	basR p, flhD p, qseB p, ygiW p
Membrane perturbation	\rightarrow	RcsC	٦		
		RcsD	$\stackrel{\longleftarrow}{\rightarrow}$	RcsB	wza p and other 23 gene promoters
LowpH	\rightarrow	RstB	\rightarrow	RstA	asr p, csgD p, narG p, ompF p
		Hanc		HanD	cusC p, $cusR$ p, $cyoA$ p, $yedVW$ p,
$\mathrm{H_2O_2}$	\rightarrow	HprS	\rightarrow	HprR	yedX p
Increased level of σ^s ?	\rightarrow	?	\rightarrow	RssB	Degration of σ^s
Chemotaxis					
Attractant & repellent	\rightarrow	CheA	\rightarrow	CheB	Demethylation of chemotaxis receptor
			<i>→</i>	CheY	Changing flagellar rotation
Unknown		0		F:. 7	Finsheiglessons 2
?	\rightarrow	?	\rightarrow	FimZ	Fimbrial expression?
?	\rightarrow	?	\rightarrow	YgeK	?
?	\rightarrow	?	\rightarrow	YhjB	?

Among genes coding TCS factors, 22 pairs of SK and RR genes are polycistronic transcribed and 6 transcription units, *phoB-phoR*, *phoP-phoQ*, *qseB-qseC*, *ompR-envZ*, *cpxR-cpxA*, and *basR-basS*, show positive feedback regulation. However, it is not clear which of TCS genes is dominantly expressed in complex environmental factors.

1-4. Autoregulation of TCS genes

Several TFs are autoregulated during the response to environmental signals. In *E. coli*, more than 50% of identified TFs in the genome are positively or negatively autoregulated (Ishihama, 2012; Hermsen *et al.* 2010). Positive autoregulation leads to a fast response and impacts the response dynamics (Gao *et al.* 2018; Maeda *et al.* 2006). Among ~30 positively autoregulated TFs in the *E. coli* genome (Hermsen *et al.* 2010), 10 of those are RRs of TCSs (PhoB, CusR, CitB, PhoP, EvgA, GlrR, QseB, OmpR, CpxR, and BasR), and 34 RRs have been characterized in the *E. coli* genome. On the other hand, negatively autoregulated RRs are less common than positively autoregulated RRs in TCSs (Goulian 2010). A recent report showed that coupled positive and negative feedback allowed both a fast response and optimal RR protein levels in the PhoB/PhoR system in *E. coli* (Gao *et al.* 2018). However, the contribution of coupled autoregulation for continuous bacterial growth is poorly understood.

1-5. Objective of this study

According to the previous reports, bacterial cells drive the adaptive growth effectively using the high conserved bacterial signal transduction systems. However, the contribution of comprehensive TCS network to the adaptive growth is still unclear. In this study, I firstly focused on searching the new regulatory target genes and the specific inducer of an unknown response regulator, YpdB, to confirm its regulatory role. Based on the results and previous reports about the functions of TCS proteins, I analyzed all of 36 TCS gene (operon) promoter activities in various environmental conditions to get the insight into the comprehensive TCSs expression profile in the *E. coli* K-12 genome. Then, to clarify the role of TCSs on the adaptive growth, I developed the novel genome editing technology, the HoSeI (Homologous Sequence Integration) method based on CRISPR-Cas9, and isolated a set of TCS gene knockout strains. Using obtained mutants, I investigated the effects of TCSs on the single-cell growth and phenotypic characterization of the all RR- or SK-deprived mutant.

CHAPTER 2. REGULATORY ROLES OF PYRUVAYTE-SENSING TWO-COMPONENT SYSTEM PYRSR (YPDAB)

2-1. Introduction

When the rate of production of metabolites exceeds the level needed for cell growth, excess metabolites are secreted into the extracellular environment (Holms 1996). Upon entry into poor nutrient conditions, exometabolites are taken up again and reused for continued growth and survival. This pathway appears essential for growth-coupled maintenance of the homeostasis of intracellular metabolites (Shimada and Tanaka 2016; Yasid *et al.*2016). The genetic system(s) involved in the metabolite efflux and reutilization of exometabolites, however, remains poorly understood even for the best-characterized model prokaryote *Escherichia coli*. Up to the present time, two LytTR-family two-component systems (TCSs) of *E. coli* K-12, BtsSR (renamed from YehUT) and PyrSR (herein renamed from YpdAB), have been proposed to be involved in the uptake of overflowed exometabolites (Fried *et al.* 2013; Behr *et al.*2017a; Behr *et al.*2017b). The PyrSR and BtsSR TCSs were identified to regulate the expression of only a single target *yhjX* and *btsT* (renamed from *yjiY*), respectively (Kraxemberger *et al.* 2012; Fried *et al.* 2013).

In this study, I newly identified a total of eight regulatory targets of PyrR (YpdB), including the hitherto identified *yhjX*. After analysis of the influence of exometabolites on the regulatory function of PyrR, I found the involvement of PyrSR (YpdAB) in sensing external pyruvate and its uptake. As to sensing the exometabolite pyruvate, the involvement of BtsSR and PyrSR has been proposed (Fried *et al.* 2013; Behr *et al.* 2017b). Here I confirmed that both PyrSR and BtsSR monitor a single and the same exometabolite pyruvate, but interestingly each sensing different concentrations of pyruvate. To note this unique cross-talk between PyrSR and BtsSR at the signal-sensing step (stage 1) and the phosphotransfer step (stage 2) of TCS signal transduction pathway, I propose to rename YpdAB to PyrSR (regulator of pyruvate reutilization).

2-2. Materials and Methods

2-2-1. Bacterial strains, plasmids and chemicals

Escherichia coli K-12 stains and plasmids used in this study are listed in Table 2-1. Primers used for construction of TF expression vectors and the plasmids for reporter assays are described in Table 2-2.

Table 2-1. Bacterial strains and plasmids used in this study.

Name	Purpose	Reference
Strains		
W3110 type A	Templete of TF expression; Substrate in SELEX screening	Jishage and Ishihama 1997
BL21(DE3)	Expression of TF	Studier et al. 1986
BW25113	Reporter assay	Dstsenko and Wanner 1997
JW5388	BW25113 pyrS (ypdA) mutant; Reporter assay	Baba et al. 2006
JW2378	BW25113 pyrR (ypdB) mutant; Reporter assay	Baba <i>et al.</i> 2006
JW3516	BW25113 <i>yhjX</i> mutant; Reporter assay	Baba <i>et al.</i> 2006
JW5353	BW25113 btsS (yehU) mutant; Reporter assay	Baba <i>et al.</i> 2006
JW5352	BW25113 btsR (yehT) mutant; Reporter assay	Baba <i>et al.</i> 2006
JW5791	BW25113 btsT (yjiY) mutant; Reporter assay	Baba et al. 2006
Plasmids		
pYpdB	YpdB expression	This report
pBtsR	BtsR expression	This report
pLUXyhjX	Reporter assay of <i>yhjX</i> promoter	This report
pLUXxthA	Reporter assay of xthA promoter	This report
pLUXastC	Reporter assay of astC promoter	This report
pLUXyghW	Reporter assay of yghW promoter	This report
pLUXbtsT	Reporter assay of btsT promoter	This report
pLUXyfjD	Reporter assay of yfjD promoter	This report
pLUXpbpC	Reporter assay of <i>pbpC</i> promoter	This report
pLUXyhcC	Reporter assay of <i>yhcC</i> promoter	This report
pLUXgltB	Reporter assay of gltB promoter	This report

2-2-2. Purification of PyrR and BtsR proteins

Transcription factors (TFs), PyrR and BtsR, were overexpressed and affinity purified following the standard procedure (Yamamoto *et al.* 2005).

2-2-3. Genomic SELEX screening

Genomic SELEX (Systematic evolution of ligands with exponential enrichment) screening was carried out according to the standard procedure (Shimada *et al.*2005; 2018). The sequence of TF-bound DNA fragments obtained by gSELEX screening was identified by using both SELEX-clos (cloning-sequencing) and SELEX-chip (tilling-array) methods.

2-2-4. Gel shift assay

The gel shift assay was performed according to the standard procedure (Ogasawara *et al.* 2007). Probes of the PyrR-binding target sequences were generated by PCR amplification using a pair of primers, one FITC-labeled and another unlabeled, and Ex Taq DNA polymerase. FITC-labeled DNA in gels was detected using LAS-4000 IR multicolor (GE).

2-2-5. DNase footprinting assay

DNase-I footprinting assay of TF-bound DNA sequences was carried out according to the standard procedure (Shimada *et al.* 2011) using FITC-labeled DNA probes.

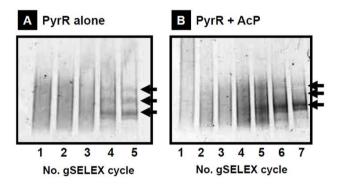
Table 2-2. Primers used in this study.

Primer	Sequence $(5' \rightarrow 3')$	Purpose
EcoRV-F	CTTGGTTATGCCGGTACTGC	a
EcoRV-R	GCGATGCTGTCGGAATGGAC	a
yhjX-S	CTATGTGACCTTCTACGTGA	b
yfjD-S	CATTCTTGAGGCACTGGAAG	b
pbpC-S	AATGGCGAACCGTTAACTGA	b
gltB-S	ATCTGCGTGGTCTTATCACC	b
ypdB-S	CAATCTGAACAAAATACGCG	c
ypdB-T	TTTCACTTTGCTGCGGCTGA	c
yhjX-S	TCGTCTTCACCTCGACTTTACTACTCCACTTCGCG	b, d
yhjX-T	ACTAACTAGAGGATCGCCTAATACAAAACCGCGTT	d
xthA-S	TCGTCTTCACCTCGAAGGCTAACTGGAAATCAAGG	b, d
xthA-T	ACTAACTAGAGGATCTATCGTCATGAACTTTTGTC	d
astC-S	TCGTCTTCACCTCGAATCGATGGTTGTTAATGATG	b, d
astC-T	ACTAACTAGAGGATCCTTCGCCACGTACCGGTATA	d
yghW-S	TCGTCTTCACCTCGAATGTTGCTCAATCAAAATAT	b, d
yghW-T	ACTAACTAGAGGATCGGAAAGCGCGCCATTAAACA	d
btsT-S	TCGTCTTCACCTCGATTTGTCATTCTTTAAGGCATTAAAG	b, d
btsT-T	ACTAACTAGAGGATCAGTAAAACCTGGCATGTATTGATTA	d
yfjD-S	TCGTCTTCACCTCGAATCACTATGCCCGTTTTTGCTCTGC	d
yfjD-T	ACTAACTAGAGGATCGGGAAACTCCTTTTCTGGGTTTAGC	d
pbpC-S	TCGTCTTCACCTCGACACTTTCGCAGCAGGCGTTTGGTGA	d
pbpC-T	ACTAACTAGAGGATCTTACGGTCTGACAATCAGCAGATCT	d
yhcC-S	TCGTCTTCACCTCGAATCGTGAACCTCCCCCAGGCTCTGC	d
yhcC-T	ACTAACTAGAGGATCAGTTGCTCGGCAATGGAACGATGCT	d
gltB-S	TCGTCTTCACCTCGAAGTTGCTCGGCAATGGAACGATGCT	d
gltB-T	ACTAACTAGAGGATCATCGTGAACCTCCCCCAGGCTCTGC	d
LUX-R-FITC*	CCGTCCATTTGTGATAATAGTGG	b

^{*} FITC is conjugated at 5' end; aConstruction of gSELEX probe; bConstruction of gel shift assay probe;

2-2-6. Lux reporter assay

The single-copy lux (luciferase) reporter system was employed for detection of the promoter activity (Blouin *et al.*1996). For construction of Lux reporter plasmids, about 500 bp long segment of the test promoter was PCR amplified using the genome of *E. coli* W3110 as the template and a pair of primers (listed in Table 2-2), and inserted into pLUX vector using an In-Fusion HD cloning kit (Clontech, Mountain View, CA, USA) (Yamanaka *et al.* 2014). Transformants carrying


^cConstruction of expression plasmid; ^dConsturction of reporter assay vector

reporter plasmids grown in M9 glycerol medium were transferred into fresh M9 medium containing a single carbon source. The cell suspension was transferred to a microtiter plate (96-well microplate), and the Lux activity was monitored with an automated plate reader MTP-880 (Corona).

2-3. Results

2-3-1. Search for PyrR-binding locations by gSELEX screening: SELEX-clos analysis

For identification of the regulatory targets of PyrR, gSELEX (Shimada *et al.*2005; 2018) was employed using purified PyrR and a mixture of 200–300 bp long genome fragments from *E. coli* K-12 W3110 as the DNA substrate. After gSELEX screening in the presence and absence of AcP, PyrR-bound DNA fragments were affinity isolated using Ni-NTA. The mixture of original genomic DNA fragments formed smeared bands on PAGE, but after repetition of gSELEX screening, PyrR-bound DNA formed sharper bands on PAGE (Fig. 2-1), indicating the enrichment of specific DNA fragments with PyrR-binding activity. The difference of PAGE pattern in the presence and absence of AcP indicated enrichment of the different species of DNA fragment between non-phosphorylated and phosphorylated PyrR.

Figure 2-1. gSELEX screening of PyrR-binding DNA fragments. gSELEX screening was carried out in the absence (**A**) or presence (**B**) of AcP for identification of regulatory targets of PyrR. At each cycle, PyrR-bound DNA segments were analyzed by PAGE. After repetition of gSELEX, specific DNA segments were enriched, which formed specific gel bands.

To identify the binding sites of PyrR, DNA segments isolated after four cycles of SELEX were subjected to SELEX-clos analysis. After sequencing more than 200 independent clones, identical sequences were detected more than three times for three regions in the absence of AcP (PyrR alone) and for five regions in the presence of AcP (Table 2-3, indicated as S-clos). For both samples, the most abundant sequences were located in the spacer upstream of the *yhjX* gene and downstream of the *yhjY* gene (Fig. 2-2A1). This finding indicates that the major target of PyrR is

the yhjX gene encoding the MFS-family transporter with unknown function. Besides the yhjX gene, the binding of PyrR was found, both in the absence and presence of AcP, inside spacer between astC and xthA, and upstream of pbpC (Table 2-3 and Fig. 2-2A2). In the absence of AcP, its binding was also identified prior to yghW, while in the presence of AcP, inside spacer between yhcC and gltB, and prior to yfjD (Table 2-3 and Fig. 2-2A2).

Table 2-3. Regulatory targets of PyrR identified by gSELEX screening

Function	Left gene			Right gene	Function	gSELEX system ^a
[A] PyrR alone						
Succinylornithine transaminase	astC	<	>	xthA	Exonuclease III	S-clos S-chip
PBP1c murein transglycosylse	pbpC	<	<	yfhM	Hypothetical protein	S-clos S-chip
Membrane fatty acid composition	yghW	<	<	yghX	Psedogene	S-chip
Oxalate-formate antiporter	yhjX	<	<	yhjY	Putative lipase	S-clos S-chip
[B] PyrR + AcP						
Succinylornithine transaminase	astC	<	>	xthA	Exonuclease III	S-clos S-chip
Inner membrane protein	ypjD	>	>	yfjD	Inner membrane proein	S-clos S-chip
PBP1c murein transglycosylse	pbpC	<	<	yfhM	Hypothetical protein	S-clos S-chip
Putative Fe-S oxidoreductase	yhcC	<	>	gltB	Glutamate synthase	S-clos S-chip
Oxalate-formate antiporter	yhjX	<	<	yhjY	Putative lipase	S-clos S-chip

PyrR-binding sequences were isolated by gSELEX screening and analyzed by SELEX-clos and SELEX-chip for identification of their locations on the *E. coli* K-12 genome.

2-3-2. Search for PyrR-binding locations by gSELEX screening: SELEX-chip analysis

For detailed mapping of the PyrR-binding sites, a mixture of DNA fragments obtained after six cycles of gSELEX was subjected to SELEX-chip analysis (Shimada *et al.* 2018). Apparently, a single high-level peak of PyrR-binding was identified within spacer between the *yhjX* and *yhjY* genes (Fig. 2-2B1) in good agreement with the SELEX-clos analysis. In addition, several minor peaks were identified in the absence of AcP, including two low-level but significant peaks, one inside the spacer between *astC* and *xthA* and another prior to *yghW* (Fig. 2-2B1 and Table 2-3). The *yghW* promoter overlaps with the promoter for the *morA* gene that is located on the opposite strand of the *yghX* gene (Kurata *et al.*2013), implying possible influence of this PyrR binding on the expression of ModE-regulated *morA* gene. In addition to these three targets, PyrR binding was identified inside open reading frames (ORFs) of the *abgA*, *ydaG* and *yhfS* genes. TF binding inside ORF has been identified only for a specific set of TFs (Ishihama *et al.* 2016), implying as yet unidentified regulatory role(s) for these ORF-binding TFs. In the presence of AcP, five sites of PyrR binding were identified by SELEX-chip: one major target in front of the *yhjX* gene and four

^aS-clos = SELEX-clos method; S-chip = SELEX-chip method (Shimada *et al.* 2018).

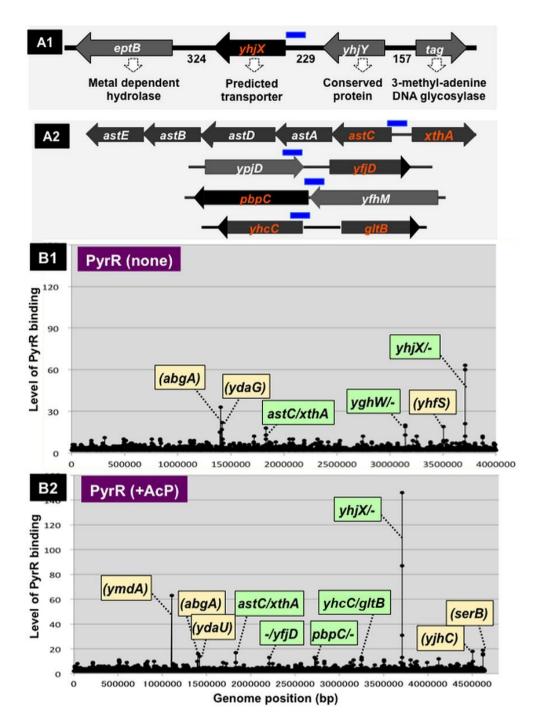
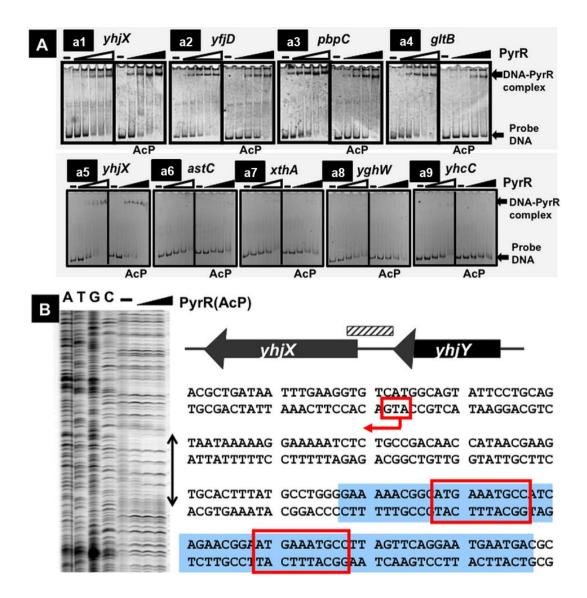


Figure 2-2. Mapping of PyrR-binding sites along the *E. coli* K-12 genome. [A] SELEX-clos analysis. gSELEX screening was carried out by mixing 5 pmol of *E. coli* K-12 genome DNA segments and 10 pmol of purified PyrR. PyrR-binding DNA fragments were affinity isolated and subjected to SELEX-clos method for mapping the location of PyrR-binding sites. The most abundant clones contained the *yhjX* promoter sequence (A1) while (A2) shows the PyrR-binding sites identified in more than three independent clones (for the whole set of SELEX-clos clones, see Table 2-3). Blue bars above the map indicate the location of PyrR-binding segments, while the genes shown in red indicate possible regulatory targets of PyrR. The number of clones correlates with the affinity of PyrR binding. [B] SELEX-chip analysis. PyrR-binding DNA fragments were isolated in the absence (B1) and presence (B2) of 10 mM AcP and mapped along the *E. coli* K-12 genome by SELEX-chip method using an *E. coli* tilling array. The locations of PyrR-binding site inside spacers are shown under green background, while those inside ORF are shown under pale orange background. Peak height correlates with the level of fluorescent probe (and thus PyrR binding).

minor peaks, inside the *astC-xthA* and *yhcC-gltB* spacers and in front of *yfjD* and *pbpC* (Fig. 2-2B2). All these targets were identified by SELEX-clos (Table 2-3).


Taken SELEX-clos and SELEX-chip together, a total of six binding sites for PyrR were identified (Table 2-3), from which a maximum of eight targets (*yhjX*, *pbpC*, *yfjD*, *yhcC*, *gltBD*, *yghW*, *astCADBE* and *xthA*) were predicted to be under the direct control of PyrR. Among these possible regulatory targets of PyrR, the *yhjX* gene was the most abundant clone in SELEX-clos (Fig. 2-2A1) and the highest peak in SELEX-chip (Fig. 2-2B). The regulatory roles of PyrR binding on these newly identified sites were analyzed in detail.

2-3-3. Confirmation of PyrR binding to its targets: gel shift assay

For experimental confirmation of PyrR binding to these targets, I carried out the gel shift assays *in vitro* for detection of PyrR-DNA complex formation. For this purpose, a set of DNA probes was constructed, each carrying the sequence of the predicted PyrR-binding sites (Table 2-2). The gel shift assay indicated that the slowly migrating PyrR-DNA complexes were detected for all eight probes (Fig. 2-3A). The formation of probe-PyrR complex was detected for the *yhjX* probe at the lowest concentration of PyrR, confirming the highest affinity of PyrR to the *yhjX* target. Four probes (*yhjX*, *yfjD*, *pbpC* and *gltB*) formed PyrR-DNA complexes that slowly migrated on PAGE (Fig. 2-3A, a1 to a4). As to four probes, *astC*, *xthA*, *yghW* and *yhcC*, clear bands of PyrR-probe complexes were not detected (Fig. 2-3A, a6 to a9), and then the binding of PyrR for these probes was judged based on the decrease or disappearance of free unbound probes. In the presence of AcP, the binding affinity significantly increased for the *yhjX* and *yhcC* probes, but the level of probe-PyrR complexes rather decreased for other six probes. Thus, the phosphorylation of PyrR increased its binding to *yhjX* and *yhcC*, but decreased its binding to *yfjD*, *pbpC*, *gltB*, *astC*, *xthA* and *yghW* (Fig. 2-3A).

2-3-4. Identification of the PyrR-binding sequence: DNase footprinting analysis

To identify the recognition and binding sequence of PyrR, I next performed DNase footprinting analysis using the *yhjX-yhjY* spacer with the highest affinity to PyrR. A total of about 60 bp long sequence was protected by PyrR between –73 to –133 bp upstream the initiation codon of the *yhjX* gene. Within this rather long sequence, two 10 bp long direct repeats of ATGAAATGCC sequence were found, which were separated by an intervening spacer of 11 bp (Fig. 2-3B). The size of PyrR is only 244 residues (Mw, 28,721), and thus the sequence of 60 bp long DNA could be covered by two PyrR protomers, each recognizing one unit of this direct repeat sequences. Within each consensus sequence, two DNase-hypersensitive sites were identified, implying that the

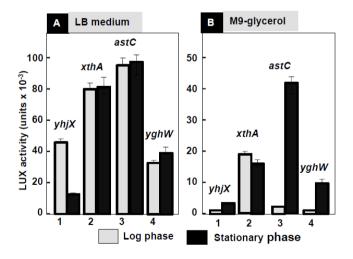


Figure 2-3. Analysis of PyrR-binding sequences on the *E. coli* **K-12 genome. [A]** Gel shift assay. Fluorescent-labeled DNA segments with PyrR-binding activity were prepared by PCR amplification using a pair of primers, one FITC-labeled and another unlabeled, and Ex Taq DNA polymerase. Mixtures of each probe and increasing amounts of purified PyrR were incubated for 30 min at 37°C in the presence (closed bars) and absence (open bars) of AcP and then directly subjected to PAGE analysis. FITC-labeled DNA in gels was detected using LAS-4000 IR multicolor (GE). **[B]** DNase-I footprinting assay. PyrR-binding sequence between the *yhjX* and *yhjY* genes was mapped by DNase footprinting assay. The fluorescent DNA probe containing the *yhjX* and *yhjY* region was mixed with purified PyrR in the presence of AcP and incubated for 30 min at 25°C. After DNase treatment for 30 s at 25°C, the region protected by PyrR was identified after PAGE analysis in the presence of 7 M urea. The protected sequence is indicated on the gel pattern, and this sequence is shown under blue background in the sequence map. The conserved palindromic sequences are indicated by red.

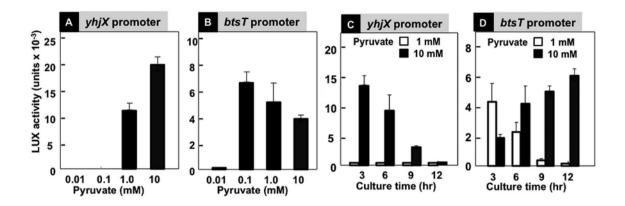
activated PyrR induces the formation of an as yet unidentified higher order structure inside the PyrR-bound DNA. The recognition sequence of PyrR in the *yhjX* promoter agrees well with the published findings (Kraxenberger *et al.*2012; Fried *et al.* 2013; Behr *et al.* 2016).

2-3-5. Effect of PyrR on expression in vivo of the target genes: reporter assay

As an attempt to examine regulation in vivo of the promoters of predicted target genes by PyrR, I employed the single-copy LUX reporter system (Blouin et al. 1996). About 500 bp long promoter segments of all eight PyrR target genes were PCR amplified and inserted into pLUX vector (for details, see Tables 2-1 and 2-2). Each plasmid was transformed into both wild-type E. coli BW25113 and mutant JW2378 lacking the pyrR gene. Secretion of exometabolites has been suggested to be high in rich media and to increase in stationary phase, but the exometabolite composition differs depending on culture media (Paczia et al. 2012; Yasid et al. 2016). The transformants were then grown in both LB and M9-glycerol media, and the LUX activity was measured at both exponential growth and stationary phases. In wild-type cells grown in LB medium, the yhjX promoter-directed LUX activity was high in exponential growth phase and then decreased markedly in the stationary phase (Fig. 2-4A). I then predicted that PyrSR monitors an exometabolite(s) present in LB culture and induces the expression of YhiX transporter for uptake as yet unidentified exometabolite(s). In contrast, the yhjX promoter stayed low in cells grown in M9-glycerol culture (Fig. 2-4B). The expression level of other three targets, xthA, astC and yghW, increased in the stationary phase. I then predicted a hypothesis that the expression of these genes is repressed in exponentially phase in M9-glycerol culture, but derepressed in response to an exometabolite(s) secreted in the stationary phase. In both LB and M9-glycerol cultures, however, the composition of exometabolites remains unidentified.

Figure 2-4. Regulatory role of PyrR on target promoters. Reporter assay was performed for the target promoters identified by gSELEX. Transformants carrying each pLUX reporter plasmid were grown in either LB (**A**) or M9-glycerol medium (**B**). LUX assay was performed at both exponential phase (open bar) and stationary phase (filled bar).

2-3-6. Search for an inducer(s) affecting the expression of PyrR targets


As an attempt to find an exometabolite(s) affecting the function of PyrSR, I performed the reporter assay of *yhjX* promoter in the presence and absence of some known exometabolites, including acetate, pyruvate, alanine, serine and valine. Preculture grown in M9-glycerol was transferred into M9 medium containing 10 mM each of the exometabolites. The rate of cell growth in M9-pyruvate was as high as that in M9-glycerol, but after prolonged culture more than 12 h, the growth was much higher for that in M9-pyruvate (data not shown), implying that pyruvate is a good nutrient for wild-type *E. coli* K-12. The growth in M9-acetate, M9-alanine, M9-serine and M9-valine was detected only after 12 h. This finding indicates that *E. coli* K-12 is able to grow in the presence of pyruvate as a sole carbon source.

Since both PyrSR and BtsSR recognize the same exometabolite pyruvate (Vilhena *et al.* 2018; Behr *et al.* 2017b), the influence of pyruvate concentration on two TCSs was analyzed by measuring the activity of PyrSR-regulated *yhjX* promoter and BtsSR-regulated *btsT* promoter. The *btsT* gene (renamed from *yjiY*) is the only regulatory target of BtsSR so far identified (Behr *et al.* 2017b). The PyrSR-dependent *yhjX* promoter activity increased with an increase in pyruvate concentration (Fig. 2-5A), finally reaching maximum around 10–50 mM (data not shown). In contrast, the *btsT* promoter activity was maximum at 0.1 mM pyruvate, but thereafter decreased (Fig. 2-5B).

Using the same reporter assay system, I next measured growth-dependent variation of the activity of two promoters in the presence of 1- and 10-mM pyruvate. At 10 mM pyruvate, the *yhjX* promoter activity was high in the exponential growth phase, but concomitant with the consumption of pyruvate, its activity marked decreased finally to undetecTable level (Fig. 2-5C). On the other hand, the *btsT* promoter activity was high at 1 mM pyruvate, but at 10 mM pyruvate, it was low in the beginning but exhibited growth-dependent increase up to the early stationary phase (12 h culture) (Fig. 2-5D), implying the expression of the *btsT* promoter only after reduction of pyruvate concentration. This finding indicates that both PyrSR and BtsSR monitor the same exometabolite pyruvate, but of different concentrations.

2-3-7. Involvement of PyrSR in pyruvate-dependent regulation

To confirm the involvement of PyrSR in pyruvate-dependent regulation of the yhjX gene, I analyzed the yhjX promoter activity in a set of mutants, each lacking pyrS (sensor kinase), pyrR (response regulator) or yhjX (the major target of PyrSR). The PyrSR-dependent yhjX promoter was not activated in the absence of PyrS or PyrR (Fig. 2-6A), supporting the prediction of PyrSR involvement in yhjX expression. This promoter activity was not affected in the absence of its own

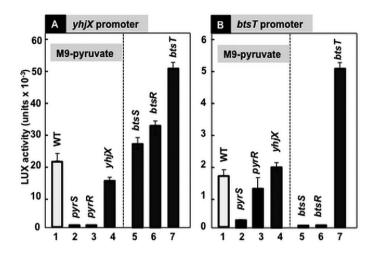


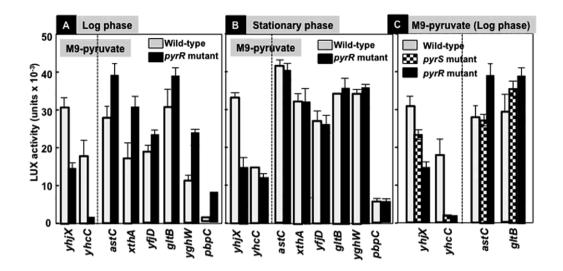
Figure 2-5. Influence of the pyruvate concentration on the *yhjX* and *btsT* **promoters.** [A] Reporter assay of the PyrR-regulated *yhjX* promoter. Preculture of *E. coli* K-12 transformant carrying pLUXyhjX plasmid in M9-glycerol medium was transferred into fresh M9 medium containing the indicated concentrations of pyruvate. After shaking culture at 37°C for 3 h, LUX activity was measured with an automated plate reader MTP-880 (Corona). [B] Reporter assay of the BtsR-regulated *btsT* promoter. Preculture of *E. coli* K-12 transformant carrying pLUXbtsT plasmid in M9-glycerol transferred into fresh M9 medium containing the indicated concentrations of pyruvate. After shaking culture at 37°C for 3 h, LUX activity was measured as above. [C] Growth-dependent variation of the *yhjX* promoter activity. Preculture of *E. coli* K-12 transformant carrying pLUXyhjX plasmid in M9-glycerol medium was transferred into fresh M9 medium containing either 1 mM (open bars) or 10 mM pyruvate (filled bars). After shaking culture at 37°C, LUX activity was measured at the indicated times. [D] Growth-dependent variation of the *btsT* promoter activity. Preculture of *E. coli* K-12 transformant carrying pLUXbtsT plasmid in M9-glycerol medium was transferred into fresh M9 medium containing either 1 mM (open bars) or 10 mM pyruvate (filled bars). After shaking culture at 37°C, LUX activity was measured at the indicated times.

regulatory target YhjX, suggesting that pyruvate uptake is possible in the absence of YhjX transporter. Likewise, the promoter of BtsSR-dependent *btsT* gene was completely inactivated in the absence of BtsS or BtsR (Fig. 2-6B). The activity of *btsT* promoter decreased, to certain extents, even in the absence of PyrS and PyrR, possibly through protein–protein interaction between YhjX and BtsR (Behr *et al.* 2017a), or otherwise through indirect influence of the altered expression of an as yet unidentified direct target of PyrSR.

2-3-8. Identification of the novel regulatory targets of PyrSR

Using gSELEX screening, I identified six binding sites for PyrR and eight possible regulatory targets. To examine regulation *in vivo* of all eight predicted targets by PyrR, I constructed the LUX reporter assay system for detection of promoter activity of all eight targets, and transformed into both wild-type and the *pyrR* mutant. Transformants were grown in M9-pyruvate medium, and the activity of promoters was measured at both log phase and stationary phase. In log phase, the promoter activity in the *pyrR* mutant decreased for *yhjX* and *ychC* (Fig. 2-7A), supporting the hypothesis that two targets are activated by PyrR. In contrast, the activity of *astC*, *xthA*, *yfjD*, *gltB*, *yghW* and *pbpC* increased in the absence of PyrR (Fig. 2-7A). Upon entry into stationary phase, the pyruvate level decreased after consumption this single carbon source, leading to inactivation of

Figure 2-6. Regulatory roles of PyrSR on the *yhjX* and *btsT* **promoter.** [A] Regulatory roles of PyrSR on the *yhjX* promoter. Reporter plasmid pLUXyhjX was transformed into wild-type BW25113, *pyrS* mutant JW5388, *pyrR* mutant JW2378, *yhjX* mutant JW3516, *btsS* mutant JW5353, *btsR* mutant JW5352 and *btsT* mutant JW5791. Transformants were grown in M9–10 mM pyruvate medium, and LUX activity was measured after 3 h culture. [B] Regulatory roles of BtsSR on the *btsT* promoter. Reporter plasmid pLUXbtsT was transformed into the same set of *E. coli* as noted in A. LUX activity was measured under the same conditions as in **A**.

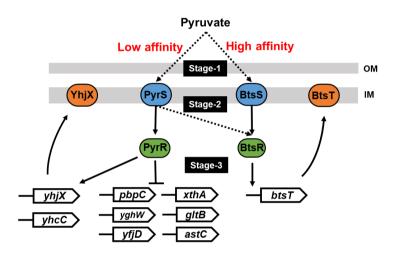

PyrR. As a result, the promoter level in the *pyrR* mutant is essentially the same with wild-type (Fig. 2-7B). PyrR is activated *in vivo* through phosphorylation by PyrS. I then examined possible influence of knockout on the newly identified PyrR targets. In the absence of PyrS, the level of both *yhjX* and *yhcC* promoters decreased (Fig. 2-7C), indicating the involvement of PyrS in the activation of these two promoters. On the other hand, the activity of *gltB* promoter increased in the absence of PyrS (Fig. 2-7C), supporting the repressor function of PyrS over the *gltB* promoter. The *astC* promoter was, however, not so much affected in the *pyrS* mutant (Fig. 2-7C), supposedly low affinity of this promoter to PyrR.

The reporter assays altogether indicate that PyrR is a dual regulator, working as an activator for *yhjX* and *yhcC*, and as a repressor for other six targets. Noteworthy is that two TCSs, PyrSR and BtsSR, recognize the same pyruvate as an inducer, but each recognizing different concentrations of pyruvate. I then propose a unique cross-talk between low-affinity PyrSR and high-affinity BtsSR at the stage 1 of TCS signal transduction (Fig. 2-8).

2-4. Discussion

2-4-1. Metabolic roles of pyruvate as an exometabolite

Pyruvate plays a key role for connection a variety of metabolic pathways. Reflecting its key regulatory role, multiple transport systems are involved in the dynamic control of homeostasis between intracellular and extracellular pyruvate levels (Lang *et al.* 1987; Fried *et al.* 2013). CstA


Figure 2-7. Influence of PyrSR on the promoter activity of newly identified regulatory targets. Reporter assay plasmids of all eight regulatory targets of PyrR (see Table 2-1) were transformed into wild-type BW25113 and *pyrR* mutant JW2378. Transformants were grown in M9–10 mM pyruvate, and LUX activity was measured in the middle of log phase (3 h culture) (**A**) or stationary phase (24 h culture) (**B**). [**C**] Reporter assay was also performed for the set of three strains, wild-type, *pyrS* mutant and *pyrR* mutant. LUX activity was measured in the middle of exponential phase (3 h culture).

and YbdD, both functionally related to carbon starvation proteins, have been proposed to comprise the constitutive pyruvate transporter system in *E. coli* (Hwang *et al.* 2018). BtsT was proposed to be involved in uptake of amino acids/peptides or pyruvate (Kraxenberger *et al.*2012). Recently, however, BtsT was identified as an inducible pyruvate/H⁺ symporter (Kristoficova *et al.* 2018). On the other hand, the membrane protein YhjX, the major target of PyrSR TCS, has also been implied to be involved in pyruvate uptake (Fried *et al.* 2013), but this hypothesis has not yet been proven. Here I confirmed the induction of *yhjX* expression by PyrSR in response to high concentrations of pyruvate. The protein–protein interaction assays *in vivo* suggested that the two systems, BtsT and YhjX, form a single and large signaling unit (Behr *et al.* 2014). The reporter assay indicated considerable interplay between the *yhjX* and *btsT* genes.

2-4-2. Regulatory targets of PyrR

By using gSELEX screening, I identified six binding sites for PyrR and predicted eight regulatory targets, which are involved in the modulation of structure and function of the membrane, including the major target YhjX transporter, PbpC (murein transglycosylase) and YghW (regulator of membrane fatty acid composition), and in the stress response to environmental conditions, including YhcC (putative membrane-associated Fe-S oxidoreductase) and XthA (exonuclease for repair). Two targets, GltBDF (glutamate biosynthesis) and AstCADBE (arginine degradation), are involved in the synthesis of glutamate. Pyruvate is integrated into TCA cycle via acetyl-CoA or

oxaloacetate. Glutamate is then formed by amination of α -ketoglutarate, an intermediate of TCA cycle, and thereafter most amino acids are synthesized through transamination using glutamate. Arginine is synthesized from glutamate via ornithine, and further degraded by AstABCDE enzymes for regeneration of glutamate. Taken together, I propose that the exometabolite pyruvate exerts a major influence on expression of a set of key operons for membrane modulation, stress response and synthesis of amino acids via glutamate.

Figure 2-8. Overview of the proposed model. Both PyrSR and BtsSR sense the same pyruvate as an external inducer, indicating cross-talk at stage-1 of TCS signal transduction between PyrSR and BtsSR. However, PyrSR responds to high concentrations of pyruvate, while BtsSR responds to low concentrations of pyruvate. These results agree well with the previous report (Behr *et al.* 2017). Also, PyrSR possibly regulates the expression of the *btsT* gene through protein-protein interaction between PyrS and BtsR, suggesting a cross-talk at stage-2. I want to emphasize that two TFs regulate different sets of target genes.

2-4-3. Cross-talk between PyrSR and BtsSR

Although the majority of TCSs operate through strict cognate HK-RR interactions, certain levels of cross-talk have been proposed since the discovery of TCSs (Stock *et al.* 1989). Cross-talk of the TCS signal transduction takes place at all three stages: signal recognition by HK (stage 1), RR phosphorylation by HK (stage 2) and target recognition by RR (stage 3). Previously, the cross-talk at this stage 2 was analyzed by measuring TCS histidine kinase (HK)-dependent phosphorylation *in vitro* of TCS response regulator (RR) (Yamamoto *et al.* 2005). Among a total of 692 possible cross-talk pairs of RR phosphorylation *in vitro* between 25 HKs and 34 RRs, cross-talk was observed only for 3% pairs. In some TCSs, a single HK phosphorylates multiple RR targets while one RR can be phosphorylated by more than one HK (Laub and Goulian 2007). Also, the cross-talk at stage 3 between six NarL-family RRs, EvgA, NarL, NarP, RcsB, UhpA and UvrY (Yoshida *et al.* 2015) was analyzed. Through the cross-talk at stage 3, different TCSs, each sensing a different environment, converge in controlling the expression of the same target genes. In

agreement with the previous proposal by Steiner *et al.* (2018), I confirmed the TCS cross-talk at stage 1 for recognition of a single and the same exometabolite, pyruvate, between two HKs, PyrS and BtsS (Fig. 2-8). Noteworthy is that different sets of the genes are induced depending on the level of exometabolite pyruvate by two pyruvate-sensing TCSs, high-affinity BtsSR and low-affinity PyrSR. I then propose these two TCSs collaborate in sensing a single and the same exometabolite but controlling different sets of targets for its uptake and reutilization. Functional similarity between PyrR and BtsR is in good agreement with their structural similarity. BtsR shares essentially the same domain structure with PyrR with more than 30% sequence identity (Kraxenberget *et al.* 2012).

CHAPTER 3. FUNCTIONAL CLASSIFICATION OF THE TCS PROMOTERS

3-1. Introduction

In Chapter 2, I analyzed PyrSR (renamed from YpdAB) and identified the novel regulatory targets of PyrR, which are involved in uptake and reutilization of the exometabolite pyruvate. The analysis of PyrSR also suggested the TCS cross-talk at stage 1 between two TCS systems, PyrSR and BtsSR. According to these results, functional characterizations of whole TCS systems are deeply understood in *E. coli*.

Phenotype microarray assays of TCS mutants show that 22 TCS mutants have altered growth phenotypes (Zhou et al. 2003). Growth phenotypes are thought to result from a sophisticated signal transduction network by cross-talk among TCSs in E. coli. Glucose is one of the favorite carbon sources in E. coli because glucose has a high affinity for the phosphotransferase system (Postma et al. 1993; Deutscher et al. 2006). Glucose is directly catabolized into glycolysis and then is consumed through the tricarboxylic acid cycle (Deutscher et al. 2006). Catabolism of glucose occurs prior to metabolism of other carbon sources, resulting in catabolite repression by the regulatory networks that are induced by glucose (Stülke and Hillen 1999; Bettenbrock et al. 2006). E. coli also catabolizes glycerol by enzymatic reactions, which are mainly involved in a glycerol kinase and two glycerol-3-phosphate dehydrogenases (Lin 1976; Booth 2005). Metabolic flux analysis of E. coli chemostat culture in the presence of both glucose and glycerol shows that a high dilution rate of culture increases the glucose consumption rate, in which the level of the arcA transcript increases (Yao 2016), implying that TCSs largely contribute to adaptive growth in the presence of different carbon sources. Among the genes coding TCS factors of E. coli, 22 pairs of SK and RR genes are transcribed in a polycistronic fashion (Fig. 3-1). However, it is not clear which TCS genes are dominantly expressed in complex environments. To obtain comprehensive insight into the TCS promoter activity profile of E. coli growing under minimum nutrient conditions, I constructed a set of luciferase reporter plasmids that have TCS gene promoters. Systematic TCS promoter assays and principal component analysis was used to functionally classify TCS gene promoters of E. coli growing under different carbon source and temperature conditions.

3-2. Materials and Methods

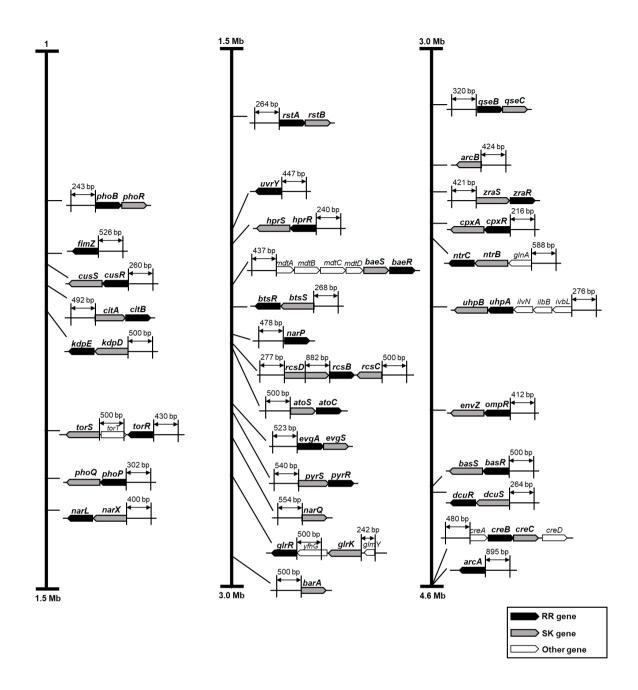
3-2-1. E. coli strains, plasmids, oligonucleotides, and culture conditions

The used *Escherichia coli* strains, plasmids, and oligonucleotides were listed in Tables 3-1 and Appendix Table 1. *E. coli* cells harboring LUX reporter plasmids were grown in M9 medium.

Table 3-1. Bacterial strains and plasmids used in this study.

Name	Characterization	Reference
Strains		
W3110 type A	Wild type, complete σ set	Jishage and Ishihama, 1997
DH5α	$F^-\lambda^-\Phi 80lacZ\Delta M15~\Delta(lacZYA-argF)U169~deoR~recA1~endA1~hsdR17(r_K-, m_K+)~phoA~supE44~thi-1~gyrA96~relA1$	Takara Bio
Plasmids		
pLUX	kan, luxCDABE	Burton et al. 2010
pLUX-arcAp_1	pLUX, arcA promoter-luxCDABE	This study
pLUX-arcBp_10	pLUX, arcB promoter-luxCDABE	This study
pLUX-atoSp_12	pLUX, atoS promoter-luxCDABE	This study
pLUX-mdtAp_3	pLUX, mdtA promoter-luxCDABE	This study
pLUX-barAp_1	pLUX, barA promoter-luxCDABE	This study
pLUX-uvrYp_10	pLUX, uvrY promoter-luxCDABE	This study
pLUX-basRp_1	pLUX, basR promoter-luxCDABE	This study
pLUX-citAp_3	pLUX, citA promoter-luxCDABE	This study
pLUX-cpxRp_2	pLUX, cpxR promoter-luxCDABE	This study
pLUX-creAp_2	pLUX, creA promoter-luxCDABE	This study
pLUX-cusRp	pLUX, cusR promoter-luxCDABE	This study
pLUX-dcuSp_4	pLUX, dcuS promoter-luxCDABE	This study
pLUX-ompRp	pLUX, ompR promoter-luxCDABE	This study
pLUX-evgAp_1	pLUX, evgA promoter-luxCDABE	This study
pLUX-fimZp_1	pLUX, fimZ promoter-luxCDABE	This study
pLUX-zraSp_1	pLUX, zraS promoter-luxCDABE	This study
pLUX-kdpDp_1	pLUX, kdpD promoter-luxCDABE	This study
pLUX-narQp_1	pLUX, narQ promoter-luxCDABE	This study
pLUX-narPp_10	pLUX, narP promoter-luxCDABE	This study
pLUX-narXp_6	pLUX, narX promoter-luxCDABE	This study
pLUX-glnAp_5	pLUX, glnA promoter-luxCDABE	This study
pLUX-phoPp	pLUX, phoP promoter-luxCDABE	This study
pLUX-phoBp_3	pLUX, phoB promoter-luxCDABE	This study
pLUX-qseBp	pLUX, qseB promoter-luxCDABE	This study
pLUX-rcsDp_5	pLUX, rcsD promoter-luxCDABE	This study
pLUX-rcsBp_2	pLUX, rcsB promoter-luxCDABE	This study
pLUX-rcsCp_1	pLUX, rcsC promoter-luxCDABE	This study
pLUX-rstAp_1	pLUX, rstA promoter-luxCDABE	This study
pLUX-torSp_6	pLUX, torS promoter-luxCDABE	This study
pLUX-torRp_2	pLUX, torR promoter-luxCDABE	This study
pLUX-ivbLp_8	pLUX, ivbL promoter-luxCDABE	This study
pLUX-hprRp	pLUX, hprR promoter-luxCDABE	This study
pLUX-btsSp_1	pLUX, btsS promoter-luxCDABE	This study
pLUX-glrKp_2	pLUX, glrK promoter-luxCDABE	This study
pLUX-glrRp_4	pLUX, glrR promoter-luxCDABE	This study
pLUX-pyrSp_5	pLUX, pyrS promoter-luxCDABE	This study

3-2-2. Construction of Luciferase reporter plasmid


Luciferase reporter plasmids were constructed as previously described (Yamanaka *et al.* 2018; 2020). The promoter regions of each TCS genes (operons) were PCR amplified using the *E. coli* K-12 W3110 type A genome as the template and a pair of specific primers (listed in Appendix Table 1, see also Fig. 3-1). The amplified fragments were inserted into pLUX vectors (Burton *et al.* 2010) using the In-Fusion HD cloning kit (Takara Bio). The DNA sequence of insertion on the resulting plasmids was confirmed by DNA sequencing (Appendix Table 1). More information on the cloned TCS promoters is provided in Appendix Figure 1 and Appendix Table 2 in detail.

3-2-3. Lux reporter assay

Lux reporter assays were also performed as previously described (Yamanaka *et al.* 2018; 2020). Each lux reporter plasmid was used to transform *E. coli* K-12 W3110 type A. Transformants were inoculated in M9-glucose, M9-glycerol, or M9-glycolic acid medium containing 50 μg/mL kanamycin and then were shaken overnight at 30°C, 37°C, or 42°C. The cells were inoculated into fresh M9 medium containing glucose, glycerol, or glycolic acid as a single carbon source. The culture was incubated at 30°C, 37°C, or 42°C with shaking. Then, the cultures were collected at 2, 4, 6, and 8 hours, and were transferred into a 96-well microplate; turbidity (OD_{600 nm}) and bioluminescence were measured with a plate reader MTP-880 (Corona). The promoter activity was evaluated as the ratio of luciferase activity to turbidity (LUX/OD). The assays were run in duplicate.

3-2-4. Principal component analysis

Principal component analysis (PCA) was performed with R software (https://www.R-project.org/). The dataset of 72 samples was prepared by 42 variable values, which were experiment number, culture time, culture temperature, three carbon sources, and 36 promoter activities except for PuvrY promoter. The loadings of the variable were calculated with the principal component scores, and then the scatter plot of PCA illustrated the correlation between PC1 and PC2 as the PCA biplot for two values of PC score of samples and loadings of variables. To examine the correlation coefficients for PCA and the original variable, factor analysis was also performed with R software (https://www.R-project.org/), calculating the loading factor.

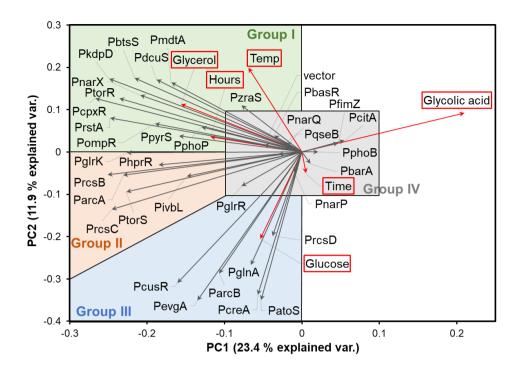
Figure 3-1. Two-component genes in the *E. coli* **K-12 W3110 genome.** All two-component system genes and their promoter regions in the *E. coli* K-12 W3110 genome (4.6 Mb) are shown with arrows and length (bp). Each arrow shows sensor kinase genes (gray), response regulator genes (black), and other genes in the operon (white). The direction of the arrows shows the direction of genes in the *E. coli* genome.

3-3. Results

3-3-1. Comprehensive lux reporter analysis of all TCS genes (operons) in E. coli K-12

The *Escherichia coli* K-12 genome predicates 34 RR genes and 30 SK genes for TCS. Among the total of 34 TCS genes, 22 pairs of cognate SK and RR are transcribed polycistronic fashion (Fig. 3-1). The remaining 14 genes are transcribed in a monocistronic fashion and are called

orphan genes (Fig. 3-1). To investigate the comprehensive expression profile of TCS genes in several environmental conditions, I used luciferase (lux) reporter system that is useful for high-throughput analysis without disrupting cells. The promoter-less reporter vector pLUX is a derivative of the pSC101 low copy replicon (Burton *et al.* 2010). I constructed a set of 36 lux reporter plasmids for all TCS gene-expressing promoters. The cloned promoters were upstream of the orphan gene and the first gene of the polycistronic transcription units, as described in Methods (Fig. 3-1). The parent strain, *E. coli* W3110 type A, was transformed by a set of 36 TCS lux reporter plasmids. Transformants were inoculated in M9 medium overnight, and each overnight culture was transferred into M9 medium containing glucose, glycerol, or glycolic acid as a single carbon source and grown at 30°C, 37°C, or 42°C with shaking. The cultures at 2, 4, 6, and 8 hours were then used in a lux assay. As a result, most TCS promoters were more or less activated *in vivo* at 37°C and 42°C, whereas the activities of half of 36 TCS promoters were not detected *in vivo* at 30°C (see below). Under all conditions tested in this study, only PuvrY, the *uvrY* promoter showed no activity (see below).


3-3-2. Functional grouping of TCS promoters by principal component analysis

To evaluate the functional features of the TCS promoters of E. coli, principal component analysis (PCA) was used with two sets of experimental data. The dataset was prepared with 72 components consisting of the activities of 36 promoters and the conditions of the number of experiments, the growth time, growth temperature, and three carbon sources. The PuvrY activity was removed from the dataset to avoid bias in the PCA calculation because some columns of the dataset had no values. The PCA analysis indicated 42 principal components (PCs), but no PCs could completely describe the characterization of TCS promoter activities (data not shown). PC1 showed the highest proportion of variance (23.4%), and PC2 explained 11.9% of the proportion of variance (Table 3-2). Twelve PCs (PC1~PC12) explained about 80% of all 72 data points. Next, the eigenvectors were calculated from PC1 and PC2 (Table 3-2), and then they were used to generate a scatter plot (Fig. 3-2). The biplot of the eigenvectors divided 35 promoters into 4 groups: Group I contained 12 promoters (PbtsS, PcpxR, PdcuS, PkdpD, PmdtA, PnarX, PompR, PphoP, PpyrS, PrstA, PtorR, and PzraS), Group II contained 7 promoters (ParcA, PglrK, PhprR, PivbL, PrcsB, PrcsC, and PtorS), Group III contained 7 promoters (ParcB, PatoS, PcreA, PcusR, PevgA, PglnA, and PrcsD), and Group IV contained 9 promoters (PbarA, PbasR, PcitA, PfimZ, PglrR, PnarP, PnarQ, PphoB, and PqseB); there was also a negative control (vector). To identify which factors determined this classification, a biplot of the principal component scores from PC1 and PC2 was created. The biplot showed two functional classifications featuring a carbon source and a growth temperature (Fig. 3-3). In the case of the carbon source, the spots of glucose varied on PC2, but the

Table 3-2. The results of PCA for TCS promoters.

D-1-11	DC1				DC5		_		DC0	DC10	DC11	DC12
Pricinpal component	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10	PC11	PC12
Standard deviation	3.134	2.2346	1.80581	1.6615	1.53811	1.3733	1.30369	1.26189	1.14504	1.12883	1.07455	1.03872
Proportion of variance	0.2339	0.1189	0.07764	0.06573	0.05633	0.0449	0.04047	0.03791	0.03122	0.03034	0.02749	0.02569
Cumulative proportion	0.2339	0.3528	0.4304	0.49612	0.55245	0.5974	0.63782	0.67574	0.70695	0.73729	0.76479	0.79048
Eigenvector	0.005	0.05	0.100	0.045	0.210	0.105	0.05	0.122	0.105	0.57.6	0.220	0.11
Time	0.005	-0.05	0.122	-0.045	0.219	-0.137	0.05	-0.122	0.105	-0.576	0.229	-0.11
Temp	-0.069	0.199	0.13	0.024	-0.279	-0.097	0.096	-0.207	0.272	-0.009	0.087	-0.111
glucose	-0.054	-0.205	-0.062	0.401	-0.11	-0.03	-0.137	-0.112	0.199	-0.016	0.124	0.114
glycerol	-0.156	0.113	-0.067	-0.357	0.236	0.03	-0.14	-0.142	-0.096	0.071	0.059	0.008
glycolic acid	0.21	0.092	0.129	-0.043	-0.126	0.015	0.277	0.254	-0.103	-0.055	-0.183	-0.122
Hours	-0.118	0.036	-0.025	0.169	0.119	-0.015	0.417	0.267	-0.026	0.036	0.131	-0.194
vector	-0.049	0.017	-0.159	-0.084	-0.126	-0.029	0.177	0.095	-0.328	0.09	0.434	0.333
ParcA	-0.231	-0.055	-0.202	-0.142	0.061	0.022	-0.071	-0.047	0.19	-0.068	0.094	-0.1
ParcB	-0.107	-0.287	0.335	-0.116	-0.076	-0.079	0.047	0.033	-0.087	0.09	0.054	-0.017
PatoS	-0.053	-0.35 0.164	0.267	-0.128 0.055	-0.101 0.097	-0.082 0.03	0.036 0.007	-0.001 0.09	-0.108 -0.09	0.096 0.006	0.034	-0.032 0.023
PmdtA PbarA	-0.169 0.011	-0.028	0.269								-0.009	
			0.058	-0.102	0.098	-0.055	-0.183	-0.084	-0.132	-0.146	0.109	0.574
PbasR PcitA	-0.036	0.039	0.196	0.015	0.042	-0.075	0.158	0.207	0.07	-0.248	0.112	-0.212 -0.015
	0.055	0.027 0.127	0.087 0.053	-0.096 0.031	-0.209 -0.08	0.625 -0.044	-0.008 -0.063	-0.076 -0.089	0.022 0.058	-0.103 -0.029	0.103	0.032
PcpxR PcreA	-0.267 -0.057	-0.337	0.053	-0.124	-0.08	-0.044	0.043	-0.089	-0.102	0.029	0.047	-0.02
PcusR	-0.057	-0.309	-0.091	-0.124	-0.123	0.016	-0.131	0.127	0.081	-0.046	-0.042	-0.02
PdcuS	-0.181	0.171	0.242	0.038	0.028	0.016	-0.131	0.127	0.084	0.008	-0.103	0.172
	-0.19	0.171	-0.147	-0.216	-0.148	-0.062	0.117	-0.08	-0.023	-0.034	-0.103	-0.07
PompR	-0.19	-0.351	0.147	-0.216	-0.148	-0.062	-0.007	-0.111	0.016	0.042	-0.237	-0.07
PevgA PfimZ	0.047	0.022	0.117	-0.04	-0.141	0.613	0.02	-0.111	0.010	-0.062	0.107	-0.027
PzraS	-0.078	0.022	0.251	-0.052	0.102	0.013	-0.017	0.134	0.103	-0.359	0.006	0.229
PkdpD	-0.249	0.173	0.136	0.149	-0.068	-0.045	0.004	-0.119	0.044	0.076	0.091	0.001
PnarQ	-0.02	0.023	0.023	0.144	-0.084	-0.077	0.093	-0.102	0.345	0.308	0.455	-0.011
PnarP	-0.02	-0.048	-0.044	-0.04	0.37	0.159	0.401	-0.102	0.09	0.135	-0.074	0.081
PnarX	-0.209	0.134	0.173	-0.034	0.018	-0.051	-0.091	-0.139	0.073	0.033	0.063	-0.051
PglnA	-0.066	-0.267	-0.096	0.259	0.084	0.153	-0.123	0.258	0.051	-0.09	-0.073	0.048
PphoP	-0.13	0.059	0.023	0.33	-0.081	0.022	0.003	-0.207	-0.419	0.033	-0.102	-0.074
PphoB	0.021	0	-0.01	-0.059	0.186	0.018	-0.243	-0.041	-0.211	0.046	0.327	-0.464
PgseB	-0.03	-0.005	-0.014	0.224	-0.057	-0.032	0.033	-0.313	-0.377	-0.332	-0.014	-0.121
PrcsD	-0.038	-0.198	0.015	0.043	0.349	0.168	0.38	-0.14	0.054	0.038	-0.036	0.083
PrcsB	-0.251	-0.054	-0.085	-0.048	0.057	0.043	0.083	-0.222	0.07	0.034	-0.22	0.008
PrcsC	-0.246	-0.136	0.018	-0.101	0.042	0.026	0.135	0.029	-0.016	-0.02	0.064	0.074
PrstA	-0.248	0.08	0.013	0.075	0.009	0.091	-0.008	0.243	0.023	0.053	-0.068	0.012
PtorS	-0.227	-0.094	-0.178	-0.029	-0.087	0.021	0.011	0.081	0.045	-0.226	-0.078	-0.106
PtorR	-0.236	0.127	0.109	0.03	-0.007	0.028	-0.029	0.092	0.059	-0.021	-0.053	0.042
PivbL	-0.149	-0.058	0.027	0.061	0.384	0.187	-0.287	0.05	-0.08	0.121	0.088	-0.162
PhprR	-0.185	-0.031	-0.23	0.025	-0.014	0.112	-0.075	0.304	0.03	0.028	0.001	0.023
PbtsS	-0.216	0.175	0.139	0.028	0.014	0.044	0.016	0.076	-0.262	0.214	-0.063	-0.015
PglrK	-0.226	-0.002	-0.256	-0.093	-0.165	-0.054	0.091	-0.147	-0.021	-0.1	-0.091	-0.026
PglrR	-0.078	-0.081	-0.1	0.401	-0.012	0.077	0.113	-0.024	-0.101	-0.106	0.114	0.116
PpyrS	-0.159	0.038	-0.229	-0.216	-0.146	-0.048	0.166	0.159	-0.145	-0.102	0.304	0.021
- P3.00	0.107	0.050	·/	0.210	0.110	5.010	0.100	0.107	0.1 13	0.102	0.50 T	0.021

spots of glycerol were more scattered on PC1 even though some of the spots overlapped each other (Fig. 3-3A). The spots of glycolic acid mostly plotted together. On the other hand, in the case of growth temperature, the spots of three classifications (30°C, 37°C, and 42°C) varied on PC2 at 30°C and on PC1 at 42°C despite them being partially overlapping (Fig. 3-3B). In good agreement with the biplots of the principal component score, the grouping of TCS promoters by eigenvectors

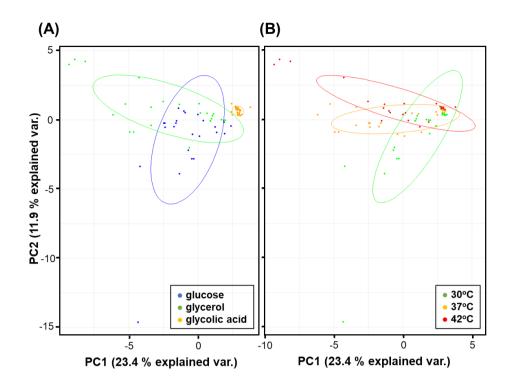


Figure 3-2. The biplot of eigenvectors produced by principal component analysis. Based on the lux reporter assay data (see Fig. 3-4), a principal component analysis was performed with R software to characterize TCS promoters. The PuvrY activity was removed from the dataset to avoid bias in the PCA calculation because the dataset had columns with no values. The analysis indicated 42 principal components (PCs), and no PCs could completely describe the characterization of TCS promoter activities (see Table 3-2). PC1 showed the highest proportion of variance (23.4%), and PC2 was responsible for 11.9% of the proportion of variance. Computed eigenvectors of both environmental conditions and promoters were plotted and compared in a graph using PC1 (shown on the x-axis) and PC2 (shown on the y-axis). The plotted eigenvectors (gray arrows, see Table 3-2) showed four promoter groups (Group I-IV, colored with green, orange, blue, and gray, respectively). The eigenvector of each growth condition (Glucose, Glycerol, Glycolic acid, Temp., Hours, and Time) is shown in a red square.

consisted of the functional classifications for carbon source and growth temperature (Figs. 3-2 and 3-3). Thus, Group I is related to growth temperatures or glycerol, and Group III is related to glucose.

3-3-3. Expression pattern of functional TCS promoter groups in vivo

PCA predicted four functional groups: Group I showed induction of the promoter by both higher temperature and glycerol; Group II showed induction of the promoter by 37°C; Group III was related to both lower temperature and glucose; and Group IV showed no significantly induced promoter activity based on either temperature or carbon source, except for PglrR. To confirm the functional grouping of TCS promoter activity, the time course pattern of expression from promoters in each group was examined by lux reporter assays (Fig. 3-4). Most of the 12 Group I promoters were highly induced in the presence of glycerol at 42°C (Fig. 3-4A). However, the strength of the PpyrS and PompR promoters was maximal at 37°C, and the PphoP promoter strength was maximal in the presence of glucose (Fig. 3-4A). Among 12 Group I promoters, the activities of PcpxR and

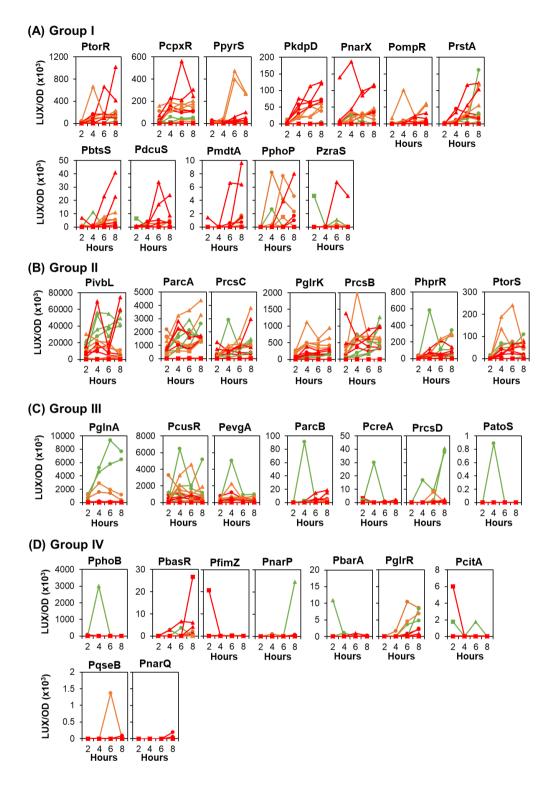


Figure 3-3. Two biplots of principal component scores from principal component analysis. PCA was performed as described in Fig. 3-2. Computed principal component scores (shown in **A** and **B**) of both environmental conditions and promoters were plotted and compared in a graph using PC1 (shown on the x-axis) and PC2 (shown on the y-axis). [A] The plotted principal component scores were divided into three groups depending on three carbon sources: glucose (blue), glycerol (green), and glycolic acid (orange). [B] The plotted principal component scores were divided into three groups depending on temperature: 30°C (green), 37°C (orange), and 42°C (red).

PnarX increased throughout growth time, whereas 3 promoters, PrstA, PtorR, and PkdpD, were induced 4 hours after incubation; 7 promoters, PpyrS, PbtsS, PdcuS, PompR, PmdtA, PphoP, and PzraS were induced 6 hours later (Fig. 3-4A). Group II promoters were activated in the presence of glucose or glycerol in the temperature-independent manner (Fig. 3-4B). Overall, 3 of 7 Group III promoters, PglnA, PcusR, and PevgA, were relatively more increased at 30°C and 37°C than they were at 42°C (Fig. 3-4C). The rest of the Group III promoters, ParcB, PcreA, PrcsD, and PatoS, were activated 4 hours after incubation at 30°C. The activity of PglnA was only induced in the presence of glucose. Group IV promoters had low or no activities in each condition, except for PglrR (Fig. 3-4D). PglrR showed higher activity in the presence of glucose. These experimental results were in good agreement with the predictions made by PCA.

3-3-4. Further classification from factor loadings

PC1 and PC2 contribute 23.4% or 11.9% of the promoter activity data. To clarify the correlation between principal component score and eigenvector value of PCs, I calculated the coefficient of correlation as factor loading in each PC (Table 3-3). In the case of PC1, twenty-one

Figure 3-4. *E. coli* TCS promoter activities of *in vivo*. The promoter regions of TCS genes (operons) are shown in Fig. 3-1 and Appendix Figure 1. The PCR-amplified promoter regions of each TCS gene (operon) were inserted into pLUX vectors (Burton *et al.* 2010) to construct a set of lux reporter plasmids. Lux reporter assays were performed as previously described (Yamanaka *et al.* 2020). *E. coli* K-12 W3110 type A was transformed with each lux reporter plasmid. Transformants were inoculated in M9 medium and then were inoculated into fresh M9 medium containing glucose (circles), glycerol (triangles), or glycolic acid (squares) as a single carbon source. The cultures were then incubated at 30°C (green), 37°C (orange), or 42°C (red) with shaking. Then, the cultures were collected at 2, 4, 6, and 8 hours and were transferred into a 96-well microplate. The turbidity (OD_{600 nm}) and bioluminescence were measured with a plate reader MTP-880 (Corona). The promoter activity was evaluated as the ratio of LUX/OD.

of the components showed valid correlations, having coefficients of correlation of less than -0.4 (Table 3-3). Glycerol showed a negative correlation and Glycolic acid showed a positive correlation. In addition to the correlation of growth conditions, a negative correlation was found in 20 TCS promoters (ParcA, PmdtA, PcpxR, PcusR, PdcuS, PompR, PevgA, PkdpD, PnarX, PphoP, PrcsB, PrcsC, PrstA, PtorS, PtorR, PivbL, PhprR, PbtsS, PglrK, and PpyrS). These results indicate that PC1 could group the TCS promoters for activation in the presence of glycerol (Table 3-3). On the other hand, a temperature and glucose showed positive or negative correlations with PC2, indicating that 7 TCS promoters (ParcB, PatoS, PcreA, PcusR, PevgA, PglnA, and PrcsD) with negative correlations could be activated in the presence of glucose at lower temperature. PglnA, PphoP, and PglrR positively correlated with PC4, indicating that these promoters are induced in the presence of glucose (Table 3-3). Additionally, PC5 explained the contribution by growth temperature and 3 of the TCS promoter activities (PnarP, PrcsD, and PivbL).

3-4. Discussion

I first determined the profile of all TCS promoters in *E. coli* growing under minimum nutrient conditions *in vivo* by employing a luciferase reporter system and PCA analysis. The profile shows two functional groups of TCS promoters featuring temperature and carbon source conditions. The results summarizing the expression features of *E. coli* TCS promoters *in vivo* are shown in Table 3-4. As unexpected, TCS promoter classification showed a correlation between growth temperature and the availability of carbon sources. Group I promoters were activated by a high temperature and the presence of glycerol that is poorly catabolized in *E. coli* (Table 3-4). On the other hand, Group II promoters were activated by both glucose and glycerol availability, which is accessible for *E. coli* (Table 3-4). The 7 promoters in Group III were induced in the presence of glucose at lower temperature. This implies that glycerol-inducing promoters could be activated by higher thermal energy with and without catabolite repression, whereas glucose-inducing promoters could not require much thermal energy.

Twelve TCS promoters belonged to Group I (Fig. 3-2 and Table 3-4). PbtsS, one of the Group I promoters, was activated by high temperature and glycerol (Fig. 3-4A and Table 3-4). BtsSR, expressed from PbtsS, is similar to PysSR, thereby cross-talking between BtsSR and PysSR for pyruvate reutilization (Behr *et al.* 2017; Miyake *et al.* 2019). The activity of the PpyrS promoter was only significantly changed by the presence of glycerol at 37°C (Table 3-4). This difference between the PbtsS and PpyrS promoters could indicate that BtsSR senses extracellular pyruvate more sensitively than PysSR (Behr *et al.* 2017; Miyake *et al.* 2019). The activity of ParcA in the presence of glycerol was higher at a high temperature than it was in the presence of glucose (Fig. 3-4B). This result agrees that the level of *arcA* mRNA increases when *E. coli* favors glycerol as a

Table 3-3. Factor loading of specific principal components

Principal component	PC1	PC2	PC4	PC5
Temperature	-0.21682472	0.44427142	0.03986384	-0.42888704
Glucose	-0.16983160	-0.45825497	0.66577691	-0.16929370
Glycerol	-0.48782337	0.25298397	-0.59386148	0.36304836
Glycolic acid	0.65765498	0.20527100	-0.07191543	-0.19375466
vector	-0.15224173	0.03729441	-0.13971391	-0.19446134
ParcA	-0.72524872	-0.12259723	-0.23633934	0.09418658
ParcB	-0.33489621	-0.64057691	-0.19308489	-0.11728429
PatoS	-0.16537781	-0.78175930	-0.21197194	-0.15500712
PmdtA	-0.52824881	0.36543623	0.09116987	0.14932349
PbarA	0.03380565	-0.06270781	-0.16957044	0.15093316
PbasR	-0.11347753	0.08781539	0.02560787	0.06487884
PcitA	0.17307228	0.05942230	-0.15919346	-0.32173626
PcpxR	-0.83782393	0.28345525	0.05147703	-0.12322616
PcreA	-0.17724067	-0.75259792	-0.20657494	-0.19162280
PcusR	-0.50594822	-0.69108525	-0.06330238	-0.15420133
PdcuS	-0.58785176	0.38143737	0.12834624	0.04371870
PompR	-0.59568728	0.14954498	-0.35820574	-0.22731693
PevgA	-0.42299651	-0.78485256	-0.06673456	-0.21673122
PfimZ	0.14665881	0.04959664	-0.12647768	-0.37482406
PzraS	-0.24568951	0.24689120	-0.08698115	0.15752979
PkdpD	-0.78009920	0.38643648	0.24833633	-0.10501359
PnarQ	-0.06195891	0.05214700	0.23941801	-0.12947539
PnarP	-0.02979450	-0.10722257	-0.06661888	0.56885772
PnarX	-0.65628308	0.29985979	-0.05637997	0.02754385
PglnA	-0.20768242	-0.59722891	0.42983936	0.12968686
PphoP	-0.40693119	0.13166264	0.54884419	-0.12442542
PphoB	0.06617775	-0.00045573	-0.09786426	0.28604017
PqseB	-0.09391094	-0.01032019	0.37194516	-0.08727420
PrcsD	-0.11869908	-0.44200406	0.07188664	0.53751540
PrcsB	-0.78598553	-0.12063795	-0.07895795	0.08750806
PrcsC	-0.77185969	-0.30435668	-0.16807518	0.06476447
PrstA	-0.77783688	0.17939564	0.12417837	0.01379246
PtorS	-0.71254280	-0.21069616	-0.04806227	-0.13329863
PtorR	-0.73889466	0.28489481	0.05007823	-0.01012738
PivbL	-0.46774791	-0.12957261	0.10128944	0.59097901
PhprR	-0.57988093	-0.06872313	0.04083956	-0.02165839
PbtsS	-0.67657290	0.39136564	0.04703742	0.02100707
PglrK	-0.70848266	-0.00376705	-0.15393446	-0.25397489
PglrR	-0.24526494	-0.18190787	0.66560389	-0.01920670
PpyrS	-0.49872607	0.08538516	-0.35897598	-0.22415198

The positive or negative corelated factors are shown in red (factor loading >0.4) or blue (factor loading <-0.4), respectively.

Table 3-4. Summary of the feature of all E. coli TCS promoter.

D	C	T		Carbon sources	
Promoter	Group	Temperature	Glucose	Glycerol	Glycolic acid
PbtsS	I	↑ (higher temp.)		1	_
PcpxR	I	↑ (higher temp.)	↑	↑	
PdcuS	I	↑ (higher temp.)		↑	
PkdpD	Ι	↑ (higher temp.)	↑	↑	
PmdtA	I	↑ (higher temp.)		↑	
PnarX	Ι	↑ (higher temp.)		↑	
PompR	Ι	↑ (mid temp.)		↑	
PphoP	Ι	↑ (higher temp.)	↑	\uparrow	
PpyrS	I	↑ (mid temp.)		1	
PrstA	Ι	↑ (higher temp.)		↑	
PtorR	I	↑ (higher temp.)		1	
PzraS	I			1	
ParcA	II		↑	1	
PglrK	II		↑	1	
PhprR	II		↑	1	
PivbL	II		↑	1	
PrcsB	II		↑	1	
PrcsC	II		↑ (lower temp.)	1	
PtorS	II		<u> </u>	1	
ParcB	III	↑ (low temp.)	↑		
PatoS	III	↑ (low temp.)	↑		
PcreA	III	↑ (low temp.)	↑		
PcusR	III	↑ (lower temp.)	↑	↑ (mid temp.)	
PevgA	III	↑ (lower temp.)	↑	↑ (mid temp.)	
PglnA	III	↑ (lower temp.)	↑		
PrcsD	III	↑ (low temp.)	↑		
PbarA	IV				
PbasR	IV				↑ (late phase)
PcitA	IV				↑ (early phase)
PfimZ	IV				↑ (early phase)
PglrR	IV		↑		
PnarP	IV				
PnarQ	IV				
PphoB	IV	↑ (lower temp.)		1	
PqseB	IV				

carbon source (Yao *et al.* 2016). However, the *arcB* promoter, which drives the expression of the cognate SK ArcB of ArcA, was sorted into Group III but not Group II. Previous work with phenotype microarrays showed that the growth phenotypes of the *arcA* and *arcB* mutants did not completely overlap (Zhou *et al.* 2003). Transcriptome analysis also showed a difference in the genome expression profile when comparing the *arcA* and *arcB* mutants (Oshima *et al.* 2002). This

evidence suggests that ArcA is activated not only by ArcB but also by other SKs. Group III included all 7 promoters, PglnA, PcusR, PevgA, ParcB, PcreA, PrcsD, and PatoS, that were activated in the presence of glucose at low or middle temperature (Fig. 3-4C and Table 3-4), suggesting that *E. coli* could induce the biosynthesis of such TCS factors from Group III promoters throughout growth by catabolism of glucose. Group III promoters regulated the expression of ArcB, AtoSC, CreBC, CusSR, EvgSA, NtrBC, and RcsDB (Fig. 3-1), and they are controlled by different sigma factor(s). PcusR and PrcsD are regulated by sigma 70 (Franke *et al.* 2001; Krin *et al.* 2010). The PglnA promoter is known to be dually controlled by both sigma 54 and sigma 70 (Tian *et al.* 2001; Reichenbach *et al.* 2009). Two of three sigma factors (sigma 70, sigma 32, or sigma 38) contribute to regulating the gene expression levels of PcreA and PevgA (Amemura *et al.* 1986; Nonaka *et al.* 2006; Tanabe *et al.* 1998). The specific sigma factors for ParcB and PatoS are unknown. Among Group III promoters, correlation analysis by factor loadings indicated that two promoters (PcusR and PevgA) were more highly activated in the presence of glycerol (Table 3-3). These promoters are positively regulated by sigma 70.

No activity of PuvrY was found under any growth conditions in this study (Fig. 3-4D). UvrY is a response regulator that regulates a set of genes involved in DNA repair or carbon metabolism under any nutrient conditions (Suzuki et al. 2002; Zere et al. 2015). One possibility is that a small level of uvrY mRNA is significantly translated into UvrY protein in vivo. A recent report showed that the uvrY transcript is activated by the RNA-binding protein CsrA (Camacho et al. 2015). In addition to the uvrY promoter, the strength of several TCS promoters is known to be not directly reflected by the translational level of TCS factors in E. coli. Quantitative western blotting for transcription factors of E. coli K-12 showed the following decreasing order for the intracellular response regulators: PhoP -> PhoB -> CitB -> OmpR -> NarL -> CpxR -> UhpA -> RstA -> EvgA -> KdpE -> TorR -> UvrY -> QseB -> ArcA (Ishihama et al. 2014); these expression results were not correlated with the order of promoter strength measured in this study. All of the TCS promoter strengths measured here might not necessarily reflect the level of mRNAs and/or proteins of TCS because the promoter strength might depend on positive feedback regulation. To date, several TCS genes have been found to be post-transcriptionally regulated by small RNAs, most of which access mRNA of TCS genes to control translation by ribosomes. For example, phoP mRNA binds to two species of small RNAs, MicA and GcvB (Coornaert et al. 2010; 2013). Additionally, ompR mRNA binds to two species of small RNAs, OmrA and OmrB, which are activated by EnvZ-OmpR, creating a negative feedback loop regulation (Guillier and Gottesman 2008). The small RNA GcvB is also suggested to repress the fimZ gene in E. coli and Salmonella typhimurium (Pulvermacher et al. 2009). FimZ is the regulator of fimbriae in S. typhimurium and biofilm formation in E. coli (Saini et al. 2009; Domka et al. 2007). FimZ also increases the resistance to kanamycin and β -lactam antibiotics in E. coli by overexpressing the FimZ protein (Hirakawa *et al.* 2003; 2003a). Since the *E. coli* strain used in this study carried the kanamycin-resistant plasmid pLUX, PfimZ was probably not transcribed for kanamycin resistance and was also repressed by GcvB at the posttranscriptional level under all conditions examined in this study.

Taken together, PCA of the comprehensive lux reporter assay is useful for classifying promoters by functional activity *in vivo*, which is believed to provide us with genetic information to enable analysis of unknown TCS functions in *E. coli*.

CHAPTER 4. THE HOMOLOGOUS SEQUENCE INTEGRATION (HOSEI) METHOD FOR MULTI-GENE KNOCKOUT IN THE E. COLI GENOME

4-1. Introduction

Bacteria survive in the environment with three systems: a system for sensing environmental conditions, a system for responding to sensed signals, and an adaptation system for proper survival in the environment. An adapting bacterial cell performs cell division to increase the number of sister cells, termed adaptive growth. Two-component systems (TCSs), representing the main bacterial signal transduction systems, consist of a pair of one sensor kinase (SK) and one response regulator (RR), and RR genes are highly conserved in most bacterial genomes as part of the core genome. The *Escherichia coli* genome has an estimated 34 RR genes and 30 SK genes in total. To reveal the contribution of TCSs for the fast growth as an adaptive growth strategy of *E. coli*, multi-gene knockout strains are required in addition to single-gene knockout strains.

Here, the novel genome editing technology, the HoSeI (<u>Ho</u>mologous <u>Sequence Integration</u>) method, was developed based on CRISPR-Cas9. This newly developed system isolated a set of gene knockout strains including the all 34 RR genes knockout strain and the all 30 SK gene knockout strain.

4-2. Materials and Methods

4-2-1. E. coli strains, plasmids, oligonucleotides, culture conditions

The used *E. coli* strains, plasmids, and oligonucleotides are listed in Table 4-1, Table 4-2, Appendix Table 3, and Appendix Table 4, respectively. *E. coli* K-12 W3110 type A strain was used as a parent type (Jishage and Ishihama. 1997). *E. coli* strains were grown in M9-glucose or LB medium.

Table 4-1. Bacterial strains used in this study.

Name	Characterization	Number of deprived RR/SK genes	Reference
W3110 typeA	Parent strain, complete σ set	0	Jishage et al. 1997
YMA00201	W3110 typeA, phoB (P29X)	1	This study
YMA02201	YMA00201, phoP (G53X)	2	This study
YMA02302	YMA02201, ompR (L16X)	3	This study
YMA02601	YMA02302, citB (L16X)	4	This study

Table 4-1. Bacterial strains used in this study. (Continued.)

	Table 4-1. Bacterial strains	used in this study. (Continued	.)
Name	Characterization	Number of deprived RR/SK genes	Reference
YMA04701	YMA02601, narL (P16X)	5	This study
YMA04814	YMA04701, cpxR (R11X)	6	This study
YMA04901	YMA04814, uhpA (G16X)	7	This study
YMA05001	YMA04901, rstA (L21X)	8	This study
YMA05103	YMA05001, evgA (R40X)	9	This study
YMA05201	YMA05103, kdpE (T19X)	10	This study
YMA05401	YMA05201, torR (P12X)	11	This study
YMA05601	YMA05401, uvrY (G31X)	12	This study
YMA05701	YMA05601, qseB (G33X)	13	This study
YMA07601	YMA05701, arcA (A25X)	14	This study
YMA07701	YMA07601, atoC (P49X)	15	This study
YMA07806	YMA07701, baeR (P11X)	16	This study
YMA07901	YMA07806, ntrC (G25X)	17	This study
YMA08001	YMA07901, rcsB (P13X)	18	This study
YMA08108	YMA08001, pyrR (Q25X)	19	This study
YMA08201	YMA08108, btsR (P11X)	20	This study
YMA08302	YMA08201, creB (L19X)	21	This study
YMA08401	YMA08302, basR (T22X)	22	This study
YMA08601	YMA08401, cusR (G19X)	23	This study
YMA08701	YMA08601, narP (A38X)	24	This study
YMA08801	YMA08701, zraR (H17X)	25	This study
YMA09703	YMA08801, rssB (W26X)	26	This study
YMA09801	YMA09703, glrR (P15X)	27	This study
YMA09901	YMA09801, fimZ (P13X)	28	This study
YMA10005	YMA09901, ygeK (P13X)	29	This study
YMA10101	YMA10005, dcuR (P25X)	30	This study
YMA10801	YMA10101, yhjB (G26X)	31	This study
YMA11402	YMA10801, cheB (S12X)	32	This study
YMA11501	YMA11402, cheY (T16X)	33	This study
YMA11623	YMA11501, hprR (Q13X)	34	This study
SSA00515	W3110 typeA, cusS (R15X)	1	This study
SSA00701	SSA00515, zraS (V21X)	2	This study
SSA00904	SSA00701, kdpD (L14X)	3	This study
SSA01102	SSA00904, phoQ (T50X)	4	This study
SSA01202	SSA01102, basS (W32X)	5	This study
SSA02601	SSA01202, baeS (L14X)	6	This study
SSA02702	SSA02601, cpxA (W14X)	7	This study
SSA02801	SSA02702, envZ (A13X)	8	This study
SSA03001	SSA02801, evgS (T17X)	9	This study
SSA03102	SSA03001, glrK (L17X)	10	This study
SSA03201	SSA03102, qseC (A32X)	11	This study
SSA03302	SSA03201, rcsC (T10X)	12	This study
SSA03401	SSA03302, rcsD (L31X)	13	This study
SSA03502	SSA03401, rstB (L22X)	14	This study

Table 4-1. Bacterial strains used in this study. (Continued.)

Name	Characterization	Number of deprived RR/SK genes	Reference
SSA03601	SSA03502, hprS (G22X)	15	This study
SSA03701	SSA03601, atoS (M19X)	16	This study
SSA03801	SSA03701, barA (L15X)	17	This study
SSA03901	SSA03801, creC (A24X)	18	This study
SSA04001	SSA03901, ntrB (L27X)	19	This study
SSA04102	SSA04001, phoR (L19X)	20	This study
SSA04205	SSA04102, uhpB (A20X)	21	This study
SSA04301	SSA04205, btsS (Q35X)	22	This study
SSA04401	SSA04301, pyrS (L22X)	23	This study
SSA04504	SSA04401, arcB (L20X)	24	This study
SSA04601	SSA04504, citA (L37X)	25	This study
SSA04701	SSA04601, dcuS (P14X)	26	This study
SSA04801	SSA04701, narQ (R13X)	27	This study
SSA04902	SSA04801, narX (Q14X)	28	This study
SSA05001	SSA04902, torS (L15X)	29	This study
SSA05102	SSA05001, cheA (L20X)	30	This study

4-2-2. Construction of sgRNA expression plasmid

To construct the sgRNA expression vector plasmid, 227 bp of the DNA sequence of the promoter and sgRNA was referred to as the pTarget series harboring sgRNAs constructed by previous work (Jiang *et al.* 2015). The designed 227 bp DNA sequence introducing the *Not* I recognition site immediately upstream of tracrRNA (trans-activating CRISPR RNA) was synthesized and cloned into the pEX-A2 vector by Eurofin genomics (Tokyo, Japan), resulting in the construction of psgRNA (Table 4-2). Insertion DNA for the target sequence, which was designed using Cas-Designer (http://www.rgenome.net/cas-designer/), was prepared by hybridization of a pair of complementary synthetic oligonucleotides in length of 50-nt each (see DNA sequence shown in Appendix Table 3). The DNA was inserted into the *Not* I site of psgRNA vector by the In-Fusion system (Takara Bio, Japan). The inserted DNA sequence on the resulting plasmids was confirmed by DNA sequencing (Appendix Table 3).

 $Table \ 4-2. \ Plasmids \ used \ in \ this \ study.$

Name	Characterization	Reference
pCas	repAts kan Pcas-cas9 ParaB-red lacIq Ptrc-sgRNA-pMB1	Jiang et al. 2015
psgRNA	pMB1 bla P-sgRNA (sgRNA cloning vector)	This study
psgRNA-phoP	pMB1 bla P-sgRNA-phoP	This study
psgRNA-phoB	pMB1 bla P-sgRNA-phoB	This study
psgRNA-citB	pMB1 bla P-sgRNA-citB	This study

Table 4-2. Plasmids used in this study. (Continued.)

Name	Characterization	Reference
psgRNA-ompR	pMB1 bla P-sgRNA-ompR	This study
psgRNA-narL	pMB1 bla P-sgRNA-narL	This study
psgRNA-cpxR	pMB1 bla P-sgRNA-cpxR	This study
psgRNA-uhpA	pMB1 bla P-sgRNA-uhpA	This study
psgRNA-rstA	pMB1 bla P-sgRNA-rstA	This study
psgRNA-evgA	pMB1 bla P-sgRNA-evgA	This study
psgRNA-kdpE	pMB1 bla P-sgRNA-kdpE	This study
psgRNA-torR	pMB1 bla P-sgRNA-torR	This study
psgRNA-uvrY	pMB1 bla P-sgRNA-uvrY	This study
psgRNA-qseB	pMB1 bla P-sgRNA-qseB	This study
psgRNA-arcA	pMB1 bla P-sgRNA-arcA	This study
psgRNA-atoC	pMB1 bla P-sgRNA-atoC	This study
psgRNA-baeR	pMB1 bla P-sgRNA-baeR	This study
psgRNA-ntrC	pMB1 bla P-sgRNA-ntrC	This study
psgRNA-rcsB	pMB1 bla P-sgRNA-rcsB	This study
psgRNA-pyrR	pMB1 <i>bla</i> P-sgRNA- <i>pyrR</i>	This study
psgRNA-btsR	pMB1 <i>bla</i> P-sgRNA- <i>btsR</i>	This study
psgRNA-creB	pMB1 <i>bla</i> P-sgRNA- <i>creB</i>	This study
psgRNA-basR	pMB1 <i>bla</i> P-sgRNA- <i>basR</i>	This study
psgRNA-cusR	pMB1 <i>bla</i> P-sgRNA- <i>cusR</i>	This study
psgRNA-narP	pMB1 <i>bla</i> P-sgRNA- <i>narP</i>	This study
psgRNA-zraR	pMB1 <i>bla</i> P-sgRNA- <i>zraR</i>	This study
psgRNA-rssB	pMB1 <i>bla</i> P-sgRNA- <i>rssB</i>	This study
psgRNA-glrR	pMB1 <i>bla</i> P-sgRNA- <i>glrR</i>	This study
psgRNA-fimZ	pMB1 <i>bla</i> P-sgRNA- <i>fimZ</i>	This study
psgRNA-ygeK	pMB1 bla P-sgRNA-ygeK	This study
psgRNA-dcuR	pMB1 <i>bla</i> P-sgRNA- <i>dcuR</i>	This study
psgRNA-yhjB	pMB1 <i>bla</i> P-sgRNA- <i>yhjB</i>	This study
psgRNA-cheB	pMB1 bla P-sgRNA-cheB	This study
psgRNA-cheY	pMB1 bla P-sgRNA-cheY	This study
psgRNA-hprR	pMB1 <i>bla</i> P-sgRNA- <i>hprR</i>	This study
psgRNA-cusS	pMB1 bla P-sgRNA-cusS	This study
psgRNA-zraS	pMB1 bla P-sgRNA-zraS	This study
psgRNA-kdpD	pMB1 <i>bla</i> P-sgRNA- <i>kdpD</i>	This study
psgRNA-phoQ	pMB1 bla P-sgRNA-phoQ	This study
psgRNA-basS	pMB1 bla P-sgRNA-basS	This study
psgRNA-baeS	pMB1 bla P-sgRNA-baeS	This study
psgRNA-cpxA	pMB1 bla P-sgRNA-cpxA	This study
psgRNA-envZ	pMB1 bla P-sgRNA-envZ	This study
psgRNA-evgS	pMB1 bla P-sgRNA-evgS	This study This study
psgRNA-evgS psgRNA-glrK	pMB1 bla P-sgRNA-elrK	This study This study
psgRNA-gnR psgRNA-qseC	pMB1 bla P-sgRNA-geC	This study This study
psgRNA-qseC psgRNA-rcsC	pMB1 bla P-sgRNA-qseC pMB1 bla P-sgRNA-rcsC	This study This study
psgRNA-rcsD	pMB1 bla P-sgRNA-rcsC	This study This study
		•
psgRNA-rstB	pMB1 bla P-sgRNA-rstB	This study

Table 4-2. Plasmids used in this study. (Continued.)

Name	Characterization	Reference
psgRNA-hprS	pMB1 bla P-sgRNA-hprS	This study
psgRNA-atoS	pMB1 bla P-sgRNA-atoS	This study
psgRNA-barA	pMB1 bla P-sgRNA-barA	This study
psgRNA-creC	pMB1 bla P-sgRNA-creC	This study
psgRNA-ntrB	pMB1 bla P-sgRNA-ntrB	This study
psgRNA-phoR	pMB1 bla P-sgRNA-phoR	This study
psgRNA-uhpB	pMB1 bla P-sgRNA-uhpB	This study
psgRNA-btsS	pMB1 bla P-sgRNA-btsS	This study
psgRNA-pyrS	pMB1 bla P-sgRNA-pyrS	This study
psgRNA-arcB	pMB1 bla P-sgRNA-arcB	This study
psgRNA-citA	pMB1 bla P-sgRNA-citA	This study
psgRNA-dcuS	pMB1 bla P-sgRNA-dcuS	This study
psgRNA-narQ	pMB1 bla P-sgRNA-narQ	This study
psgRNA-narX	pMB1 bla P-sgRNA-narX	This study
psgRNA-torS	pMB1 bla P-sgRNA-torS	This study
psgRNA-cheA	pMB1 bla P-sgRNA-cheA	This study

4-2-3. Multi-gene knockout in the E. coli genome by the HoSeI method based on CRISPR-Cas

The W3110 type A strain harboring pCas was grown in LB medium containing 1% arabinose and 50 µg/mL kanamycin to logarithmic phase and then was collected and suspended in a solution of 0.1 M CaCl₂. This suspension of *E. coli* was subjected to transformation by the psgRNA-target (shown in Table 4-2) and DNA fragment to recover the digested site by CRISPR-Cas9. The 83-bp DNA fragments were prepared by hybridization of a pair of complementary synthetic oligonucleotides (see the DNA sequences shown in Appendix Table 4). In comparison with no colonies observed on LB agar containing 100 µg/mL ampicillin by transformation with only psgRNA-target, the addition of the DNA fragment produced transformants that grew on LB agar containing ampicillin. To verify the introduction of a stop codon on the target gene of the genome, genomic DNA was prepared from the transformant and used as a template for amplification of the target sequence by PCR using a pair of oligonucleotides, as shown in Appendix Table 3. The introduction of a stop codon on the target gene was confirmed by DNA sequencing of the amplified DNA.

4-2-4. Identification of the whole genome sequence of *E. coli* strains

Identification of the whole genome sequence of W3110 type A and RR- and SK-deprived mutants was performed by high-throughput sequencing (Bioengineering Lab). Briefly, genomic DNA was extracted from the LB culture of each strain by using the Wizard® Genomic DNA Purification Kit (Promega). Prepared genomic DNA was fragmented into about 400 bp, created a

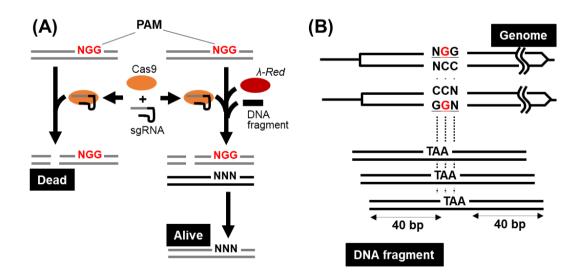
DNA library, and sequenced by DNBSEQ-G400 (Bioengineering Lab). Reads (7-8 M 2×150 bp) were mapped and compared with two reference genomes, W3110 (GenBank: AP009048.1) and MG1655 (GenBank: U00096.3), using CLC Genomics Workbench 8.5.1 (Qiagen).

4-2-5. Growth kinetics

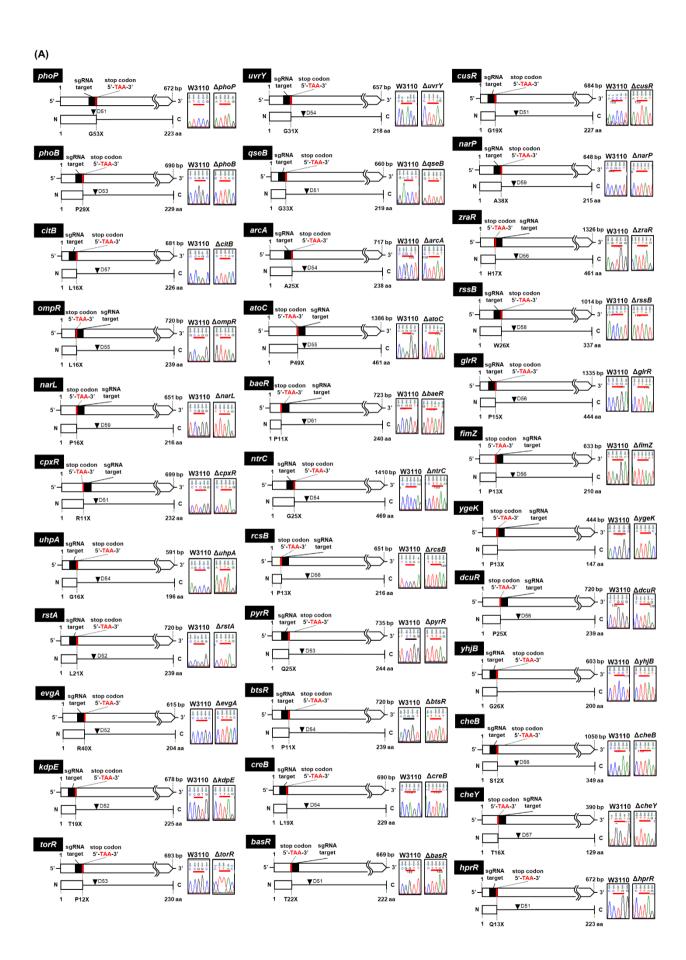
The parent strain W3110 type A and isolated mutants were grown in LB or M9-glucose medium to stationary phase and diluted in LB or M9-glucose to an OD_{600 nm}= 0.01. The diluted suspension in L-shaped test tubes was inoculated to the stationary phase at various temperature (27°C, 32°C, 37°C, or 42°C) and the growth was monitored measuring the OD_{600 nm} every 15 mins using the TVS062CA Compact rocking incubator (Advantec). Triplicates were inoculated for each strain tested.

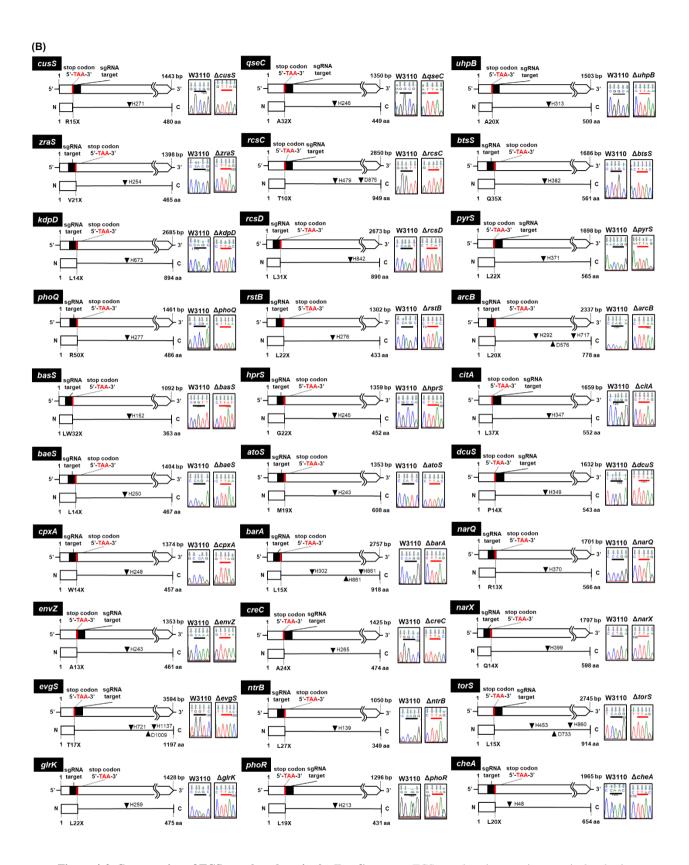
4-2-6. Phenotype Microarray

To compare the growth characterization under the various environmental conditions of the isolated multi-gene knockout strains with the parent strain, phenotype microarray (PM) testing was performed using the OmniLog® Phenotype MicroArrayTM system (BioLog). Each strain was inoculated in the M9-glucose medium at 37°C up to a stationary phase. The precultured cells were collected (c.f. 5,000 rpm for 5 min at 4°C) and resuspended with 2 ml of IF-0 [5 g/L NaCl (Nacalai), 0.3 g/L of Pluronic F-68 (Sigma), 0.1 g/L of Phytagel (Sigma), and 10 ml/L of triethanolamine (Sigma), pH 7.1]. After centrifugation (c.f. 5,000 rpm for 5min at 4°C), resuspension of cells in 2 ml of IF-0 was added to 6 ml of IF-0 to adjust transmittance to 42%T. Then, the diluted cell suspension (42%T) was added to 20 ml of IF-0 to prepare the cell suspension. For a PM1 or 2 plates, the following reagents; 9.16 ml of 1.2x IF-0 [6 g/L NaCl (Nacalai), 0.36 g/L of Pluronic F-68 (Sigma), 0.12 g/L of Phytagel (Sigma), and 12 ml/L of triethanolamine (Sigma), pH 7.1], 1.73 ml of autoclaved DDW, 110 µl of 100x Redox dye Mix A (BioLog), and 2.2 ml of the prepared cell suspension, were mixed to prepare the culture suspension. For PM3-8 plates, the mixture; 9.16 ml of 1.2x IF-0, 1.73 ml of autoclaved DDW, 110 µl of 100x Redox dye Mix A (BioLog), 2.2 ml of the prepared cell suspension, and 110 µl of 2 M sodium succinate/ 200 µM ferric citrate, were prepared as the culture suspension. For PM9-20 plates, the mixture; 9.16 ml of IF-10a GN BASE (1.2x) (BioLog), 1.73 ml of autoclaved DDW, 110 µl of 100x Redox dye Mix A (BioLog), and 55 μl of the prepared cell suspension to prepare the culture suspension. Then, 100 μl of the culture suspension was applied to each well of a PM plate, and PM plates were incubated for 96 hours at 37°C in the Omnilog® Phenotype MicroArray incubator (Biolog). The growth of cells in each well was measured as the level of reduced tetrazolium redox dye, every 15 mins up to 96 hours.


4-2-7. Computational analysis of designed sgRNAs

The multiple alignments of the 20-nt target sequences designed for sgRNA in this study were estimated using ClustalW and WebLogo3 (http://weblogo.threeplusone.com/, Crooks *et al.* 2004). To get the secondary and tertiary structure prediction of sgRNAs, the full length of 100-nt each sgRNA was analyzed using CentroidFold (http://rtools.cbrc.jp/centroidfold/, Sato *et al.* 2009) and Rascal (Yamasaki *et al.* 2014).


4-3. Results


4-3-1. Construction of multi-gene knockout strains in E. coli using HoSeI method

The CRISPR-Cas system is available to knock out genes in the *E. coli* genome by insertion of an antibiotic resistance marker gene (Jiang *et al.* 2015). A novel gene knockout system by introducing a nonsense codon, a homologous sequence integration (HoSeI) method, was developed to overcome the limitations of antibiotic resistance marker genes. It is readily feasible for us to design and isolate multi-gene knockout strains of *E coli*. The designed sgRNA (single-guide RNA)

Figure 4-1. The homologous sequence integration (HoSeI) method for multi-gene knockout in the *E. coli* genome. [A] The overview of the HoSeI method. The HoSeI method is based on previously reported genome editing method using CRISPR-Cas (Jiang *et al.* 2014). The sgRNA expressed from psgRNA and *Streptococcus pyogenes* Cas9 endonuclease expressed from pCas cause a site-specific double-strand break at the recognized site by the protospacer adjacent motif (PAM) for sgRNA, resulting in cell death of *E. coli* (left). In the HoSeI method, the recombination of DNA fragment by lambda-Red recombinase recovers the digestion of the *E. coli* genome and enables *E. coli* cell to avoid cell death (right). [B] The design of DNA fragment for replacing PAM with nonsense codon. To knockout protein-coding gene, I designed the DNA fragment containing TAA, introducing both nonsense codon and mutated PAM, with 40 bp-long homology arms on both sides.

Figure 4-2. Construction of TCS gene knockout in the *E. coli* genome. TCS gene knockout strains were isolated using the HoSeI method (Fig. 4-1). The ORFs of each gene and their length are shown as an arrow. RR genes are shown in **A** and SK genes are shown in **B**. The positions of the integrated stop codon and the sgRNA target region are marked in red or black, respectively. The box with bar under the gene arrow shows the truncated protein. The filled triangle represents the conserved aspartic acid (D) residue or histidine (H) residue. The introduction of stop codon on target gene was confirmed by DNA sequencing on the amplified DNA.

containing the recognition sequence for the *E. coli* genome specifically digests the genome, resulting in a dead phenotype (Fig. 4-1A). The designed DNA fragment containing the following sequence, however, recombines with the genome at the injury site by lambda-Red recombinase, resulting in a living phenotype (Fig. 4-1A). To knock out gene function, the DNA fragment is designed to introduce the stop codon, TAA, instead of the PAM sequence (Fig. 4-1B). For knockout of each gene, I constructed sgRNA-expressing plasmids (Table 4-2). None of the constructed psgRNA plasmids caused *E. coli* harboring pCas to gain ampicillin resistance (data not shown). The addition of the designed DNA fragment, including the nonsense codon for the target gene, recovered the transformation of *E. coli* harboring pCas by psgRNA. The proper introduction of the nonsense codon, TAA, was confirmed by Sanger sequencing in all cases (Fig. 4-2). A psgRNA-free transformant was isolated by IPTG-inducible sgRNA for the psgRNA plasmid from pCas as previously described (Jiang *et al.* 2015). The isolated psgRNA-free transformant was subjected to further gene knockout by repeating the HoSeI system. In addition to all single knockouts of TCS genes, these experiments bred the strains of all of 34 RR gene or 30 SK gene knockout (Table 4-1).

4-3-2. Comparison of the genome sequence of the isolated strains

The complete genome sequences of the parent strain W3110 type A and generated RR-and SK-deprived mutants were carried out by high-throughput sequencing (Bioengineering Lab). Then, I first compared the parent strain genome with two reference *E. coli* K-12 genomes, W3110 (GenBank: AP009048.1) and MG1655 (GenBank: U00096.3). As a result, W3110 type A genome showed a mosaic structure of W3110 and MG1655. For example, W3110 type A has a CPZ-55 prophage region, which was only found in MG1655, and showed insertion or deletion of some IS elements, which W3110 only has (Table 4-3). W3110 type A genome was also mosaic in sequence differences between W3110 and MG1655. In addition, the Rac prophage region and seven genes (*ynaJ*, *uspE*, *fnr*, *ogt*, *abgT*, *abgB*, and *abgA*) were lost in the W3110 type A genome (Table 4-3). Some gene sequences of W3110 type A were uniquely different from both W3110 and MG1655, including the *rpoS* gene. The codon of *rpoS* coding 33rd amino acid residue was TAG (stop codon) in W3110 and CAG (Glutamine) in MG1655, but TAT (Tyrosine) in W3110 type A.

Based on the characteristics of the genome structure of W3110 type A, a comparison of the RR- or SK-knockout strain with the parent strain identified mutations in each genome (Table 4-4 and 4-5). The SK-mutant showed mutations in the 30 of target SK genes, and no other unexpected mutation was detected (Table 4-4). On the other hand, four spontaneous mutations were found in the RR-mutant genome in addition to the introduction of nonsense codon into 34 RR genes (Table 4-5). They were a silent mutation in the *lolE* gene (Leu328, CTG to TTG), a missense mutation in the *yihQ* gene (Ser528Cys, AGC to TGC), a 1-nt substitution in the intergenic region of *hydN* and

ascG genes, and 315 bp deletion in the intergenic region of *insAB* and *yfbQ* genes. The result of further sequencing analysis of all thirty-three RR mutants (Δ 1RR to Δ 33RR) identified these spontaneous mutations were generated at a different time of breeding (Table 4-6).

W3110 type A MG1655 MG1655 MG1655 MG1655 W3110 W3110 W3110 W3110 MG1655 MG1655 MG1655 MG1655 W3110 MG1655 MG1655 W3110 W3110 W3110 MG1655 MG1655 W3110 Gln6 (CAA), Thr8 (ACA) Gln6 (CAA), Thr8 (ACA) Glu6 (GAA), Ser8 (AGT) Glu38 (GAG), Lys86fs insertion? (not insH) Leu274 (CTC) W3110 type A Ala130 (GCA) I-nt substitution Lys29 (AAG) Cys415 (TGT) Gly273 (GGC) Gly522 (GGC) His450 (CAC) Gln36 (CAG) Lyr33 (TAT) V219 (GTT) (Ile91 (ATT) 12_13insCG insC, insD Gly306fs insA, insB insertion? Ala51fs deletion insH Glu38 (GAG), Lys86fs Phe274 (TTC) Asp450 (GAC) Arg415 (CGT) Ala 130 (GCA) Ser522 (AGC) Thr29 (ACG) Ser273 (AGC) Leu36 (CTG) Gln33 (CAG) insA, insB V219 (GTC) Val91 (GTT) MG1655° insA, insB Table 4-3. Characterization of W3110 typeA genome. different number of repeat different number of repeat Leu274 (CTC) Arg415 (CGT) Vall 30 (GTA) Glu38 (GAA) Ser273 (AGC) Gly522 (GGC) Stop33 (TAG) Asp450 (GAC) Lys29 (AAG) Leu36 (CTG) Val91 (GTT) insC, insD V219 (GTT) Gly306fs insD, insC insA, insB deletion Ala51fs insD, insC W3110^b insH insH insH insH insH insH UDP-N-acetyl-D-mannosaminuronic acid transferase hybrid sensory kinase in two-component regulatory galactitol-specific enzyme IIA component of PTS galactitol-specific enzyme IIC component of PTS 5,10-methylene-tetrahydrofolate dehydrogenase 5,10-methylene-tetrahydrofolate cyclohydrolase sigma factor-binding protein, stimulates RNA RNA polymerase, sigma S (sigma 38) factor DNA-binding transcriptional dual regulator figuanylate cyclase, membrane-anchored tRNA 2-thiocytidine biosynthesis protein DNA-binding transcriptional repressor tryptophan transporter of low affinity polymerase holoenzyme formation oligopeptide transporter subunit system with RcsB and RcsD C4-dicarboxylate antiporter pseudogene, Qin prophage Repeat region: REP321j aconitate hydratase 1 Rac prophage region hypothetical protein putative hydrolase CPZ-55 prophage CTP synthetase intR, ydaQ, ydaC, lar, recT, recE, racC, ydaE, kil, intZ, yffL, yffM, yffN, yffO, yffP, yffQ, yffR, yffS sieB, ydaF, ydaG, racR, ydaS, ydaT, ydaU, ydaV, ydaW, rzpR, rzoR, trkG, ynaK, ydaY, ynaA, lomR ynaJ, uspE, fnr, ogt, abgT, abgB, abgA insH is inserted), stfR, tfaR, pinR, ynaE IrhA / alaA(yfbQ) ynhF / purR ycdU / serX csgC / ymdA ychE / oppA ydaO (ttcA) flhD / uspC dcuA / aspA tdcE / tdcD yieE / yieZ maA / maC yjcS / alsK Location^a pyrGtnaB yccEoppArcsCycdTacnAgatCgatAglpRdcuAylbEfolDyedJrfMcrpcrl

Intergenic regions are shown as gene / gene. ^bGenBank: AP009048.1 ^cGenBank: U00096.3

Table 4-4. Mutations in the SK-deprived strain genome.

Leu16 (CTG) Stop16 (TAA) Thr19 (ACG) Stop19 (TAA)

Pro13 (CCT) Stop13 (TAA) Gly19 (GGG) Stop19 (TAA)

Pro29 (CCG) Stop29 (TAA)

A34RR

Changes

Table 4-5. Mutations in the RR-deprived strain genome.

Leu328 (CTG) Leu328 (TTG)

Gly53 (GGA) Stop53 (TAA)

Stop16 (TAA)

Trp26 (TGG) Stop26 (TAA) Leu24 (CTG) Stop24 (TAA) Stop16 (TAA) Stop12 (TAA) Stop31 (TAA) Stop13 (TAA)

Pro12 (CCG) Stop12 (TAA)

	•	5				5
Location	Function	Changes Parent	nges A30SK	Location	Function	Chang Parent
phoR	SK in TCS with PhoB	Leu 19 (CTC)	Stop19 (TAA)	phoB	RR in TCS with PhoR (or CreC)	Pro29 (CCG) S
cusS	SK in TCS with CusR, senses copper ions	Arg15 (CGC)	Stop15 (TAA)	fimZ	predicted DNA-binding transcriptional regulator	Pro13 (CCT)
citA	SK in TCS with citB	Leu37 (CTG)	Stop37 (TAA)	cusR	RR in TCS with CusS	Gly19 (GGG)
kdpD	fused SK in TCS with KdpE	Leu14 (CTG)	Stop14 (TAA)	citB	RR in TCS with CitA	Leu16 (CTG)
torS	hybrid SK in TCS with TorR	Leu15 (CTG)	Stop15 (TAA)	kdpE	RR in TCS with KdpD	Thr19 (ACG)
Qohq	SK in TCS with PhoP	Arg50 (CGG)	Stop50 (TAA)	torR	RR in TCS with TorS	Pro12 (CCG)
narX	SK in TCS with NarL	Gln14 (CAG)	Stop14 (TAA)	lolE	outer membrane-specific lipoprotein transporter subunit	Leu328 (CTG)
rstB	SK in TCS with RstA	Leu22 (CTG)	Stop22 (TAA)	phoP	RR in TCS with PhoQ	Gly53 (GGA)
cheA	fused chemotactic SK (soluble) in TCS with CheB and CheY	Leu20 (TTG)	Stop20 (TAA)	narL	RR in TCS with NarX (or NarQ)	Pro16 (CCG)
hprS	predicted SK in TCS with HprR	Gly22 (GGC)	Stop22 (TAA)	rssB	response regulator of RpoS	Trp26 (TGG)
baeS	SK in TCS with BaeR	Leu14 (CTG)	Stop14 (TAA)	rstA	RR in TCS with RstB	Leu24 (CTG)
btsS	predicted SK in TCS with BtsR	Gln35 (CAG)	Stop35 (TAA)	cheY	chemotaxis regulator transmitting signal to flagellar motor component	Thr16 (ACC)
rcsD	phosphotransfer intermediate protein in TCS with RcsBC	Leu31 (CTG)	Stop31 (TAA)	cheB	fused chemotaxis regulator and protein-glutamate methylesterase in TCS with CheA	Ser12 (TCG)
rcsC	hybrid SK in TCS with RcsBD	Thr31 (ACC)	Stop31 (TAA)	uvrY	RR in TCS with BarA	Gly31 (GGT)
atoS	SK in TCS with AtoC	Met19 (ATG)	Stop19 (TAA)	hprR	predicted RR in TCS with HprS	Gln13 (CAG)
evgS	hybrid SK in TCS with EvgA	Thr17 (ACC)	Stop17 (TAA)	baeR	RR in TCS with BaeS	Pro11 (CCG)
pyrS	predicted SK in TCS with PyrR	Leu22 (CTG)	Stop22 (TAA)	btsR	predicted RR in TCS with BtsS	Prol1 (CCG)
narQ	SK in TCS with NarP (NarL)	Arg13 (CGG)	Stop13 (TAA)	narP	RR in TCS with NarQ or NarX	Ala38 (GCG)
glrK	predicted SK in TCS	Leu17 (CTG)	Stop17 (TAA)	rcsB	RR in TCS with RcsCD	Pro13 (CCG)
barA	hybrid SK in TCS with UvrY	Leu15 (CTG)	Stop15 (TAA)	atoC	fused RR of ato opeon, in TCS with AtoS	Pro49 (CCT)
aseC	SK in TCS with QseB	Ala32 (GCC)	Stop32 (TAA)	insAB / yfbQ		
arcB	hybrid SK in TCS with ArcA	Leu20 (CTG)	Stop20 (TAA)	evgA	RR in TCS with EvgS	Arg40 (CGG)
zraS	SK in TCS with ZraR	Val21 (GTG)	Stop21 (TAA)	pyrR	predicted RR in TCS with PyrS	Gln25 (CAG)
cpxA	SK in TCS with CpxR	Trp14 (TGG)	Stop14 (TAA)	glrR	predicted RR in TCS	Pro15 (CCG)
ntrB	SK in TCS with NtrC	Leu27 (CTG)	Stop27 (TAA)	hydN / ascG		
uhpB	SK in TCS with UhpA	Ala20 (GCC)	Stop20 (TAA)	ygeK	predicted DNA-binding transcriptional regulator	Pro13 (CCG)
envZ	SK in TCS with OmpR	Ala13 (GCC)	Stop13 (TAA)	qseB	RR in TCS with QseC	Gly33 (GGT)
basS	SK in TCS with BasR	Trp32 (TGG)	Stop32 (TAA)	zraR	fused RR in TCS with ZraS	His17 (CAC)
dcuS	SK in TCS with DcuR	Pro14 (CCG)	Stop14 (TAA)	cpxR	RR in TCS with CpxA	Arg11 (CGA)
creC	SK in TCS with CreB or PhoB	Ala24 (GCC)	Stop24 (TAA)	yihQ	a pha-glucosidase	Ser528 (AGC)
				ntrC	fused RR in TCS with GhL, nitrogen regulator I (NRI)	Gly25 (GGG)

Stop11 (TAA)

Stop11 (TAA)

Ala38 (GCG) Stop38 (TAA)

Pro49 (CCT) Stop49 (TAA)

Pro13 (CCG) Stop13 (TAA)

315 bp deletion

Arg40 (CGG) Stop40 (TAA)

Stop25 (TAA) Stop15 (TAA) 1-nt substitution Pro13 (CCG) Stop13 (TAA)

Stop17 (TAA)

Stop33 (TAA)

Arg11 (CGA) Stop11 (TAA) Ser528 (AGC) Cys528 (TGC) Gly25 (GGG) Stop25 (TAA) Stop16 (TAA)

Gly16 (GGC) Gly26 (GGA)

RR in TCS wtih UhpB

RR in TCS with EnvZ RR in TCS with BasS RR in TCS with DcuS RR in TCS with CreC

predicted RR in TCS

yhjBompRbasRdcuRcreBarcA

hpA

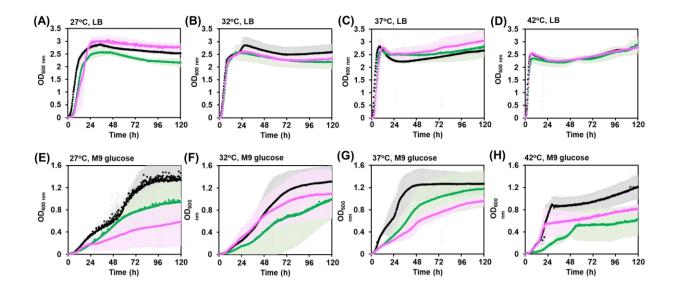
Stop26 (TAA)

Leu16 (CTG) Stop16 (TAA)

Thr22 (ACC) Stop22 (TAA)

Pro25 (CCA) Stop25 (TAA) Leu19 (CTG) Stop19 (TAA) Ala25 (GCG) Stop25 (TAA)

Intergenic regions are shown as gene / gene.


RR in TCS with ArcB or CpxA

		Unexpect	ed changes	
Strain	<i>lolE</i> Leu328 (CTG→TTG)	insAB/yfbQ (315 bp deletion)	hydN/ascG (1-nt substitution)	yihQ Ser528Cys (AGC→TGC)
Δ1RR	-	-	-	-
$\Delta 2RR$	-	-	-	-
$\Delta 3RR$	-	-	-	-
$\Delta 4RR$	-	-	-	-
$\Delta 5RR$	-	-	-	-
$\Delta 6RR$	-	-	-	-
$\Delta 7RR$	-	-	-	-
$\Delta 8RR$	-	-	-	-
$\Delta 9RR$	-	-	-	-
$\Delta 10RR$	-	+	-	-
$\Delta 11RR$	-	+	-	-
$\Delta 12RR$	-	+	-	-
$\Delta 13RR$	-	+	-	-
$\Delta 14RR$	-	+	-	-
$\Delta 15RR$	-	+	-	-
$\Delta 16RR$	-	+	-	-
$\Delta 17RR$	-	+	-	-
$\Delta 18RR$	-	+	-	-
Δ 19RR	-	+	-	-
$\Delta 20RR$	-	+	-	-
Δ21RR	-	+	-	-
$\Delta 22RR$	-	+	-	-
$\Delta 23RR$	-	+	-	-
$\Delta 24RR$	-	+	-	-
$\Delta 25RR$	+	+	-	-
$\Delta 26RR$	+	+	-	-
$\Delta 27RR$	+	+	_	+
$\Delta 28RR$	+	+	_	+
$\Delta 29RR$	+	+	-	+
$\Delta 30RR$	+	+	-	+
$\Delta 31RR$	+	+	-	+
$\Delta 32RR$	+	+	+	+
$\Delta 33RR$	+	+	+	+
$\Delta 34RR$	+	+	+	+

4-3-3. The phenotypic analysis of the TCS gene-deprived strain

The RR gene- and SK gene-deprived strains isolated by the HoSeI method and the parent strain were grown in LB or M9-glucose medium to stationary phase at various temperatures (27°C, 32°C, 37°C, or 42°C) and the growth was monitored measuring the $OD_{600 \text{ nm}}$ every 15 mins. Surprisingly, there were no significant differences in both the growth rate and the $OD_{600 \text{ nm}}$ value of stationary phase between the parent strain and the mutants in LB medium (Fig. 4-3A-D). All three strains proliferated slightly slower in 27°C and 32°C than in 37°C and 42°C, but the $OD_{600 \text{ nm}}$ value reached a plateau in 24 hours in each temperature condition.

In contrast, all strains showed a larger growth variability in M9-glucose medium than in LB medium (Fig. 4-3E-H). The growth rate of the parent increased with the rise in temperature.

Figure 4-3. The growth kinetics of the isolated RR- and SK-deprived strains. The parent strain W3110 type A (black), the SK-deprived strain (green), and the RR-deprived strain (magenta) were grown in LB or M9-glucose medium to stationary phase and diluted in LB (A-D) or M9-glucose (E-H) to an OD_{600 nm}= 0.01. The diluted suspension in L-shaped test tubes was inoculated to the stationary phase at various temperature (27°C in **A** and **E**; 32°C in **B** and **F**; 37°C in **C** and **G**; and 42°C in **D** and **H**), and the growth was monitored measuring the OD_{600 nm} every 15 mins up to 120 hours using the TVS062CA Compact rocking incubator (Advantec). Triplicates were inoculated for each strain, and the average of them is shown as a dot plot. The error bars show standard deviation.

In comparison to this, the growth of the RR mutant clearly delayed at 27°C and 37°C (Fig. 4-3E and G). Although the RR mutant grew slightly faster at 42°C, the mutant did not show the rapid growth in the log phase at 27°C, 32°C, and 37°C, and it took much longer time to reach the stationary phase than the parent strain. Additionally, the mutant indicated the lower OD_{600 nm} value of the stationary phase at each temperature (Fig. 4-3E-H). The SK mutant showed growth delays under all temperature conditions in M9-glucose, and the growth rate at the log phase was a bit faster with the rise in temperature up to 37°C. The cell mass of the SK mutant at 120 hours after incubation was also larger with temperature increase and similar to the parent strain at 37°C, even though it still took a long time to reach the maximum level (Fig. 4-3E-G). Interestingly, the comparison between RR- and SK-defective mutants represented that the RR deprivation caused slower growth at 27°C, whereas SK deprivation brought about slower growth at 42°C (Fig. 4-3EH). Taken together, the TCS-deprived strains drive cell division as fast as the parent strain does under the nutrient-rich conditions such as the LB medium. Under the poor nutrient conditions like the M9-glucose medium, however, the mutants show the slower cell growth in the log phase and the smaller cell population in the stationary phase.

Next, to compare the growth characterization under the various environmental conditions of the isolated multi-gene knockout strains with the parent strain, I performed phenotype microarray (PM) testing using the OmniLog® Phenotype MicroArrayTM system (BioLog). Each strain was

grown at 37°C for 96 hours under the diverse culture conditions, including various nutrients, osmolytes, pH, and inhibitory compounds. After 96 hours, the growth of the parent strain was assigned to four types by the growth rate and the size of cell mass, (i) cells rapidly grew and reached the stationary phase in 24 hours; (ii) the growth was delayed, but the maximum size of cell mass was similar to the cells in (i); (iii) cells showed growth delay and smaller cell population at 96 hours; (iv) cells did not grow (Appendix Tables 5 to 8). The growth of two mutant strains was evaluated by comparing with the parent strain, (i) cells grew under the condition which the parent did not grow; (ii) both the growth rate and the maximum cell mass were similar to the parent; (iii) the growth was slower than the parent, but the maximum cell population was the same as the parent; (iv) the growth was delayed and cell population was smaller than that of the parent; (v) cells did not grow (Appendix Tables 5 to 8). As a result of PM testing, among the 1920 environmental conditions, 581 or 443 conditions showed the growth differences between the parent strain and RR- or SK-deprived mutant, respectively.

The nutrient availability test showed the parent strain could proliferate using 53 of 768 tested nutrients (Appendix Figure 2A-E and Appendix Table 5). All 53 conditions are related to carbon source utilization, so that the growth of the parent strain was not detected in the presence of any other nutrients (Appendix Figure 2B-E). The SK mutant grew 42 of 53 conditions (Table 4-7). The growth of the SK mutant was delayed under 30 of 42 conditions, and 10 of them caused a smaller cell population. Growth defect was found under 11 conditions (Succinic Acid, D,D-Malic Acid, L-Glutamine, Bromo-Succinic Acid, L-Arabinose, Uridine, Pyruvic acid, D-Alanine, Fumaric Acid, 3-0-b-D-Galactopyranosyl-D-Arabinose, and b-Methyl-D-Galactoside) (Table 4-7, Appendix Figure 2A and Appendix Table 5). In contrast, the RR mutant only grew under 7 of 53 conditions (D-Serine, D-Mannitol, D-Glucose-1-Phosphate, Maltotriose, L-Serine, Methyl Pyruvate, and D-Glucosamine) (Table 4-7, Appendix Figure 2A, and Appendix Table 5). Under the 4 of 7 conditions (D-Serine, D-Mannitol, L-Serine, and D-Glucosamine), the growth of the mutant was considerably slower than the parent strain (Fig. 4-4A). The rest of them (D-Glucose-1-Phosphate, Maltotriose, and Methyl Pyruvate) indicated the decrease in the maximum cell population at 96 hours. The SK mutant grew more quickly than the RR mutant under all 7 conditions in which the RR mutant was available, suggesting that deprivation of RR affects more severe on the utilization of carbon sources.

The result of the interrogation of osmotic effects exhibited the mutants has a lower tolerance for osmotic pressure than the parent strain (Table 4-7, Appendix Figure 2F, and Appendix Table 6). Both mutants grew under low osmolyte concentration, but the growth under high concentration was quite different between the RR- and the SK-deprivation. The growth of RR mutant completely depleted in the presence of more than 3% of NaCl (Appendix Table 6). Although some osmolytes were available for the RR mutant to grow, the maximum cell population was

smaller than the parent strain. In contrast, most osmolytes were not lethal for the SK mutant even in high concentrations. The elapsed time until the log phase was longer in some conditions, nevertheless the mutant could reach the same level of cell mass as the parent at 96 hours after incubation (Appendix Figure 2F). The RR mutant showed a slight growth delay at pH 4.5, but its growth rate was similar to the parent strain in other pH conditions (Table 4-7, Appendix Figure 2G, and Appendix Table 7). At pH 9.5, however, the mutant did not grow in 19 of 28 states in which the parent strain rapidly proliferated. Also, in most cases, the RR mutant formed smaller cell mass. The SK mutant did not show remarkable changes under pH 4.5, but the SK mutant differed with the parent in the availability of compounds under pH 9.5. These findings revealed that the defect of SK mostly affects the initial growth rate but not the cell population; however, the RR-deprivation extremely reduces the growth capacity.

Table 4-7. Summary of Phenotype Microarray

- · ·	. .		Δ34 RR				Δ30 SK			
Categories	Parent	0	0	Δ	×	0	\circ	Δ	×	
Carbon sources	53	0	4	3	46	12	20	10	11	
Osmolytes	76	1	2	28	35	26	25	11	14	
pH	73	6	1	27	39	33	20	3	17	
	More sensitive			3			6			
Antibiotics	No change		14	41			1	62		
	More tolerant		(6			1	1		

②: Similar growth to the parent strain, O: Delayed growth but same cell mass,

Furthermore, the chemical sensitivity assay showed 93 of 240 antimicrobials inhibit the survival of the RR mutant in lower concentration than the parent strain (Table 4-7, Appendix Figure 2H, and Appendix Table 8). On the contrary, the deletion of RRs increased the tolerance of 6 compounds (Lomefloxacin, Enoxacin, Cefuroxime, Furaltadone, Cinoxacin, and Oxytetracycline) (Table 4-8 and Appendix Table 8). These six compounds have a similar or different mode of actions (Table 4-8). Lomefloxacin and Enoxacin affect DNA topoisomerase and inhibit DNA synthesis. Furaltadone inhibits DNA synthesis and is also estimated to inhibit the initial step of carbohydrate metabolisms through repression of acetyl-CoA. Cinoxacin interferes with the synthesis of DNA and RNA, resulting in the prevention of protein synthesis. Cefuroxime is involved in the inhibition of cell wall synthesis. Oxytetracycline is a kind of tetracycline-type antimicrobials. It binds to 30S ribosomal protein and inhibits translation. The RR mutant also showed smaller cell mass in most cultural conditions even though the growth delay was not severe. On the other hand, the SK mutant was more sensitive in 67 inhibitory conditions and more tolerant in 11 states (Tables 4-7, 4-8, and Appendix Table 8). Among the 11 antimicrobials, three compounds (Lomefloxacin, Cefuroxime,

 $[\]triangle {:}$ Delayed growth and small cell mass, $\times{:}$ No growth

and Oxytetracycline) are shown in both RR- and SK-knockout strains as resistant. Altogether, the RR gene-deprived strain shows the severely limited viability, and the lack of RR genes causes both of a slower growth rate and a smaller cell population. The effect of SK deprivation is milder than the RR deprivation and induces the initial growth delay.

Table 4-8. List of compounds the mutants showed high resistance.

Antibiotics	Plate/Well	Mode of Action	
Δ34 RR			
Lomefloxacin	PM11/B12	DNA topoisomerase, quinolone	
Enoxacin	PM11/E08	DNA topoisomerase, quinolone	
Cefuroxime	PM13/D04	wall, cephalosporin second generation	
Furaltadone	PM14/A08	DNA synthesis, nitro-compound, multiple sites	
Cinoxacin	PM16/D11	protein synthesis	
Oxytetracycline	PM20/F08	protein synthesis, tetracycline	
Δ30 SK			
Lomefloxacin	PM11/B12	DNA topoisomerase, quinolone	
Minocycline	PM11/C11, C12	protein synthesis, tetracycline	
Dodecyltrimethyl Ammonium Bromide	PM12/H11	membrane, detergent, cationic	
Cefuroxime	PM13/D04	wall, cephalosporin second generation	
Sanguinarine	PM14/A12	ATPase, Na ⁺ /K ⁺ and Mg ⁺⁺	
Sodium Metaborate	PM14/E12	transport, toxic anion	
Niaproof	PM17/E04	membrane, detergent, anionic	
Thioglycerol	PM19/H08	reducing agent, thiol, adenosyl methionine antagonist	
Amitriptyline	PM20/A03	membrane, transport	
Oxytetracycline	PM20/F08	protein synthesis, tetracycline	
Captan	PM20/G03	fungicide, carbamate, multisite	

4-4. Discussion

4-4-1. The advantages of HoSeI method

Bacteria are unicellular organisms. Individual cells are known to start growth under rich nutrient conditions by operating metabolic networks. On the other hand, bacterial cells that survive have a proper memory for the function of genetic stress response systems. Thus, multi-genetic factors function for bacterial growth. To analyze the function of several genes, I developed the CRISPR-Cas9-based HoSeI method to knock out genes without antibiotic resistance gene markers. The HoSeI method is a genetic marker-less genome editing approach and introduces base substitutions in the target sequence on the original genome by screening dead or alive cells. I repeated the HoSeI method in the *E. coli* K-12 genome and isolated multi-gene knockout strains, even all RR- or SK- deprived strains. The genome sequence analysis confirmed the generated mutants retained the integrated nonsense codon in all target genes. Surprisingly, the RR-deprived

strain contained only four spontaneous mutations, and these were mostly small changes, such as 1-nt substitution (Table 4-5). Moreover, the SK-deprived strain had no unexpected mutations (Table 4-4). These results denoted that the HoSeI method should be a powerful strategy to edit genome sequences, e.g., knockout of multiple genes and artificial introduction of mutations, which are useful experimental demonstrations of bacterial genome-wide epistatic phenomena.

4-4-2. Relationship of sgRNA sequences and the cleavage efficiency

The dead phenotype caused by the Cas9 protein-sgRNA complex depends on the designed sgRNA. Then I investigated the relationship of sgRNA sequence and efficiency of genome cleavage. In this study, more than 200 sgRNAs were designed and introduced into *E. coli* harboring pCas. The efficiency of genome cleavage by sgRNA and Cas9 evaluated by the number of transformants of 2 plasmids (pCas and psgRNA). The efficiency of transformation evaluated genome cleavage by CRISPR-Cas9, showing that 99 of designed sgRNAs were lethal, whereas 106 sgRNAs were not. As a result of the comparison of target positions of sgRNAs on the *E. coli* genome, the efficiency of cleavage has no relation with their positions on the genome (Fig. 4-4A).

Next, to get the insight into functional sgRNAs, primary, secondary, and tertiary structures of sgRNA were analyzed in comparison with non-functional sgRNAs. As a result of primary and secondary structures analysis, primary sequence alignments of both cleaving sgRNA and uncleaving sgRNA with their downstream PAM have no conserved sequence (Fig. 4-4B). Secondary structures of 100-nt full-length sgRNAs were predicted by the CentroidFold software (http://rtools.cbrc.jp/centroidfold/, Sato et al. 2009). sgRNAs used in this study consist of three parts; 5'- common sequence, 20-nt of designed crRNA, and 3'- common tracrRNA (Fig. 4-4C). Predicted secondary structures of all of 109 sgRNAs were classified into 3 groups. However, there were no specific structures for cleaving the genome effectively from the comparison of secondary structures of sgRNAs. Finally, tertiary structure predictions were performed using CentroidFold and Rascal (Yamasaki et al. 2014). This comparison of the two pairs of sgRNAs, which showed opposite genome cleaving efficiencies with 1- or 2-nt differences of the recognition sequences, suggested that the secondary and tertiary structures of sgRNA were strongly affected its sequence difference even if it differs by 1-nt (Fig. 4-4D). Taken together, these conformation changes and the stability of sgRNA are deduced to contribute to the formation and stability of Cas9-sgRNA complex.

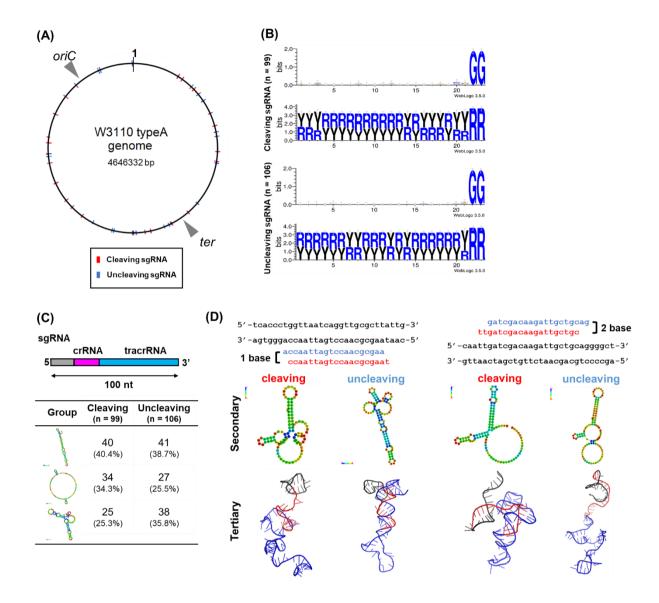


Figure 4-4. Relationship of sgRNA sequences and efficiency of cleavage. [A] The sgRNA recognition positions were mapped on the E. coli W3110 genome (4.6 Mb). The recognition sequences resulting in a dead phenotype (cleaving sgRNA) are shown in red, and the sequences resulting in a living phenotype (uncleaving sgRNA) are shown in blue on the genome. Two gray triangles show the positions of oriC and ter, respectively. [B] The multiple sequence alignment of the 20-nt of sgRNA recognition sequences with the 3-nt downstream PAMs were generated with ClustalW. The results of alignment are shown as the stacks of symbols using WebLogo 3 (http://weblogo.threeplusone.com/, Crooks et al. 2004). For both cleaving sgRNAs and uncleaving sgRNAs, the alignment of the nitrogenous bases (A, T, G, and C) is shown in the upper logo, and the alignment of purines (R) and pyrimidines (Y) is shown in the lower logo. The number of analyzed sgRNA recognition sequences (n) are shown on the left side of the logos. [C] The result of the secondary structure prediction of full-length sgRNAs using CentroidFold (http://rtools.cbrc.jp/centroidfold/, Sato et al. 2009). Each sgRNA used in this study consists of three parts; the 5'-consensus sequence (shown in gray), the 20-nt of recognition sequence (crRNA, shown in pink), and the 3'-consensus sequence (tracrRNA, shown in blue). Three distinctive structure groups, the number of sgRNA, and its ratio are shown in the Table. The number of analyzed sgRNA recognition sequences (n) are also shown in the Table. [D] The result of the secondary and tertiary structure predictions of full-length sgRNAs using CentroidFold (http://rtools.cbrc.jp/centroidfold/, Sato et al. 2009) and Rascal (Yamasaki et al. 2014). The structure predictions were performed using the two pairs of sgRNAs, which showed opposite genome cleaving efficiencies with 1or 2-nt differences of the recognition sequences. In the tertiary structure, gray represents the 5'-consensus sequence, red represents the 20-nt of recognition sequence (crRNA), and blue represents the 3'-consensus sequence (tracrRNA).

4-4-3. Characterization of the parent strain E. coli K-12 W3110 type A

E. coli K-12 has been studied as a model bacterium from the initial stage of biology. As wild-type strains of *E. coli* K-12, MG1655 and W3110 were widely used for understanding a cell. These two strains had been derived from the same ancestral strain W1485 through curing of λ phage and the F⁺ factor (Bachmann, 1972 and 1996; Guyer *et al.* 1981). Determination and comparison of the complete MG1655 (Guyer *et al.* 1981; Blattner *et al.* 1997) and W3110 (Hayashi *et al.* 2006) genome sequences revealed many differences, including insertions or deletions of short sequences or base substitutions (Hayashi *et al.* 2006). In addition, 13 of IS elements or defective phage were determined in only MG1655 or W3110. It is noteworthy that only W3110 has some IS elements in the intragenic regions, such as *gatA* (galactitol-specific enzyme IIA component of PTS), *rcsC* (hybrid sensory kinase in a two-component regulatory system with RcsB and RcsD), and *tnaB* (tryptophan transporter of low affinity). W3110 also contains a nonsense codon in ORF of *rpoS* (RNA polymerase, sigma S (sigma 38) factor). Also, MG1655 has one defective phage CPZ-55 (Hayashi *et al.* 2006).

In the *E. coli* genome, seven sigma subunit genes have been identified (Ishihama 2000). The analysis of the sigma subunit composition between different stocks of W3110 revealed that there are five types (A-E) of W3110 depends on the patterns of two sigma factors, sigma 28 (the *rpoF* gene product) and sigma 38 (the *rpoS* gene product) (Jishage and Ishihama 1997). The type A strain used as the parent strain in this study contains both two sigma factors of intact sizes. It is in good agreement with the result of the whole-genome sequencing of W3110 type A, which has the full-length of the *rpoS* gene (Table 4-3). Interestingly, the defective phage CPZ-55 was detected, and some of W3110 specific IS elements, such as in the *rcsC* gene, were lost in the W3110 type A genome. Since the CPZ-55 phage has been estimated in ancestral *E. coli* K-12 and was lost in the W3110 reference genome (GenBank: AP009048.1), W3110 type A might be closer to MG1655 than other types of W3110.

Rac prophage conserved in both MG1655 and W3110 and seven genes, *ynaJ* (putative DUF2534 domain-containing protein), *uspE* (universal stress protein with a role cellular motility), *fnr* (DNA-binding transcriptional dual regulator, global regulator of anaerobic growth), *ogt* (O-6-alkylguanine-DNA: cysteine-protein methyltransferase), *abgT* (p-aminobenzoyl-glutamate transporter; membrane protein), *abgB* (p-aminobenzoyl-glutamate hydrolase, B subunit), and *abgA* (p-aminobenzoyl-glutamate hydrolase, A subunit), nearby Rac prophage region were lost in W3110 type A (Table 4-3). The lack of these seven genes possibly affects metabolism, especially under anaerobic conditions. FNR, the product of the *fnr* gene, and ArcA (DNA-binding response regulator in a two-component regulatory system with ArcB) are the major transcription factors of anaerobic metabolism and regulates numerous genes (Salmon *et al.* 2003; Kang *et al.* 2005; Iuchi *et al.* 1989;

Iuchi and Lin 1992). It indicates that a two-component RR ArcA probably plays more important roles in W3110 type A under anaerobiosis.

4-4-4. The features of the TCS-deprived strains

TCSs regulate various response systems for environmental changes in the cell. The function of TCS genes in the *E. coli* genome is divided into 4 response groups, the stress response group, the metabolic response group, the metabolic response group, the metabolic response group, the metabolic response group (Yamamoto 2014). The whole-genome sequencing revealed four spontaneous mutations in the RR mutant genome. Two of them were in the intergenic regions, and the rest of mutations were a silent mutation in the *lolE* gene (Leu328, CTG to TTG) and a missense mutation in the *yihQ* gene (Ser528Cys, AGC to TGC). The *yihQ* gene encodes sulfoquinovosidase, which belongs to the glycosyl hydrolase 31 family. YihQ, the product of the *yihQ* gene, degrade sulfoquinovosyl diacylglycerides and sulfoquinovosyl glycerol in the sulfoglycolysis pathway, resulting in the *E. coli* cell gains a carbon and sulfur sources (Speciale *et al.* 2016). The structure of YihQ has been solved and revealed the catalytic domain (Speciale *et al.* 2016; Abayakoon *et al.* 2018). According to the structural information, YihQ forms an $(\alpha\beta)_8$ barrel. The active site consists of D405A, D405N, D472A, and D472N residue. The Ser528 is the last residue of the 10^{th} α -helix domain. These insights suggest that the amino acid substitution of 528^{th} serine might not affect the catalytic activity.

Next, I analyzed the phenotype of the isolated RR- or SK-deprived strains to reveal the contribution of TCSs for the growth of *E. coli*. According to the results of growth assays, TCS deprivation decreased both the growth rate and the maximum cell population under poor nutrient conditions. In the comparison of the RR mutant and the SK mutant, the growth rate of the RR mutant was much slower than the SK mutant at 27°C. The SK mutant growing at 27°C showed a reduction in the cell mass at 120 hours after incubation, but the initial growth rate within 48 hours looked like as rapid as the parent strain. At 42°C, however, the growth rate of the RR mutant was faster than the SK mutant even though the maximum cell population of two mutants was close to each other. These differences suggest that *E. coli* cells may conceivably carry the rapid initial growth by using RRs at low temperatures and by using SKs at high temperatures. Also, the insights of the maximum cell density proposed that TCSs make the cell possible to form the larger cell mass.

In addition to the general growth kinetics, the RR gene-knockout strain showed a growth defect in various nutrients, osmolytes, pH, and inhibitors. Conversely, the SK-knockout strain did not display a severe restriction in growth capacity under any conditions included in the PM testing. For the most part, the SK mutant could grow in the conditions which did not cultivate the RR mutant. As the results of chemical sensitivity testing, six or eleven antimicrobials were identified as more insensitive in the RR- or the SK-deprived strain, respectively. However, the other compounds which

belonged to the same groups of them, did not show an increase of resistance in the mutants. Further analysis could clarify whether these high tolerances of mutants only appear on the specific inhibitors. Together, these insights proposed the *E. coli* cell survives and performs adaptive growth using the signal transduction systems, especially response regulators when the cell survives in minimal nutrient conditions.

As unexpected, the growth of the RR- and SK-knockout mutants was similar to the parent strain under the nutrient-rich condition. I compared the parent and TCS mutants in the profile of more than 500 cellular proteins detected by LC-MS analysis and in the gene-expression profile by RNA-seq analysis at log phase in LB medium. The profile of proteins and transcripts were both appreciably different between the parent and the mutants (data not shown). According to the transcriptomic analysis, the TCS deprivation seems to induce the expression of metabolic pathway-and ABC-transporter-related genes. Furthermore, although the features of the strains deficient in RRs or SKs partially overlapped, the level of changes was mostly divergent. Therefore, I speculate the absence of TCS variegates the regulation of the multiple processes in the *E. coli* cell, increasing its population in a signal-response independent manner under the eutrophic conditions. It should be mentioned that TCSs are dispensable in *E. coli*, one of gram-negative bacteria, unlike in one of gram-positive bacteria, *Staphylococcus aureus* contains an essential TCS WalRK in the genome (Villanueva *et al.* 2018).

CHAPTER 5. EPISTATIC EFFECT OF RESPONSE REGULATORS TO THE ADAPTIVE GROWTH OF E. COLI

5-1. Introduction

Bacteria survive and then increase their population by binary cell division in a timely manner. Individual bacterial cells sense changing environmental signals, transduce those environmental signals into biological responses, and adapt to the environmental change by biological responses. Successful integration of these biological stress responses must induce adaptive growth to increase cell population.

According to recent massive amounts of genomic information, a genome consists of the core genome, a set of species-specific genes, and pan genome, representing non-conserved genes (Touchon *et al.* 2009). Within the core genome, there is a set of genes involved in central and secondary metabolism, cell cycle, and gene expression, many of which are essential for growth (Touchon *et al.* 2009). In addition to genes coding for essential biological functions, regulatory genes are conserved in the core genome but are not essential for growth (Touchon *et al.* 2009). One of the core-genome regulatory genes is the RR gene, which is a unique signal transduction component that is only conserved among prokaryotes. Several TFs are autoregulated during the response to environmental signals. Positive autoregulation leads to a fast response and impacts the response dynamics (Gao and Stock. 2018; Maeda and Sano. 2006). Among ~30 positively autoregulated TFs in the *E. coli* genome (Hermsen *et al.* 2010), 10 of those are RRs of TCSs. A recent report showed that coupled positive and negative feedback allowed both a fast response and optimal RR protein levels in the PhoB/PhoR system in *E. coli* (Gao and Stock. 2018). However, the contribution of coupled autoregulation for continuous bacterial growth is poorly understood.

In this study, I found a correlation of the RR family with bacterial genome size, speculating that the main RR genes (*phoP*, *phoB*, *ompR*) affect *E. coli* growth. To gain insight into the effect of RR genes on growth, the set of gene knockout strains are isolated by using the HoSeI method (see Chapter 4). The differences of elapsed time until the first cell division and initial growth rate of the isolated strains were measured and analyzed with statistics, indicating that a particular pair of main RR genes of *E. coli* K-12 are required for adaptive growth via genetic epistasis.

5-2. Materials and Methods

5-2-1. E. coli strains, plasmids, and oligonucleotides

The used *E. coli* strains, plasmids, and oligonucleotides are listed in Table 5-1, Table 4-2, Table 5-2 and Appendix Table 3 and 4, respectively. *E. coli* K-12 W3110 type A strain was used as a parent type (Jishage and Ishihama. 1997).

Table 5-1. Bacterial strains used in this study.

Name	Characterization	Reference
W3110 typeA	Parent strain, complete σ set	Jishage et al. 1997
W3110ΔphoP	W3110, $\triangle phoP$ (W3110 typeA $\leftarrow \triangle phoP$)	This study
W3110ΔphoB	W3110, $\triangle phoB$ (W3110 typeA← $\triangle phoB$)	This study
W3110∆citB	W3110, $\triangle citB$ (W3110 typeA $\leftarrow \triangle citB$)	This study
W3110∆ompR	W3110, $\triangle ompR$ (W3110 typeA $\leftarrow \triangle ompR$)	This study
W3110∆narL	W3110, $\triangle narL$ (W3110 typeA $\leftarrow \triangle narL$)	This study
W3110∆cpxR	W3110, $\triangle cpxR$ (W3110 typeA $\leftarrow \triangle cpxR$)	This study
W3110∆uhpA	W3110, $\triangle uhpA$ (W3110 typeA← $\triangle uhpA$)	This study
W3110∆rstA	W3110, $\triangle rstA$ (W3110 typeA $\leftarrow \triangle rstA$)	This study
W3110ΔevgA	W3110, $\triangle evgA$ (W3110 typeA $\leftarrow \triangle evgA$)	This study
W3110∆kdpE	W3110, $\triangle kdpE$ (W3110 typeA $\leftarrow \triangle kdpE$)	This study
W3110∆torR	W3110, $\triangle torR$ (W3110 typeA $\leftarrow \triangle torR$)	This study
W3110∆uvrY	W3110, $\triangle uvrY$ (W3110 typeA $\leftarrow \triangle uvrY$)	This study
W3110∆qseB	W3110, $\triangle qseB$ (W3110 typeA $\leftarrow \triangle qseB$)	This study
W3110∆arcA	W3110, $\triangle arcA$ (W3110 typeA $\leftarrow \triangle arcA$)	This study
W3110∆atoC	W3110, $\triangle atoC$ (W3110 typeA $\leftarrow \triangle atoC$)	This study
W3110∆baeR	W3110, $\triangle baeR$ (W3110 typeA← $\triangle baeR$)	This study
W3110∆ntrC	W3110, $\triangle ntrC$ (W3110 typeA $\leftarrow \triangle ntrC$)	This study
W3110∆rcsB	W3110, $\triangle rcsB$ (W3110 typeA $\leftarrow \triangle rcsB$)	This study
W3110∆pyrR	W3110, $\triangle pyrR$ (W3110 typeA $\leftarrow \triangle pyrR$)	This study
W3110∆btsR	W3110, $\triangle btsR$ (W3110 typeA $\leftarrow \triangle btsR$)	This study
W3110∆creB	W3110, $\triangle creB$ (W3110 typeA $\leftarrow \triangle creB$)	This study
W3110∆basR	W3110, $\triangle basR$ (W3110 typeA $\leftarrow \triangle basR$)	This study
W3110∆cusR	W3110, $\triangle cusR$ (W3110 typeA $\leftarrow \triangle cusR$)	This study
W3110∆narP	W3110, $\triangle narP$ (W3110 typeA $\leftarrow \triangle narP$)	This study
W3110∆zraR	W3110, $\Delta z raR$ (W3110 typeA $\leftarrow \Delta z raR$)	This study
W3110∆rssB	W3110, $\triangle rssB$ (W3110 typeA $\leftarrow \triangle rssB$)	This study
W3110∆glrR	W3110, $\triangle glrR$ (W3110 typeA $\leftarrow \triangle glrR$)	This study
W3110∆fimZ	W3110, $\Delta fimZ$ (W3110 typeA $\leftarrow \Delta fimZ$)	This study
W3110∆ygeK	W3110, $\triangle ygeK$ (W3110 typeA $\leftarrow \triangle ygeK$)	This study
W3110∆dcuR	W3110, $\triangle dcuR$ (W3110 typeA \leftarrow $\triangle dcuR$)	This study
W3110∆yhjB	W3110, $\triangle yhjB$ (W3110 typeA $\leftarrow \triangle yhjB$)	This study
W3110∆cheB	W3110, $\triangle cheB$ (W3110 typeA $\leftarrow \triangle cheB$)	This study
W3110∆cheY	W3110, $\triangle cheY$ (W3110 typeA $\leftarrow \triangle cheY$)	This study
W3110∆hprR	W3110, $\triangle hprR$ (W3110 typeA $\leftarrow \triangle hprR$)	This study

The E. coli strains constructed in this study would be provided from National BioResourse Project (NBRP) E. coli of Japan.

Table 5-1. Bacterial strains used in this study. (Continued.)

Name	Characterization	Reference
W3110∆ompR∆phoB	W3110, $\triangle ompR$, $\triangle phoB$ (W3110 $\triangle phoB \leftarrow \triangle ompR$)	This study
W3110∆ompR∆phoP	W3110, $\triangle ompR$, $\triangle phoP$ (W3110 $\triangle phoP \leftarrow \triangle ompR$)	This study
W3110ΔphoBΔphoP	W3110, $\Delta phoB$, $\Delta phoP$ (W3110 $\Delta phoB \leftarrow \Delta phoP$)	This study
W3110ΔompRΔphoBΔphoP	W3110, $\Delta ompR$, $\Delta phoB$, $\Delta phoP$ (W3110 Δ phoB Δ phoP \leftarrow $\Delta ompR$)	This study
W3110ΔompRΔenvZ	W3110, $\triangle ompR$, $\triangle envZ$ (W3110 $\triangle ompR \leftarrow \triangle envZ$)	This study
W3110ΔphoBΔphoR	W3110, $\Delta phoB$, $\Delta phoR$ (W3110 $\Delta phoB \leftarrow \Delta phoR$)	This study
W3110ΔphoPΔphoQ	W3110, $\Delta phoP$, $\Delta phoQ$ (W3110 $\Delta phoP \leftarrow \Delta phoQ$)	This study
W3110ΔphoPΔkdpE	W3110, $\Delta phoP$, $\Delta kdpE$ (W3110 $\Delta phoP \leftarrow \Delta kdpE$)	This study
W3110ΔphoBΔcreB	W3110, $\Delta phoB$, $\Delta creB$ (W3110 $\Delta phoB$ ← $\Delta creB$)	This study
W3110∆ompR∆cpxR	W3110, $\triangle compR$, $\triangle cpxR$ (W3110 $\triangle cmpR \leftarrow \triangle cpxR$)	This study
W3110∆ompR∆rstA	W3110, $\triangle ompR$, $\triangle rstA$ (W3110 $\triangle ompR \leftarrow \triangle rstA$)	This study
W3110∆rstA∆cusR	W3110, $\triangle rstA$ (W3110 $\triangle rstA \leftarrow \triangle cusR$)	This study
W3110∆rstA∆cusR∆hprR	W3110, $\triangle rstA$, $\triangle cusR$, $\triangle hprR$ (W3110 $\triangle rstA \triangle cusR \leftarrow \triangle hprR$)	This study
W3110∆cusS	W3110, $\triangle cusS$ (W3110 typeA $\leftarrow \triangle cusS$)	This study
W3110∆zraS	W3110, $\Delta z raS$ (W3110 typeA $\leftarrow \Delta z raS$)	This study
W3110∆kdpD	W3110, $\triangle kdpD$ (W3110 typeA $\leftarrow \triangle kdpD$)	This study
W3110∆phoQ	W3110, $\triangle phoQ$ (W3110 typeA $\leftarrow \triangle phoQ$)	This study
W3110∆basS	W3110, $\triangle basS$ (W3110 typeA $\leftarrow \triangle basS$)	This study
W3110∆baeS	W3110, $\triangle baeS$ (W3110 typeA $\leftarrow \triangle baeS$)	This study
W3110∆cpxA	W3110, $\triangle cpxA$ (W3110 typeA $\leftarrow \triangle cpxA$)	This study
W3110∆envZ	W3110, $\triangle envZ$ (W3110 typeA $\leftarrow \triangle envZ$)	This study
W3110∆evgS	W3110, $\triangle evgS$ (W3110 typeA $\leftarrow \triangle evgS$)	This study
W3110∆glrK	W3110, $\Delta g l r K$ (W3110 typeA $\leftarrow \Delta g l r K$)	This study
W3110∆qseC	W3110, $\triangle qseC$ (W3110 typeA $\leftarrow \triangle qseC$)	This study
W3110∆rcsC	W3110, $\triangle rcsC$ (W3110 typeA $\leftarrow \triangle rcsC$)	This study
W3110∆rcsD	W3110, $\triangle rcsD$ (W3110 typeA $\leftarrow \triangle rcsD$)	This study
W3110∆rstB	W3110, $\triangle rstB$ (W3110 typeA $\leftarrow \triangle rstB$)	This study
W3110∆hprS	W3110, $\triangle hprS$ (W3110 typeA $\leftarrow \triangle hprS$)	This study
W3110∆atoS	W3110, $\triangle atoS$ (W3110 typeA $\leftarrow \triangle atoS$)	This study
W3110∆barA	W3110, $\triangle barA$ (W3110 typeA $\leftarrow \triangle barA$)	This study
W3110ΔcreC	W3110, $\triangle creC$ (W3110 typeA $\leftarrow \triangle creC$)	This study
W3110∆ntrB	W3110, $\triangle ntrB$ (W3110 typeA $\leftarrow \triangle ntrB$)	This study
W3110ΔphoR	W3110, $\triangle phoR$ (W3110 typeA $\leftarrow \triangle phoR$)	This study
W3110∆uhpB	W3110, $\triangle uhpB$ (W3110 typeA $\leftarrow \triangle uhpB$)	This study
W3110ΔbtsS	W3110, $\triangle btsS$ (W3110 typeA $\leftarrow \triangle btsS$)	This study
W3110ΔpyrS	W3110, $\triangle pyrS$ (W3110 typeA $\leftarrow \triangle pyrS$)	This study
W3110∆arcB	W3110, $\triangle arcB$ (W3110 typeA $\leftarrow \triangle arcB$)	This study
W3110ΔcitA	W3110, $\triangle citA$ (W3110 typeA $\leftarrow \triangle citA$)	This study
W3110∆dcuS	W3110, $\triangle dcuS$ (W3110 typeA $\leftarrow \triangle dcuS$)	This study
W3110∆narQ	W3110, $\triangle narQ$ (W3110 typeA $\leftarrow \triangle narQ$)	This study
W3110∆narX	W3110, $\triangle narX$ (W3110 typeA $\leftarrow \triangle narX$)	This study
W3110∆torS	W3110, $\triangle torS$ (W3110 typeA $\leftarrow \triangle torS$)	This study
W3110∆cheA	W3110, $\triangle cheA$ (W3110 typeA $\leftarrow \triangle cheA$)	This study
W3110ΔenvZΔphoR	W3110, $\triangle envZ$, $\triangle phoR$ (W3110 $\triangle phoR \leftarrow \triangle envZ$)	This study
W3110ΔenvZΔphoQ	W3110, $\Delta envZ$, $\Delta phoQ$ (W3110 $\Delta phoQ \leftarrow \Delta envZ$)	This study

The E. coli strains constructed in this study would be provided from National BioResource Project (NBRP) E. coli of Japan.

Table 5-1. Bacterial strains used in this study. (Continued.)

Name	Characterization	Reference
W3110ΔphoRΔphoQ	W3110, $\Delta phoR$, $\Delta phoQ$ (W3110 $\Delta phoQ \leftarrow \Delta phoR$)	This study
W3110ΔenvZΔphoRΔphoQ	W3110, $\Delta envZ$, $\Delta phoR$, $\Delta phoQ$ (W3110 $\Delta phoQ\Delta phoR$ ← $\Delta envZ$)	This study
W3110∆34RR	W3110, $\Delta phoP$, $\Delta phoB$, $\Delta citB$, $\Delta ompR$, $\Delta narL$, $\Delta cpxR$, $\Delta uhpA$, $\Delta rstA$, $\Delta evgA$, $\Delta kdpE$, $\Delta torR$, $\Delta uvrY$, $\Delta qseB$, $\Delta arcA$, $\Delta atoC$, $\Delta baeR$, $\Delta ntrC$, $\Delta rcsB$, $\Delta pyrR$, $\Delta btsR$, $\Delta creB$, $\Delta basR$, $\Delta cusR$, $\Delta narP$, $\Delta zraR$, $\Delta rssB$, $\Delta glrR$, $\Delta fimZ$, $\Delta ygeK$, $\Delta dcuR$, $\Delta yhjB$, $\Delta cheB$, $\Delta cheY$, $\Delta hprR$	This study
W3110∆30SK	W3110, $\Delta cusS$, $\Delta zraS$, $\Delta kdpD$, $\Delta phoQ$, $\Delta basS$, $\Delta baeS$, $\Delta cpxA$, $\Delta envZ$, $\Delta evgS$, $\Delta glrK$, $\Delta qseC$, $\Delta rcsC$, $\Delta rcsD$, $\Delta rstB$, $\Delta hprS$, $\Delta atoS$, $\Delta barA$, $\Delta creC$, $\Delta ntrB$, $\Delta phoR$, $\Delta uhpB$, $\Delta btsS$, $\Delta pyrS$, $\Delta arcB$, $\Delta citA$, $\Delta dcuS$, $\Delta narQ$, $\Delta narX$, $\Delta torS$, $\Delta cheA$	This study

The E. coli strains constructed in this study would be provided from National BioResource Project (NBRP) E. coli of Japan.

Table 5-2. Plasmids and oligonucleotides used in this study.

Name	Characterization	Reference
Plasmids		
pLUX	kan, luxCDABE, STOP codons, ribosome binding site	Burton et al. 2010
pLUX-mgtA	pLUX, mgtA promoter-luxCDABE	This study
pLUX-pstS	pLUX, pstS promoter-luxCDABE	This study
pLUX-ompC	pLUX, ompC promoter-luxCDABE	This study
pBAD33	pACYC184 derived, P _{BAD} Cm ^r	Guzman et al. 1995
pBADPhoP-FLAG	pBAD33, FLAG-tagged PhoP at C-terminus	This study
pBADPhoB-FLAG	pBAD33, FLAG-tagged PhoB at C-terminus	This study
pBADOmpR-FLAG	pBAD33, FLAG-tagged OmpR at C-terminus	This study
Oligonucleotides		
For luciferase reporte	r plasmid	
mgtA_Lux_F	TCGTCTTCACCTCGACTACGCCGTCGATATTACGCCGTTT	This study
mgtA_Lux_R	ACTAACTAGAGGATCAAGGAGTCCCTCCGCACTGTCTGAA	This study
pstS_Lux_F	TCGTCTTCACCTCGATGTGGAAGAGGTGATTGCACCGATC	This study
pstS_Lux_R	ACTAACTAGAGGATCAATGTCTCCTGGGAGGATTCATAAA	This study
ompC_Lux_F	TCGTCTTCACCTCGAAAACAAAGATTGCTGGAAATTATGC	This study
ompC_Lux_R	ACTAACTAGAGGATCCCTGCTACCAGCAGAGCTGGGACCA	This study
pLux_R	CCGTCCATTTGTGATAATAGTGG	This study
For RR expression pl	as mid	
PHOPF-1	TAGCGAATTCGAGCTAGGAGGAATTCACCATGCGCGTACTGGTTGTTGA	This study
PHOPR-1	${\tt CAAAACAGCCAAGCTITACTATTTATCGTCGTCATCTTTGTAGTCGCGCAATTCGAACAGATAGC}$	This study
PHOBF-1	TAGCGAATTCGAGCTAGGAGGAATTCACCATGGCGAGACGTATTCTGGT	This study
PHOBR-1	${\tt CAAAACAGCCAAGCTITACTATTTATCGTCGTCATCTTTGTAGTCAAAAGCGGCTTGAAAAACGAT}$	This study
OMPRF-1	TAGCGAATTCGAGCTAGGAGGAATTCACCATGCAAGAGAACTACAAGATTCT	This study
OMPRR-1	CAAAACAGCCAAGCTTTACTATTTATCGTCGTCATCTTTGTAGTCTGCTTTAGAGCCGTCCGGTA	This study

The plasmids constructed in this study would be provided from National BioResource Project (NBRP) E. coli of Japan.

5-2-2. Growth condition of *E. coli*

E. coli cells were grown at 30°C in M9-glucose medium.

5-2-3. Multi-gene knockout in the E. coli genome by the HoSeI method

The W3110 type A strain harboring pCas was grown in LB medium containing 1% arabinose and 50 µg/mL kanamycin to logarithmic phase and then was collected and suspended in a solution of 0.1 M CaCl₂. This suspension of E. coli was subjected to transformation by the psgRNA-target and DNA fragment to recover the digested site by CRISPR-Cas9. psgRNA-ompR, psgRNA-phoB, psgRNA-phoP, psgRNA-envZ, psgRNA-phoR, psgRNA-phoO, psgRNA-kdpE, psgRNA-creB, psgRNA-cpxR, psgRNA-rstA, psgRNA-cusR, psgRNA-hprR, psgRNA-arcA, psgRNA-basR, psgRNA-baeR, psgRNA-qseB, and psgRNA-torR were used as psgRNA-target plasmids (Table 4-2). The 83-bp DNA fragments were prepared by hybridization of a pair of complementary synthetic oligonucleotides (see the DNA sequences shown in Appendix Table 4). In comparison with no colonies observed on LB agar containing 100 µg/mL ampicillin by transformation with only psgRNA-target, the addition of the DNA fragment produced transformants that grew on LB agar containing ampicillin. To verify the introduction of a stop codon on the target gene of the genome, genomic DNA was prepared from the transformant and used as a template for amplification of the target sequence by PCR using a pair of oligonucleotides, as shown in Appendix Table 3. The introduction of a stop codon on the target gene was confirmed by DNA sequencing of the amplified DNA.

5-2-4. Time-lapse observation on microscope

Strains were inoculated in M9 glucose medium and shaken overnight at 37°C. The cultures were washed with M9 medium three times and diluted 10-fold into the medium. The diluted cultures were spread on an M9 glucose plate. Next, the plates were cut and placed on a slide glass. The preparation was sealed on a glass coverslip with nail polish. The cells were imaged with a microscope (IX81, Olympus) using a 100x/NA 1.4 objective lens (M Plan Apochromat MPLAPON-Oil, Olympus) and a Retiga EXi Fast1394 CCD camera (Q Imaging). The temperature was maintained at 30°C using a closed circulation system (EYELA). Image acquisition and microscope control were performed with Image Pro Plus (Nippon roper). The elapsed time until cell division and growth rate of each *E. coli* strain were measured by ImageJ.

5-2-5. Construction of RR protein expression plasmid

I constructed the OmpR, PhoB, and PhoP expression plasmids as well as arabinose-inducible expression system of NarL family RR as previously described (Yoshida *et al.* 2015). In brief, the protein-coding regions of *phoP*, *phoB*, and *ompR* gene with an artificial SD sequence were amplified by PCR using specific primers (Table 5-2). Each amplified DNA fragment was inserted

into the linear pBAD33 vector by In Fusion system (Takara Bio, Japan), resulting in construction of the FLAG-tagged RR protein expression plasmids, pBADPhoP-FLAG, pBADPhoB-FLAG, and pBADOmpR-FLAG (Table 5-2).

5-2-6. Luciferase reporter assay in E. coli

I performed luciferase reporter assay in *E. coli* to evaluate activity of TCS-target promoters *in vivo* as previously described (Yamanaka *et al.* 2018; Yamanaka *et al.* 2020). In brief, the *ompC*, *mgtA*, *pstS* promoters were amplified by PCR using W3110 type A genome as a template, a pair of primers (see DNA sequence shown in Table 5-2), and Ex Taq DNA polymerase (Takara Bio, Japan). The promoter DNA was inserted into the *Bam* HI and *Xho* I sites of pLUX vector (Burton *et al.* 2010) by the In-Fusion system (Takara Bio, Japan). The inserted DNA sequence on the resulting plasmid was confirmed by DNA sequencing (Table 5-2). The constructed pLux-mgtA, pLux-pstS, and pLux-ompC were transformed into each strain. Transformants were grown in the M9-glucose medium at 37°C with shaking for overnight. Then, overnight culture was transferred into fresh M9-glucose medium and OD₆₀₀ and a total intensity of luminescence of culture were measured with a plate reader (Corona). The ratio of luminescence to OD₆₀₀ (LUX/OD) was evaluated as a specific activity of the promoter.

5-2-7. Cluster analysis

Cluster analysis was performed with R software (https://www.R-project.org/). The obtained data of the elapsed time and the growth rate were prepared for Ward's method. A hierarchical clustering dendrogram was calculated using Euclidean distances.

5-2-8. Correlation of the number of COGs and the genome size with the Gompertz function

I used all of the genome sequences of 628 species of bacteria registered in the COG databank. TCS genes and RNA polymerase genes were isolated, and the number of these genes was counted for each bacterial genome. The number of COGs involved in TCSs and the RNA polymerase subunit was analyzed in comparison with the genome size, and the average number of COGs was calculated for each genome size of 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, and 15 Mb. The calculated data were fitted by the Gompertz curve $y = ab^{e^{-cx}}$, where y is the number of COGs and x is the genome size.

5-3. Results

5-3-1. Estimation of highly conserved response regulator genes in the bacterial genome

The Clusters of Orthologous Groups of proteins (COGs) database has been designed to classify proteins on the basis of orthology (Tatusov et al. 1997). Twelve groups are detected as twocomponent response regulators from the genomes of 628 bacteria species in the COG database (Tatusov et al. 2000) as follows: OmpR family as COG0745, NarL/FixJ family as COG2197, PleD family as COG3706, NtrC family as COG2204, CheB family as COG2201, LytR/AlgR family as COG3279, AmiR/NasT family as COG3707, FixJ family as COG4566, ActR/RegA family as COG4567, YesN/AraC family as COG4753, CriR family as COG4565, and SAPR family as COG3947. I found a correlation between the number of RR COGs and genome size, as fitted by the Gompertz curve (Fig. 5-1A). Bacterial genomes less than 5 Mbp in size contained the relative RR COG number of 2 RR COGs per Mbp of genome, while bacterial genomes more than 5 Mbp in size contained 8 RR COGs (Fig. 5-1A). Bacterial RNA polymerase core enzyme consists of 2α , β , β ', ω (Murakami. 2015), which were featured by COG0202, COG0085, COG0086, and COG1758 (Tatusov et al. 2000). The COG0202, COG0085, and COG0086 were almost completely conserved among more than 99% of bacteria registered in COG database (Tatusov et al. 2000). In addition of four COGs featuring bacterial RNA polymerase core subunits, the 8 COGs of RNA polymerase subunits were similarly analyzed, resulting that bacterial genomes contained at least 4 RNA polymerase COGs relating RNA polymerase core subunits and major sigma factor and bacterial genomes more than 3 Mbp in size contained 7 RNA polymerase COGs by the addition of COGs relating minor sigma factors (Fig. 5-1B). Among the 628 species of bacteria, conservation of RR COGs is the highest in the OmpR family, at 95%, and the lowest in the SAPR family, at 8.4% (Fig. 5-1C), suggesting that the OmpR family is extensively conserved in bacteria as a member of the core genome.

The copy number of RR genes of the *E. coli* K-12 genome was evaluated in detail. The genome sequence of *E. coli* K-12, which is 4.6 Mbp in size, has 34 predicted response regulator genes, of which 6 are classified as RR COGs (Mizuno. 1997; Yamamoto *et al.* 2005). Among all 34 RR genes, OmpR family genes are the most prevalent, with 14 genes, *arcA*, *phoB*, *cusR*, *kdpE*, *torR*, *phoP*, *rstA*, *hprR*, *basR*, *qseB*, *ompR*, *cpxR*, *creB*, and *baeR*, and the CriR family and LytT family have the smallest number, at 2 genes, with *citB* and *dcuR* and with *btsR* and *pyrR*, respectively (Figs. 5-1C and 5-2A). Six RR genes of the OmpR family are known to be positively self-activated (Fig. 5-1D) (Yamamoto *et al.* 2002; Yamamoto and Ishihama. 2006; Ogasawara *et al.* 2012; Pukklay *et al.* 2013; Gao and Stock. 2013; Sperandio *et al.* 2002). In good agreement with the positive feedback regulation of the OmpR family RRs of *E. coli* K-12, OmpR, PhoB, and PhoP are abundant regulators in *E. coli* through the growth phase in rich and poor medium, with

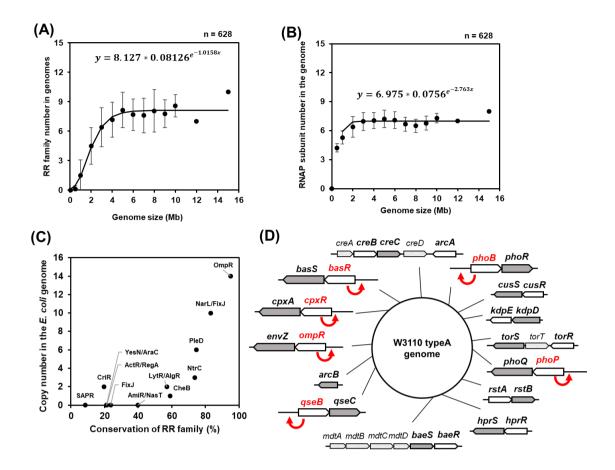
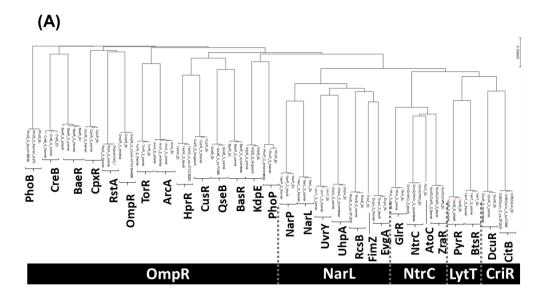
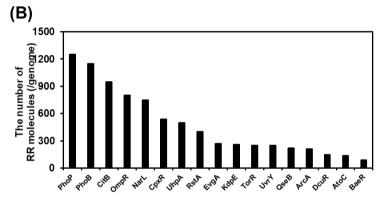




Figure 5-1. Conservation of two-component system response regulator families in bacterial genomes. [A] The correlation between genome size and the number of RR families in the genomes. Twelve groups are detected as twocomponent response regulators from the bacterial genomes of 628 species in the COG database as follows: OmpR family as COG0745, NarL/FixJ family as COG2197, PleD family as COG3706, NtrC family as COG2204, CheB family as COG2201, LytR/AlgR family as COG3279, AmiR/NasT family as COG3707, FixJ family as COG4566, ActR/RegA family as COG4567, YesN/AraC family as COG4753, CriR family as COG4565, and SAPR family as COG3947. The number of COGs involved in the RR family (y-axis) was analyzed in comparison with the genome size (x-axis). The average number of COGs (black circle) and standard deviation (SD, error bar) were calculated for each genome size of 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, and 15 Mb. The calculated data were fitted by the Gompertz curve $y = ab^{e^{-cx}}$, where y is the number of COGs and x is the genome size. The formula of the fitted Gompertz curve is shown in the graph. [B] The correlation between genome size and the number of RNA polymerase subunit in bacterial genomes. Eight groups are detected as RNA polymerase subunit from 628 species bacteria genomes in COG database (Tatusov et al. 2000) as the following; beta subunit as COG0085, beta' subunit as COG0086, sigma70/sigma32 subunit as COG0568, alpha subunit as COG0202, sigma24 subunit as COG1595, K/omega subunit as COG1758, sigma54 subunit as COG1508, and sigma subunit as COG1191. I used all of genome sequence of 628 species of bacteria registered in COG databank. The number of COGs involved in RNA polymerase subunit (y axis) was analyzed in comparison with genome size (x axis). The average of the number of COGs (black circle) and standard deviation (SD, error bar) was calculated for each genome size of 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, and 15 Mb. The calculated data fitted Gompertz curve $y = ab^{e^{-cx}}$ with y is the number of COGs and x is the genome size. The formula of fitted Gompertz curve are shown in the graph. [C] Conservation of RR families in the bacterial genomes and gene copy number in the E. coli genome. Based on the calculated data shown in A, the conservation (%) of each COG was calculated on all genomes of 628 species of bacteria (x-axis). The y-axis shows the gene copy number of each RR family in the E. coli K-12 genome. [D] OmpR family RR genes in the E. coli K-12 genome. E. coli K-12 W3110 has 14 OmpR family response regulator genes in its genome. Each arrow shows OmpR family response regulators (white), their cognate sensor kinases (gray), and other genes in the operon (light gray). The direction of arrows shows the direction of genes in the E. coli genome. Red letters and arrows show the genes known as positive feedback regulators.

Figure 5-2. Classification of two-component system RRs in *E. coli*. [A] The dendrogram of response regulators of *E. coli*. Cluster analysis was performed for RRs of *E. coli* and two of related species (*E. albertii*, *S. enterica*, *S. sonnei*, *S. flexneri* K-272, *S. dysenteriae*, *S. boydii* 965-58, *C. freundii*, *E. fergusonii*, and *C. koseri* ATCC BAA895) with ClustalW software, resulting in each of RR family shown in the right side. [B] The amount of intracellular RR molecules in the *E. coli* K-12 cell. The intracellular levels of 65 species of transcription factor with known function in *E. coli* K-12 W3110 at various phases of cell growth has showed the order of intracellular response regulators. (Ishihama *et al.* 2014). Y axis shows the number of RR molecules per genome as arranged from Ishihama *et al.* (2014).

approximately 1,000 copies per genome (Fig. 5-2B) (Ishihama *et al.* 2014). Taking these observations together, I suspected that OmpR, PhoB, and PhoP play important roles in the adaptive growth of fast-growing *E. coli* as main RR factors.

5-3-2. Construction of multi RR or SK-gene knockout strains using HoSeI method

All single knockouts of the 14 OmpR family RRs and all strains of seven combinations of main RR gene knockout for PhoB, PhoP, and OmpR (Table 5-1) were bred using the newly developed HoSeI method (see Chapter 4). For knockout of each gene, I constructed sgRNA-expressing plasmids (Table 4-2) and designed DNA fragments, including the nonsense codon for

the target gene. The proper introduction of the nonsense codon, TAA, was confirmed by Sanger sequencing in all cases (Fig. 4-2). The psgRNA-free transformant was isolated by IPTG-inducible sgRNA for the psgRNA plasmid from pCas as previously described (Jiang *et al.* 2015). The isolated psgRNA-free transformant was subjected to further gene knockout by repeating the HoSeI method.

5-3-3. Contribution of the optimum adaptive growth of *E. coli* by RR genes

Bacteria are able to grow both in liquid and solid conditions. In both cases, the number of bacteria cells similarly increases (Koga et al. 2004). To measure the elapsed time until cell division and growth rate of single E. coli cells, time-lapse observation of single cells growing on solid medium was adopted in a 30 min range for 8 h with light microscopy. At the end of observation after 8 hours, 70.8% of the parent strain, W3110 type A, cells formed micro-colonies including 4 to 8 cells, while 8.3% of the cells were not completely divided (Fig. 5-3A). The majority of parent cells started cell division 0.5 - 4.5 hours after incubation (80.2%) and showed a growth rate of 0.5 - 1.1 divisions/hour (75.0%) (Figs. 5-3AP). Fourteen single OmpR family RR gene knockout strains isolated in this study were subjected to time-lapse observation, as was the parent strain. Most of the single RR gene knockouts, except for $\Delta ompR$, showed that the percentage of non-growing cells was in the range of 17% to 1.5% at the end of observation after 8 hours, with a maximum of 17% for $\Delta rstA$ and a minimum of 1.5% for $\Delta cpxR$ (Fig. 5-3). All of the $\Delta ompR$ strain cells formed microcolonies (Figs. 5-3KP). For all of the single RR gene knockout strains, more than 75% of cells started cell division in the time range of 0.5 - 4.5 hours, similar to the parent strain, with several deviations (Fig. 5-3P). The growth rates were divided into three groups with comparison to the parent strain: the faster growth rate mutants were $\Delta phoB$, $\Delta cusR$, $\Delta torR$, $\Delta rstA$, $\Delta hprR$, $\Delta baeR$, $\triangle qseB$, $\triangle ompR$, $\triangle cpxR$, $\triangle basR$, and $\triangle arcA$; the similar growth rate mutants were $\triangle phoP$ and $\triangle creB$; and the slow growth rate mutant was $\Delta kdpE$ (Fig. 5-3Q).

5-3-4. The adaptive growth of $E.\ coli$ defected by a knockout of an arbitrary pair of phoP, phoB, and ompR genes

Next, three double main RR gene knockout strains, $\Delta phoP\Delta phoB$, $\Delta phoP\Delta ompR$, and $\Delta phoB\Delta ompR$, were isolated from two single RR knockout strains, $\Delta phoB$ and $\Delta phoP$ (Table 5-1) subjected to time-lapse observation to determine the elapsed time until cell division and the growth rate. Most of the cells of the three double RR gene knockout strains did not significantly grow at the end of observation after 8 hours (Fig. 5-4E-G), resulting in a long-elapsed time and slow growth rate (Figs. 5-5A and 5-4). However, all three double RR gene knockout strains formed colonies after incubation for more than 48 hours under the same conditions (data not shown). Surprisingly,

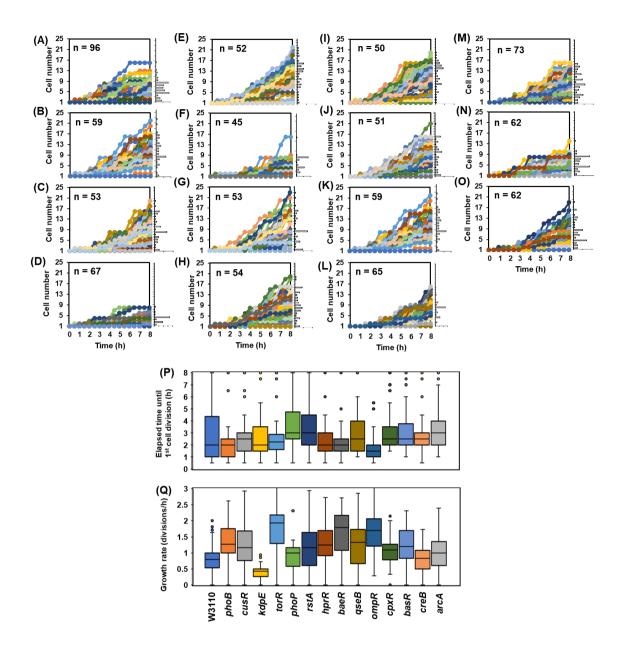


Figure 5-3. Contribution of OmpR family RRs to the adaptive growth of E. coli cells. [A-O] Single cell analysis of adaptive growth of single RR gene knockout E. coli strains. Strains were inoculated in M9 glucose medium and shaken overnight at 37°C. The cultures were washed with M9 medium three times and diluted 10-fold into the medium. The diluted cultures were spread on M9 glucose agar plate. The piece of agar from the plates were cut and put on a slide glass. The preparation was sealed on a glass coverslip with nail polish. The cells were imaged on a microscope (IX81, Olympus) using 100x/NA 1.4 objective lens (M Plan Apochromat MPLAPON-Oil, Olympus) and Retiga EXi Fast1394 CCD camera (Q Imaging) every 30 min until 8 hours. Temperature was maintained at 30°C using a closed circulation system (EYELA). Image acquisition and microscope control were performed with Image Pro Plus (Nippon roper). The cell division of each E. coli cell (hours, showed in x axis) and the population of cell in each microcolony (y axis) were measured by ImageJ. The histograms of cell population in a microcolony at after 8 hrs were showed on the right side of each graph. Each graph shows the parent strain W3110 (A), $\Delta phoB$ (B), $\Delta cusR$ (C), $\Delta kdpE$ (D), $\Delta torR$ (E), $\Delta phoP$ (F), $\Delta rstA$ (G), $\Delta hprR$ (H), $\Delta baeR$ (I), $\Delta qseB$ (J), $\Delta ompR$ (K), $\Delta cpxR$ (L), $\Delta basR$ (M), $\Delta creB$ (N), and $\Delta arcA$ (O). The number of measured cell (n) are shown in each graph. [P, Q] Time-lapse observation of single cells growing on solid medium was adopted in the 30 min range for 8 hours with a light microscope. Based on the measured data (A-O), the elapsed time until cell division (hours, shown in **P**) and growth rate of single *E. coli* cells (divisions/hour, shown in **Q**) were calculated and are shown as box plots with error bars and outliers.

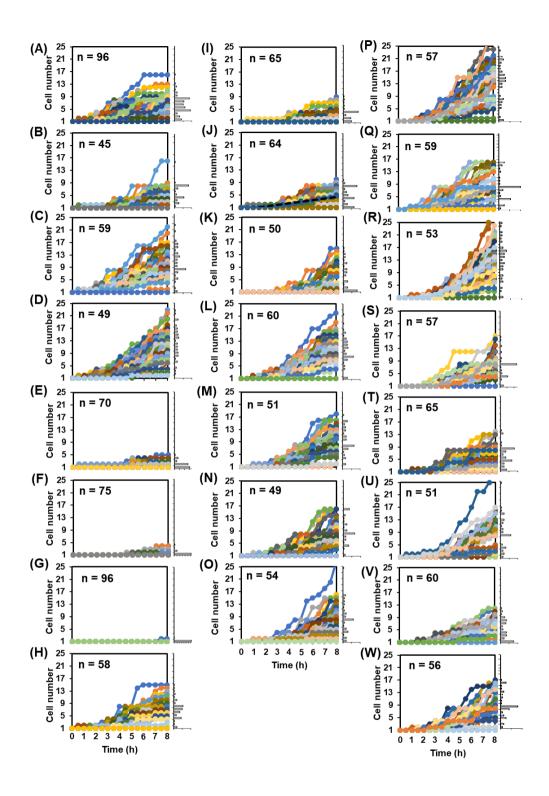


Figure 5-4. Single cell analysis of adaptive growth of multi-gene knockout *E. coli* strains. Strains were cultured, spread on M9 glucose agar plate, and imaged on a microscope as described in Fig. 5-3. The cell division (hours, showed in x axis) and the population of cell in each microcolony (y axis) were measured and the histograms of cell population in a microcolony at after 8 hrs were showed on the right side of each graph. Each graph shows the parent strain W3110 (A), $\Delta phoP$ (B), $\Delta phoB$ (C), $\Delta ompR$ (D), $\Delta phoP$ $\Delta phoB$ (E), $\Delta phoP\Delta ompR$ (F), $\Delta phoB\Delta ompR$ (G), $\Delta phoP\Delta phoB\Delta ompR$ (H), $\Delta phoQ$ (I), $\Delta phoQ$ (I), $\Delta phoQ\Delta phoR$ (L), $\Delta phoQ\Delta phoR$ (L), $\Delta phoQ\Delta envZ$ (M), $\Delta phoR\Delta envZ$ (N), $\Delta phoQ\Delta phoR\Delta envZ$ (O), $\Delta phoP\Delta phoQ$ (P), $\Delta phoB\Delta phoR$ (Q), $\Delta ompR\Delta envZ$ (R), $\Delta phoP\Delta kdpE$ (S), $\Delta phoB\Delta creB$ (T), $\Delta ompR\Delta cpxR$ (U), $\Delta ompR\Delta rstA$ (V), and $\Delta rstA\Delta cusR\Delta hprR$ (W). The number of measured cell (n) are shown in each graph.

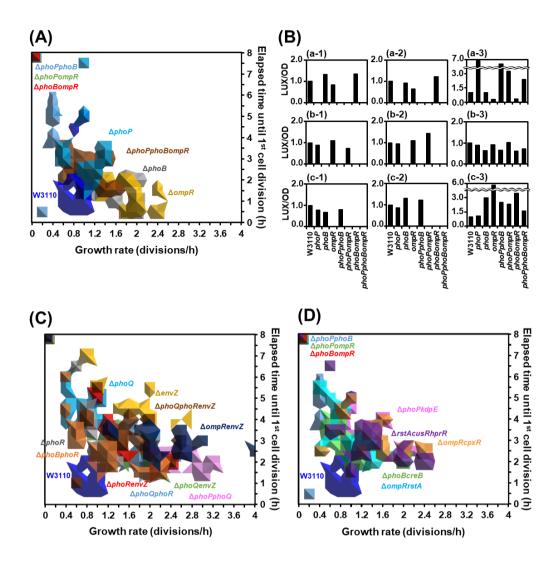
the triple RR gene knockout strain showed similar behavior to that of the parent strain. At the end of observation after 8 hours, 93.1% of $\Delta phoP\Delta phoB\Delta ompR$ strain cells formed micro-colonies, while 6.9% of them were not totally divided (Fig. 5-4H). The majority of the $\Delta phoP\Delta phoB\Delta ompR$ strain cells started cell division at 1.5 - 3.5 hours after incubation (86.2%) and showed a growth rate of 0.6 - 1.4 divisions/hour (79.3%), as did the parent strain (Figs. 5-4H, 5-5A, and 5-6).

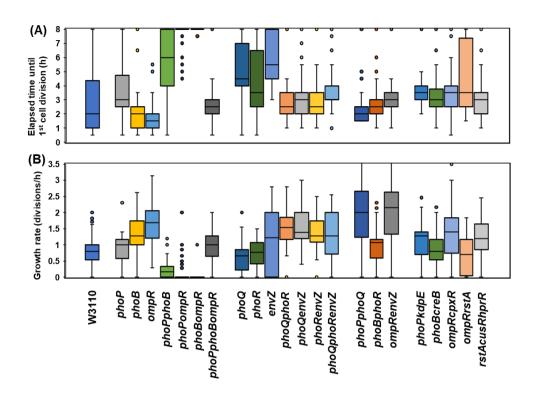
I examined to confirm gene knockout of an arbitrary pair of phoP, phoB, and ompR genes, defecting the adaptive growth, by genetic complement test using luciferase reporter system (Fig. 5-5B). The ompC, pstS, and mgtA promoters were employed as target promoters by EnvZ-OmpR, PhoQ-PhoP, PhoR-PhoB. The activation of ompC promoter requires the phosphorylated OmpR to upstream of ompC gene, which is stimulated by the cognate SK EnvZ at high osmolarity (Egger et al. 1997). The activation of pstS and mgtA promoters requires the phosphorylated PhoB and PhoP to upstream of each gene, respectively (Hsieh and Wanner. 2010; Groisman 2010). The intracellular level of phosphorylated PhoB is decreased by PhoR at high level of inorganic orthophosphate (Hsieh and Wanner. 2010) and the level of phosphorylated PhoP is decreased by PhoQ at high level of magnesium (Groisman 2010). Each lux reporter plasmid, pLUX-ompC, pLUX-pstS, and pLUXmgtA, was introduced into all strains of seven combinations of main RR gene knockout for OmpR, PhoB, and PhoP (Tables 5-1 and 5-2) and then the luciferase activity was measured in each culture of M9 glucose. As expected, the activity of ompC promoter was detected in the parent strain but not in the knockout strains defecting only ompR gene (Fig. 5-5B). The defect of ompC promoter activity was recovered by expression of ompR gene in all of the knockout strains defecting only ompR gene (Fig. 5-5B). As well as the activation of ompC promoter by ompR gene, the activities of pstS and mgtA promoters were defected in the knockout strains defecting only phoB and phoP genes, respectively (Fig. 5-5B). The activities of pstS and mgtA promoters in mutants were recovered by expression of phoB and phoP genes, respectively (Fig. 5-5B).

Taking all these observations together, OmpR, PhoP, and PhoB each slightly contribute to the growth of *E. coli*, while the disappearance of any two OmpR, PhoP, and PhoB proteins seriously disrupts the adaptive growth of fast-growing *E. coli*.

5-3-5. The adaptive growth of $E.\ coli$ not defected by a knockout of an arbitrary pair of envZ, phoR, and phoQ genes

EnvZ, PhoR, and PhoQ are the cognate SKs of OmpR, PhoB, and PhoP, respectively. Three single SK gene knockout strains, $\Delta envZ$, $\Delta phoR$, and $\Delta phoQ$, were subjected to time-lapse observation as described above. At the end of observation after 8 hours, the percentages of non-growing cells of $\Delta envZ$, $\Delta phoR$, and $\Delta phoQ$ were 32.0%, 20.3%, and 21.5%, respectively (Fig. 5-6). In the case of $\Delta envZ$, 54.0% of cells started cell division 4.0 - 6.5 hours after incubation, and




Figure 5-5. Contribution of main two-component RRs to the adaptive growth of E. coli cells. Time-lapse observation of single cells growing on solid medium was adopted in the 30 min range for 8 hours with a light microscope (Fig. 5-4). Based on the measured data (Fig. 5-4), the elapsed time until cell division (hours, shown on the y-axis) and growth rate of a single E. coli cell (divisions/hour, shown on the x-axis) were calculated and are shown as contour graphs. [A] The parent strain (blue) and three of the main RR (phoP, phoB, and ompR) gene knockout strains, $\Delta phoP$ (light blue), $\Delta phoB$ (gray), $\Delta ompR$ (yellow), $\Delta phoP\Delta phoB$ (pale blue), $\Delta phoP\Delta ompR$ (yellowish green), $\Delta phoB\Delta ompR$ (red), and ΔphoPΔphoBΔompR (dark brown). [B] The constructed pLUX-mgtA (a), pLUX-pstS (b), and pLUX-ompC (c), shown in Table 5-2, were transformed into each strain (a-1, b-1, and c-1) and each strain carrying either RR protein expression plasmids, pBADPhoP-FLAG (a-3), pBADPhoB-FLAG (b-3), or pBADOmpR-FLAG (c-3) or the empty pBAD33 vector (a-2, b-2, and c-2). Transformants were grown in the M9-glucose medium including 50 mg/mL kanamycin for pLUX plasmid and 20 mg/mL chloramphenicol for pBAD plasmid at 37°C with shaking for overnight. And then, overnight culture was diluted 100-fold by fresh M9-glucose medium with (a-2 and 3, b-2 and 3, and c-2 and 3) and without (a-1, b-1, and c-1) 0.002% arabinose for RR protein expression from pBAD plasmid and incubated at 37°C with shaking. OD₆₀₀ and a total intensity of luminescence were measured and the ratio of luminescence to OD600 (LUX/OD) of each strain was calculated. The specific activity for each promoter was normalized with the parent strain W3110. [C] The parent strain (blue), cognate SK genes of main RR (phoP, phoB, and ompR) knockout strains $\Delta phoQ$ (light blue), $\Delta phoR$ (gray), $\Delta envZ$ (yellow), $\Delta phoQ\Delta phoR$ (pale blue), $\Delta phoQ\Delta envZ$ (yellowish green), $\Delta phoR\Delta envZ$ (red), and $\Delta phoQ\Delta phoR\Delta envZ$ (dark brown); and cognate pairs of SK-RR knockout strains $\Delta phoP\Delta phoQ$ (pink), $\Delta phoB\Delta phoR$ (light brown), and $\Delta ompR\Delta envZ$ (navy). [D] The parent strain (blue), double RR gene knockout strains $\Delta phoP\Delta phoB$ (pale blue), $\Delta phoP\Delta ompR$ (yellowish green), $\Delta phoB\Delta ompR$ (red), $\Delta phoP\Delta kdpE$ (pink), $\Delta phoB\Delta creB$ (green), $\Delta ompR\Delta cpxR$ (orange), and $\triangle ompR\triangle rstA$ (light blue), and a triple RR gene knockout strain $\triangle rstA\triangle cusR\triangle hprR$ (purple).

50.0% showed a growth rate of 0.8 - 2.0 divisions/hour, similar to the parent strain (Figs. 5-4K, 5-5C, and 5-6). In the case of $\Delta phoQ$, 61.5% of cells started cell division 4.0 - 5.5 hours after incubation, and 67.7% showed a growth rate of 0.3 - 1.0 divisions/hour, similar to the parent strain (Figs. 5-4I, 5-5C, and 5-6). In the case of $\Delta phoR$, 62.5% of cells started cell division 1.5 - 4.5 hours after incubation, and 73.4% showed a growth rate of 0.4 - 1.4 divisions/hour, similar to the parent strain (Figs. 5-4J, 5-5C, and 5-6). Overall, three single SK gene mutants showed slightly delayed elapsed times, but their growth rate was similar to that of the parent strain.

Next, three double SK gene knockout strains, $\Delta phoQ\Delta phoR$, $\Delta phoQ\Delta envZ$, and $\Delta phoR\Delta envZ$, were subjected to time-lapse observation to determine the elapsed time until cell division and the growth rate. Most of the cells of the three double SK gene knockout strains grew significantly at the end of observation after 8 hours (Fig. 5-4L-N). All three double SK gene knockout strains showed an elapsed time in the range of 2.0 - 3.5 hours, and the growth rate varied in the range of 0.8 - 2.4 divisions/hour (Figs. 5-4L-N, 5-5C, and 5-6). In addition, for the triple SK gene knockout strain, 92.6% of cells formed micro-colonies (Fig. 5-4O). The majority of the $\Delta phoQ\Delta phoR\Delta envZ$ strain cells started cell division 1.5 - 4.5 hours after incubation (77.8%) and showed a growth rate of 0.4 - 2.0 divisions/hour (74.1%) (Figs. 5-4O, 5-5C, and 5-6). Taking all these observations together, the disappearance of any two OmpR, PhoP, and PhoB proteins seriously disrupts the adaptive growth of fast-growing *E. coli*, while the disappearance of any two EnvZ, PhoR, and PhoQ, the cognate SKs for OmpR, PhoB, and PhoQ, proteins slightly affect the adaptive growth of fast-growing *E. coli*.

5-3-6. A specific arbitrary pair of *phoP*, *phoB*, and *ompR* genes for the optimum adaptive growth of *E. coli*

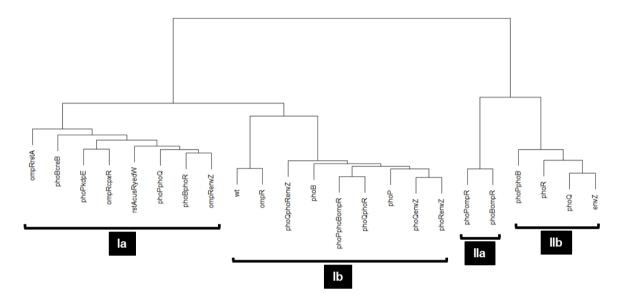
All three double RR gene knockout strains, $\Delta phoP\Delta phoB$, $\Delta phoP\Delta ompR$, and $\Delta phoB\Delta ompR$, almost disrupted the adaptive growth. I examined whether double RR gene knockout of other combinations. Cluster analysis with all RRs of *E. coli* K-12 showed that PhoP, PhoB, and OmpR were highly similar RRs (Fig. 5-2). Therefore, I knocked out a pair of similar genes and isolated four double RR knockout strains of $\Delta phoP\Delta kdpE$, $\Delta phoB\Delta creB$, $\Delta ompR\Delta cpxR$, and $\Delta ompR\Delta rstA$ (see above) (Table 5-1 and Fig. 4-2A). Most of the cells of the $\Delta phoP\Delta kdpE$, $\Delta phoB\Delta creB$, $\Delta ompR\Delta cpxR$, and $\Delta ompR\Delta rstA$ strains grew significantly at the end of observation after 8 hours (Fig. 5-4S-V). Three double RR gene knockout strains, $\Delta phoP\Delta kdpE$, $\Delta phoB\Delta creB$, and $\Delta ompR\Delta cpxR$, showed an elapsed time in the range of 2.5 – 4.0 hours, and the growth rate varied in the range of 0.75 - 1.5 divisions/hour (Figs. 5-4S-U, 5-5D, and 5-6). On the other hand, $\Delta ompR\Delta rstA$ strains showed an elapsed time in the range of 2.5 – 7.5 hours, and the growth rate varied in the range of 0.05 - 1.2 divisions/hour (Figs. 5-4V, 5-5D, and 5-6). Furthermore, another

Figure 5-6. The distribution of cell growth values of *E. coli* **strains.** Based on the measured data (Fig. 5-4), the elapsed time until cell division (**A**) and growth rate of single *E. coli* cell (**B**) were calculated and shown as box plots with error bars and outliers.

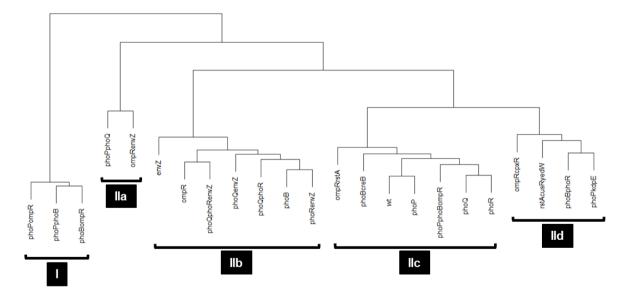
triple RR gene knockout strain, $\Delta rstA\Delta cusR\Delta hrpR$, also presented micro-colony formation in 92.6% of the population, starting cell division 1.5 - 4.5 hours after incubation (83.9%) and showing a growth rate of 0.6 - 2.0 divisions/hour (69.6%), as did the $\Delta phoQ\Delta phoR\Delta envZ$ strain (Figs. 5-4W, 5-5D, and 5-6).

I next examined three cognate pair double gene knockout strains, $\Delta phoP\Delta phoQ$, $\Delta phoB\Delta phoR$, and $\Delta ompR\Delta envZ$, for adaptive growth. Most of the cells of the three cognate pair double gene knockout strains grew significantly at the end of observation after 8 hours (Fig. 5-4P-R). These three strains showed an elapsed time in the range of 1.0-3.5 hours, but their growth rates varied (Figs. 5-4P-R, 5-5C, and 5-6). The $\Delta phoP\Delta phoQ$ and $\Delta ompR\Delta envZ$ strains showed growth rates in the range of 1.3-2.7 divisions/hour (70%) and 1.3-2.7 divisions/hour (70%), respectively, whereas 70% of cells of the $\Delta phoB\Delta phoR$ strain showed growth rates of 0.4-1.4 divisions/hour, similar to the parent strain (Figs. 5-5C and 5-6). In agreement with observations of single knockout strains as shown above, these observations showed that the roles of PhoP, PhoB, and OmpR did not completely correspond with their cognate SKs, PhoQ, PhoR, and EnvZ, respectively, in adaptive growth.

To demonstrate the genetic involvement of TCSs for adaptive growth, cluster analysis was performed with the elapsed time and the growth rate on solid medium (Fig. 5-7). The dendrogram of the elapsed time showed two groups, each divided into two sub-groups (Fig. 5-7A). The parent strain was assigned to Group-Ib, which included not only all single RR gene knockout strains but also all double SK gene knockout strains and triple RR and SK gene knockout strains (Fig. 5-7A). Additionally, all cognate pair gene knockout strains were assigned to Group-Ia (Fig. 5-7A). All of the single SK gene knockout strains were assigned to Group II, in which all of the double RR gene knockout strains were part of Group IIb (Fig. 5-7A). The dendrogram of the growth rate also showed two groups (Fig. 5-7B). The parent strain was assigned to Group II, which included most of the knockout strains, whereas all of the double RR gene knockout strains were isolated in Group I (Fig. 5-7B).


Cluster analysis of the elapsed time showed that all four of the double RR gene knockout strains studied were assigned to Group-Ia but not to Group-II (Fig. 5-7A). Additionally, clustering for the growth rate showed that all four of the double RR gene knockout strains were not assigned to Group I (Fig. 5-7B). Taken together, knockout of the double RR gene among *ompR*, *phoP*, and *phoB*, specifically caused a long delay in the start of growth and a lower growth rate (Fig. 5-5).

5-3-7. The adaptive growth of the TCS gene-deprived strains


The *E. coli* K-12 strain has 34 conserved RR genes and 30 conserved SK genes in the genome. To reveal the contribution of these RRs on the adaptive growth of *E. coli*, I performed the time-lapse observation using every single RR- and SK-gene knockout strains and the all 34 RR gene- and 30 SK gene-deprived strain bred by the HoSeI system in Chapter 4. The elapsed time until cell division and the growth rate were determined based on the observation of single cells. At the end of observation, after 8 hours, 70.8% of the parent strain, W3110 type A, cells formed microcolonies, including 4 to 8 cells, while 8.3% of the cells were not completely divided (Fig. 5-8A). The majority of parent cells started cell division 0.5 - 4.5 hours after incubation (80.2%) and showed a growth rate of 0.5 - 1.1 divisions/hour (75.0%) (Figs. 5-8DE).

Thirty-four single RR gene knockout strains isolated in this study were also subjected to time-lapse observation, as was the parent strain (Appendix Figure 3A). Most of the single RR gene knockouts, except for $\Delta ompR$ and $\Delta evgA$, showed that the percentage of non-growing cells was in the range of 17% to 1.5% at the end of observation after 8 hours, with a maximum of 17% for $\Delta rstA$ and a minimum of 1.5% for $\Delta cpxR$ (Appendix Figure 3A). All of the $\Delta ompR$ and $\Delta evgA$ strain cells formed micro-colonies. For all of the single RR gene knockout strains, more than 75% of cells started cell division in the time range of 0.5-5.0 hours, similar to the parent strain, with several deviations (Fig. 5-8D). The growth rates were divided into three groups with comparison to the

(A) Elapsed time until 1st cell division

(B) Growth rate

Figure 5-7. Cluster analysis using values for *E. coli* **cell growth of strains.** Cluster analysis was performed with R software (https://www.R-project.org/). The presenting data of the elapsed time (**A**) and the growth rate (**B**) were prepared for Ward's method. Hierarchical clustering dendrogram was calculated using Euclidean distances.

parent strain: the faster growth rate mutants were $\Delta phoB$, $\Delta fimZ$, $\Delta cusR$, $\Delta torR$, $\Delta rstA$, $\Delta cheY$, $\Delta uvrY$, $\Delta hprR$, $\Delta baeR$, $\Delta rcsB$, $\Delta evgA$, $\Delta pyrR$, $\Delta ygeK$, $\Delta qseB$, $\Delta ompR$, $\Delta yhjB$, $\Delta ntrC$, $\Delta cpxR$, $\Delta zraR$, $\Delta basR$, $\Delta dcuR$, and $\Delta arcA$; the similar growth rate mutants were $\Delta citB$, $\Delta phoP$, $\Delta narL$, $\Delta rssB$,

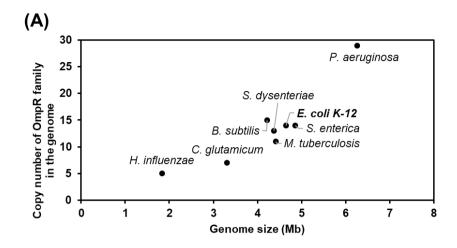
 $\Delta cheB$, $\Delta btsR$, $\Delta narP$, $\Delta atoC$, $\Delta glrR$, $\Delta uhpA$, and $\Delta creB$; and the slow growth rate mutant was $\Delta kdpE$ (Fig. 5-8E). There was a similar tendency to increase the variation of growth rate in the 22 mutants growing faster than the parent strain. The difference did not appear to correlate with the intracellular level or the number of regulated genes.

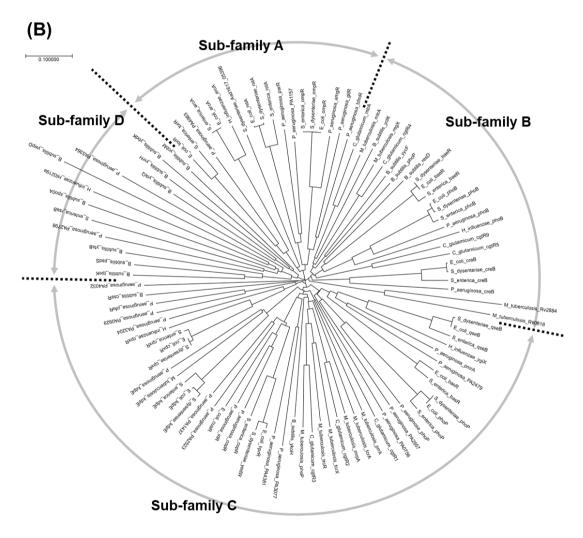
In contrast, in the RR-deprived strain, $\Delta 34$ RR, 66.7% of cells formed micro-colonies, including 2 to 4 cells at the end of observation after 8 hours. However, 30.0% of the cells were not completely divided (Fig. 5-8B). The majority of the $\Delta 34$ RR cells started cell division 2.5 - 6.6 hours after incubation (70.0%) and showed a growth rate of 0.14 – 0.68 divisions/hour (70.0%) (Figs. 5-8DE). The $\Delta 34$ RR strain exhibited the delayed 1st cell division and the slower growth rate (both showed p < 0.01, tested using the Mann-Whitney U test) (Fig. 5-8DEH). Although the elapsed time until cell division showed a broader distribution in the $\Delta 34$ RR strain, the variation of growth rate was not significantly different from the parent strain. These results suggested that the lack of RRs decreases the prompt adaptation and start of growth.

Next, thirty single SK gene knockout strains isolated in this study were also subjected to time-lapse observation, as was the parent strain (Appendix Figure 3B). Most of the single SK gene knockouts, except for $\Delta citA$, $\Delta hprS$, $\Delta rcsC$, and $\Delta creC$ showed that the percentage of non-growing cells was in the range of 32% to 1.75% at the end of observation after 8 hours, with a maximum of 32% for $\triangle envZ$ and a minimum of 1.75% for $\triangle cusS$ (Appendix Figure 3B). All of the $\triangle citA$, $\triangle hprS$, $\Delta rcsC$, and $\Delta creC$ strain cells formed micro-colonies. For most of the single SK gene knockout strains, more than 75% of cells started cell division in the time range of 0.5 - 5.0 hours, similar to the parent strain, with several deviations (Fig. 5-8F). Five strains, $\Delta phoR$, $\Delta phoQ$, $\Delta btsS$, $\Delta envZ$, and $\Delta uhpB$, prolonged the elapsed time until 1st cell division (Fig. 5-8F). The growth rates were divided into three groups with comparison to the parent strain: the faster growth rate mutants were $\Delta cusS$, $\Delta citA$, $\Delta kdpD$, $\Delta torS$, $\Delta narX$, $\Delta rstB$, $\Delta hprS$, $\Delta baeS$, $\Delta atoC$, $\Delta rcsC$, $\Delta rcsD$, $\Delta evgS$, $\Delta pyrS$, $\triangle narQ$, $\triangle glrK$, $\triangle barA$, $\triangle ntrB$, $\triangle zraS$, and $\triangle dcuS$; the similar growth rate mutants were $\triangle phoR$, $\Delta cheA$, $\Delta arcB$, $\Delta envZ$, $\Delta cpxA$, $\Delta basS$, and $\Delta creC$; and the slow growth rate mutant was $\Delta phoQ$, $\Delta btsS$, $\Delta qseC$, and $\Delta uhpB$ (Fig. 5-8G). There was a similar tendency to increase the variation of growth rate in the 15 of 19 mutants growing faster than the parent strain. As with the insights in the adaptive growth of knockout strains of the arbitrary pair of three RRs (phoP, phoB, ompR) or their cognate SKs (phoQ, phoR, envZ), the characteristics of single knockouts were discordant between the specific pair of SK and RR (Fig. 5-8D-G).

In the SK-deprived strain, $\Delta 30$ SK, about 80% of cells formed micro-colonies, including 2 to 16 cells at the end of observation after 8 hours. However, 20.8% of the cells were wholly undivided (Fig. 5-8B). The majority of the $\Delta 30$ SK cells started cell division 2.5 – 7.0 hours after incubation (70.0%) and showed a growth rate of 0.1 – 1.3 divisions/hour (80.0%) (Figs. 5-8FG).

Like the $\Delta 34RR$ strain, the $\Delta 30SK$ strain exhibited the delayed 1st cell division (p < 0.01, tested using the Mann-Whitney U test). However, there was no significant difference in the growth rate between the $\Delta 30SK$ strain the parent (p > 0.05, tested using the Mann-Whitney U test) (Fig. 5-8GH). Although the growth rate showed a wider distribution in the $\Delta 30SK$ strain, it was not remarkably different from the parent strain. These findings proposed that the deprivation of SKs mainly affects the start of growth, but not on the growth rate.


Figure 5-8. The distribution of cell growth values of TCS knockout strains. Strains were cultured, spread on M9 glucose agar plate, and imaged on a microscope as described in Fig. 5-3. The cell division (hours, showed in x axis) and the population of cell in each microcolony (y axis) were measured. Based on the measured data (A-C and Appendix Figure 3), the elapsed time until cell division (D and F) and growth rate of single *E. coli* cell (E and G) were calculated and shown as box plots with error bars and outliers. [A-C] The cell division (hours, showed in x axis) and the population of cell in each microcolony (y axis) were measured and the histograms of cell population in a microcolony at after 8 hrs were showed on the right side of each graph. Each graph shows the parent strain W3110 type A (A), RR-deprived strain Δ 34RR (B), and SK-deprived strain Δ 30SK (C). The number of measured cell (n) are shown in each graph. [H] Based on the measured data (A-C), the elapsed time until cell division (hours, shown on the y-axis) and growth rate of a single *E. coli* cell (divisions/hour, shown on the x-axis) were calculated and are shown as contour graphs. The parent strain (blue), Δ 34RR strain (magenta), and Δ 30SK strain (green).

5-4. Discussion

5-4-1. Importance of OmpR family genes in bacteria

An OmpR family comparison of Haemophilus influenzae Rd KW20, Corynebacterium glutamicum ATCC 13032, Bacillus subtilis subsp. subtilis str. 168, Mycobacterium tuberculosis H37Rv, Shigella dysenteriae 1617, Escherichia coli str. K-12 substr. MG1655, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, and Pseudomonas aeruginosa PAO1 reveals that the four sub-families actually divided PhoP, PhoB, and OmpR (Fig. 5-9B and Appendix Table 9). OmpR family proteins of E. coli were classified into 3 sub-families, except for sub-family D, and PhoP, PhoB, and OmpR were divided into sub-families C, B, and A, respectively. The result of the OmpR family comparison was mostly identical to the result of cluster analysis with all RRs of E. coli K-12 (Figs. 5-9B and 5-2A). Additionally, OmpR family RRs are conserved not only in closely related bacteria with genome sizes similar to that of E. coli but also in bacteria with smaller (H. influenzae) or larger (P. aeruginosa) genomes than that of E. coli. A genome comparison of E. coli strains reveals that the predicted pan-genome comprises 15,741 gene families and that the core genome comprises only 993 (6%) of the families, as represented in every genome (Lukjancenko et al. 2010). OmpR family genes are included in the E. coli core genome and increase their number in the genome. I found that the OmpR family includes conserved TCS genes withing the bacterial genome. The number of the OmpR family gene is also correlated with the size of the genome (Fig. 5-9A). The E. coli K-12 genome has 14 genes of the OmpR family, occupying more than 40% of the total number of RR genes. The intracellular levels of 65 species of transcription factors with known function in E. coli K-12 W3110 typeA at various phases of cell growth showed the following decreasing order for the intracellular response regulators: PhoP -> PhoB -> CitB -> OmpR -> NarL -> CpxR -> UhpA -> RstA -> EvgA -> KdpE -> TorR -> UvrY -> QseB -> ArcA (Ishihama et al. 2014). Among these 14 more abundant species, 9 species of RRs belong to the OmpR family (PhoP, PhoB, OmpR, CpxR, RstA, KdpE, TorR, QseB, and ArcA). I isolated all of 14 OmpR family single RR gene knockout strains by HoSeI method, indicating that none of them was essential for growth under the used conditions in good agreement with previous works (Oshima et al. 2002; Zhou et al. 2003). Time-lapse live cell imaging with microscope indicated that 14 single RR gene knockout strains were divided into three groups, the faster growth rate mutants, the normal growth rate mutants, and the slow growth rate mutant (Fig. 5-3Q). The difference did not appear to correlate with the intracellular level or the number of regulated genes. Despite having different initial growth times, all single RR gene knockout strains showed similar growth curves in liquid M9 glucose and LB media, as did the parent strain (data not shown). These results suggest that each RR gene could cause fluctuations of the initial growth rate in the range of 0.5 - 2.0 divisions/hour among the bacterial populations. However, it is unclear how each RR gene changes the homogeneity of the initial growth rate in the bacterial population.

Figure 5-9. Comparison of OmpR family RRs among several bacteria. [A] OmpR family RR gene copy number of several bacteria. On the basis of the data shown in **Fig. 5-1**, the copy number of OmpR family RR genes (y-axis) in eight bacterial genomes was compared with the respective genome size (x-axis). The eight bacterial strains are *Haemophilus influenzae* Rd KW20, *Corynebacterium glutamicum* ATCC 13032, *Bacillus subtilis* subsp. subtilis str. 168, *Mycobacterium tuberculosis* H37Rv, *Shigella dysenteriae* 1617, *Escherichia coli* str. K-12 substr. MG1655, *Salmonella enterica* subsp. enterica serovar Typhimurium str. LT2, and *Pseudomonas aeruginosa* PAO1. [B] Phylogenetic analysis of the amino acid sequence of OmpR family RRs. All of the amino acid sequences of the OmpR family RRs in 8 bacteria shown in [A] were compared and analysed with ClustalW software. The result divided the RRs into four sub-families. The amino acid sequence of the used OmpR family RRs was compiled in **Appendix Table 9**.

5-4-2. Epistatic requirement of the arbitrary pair of PhoP, PhoB, and OmpR

As unexpected, I found that knockout of the arbitrary pair of phoP, phoB, and ompR are shown as an epistatic inhibition for E. coli adaptive growth (Fig. 5-5). When the species of three genes knockout was introduced into single phoP knockout strain (Table 5-1), only double defect with ompR gene dramatically inhibited the adaptive growth of E. coli (Fig. 5-5). When the species of four genes knockout was introduced into single phoB knockout strain (Table 5-1), only double defect with either ompR or phoP gene dramatically inhibited the adaptive growth of E. coli (Fig. 5-5). Besides, the knockout for citB gene, one of NarL family RR gene of E. coli, was introduced into both single phoB and single phoP knockout strains, resulting that both double gene knockout strains, $\Delta cit B \Delta pho B$ and $\Delta cit B \Delta pho P$, did not show significant inhibition of the adaptive growth of E. coli (data not shown). Despite different genetic backgrounds, the genetic defect of an arbitrary pair of phoP, phoB, and ompR largely delays initiation of growth and dramatically reduces the initial growth rate, the results of which were entirely different from not only phoP, phoB, and ompR RR single knockouts but also their triple knockouts (Figs. 5-5 and 5-7). In good agreement with the most abundant RRs, PhoP, PhoB, and OmpR (Ishihama et al. 2014), a memory of expression of genes below cytotoxic levels exists for positively autoregulated systems of the genes phoP, phoB, and ompR in E. coli. Each OmpR family member, including E. coli PhoP, PhoB, and OmpR, contains an N-terminal receiver domain (RD) and a C-terminal DNA-binding domain (DBD), which are connected by a linker. To date, the molecular structure of the truncated RD and DBD and the full-length active and inactive form of OmpR family proteins have been solved by X-ray crystallography and NMR spectroscopy (Bucker et al. 2002; Blanco et al. 2002; Robinson et al. 2003; Nowak et al. 2006; Friedland et al. 2007; King-Scott et al. 2007; Barbieri et al. 2010; Menon et al. 2011; Choudhury et al. 2013). Among these proteins, dimerization or higher-order multimerization is commonly observed, and at least three surfaces have been observed for intermolecules. Two surfaces, the $\alpha 1\alpha 5$ and the $\alpha 4\beta 5\alpha 5$ faces, conserve the RD and one surface the DBD. PhoP, PhoB, and OmpR are known to bind to at least 15 promoters in vivo, as denoted in RegulonDB (http://regulondb.ccg.unam.mx/index.jsp), indicating that the intracellular level of approximately 1,000 copies of PhoP, PhoB, and OmpR each per genome is clearly too high, and thus, these proteins could play a role except in the stress response. These are in good agreement with the observation of the adaptive growth of E. coli of a knockout of an arbitrary pair of envZ, phoR, and phoQ genes, the cognate SK genes for OmpR, PhoR, and PhoP (Figs. 5-4L-N, 5-5C, and 5-6). PhoB and OmpR are also known to bind to more than 100 genomic sites in vitro denoted in TEC (https://shigen.nig.ac.jp/E.coli/tec/top/), suggesting that PhoP, PhoB, and OmpR each basically function as a DNA-binding protein. Genome-wide binding profiles have indicated the recognized DNA sequences TTTAnnnnTTTA as the PhoP-binding consensus (Harai et al. 2010), TTTGTTACAT as the OmpR-binding consensus (Seo et al. 2017), and TGTnAnAAAnnTGTnA

as the PhoB-binding consensus (Yang *et al.* 2012). The tandem triplet of A or T, found as a common sequence among the genes, could be weakly recognized by every one of PhoB, PhoP, and OmpR. Thus, *E. coli* cells could show adaptive growth when a total of 3,000 intracellular proteins of PhoP, PhoB, and OmpR have become associated with the genome. *E. coli* cells, however, could not properly grow, if insignificant occupation of the genome by 1,000 intracellular proteins of either PhoP, PhoB, or OmpR.

The triple RR gene knockout strain, however, recovered the elapsed time and the growth rate to values similar to those for the parent strain (Fig. 5-5A). This observation showed that a total of 3,000 intracellular proteins of PhoP, PhoB, and OmpR was not essential for adaptive growth of *E. coli*. One possible reason that normal growth of the triple RR gene knockout strain is the existence of excess intracellular RRs in place of PhoP, PhoB, and OmpR. I did not, however, find a significant difference in the profile of cellular proteins, with more than 200 proteins detected with LC-MS, between the parent strain and the triple RR gene knockout strain (data not shown). Additionally, the promoter activities of all TCS genes in the *E. coli* genome were measured using the luciferase reporter system, indicating that three double RR gene knockout strains and a triple RR gene knockout strain were mostly similar to the parent strain with respect to these promoter activities (data not shown).

These findings suggest that the mode of action for inhibition of adaptive growth by knockout of the arbitrary pair of phoP, phoB, and ompR is important for the bacterial cell cycle, genome replication and/or cell division but not for general metabolism and stress responses. The epistatic inhibition for E. coli adaptive growth by an arbitrary pair of phoP, phoB, and ompR was obscure on LB agar (data not shown). All of the isolated knockout strains also showed a similar adaptive growth to the parent strain on LB agar (data not shown). One possible is that only either PhoP, PhoB, or OmpR at a high intracellular level bias genome expression profile and inhibit the optimum adaptive growth in E. coli grown in M9 glucose that contains less amino acids than LB broth. Another is that a high concentration of only one species of OmpR family severely affect bacterial growth by an unknown molecular mechanism, which could be suppressed by a high concentration of another species of OmpR family. These findings suggest that RRs contribute to the optical high level of the intracellular RRs, resulting in a fitness advantage for growth. The results are in good agreement with the idea of fitness advantages being conferred for both positive and negative feedback in both dynamic and stable environments. Taken together, in E. coli, PhoP, PhoB, and OmpR are autoregulated at the optimal intracellular level and balance of their intracellular level play an important role in survival for repeatable growth fitness under the evaluated experimental conditions.

5-4-3. The role of TCSs on the adaptive growth

The all RR gene knockout strain showed both the delayed start of proliferation and the slow growth rate (Fig. 5-8). These features were not found in the adaptive growth of thirty-four single RR gene knockout strains. The elapsed time until cell division of the RR-deprived strain was longer than that of the *uhpA* mutant, which showed the most delayed elapsed time in single gene-knockout mutants. The RR-deprived mutant also exhibited the slowest growth rate. One of the single RR mutants, *kdpE* mutant, also represented the slower growth rate than the parent strain; however, the start of growth was not significantly different from the parent strain. The feature of adaptive growth found in the RR-deprived strain was not the sum of thirty-four single RR gene mutants. This result is a good agreement with the results which the genetic defect of an arbitrary pair of *phoP*, *phoB*, and *ompR* causes considerable adaptive growth delay, whereas the triple RR gene knockout strain recovered the adaptive growth as well as the parent strain (Fig. 5-5A). Therefore, I speculate that the combination of RRs plays a role in the adaptive growth of *E. coli* with a different level of contribution.

Five single SK mutants, $\Delta phoR$, $\Delta phoQ$, $\Delta btsS$, $\Delta envZ$, and $\Delta uhpB$, prolonged the 1st cell division whereas the cognate RRs of PhoR, PhoQ, BtsS, EnvZ, and UhpB did not show a significant delay on starting cell division. It indicates that these five SKs contribute the start of cell division in a RR independent manner in the cell and might cause delayed 1st cell division in the all SK-deprived mutant. Even so, it should be noted that the double- and triple-gene knockout strains of phoQ, phoR and envZ recuperated the delayed elapsed time appeared in the single-gene knockouts. Hence, likewise the RRs, the contribution level of multi-SK knockouts probably fluctuates depends on the combination. Based on the fact that the SK-deprived mutant contains no unexpected mutations in the genome according to the complete genome sequence determined in Chapter 4, the parent-like initial growth rate of the strain suggests that the depletion of whole SKs causes a long time lag for adaptation because of the lack of sensitivity, but the cell can drive the adaptive growth without SKs after the successful start of the 1st cell division.

Together, these findings proposed that a set of TCSs acts as a mediator in the adaptive growth of *E. coli* by regulating the stress-dependent adaptation and epistasis effects. The further analysis of the RR- and SK-deprived strains is still needed to explain the mechanisms of the function of TCSs in the adaptive growth of *E. coli*. I anticipate the genetic complementation tests using the TCS defective mutant could identify other essential combinations of RRs and SKs, which the *E. coli* cell uses for adaptive growth.

CHAPTER 6. CONCLUSIONS

In this study, I have focused on revealing the role of TCSs on the adaptive growth of bacteria, which the proper rapid proliferation driven by the adapting-cell. To get the insight of the entire role of TCSs on the adaptive growth, I first worked on understanding each TCS. The PyrSR system was estimated to play a role in the reutilization of extracellular pyruvate, known as an exometabolite of *E. coli*. I newly identified 7 regulatory target genes of PyrR in addition to the known-target gene *yhjX*. Also, two pyruvate-sensing TCSs PyrSR and BtsSR showed the cross-talk at stage 1 and 2 for recognition of a single and the same exometabolite, pyruvate between two SKs (PyrS and BtsS), and for indirect regulation of *btsT* promoter by PyrS.

The analysis of the TCS promoter expression profile in *E. coli* indicated that *E. coli* could induce the biosynthesis of more than one TCS factors to respond and adapt to the environment. Then, I developed the novel genome editing technology, the HoSeI (Homologous Sequence Integration) method, based on CRISPR-Cas9. This systematic gene-editing method generated a set of gene-knockout strains, including the 34 RR- and 30 SK-knockout strains.

The RR- and SK-deprived strains exhibited some unique phenotype. The RR deprivation impacted both the growth rate and the maximum cell population under poor nutrient conditions, indicating that RRs makes the cell possible to drive the fast growth and to form the larger cell mass. In addition, the RR-knockout strain showed limited viability and high sensitivity to environmental changes. On the other hand, phenotype characterization showed that the SK-deprivation mostly caused the initial growth delay, but not the reduction of the cell mass. Interestingly, under the nutrient-rich condition, the growth of these two mutants was similar to the parent. These insights proposed the *E. coli* cell survives and performs adaptive growth using the signal transduction systems under severe environmental conditions. I speculated the *E. coli* cell might be able to increase its population in a signal-response independent manner under the eutrophic conditions.

As the results of single-cell observation, the arbitrary pair of *phoP*, *phoB*, and *ompR* are shown as an epistatic requirement for *E. coli* adaptive growth. Their cognate SK-independent feature provided that the arbitrary pairs of three main RRs play a signal-sensing independent role in an adaptive growth. Also, TCS-deprived strains showed the delayed 1st cell division and a slow growth rate. However, the TCS-deprived strain did not show the growth defect appeared in the double main RR gene-knockout strains. Thus, I speculate that the combination of RRs plays a role in the adaptive growth of *E. coli* with a different level of contribution. These findings demonstrated that TCSs acts as a mediator in the adaptive growth of *E. coli* by regulating the stress-dependent adaptation and epistasis effects. Further analysis of the TCS-deprived strain could explain the role of TCSs in the adaptive growth of *E. coli* and identify other essential combinations of TCSs which the *E. coli* cell uses for proper growth.

REFERENCES

Abayakoon P, Jin Y, Lingford JP, Petricevic M, John A, Ryan E, Wai-Ying Mui J, Pires DEV, Ascher DB, Davies GJ, Goddard-Borger ED, Williams SJ. (2018)

Structural and Biochemical Insights into the Function and Evolution of Sulfoquinovosidases. *ACS Cent Sci.* 4(9):1266-1273.

Amemura M, Makino K, Shinagawa H, Nakata A. (1986)

Nucleotide sequence of the phoM region of *Escherichia coli*: four open reading frames may constitute an operon. *J Bacteriol*. 168(1):294-302.

Ashenberg O, Keating AE, Laub MT. (2013)

Helix bundle loops determine whether histidine kinases autophosphorylate in *cis* or in *trans. J Mol Biol.* 425:1198-209.

Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. (2006)

Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol Syst Biol.* 2;2006.0008.

Bachmann BJ. (1972)

Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev. 36: 525-557.

Bachmann BJ. (1996)

Derivations and genotypes of some mutant derivatives of *Escherichia coli* K-12. *In Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology*, Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low Jr KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds), 2 edn, pp 2460–2488.

Barbieri CM, Mack TR, Robinson VL, Miller MT, Stock AM. (2010)

Regulation of response regulator autophosphorylation through interdomain contacts. *J. Biol. Chem.* 285, 32325–32335.

Behr S, Brameyer S, Witting M, Schmitt-Kopplin P, Jung K. (2017a)

Comparative analysis of LytS/LytR-type histidine kinase/response regulator systems in gamma-proteobacteria. *PLoS One*. 12:e0182993.

Behr S, Fried L, Jung K. (2014)

Identification of a novel nutrient-sensing histidine kinase/response regulator network in *Escherichia coli. J Bacteriol.* 196:2023–2029.

Behr S, Heermann R, Jung K. (2016)

Insights into the DNA-binding mechanism of a LytTR-type transcription regulator. *Biosci Res.* 36:e00326.

Behr S, Kristoficova I, Witting M, Breland EJ, Eberly AR, Sachs C, Schmitt-Kopplin P, Hadjifrangiskou M, Jung K. (2017b)

Identification of a high-affinity pyruvate receptor in Escherichia coli. Sci Rep. 7:1388.

Bettenbrock K, Fischer S, Kremling A, Jahreis K, Sauter T, Gilles ED. (2006)

A quantitative approach to catabolite repression in Escherichia coli. J Biol Chem. 281:2578–2584.

Blanco AG, Sola M, Gomis-Rüth FX, Coll M. (2002)

Tandem DNA recognition by PhoB, a two-component signal transduction transcriptional activator. *Struct.* 10, 701–713.

Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. (1997)

The complete genome sequence of *Escherichia coli* K-12. *Science*. 277(5331):1453-1462.

Blouin K, Walker SG, Smit J, Turner R. (1996)

Characterization of *in vivo* reporter systems for gene expression and biosensor applications based on luxAB luciferase genes. *Appl Environ Microb* 62:2013–2021.

Booth IR. (2005)

Glycerol and Methylglyoxal Metabolism. EcoSal Plus. 1.

Buckler DR, Zhou Y, Stock AM. (2002)

Evidence of intradomain and interdomain flexibility in an OmpR/PhoB homolog from Thermotoga maritima. *Struct.* 10, 153–164.

Burton NA, Johnson MD, Antczak P, Robinson A, Lund PA. (2010)

Novel aspects of the acid response network of *E. coli* K-12 are revealed by a study of transcriptional dynamics. *J Mol Biol*. 401(5):726-742.

Camacho MI, Alvarez AF, Chavez RG, Romeo T, Merino E, Georgellis D. (2015)

Effects of the global regulator CsrA on the BarA/UvrY two component signaling system. *J Bacteriol.* 197:983-991.

Casino P, Miguel-Romero L, Huesa J, García P, García-Del Portillo F, Marina A. (2018)

Conformational dynamism for DNA interaction in the Salmonella RcsB response regulator. *Nucleic Acids Res.* 46:456-472.

Chavez RG, Alvarez AF, Romeo T, Georgellis D. (2010)

The physiological stimulus for the BarA sensor kinase. J Bacteriol. 192(7):2009-2012.

Choudhury HG, Konstantinos B. (2013)

The dimeric form of the unphosphorylated response regulator BaeR. *Protein Sci.* 22, 1287–1293.

Coornaert A, Chiaruttini C, Springer M, Guillier M. (2013)

Post-transcriptional control of the *Escherichia coli* PhoQ-PhoP two component system by multiple sRNAs involves a novel pairing region of GcvB. *PLoS Genet.* 9:e1003156.

Coornaert A, Lu A, Mandin P, Springer M, Gottesman S, Guillier M. (2010)

MicA sRNA links the PhoP regulon to cell envelope stress. *Mol Microbiol*. 76:467-479.

Crooks GE, Hon G, Chandonia JM, Brenner SE. (2004)

WebLogo: A sequence logo generator. *Genome Research.* 14:1188-1190.

Datsenko KA, Wanner BL. (2000)

One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc Natl Acad Sci USA*. 97:6640-6645.

Delauné A, Dubrac S, Blanchet C, Poupel O, Mäder U, Hiron A, Leduc A, Fitting C, Nicolas P, Cavaillon JM, Adib-Conquy M, Msadek T. (2012)

The WalKR system controls major staphylococcal virulence genes and is involved in triggering the host inflammatory response. *Infect Immun.* 80(10):3438-3453.

Deutscher J, Francke C, Postma PW. (2006)

How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. *Microbiol Mol Biol Rev.* 70:939–1031.

Domka J, Lee J, Bansal T, Wood TK. (2007)

Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol. 9(2):332-346.

Dubrac S, Msadek T. (2004)

Identification of genes controlled by the essential YycG/YycF two-component system of *Staphylococcus aureus*. *J Bacteriol*. 186(4):1175-1181.

Dubrac S, Boneca IG, Poupel O, Msadek T. (2007)

New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in *Staphylococcus aureus*. *J Bacteriol*. 189(22):8257-8269.

Egger LA, Park H, Inouye M. (1997)

Signal transduction via the histidyl-aspartyl phosphorelay. Genes to Cells. 2, 167–184.

Fabret, C, Hoch JA. (1998)

A two-component signal transduction system essential for growth of *Bacillus subtilis*: implications for anti-infective therapy. *J Bacteriol*. 180:6375-6383.

Franke S, Grass G, Nies DH. (2001)

The product of the ybdE gene of the *Escherichia coli* chromosome is involved in detoxification of silver ions. *Microbiology*. 147(Pt 4):965-972.

Fried L, Behr S, Jung K. (2013)

Identification of a target gene and activating stimulus for the YpdA/YpdB histidine kinase/response regulator system in *Escherichia coli*. *J Bacteriol*. 195:807–815.

Friedland N, Mack TR, Yu M, Hung LW, Terwilliger TC, Waldo GS, Stock AM. (2007)

Domain orientation in the inactive response regulator Mycobacterium tuberculosis MtrA provides a barrier to activation. *Biochem.* 46, 6733–6743.

Gao R, Bouillet S, Stock AM. (2019)

Structural Basis of Response Regulator Function. Annu Rev Microbiol. 73:175-197.

Gao R, Stock AM. (2009)

Biological insights from structures of two-component proteins. Annu. Rev. Microbiol. 63, 133–154.

Gao R, Stock AM. (2013)

Evolutionary tuning of protein expression levels of a positively autoregulated two-component system. *PLoS Genet.* 9, e1003927.

Gao R, Stock AM. (2018)

Overcoming the cost of positive autoregulation by accelerating the response with a coupled negative feedback. *Cell Reports*. 24, 3061–3071.e6.

Goulian M. (2010)

Two-component signaling circuit structure and properties. Curr. Opin. Microbiol. 13, 184–189.

Groisman EA. (2001)

The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 183, 1835–1842.

Groisman EA. (2016)

Feedback Control of Two Component Regulatory Systems. Annu Rev Microbiol. 70:103-124.

Guillier M, Gottesman S. (2008)

The 5' end of two redundant sRNAs is involved in the regulation of multiple targets, including their own regulator. *Nucleic Acids Res.* 36:6781–6794.

Guyer MS, Reed RR, Steitz JA, Low KB. (1981)

Identification of a sex-factor-affinity site in *E. coli* as $\gamma\delta$. *Cold Spring Harbor Symp Quant Biol.* 45: 135–140.

Harari O, Park SY, Huang H, Groisman EA, Zwir I. (2010)

Defining the plasticity of transcription factor binding sites by deconstructing DNA consensus sequences: the PhoP-binding sites among gamma/enterobacteria. *PLoS Comput. Biol.* 6, e1000862.

Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, Ohtsubo E, Baba T, Wanner BL, Mori H, Horiuchi T. (2006)

Highly accurate genome sequences of *Escherichia coli* K-12 strains MG1655 and W3110. *Mol Syst Biol*. 2:2006.0007.

Hermsen R, Ursem B, Wolde PR. (2010)

Combinatorial gene regulation using auto-regulation. PLoS Comput. Biol. 6, 1–13.

Hirakawa H, Nishino K, Hirata T, Yamaguchi A. (2003)

Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in *Escherichia coli*. *J Bacteriol*. 185(6):1851-1856.

Hirakawa H, Nishino K, Yamada J, Hirata T, Yamaguchi A. (2003a)

Beta-lactam resistance modulated by the overexpression of response regulators of two-component signal transduction systems in *Escherichia coli*. *J Antimicrob Chemother*. 52(4):576-582.

Hoch JA. (2000)

Two-component and phosphorelay signal transduction. Curr Opin Microbiol. 3(2):165-170.

Holms H. (1996)

Flux analysis and control of the central metabolic pathways in *Escherichia coli*. *FEMS Microbiol Rev.* 19:85–116.

Hsieh YJ, Wanner BL. (2010)

Global regulation by the seven-component pi signaling system. *Curr. Opin. Microbiol.* 13, 198–203.

Hwang S, Choe D, Yoo M, Cho S, Kim SC, Cho S, Cho BK. (2018)

Peptide transporter CstA imports pyruvate in Escherichia coli K-12. J Bacteriol. 200:e00771–17.

Ishihama A, Kori A, Koshio E, Yamada K, Maeda H, Shimada T, Makinoshima H, Iwata A, Fujita N. (2014)

Intracellular concentrations of 65 species of transcription factors with known regulatory functions in *Escherichia coli*. *J Bacteriol*. 196(15):2718-2727.

Ishihama A, Shimada T, Yamazaki Y. (2016)

Transcription profile of *Escherichia coli*: genomic SELEX search for regulatory targets of transcription factors. *Nucleic Acids Res.* 44: 2058–2074.

Ishihama A. (2000)

Functional modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol. 54:499-518.

Ishihama A. (2010)

Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. *FEMS Microbiol Rev.* 34(5):628-645.

Ishihama A. (2012)

Prokaryotic genome regulation: a revolutionary paradigm. *Proc Jpn Acad Ser B Phys Biol Sci.* 2012;88(9):485-508.

Iuchi S, Cameron DC, Lin EC. (1989)

A second global regulator gene (*arcB*) mediating repression of enzymes in aerobic pathways of *Escherichia coli. J Bacteriol.* 171(2):868-873.

Iuchi S, Lin EC. (1992)

Mutational analysis of signal transduction by ArcB, a membrane sensor protein responsible for anaerobic repression of operons involved in the central aerobic pathways in *Escherichia coli*. *J Bacteriol*. 174(12):3972-3980.

Jacob-Dubuisson F, Mechaly A, Betton JM, Antoine R. (2018)

Structural insights into the signaling mechanisms of two-component systems. *Nat Rev Microbiol*. 16(10):585-593.

Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. (2015)

Multigene editing in the *Escherichia coli* genome via the CRISPR-Cas9 system. *Appl. Environ. Microbiol.* 81, 2506–2514.

Jishage M, Ishihama A. (1997)

Variation in RNA polymerase sigma subunit composition within different stocks of *Escherichia coli* W3110. *J Bacteriol*. 179:959-963

Kang Y, Weber KD, Qiu Y, Kiley PJ, Blattner FR. (2005)

Genome-wide expression analysis indicates that FNR of *Escherichia coli* K-12 regulates a large number of genes of unknown function. *J Bacteriol*. 187(3):1135-60.

King-Scott J, Nowak E, Mylonas E, Panjikar S, Roessle M, Svergun DI, Tucker PA. (2007) The structure of a full-length response regulator from Mycobacterium tuberculosis in a stabilized three- dimensional domain-swapped, activated state. *J. Biol. Chem.* 282, 37717-37729.

Koga K, Nishizawa Y, Matsumoto Y, Hara T, Takahashi K. (2004)

Evaluation of the growth activity of *Escherichia coli* and Staphylococcus aureus colonies on solid medium using microbial calorimetry. *Biocontrol Sci.* 9, 21–28.

Kraxenberger T, Fried L, Behr S, Jung K. (2012)

First insights into the unexplored two-component system YehU/YehT in *Escherichia coli*. *J Bacteriol*. 194:4272–4284.

Krin E, Danchin A, Soutourina O. (2010)

Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in *Escherichia coli*. *BMC Microbiol*. 10:273.

Kristoficova I, Vilhena C, Behr S, Jung K. (2018)

BtsT - a novel and specific pyruvate/H+ symporter in *Escherichia coli*. *J Bacteriol*. 200:e00599–17.

Kurata T, Katayama A, Hiramatsu M, Kiguchi Y, Takeuchi M, Watanabe T, Ogasawara H, Ishihama A, Yamamoto K. (2013)

Identification of the set of genes, including non-annotated morA, under the direct control of ModE in *Escherichia coli*. *J Bacteriol*. 195:4496–4505.

Lang VJ, Leystra-Lantz C, Cook RA. (1987)

Characterization of the specific pyruvate transport system in *Escherichia coli* K-12. *J Bacteriol*. 169:380–385.

Lange R, Wagner C, de Saizieu A, Flint N, Molnos J, Stieger M, Caspers P, Kamber M, Keck W, Amrein KE. (1999)

Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of *Streptococcus pneumoniae*. Gene, 237(1):223-234.

Laub MT, Goulian M. (2007)

Specificity in two-component signal transduction pathways. Annu Rev Genet. 41:121–145.

Lin EC. (1976)

Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol. 30:535-578.

Lukjancenko O, Wassenaar TM, Ussery DW. (2010)

Comparison of 61 sequenced Escherichia coli genomes. Microb. Ecol. 60, 708–720.

Maeda YT, Sano M. (2006)

Regulatory dynamics of synthetic gene networks with positive feedback. *J. Mol. Biol.* 359, 1107–1124.

Martin PK, Li T, Sun D, Biek DP, Schmid MB. (1999)

Role in cell permeability of an essential two-component system in *Staphylococcus aureus*. *J Bacteriol*. 181(12):3666-3673.

Menon S, Wang S. (2011)

Structure of the response regulator PhoP from Mycobacterium tuberculosis reveals a dimer through the receiver domain. *Biochem.* 50, 5948-5957.

Minagawa S, Ogasawara H, Kato A, Yamamoto K, Eguchi Y, Oshima T, Mori H, Ishihama A, Utsumi R. (2003)

Identification and molecular characterization of the Mg2+ stimulon of *Escherichia coli*. *J Bacteriol*. 185(13):3696-3702.

Miyake Y, Inaba T, Watanabe H, Teramoto J, Yamamoto K, Ishihama A. (2019)

Regulatory roles of pyruvate-sensing two-component system PyrSR (YpdAB) in *Escherichia coli* K-12. *FEMS Microbiol Lett.* 366(2).

Miyake Y, Yamamoto K. (2020)

Epistatic Effect of Regulators to the Adaptive Growth of Escherichia coli. Sci Rep. 10;3661.

Mizuno T. (1997)

Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of *Escherichia coli*. *DNA Res.* 4(2):161-168.

Munson GP, Lam DL, Outten FW, O'Halloran TV. (2000)

Identification of a copper-responsive two-component system on the chromosome of *Escherichia coli* K-12. *J Bacteriol*. 182(20):5864-5871.

Murakami, S. K. (2015)

Structural biology of bacterial RNA polymerase. *Biomolecules* 5, 848–864.

Nonaka G, Blankschien M, Herman C, Gross CA, Rhodius VA. (2006)

Regulon and promoter analysis of the *E. coli* heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. *Genes Dev.* 20(13):1776-1789.

Nowak E, Panjikar S, Konarev P, Svergun DI, Tucker PA. (2006)

The structural basis of signal transduction for the response regulator PrrA from Mycobacterium tuberculosis. *J. Biol. Chem.* 281, 9659–9666.

Ogasawara H, Hasegawa A, Kanda E, Miki T, Yamamoto K, Ishihama A. (2007)

Genomic SELEX search for target promoters under the control of the PhoQP-RstBA signal relay cascade. *J Bacteriol*. 189(13):4791-4799.

Ogasawara H, Ishida Y, Yamada K, Yamamoto K, Ishihama A. (2007)

PdhR (pyruvate dehydrogenase complex regulator) controls the respiratory electron transport system in *Escherichia coli*. *J Bacteriol*. 189:5534–5541

Ogasawara H, Shinohara S, Yamamoto K, Ishihama A. (2012)

Novel regulation targets of the metal-response BasS-BasR two-component system of *Escherichia coli. Microbiology*. 158(Pt 6):1482-1492.

Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H, Mizuno T. (2002) Transcriptome analysis of all two-component regulatory system mutants of *Escherichia coli* K-12. *Moleuclar Microbiol*. 46, 281–291.

Paczia N, Nilgen A, Lehmann T, Gätgens J, Wiechert W, Noack S. (2012)

Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. *Microb Cell Fact.* 11:122.

Postma PW, Lengeler JW, Jacobson GR. (1993)

Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. *Microbiol Rev.* 57:543–594.

Pukklay P, Nakanishi Y, Nitta M, Yamamoto K, Ishihama A, Shiratsuchi A. (2013)

Involvement of EnvZ–OmpR two-component system in virulence control of *Escherichia coli* in Drosophila melanogaster. *Biochem. Biophys. Res. Commun.* 438, 306–311.

Pulvermacher SC, Stauffer LT, Stauffer GV. (2009)

Role of the sRNA GcvB in regulation of *cycA* in *Escherichia coli*. *Microbiology*. 155(Pt 1):106-114.

Rabin RS, Stewart V. (1993)

Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in *Escherichia coli* K-12. *J Bacteriol*. 175(11):3259-3268.

Reichenbach B, Göpel Y, Görke B. (2009)

Dual control by perfectly overlapping sigma 54- and sigma 70- promoters adjusts small RNA GlmY expression to different environmental signals. *Mol Microbiol*. 74(5):1054-1070.

Robinson VL, Wu T, Stock AM. (2003)

Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. *J Bacteriol*. 185(14):4186-4194.

Saini S, Pearl JA, Rao CV. (2009)

Role of FimW, FimY, and FimZ in regulating the expression of type I fimbriae in *Salmonella enterica* serovar Typhimurium. *J Bacteriol*. 191(9):3003-3010.

Salmon K, Hung SP, Mekjian K, Baldi P, Hatfield GW, Gunsalus RP. (2003)

Global gene expression profiling in *Escherichia coli* K12. The effects of oxygen availability and FNR. *J Biol Chem.* 278(32):29837-55.

Sato K, Hamada M, Asai K, Mituyama T. (2009)

CENTROIDFOLD: a web server for RNA secondary structure prediction. *Nucleic Acids Res.* 37(Web Server issue):W277-80.

Sauer U, Eikmanns BJ. (2005)

The PEP-pyruvate-oxalacetate node as the switch point for carbon flux distribution in bacteria. *FEMS Microbiol Rev.* 29:765–794.

Seo SW, Gao Y, Kim D, Szubin R, Yang J, Cho BK, Palsson BO. (2017)

Revealing genome-scale transcriptional regulatory landscape of OmpR highlights its expanded regulatory roles under osmotic stress in *Escherichia coli* K-12 MG1655. *Sci. Reports* 7, 2181.

Shimada T, Fujita N, Maeda M, Ishihama A. (2005)

Systematic search for the Cra-binding promoters using genomic SELEX system. *Genes Cells*. 10:907–918.

Shimada T, Fujita N, Yamamoto K, Ishihama A. (2011)

Novel roles of cAMP receptor protein (CRP) in regulation of transport and metabolism of carbon sources. *PLoS One*. 6:e20081.

Shimada T, Ogasawara H, Ishihama A. (2018)

Genomic SELEX screening of regulatory targets of *Escherichia coli* transcription factors. *Meth Mol Biol.* 1837:49–69.

Shimada T, Tanaka K. (2016)

Use of a bacterial luciferase monitoring system to estimate real-time dynamics of intracellular metabolism in *Escherichia coli*. *Appl Environ Microb*. 82:5960–5968.

Speciale G, Jin Y, Davies GJ, Williams SJ, Goddard-Borger ED. (2016)

YihQ is a sulfoquinovosidase that cleaves sulfoquinovosyl diacylglyceride sulfolipids. *Nat Chem Biol.* 12(4):215-217.

Sperandio V, Torres AG, Kaper JB. (2002)

Quorum sensing *Escherichia coli* regulators B and C (QseBC): A novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in *E. coli. Mol. Microbiol.* 43, 809–821.

Steiner BD, Eberly AR, Hurst MN, Zhang EW, Green HD, Behr S, Jung K, Hadjifrangiskou M. (2018)

Evidence of crossregulation in two closely related pyruvate-sensing systems in uropathogenic *Escherichia coli. J Memb Biol.* 251(1):65–74.

Stock JB, Ninfa AJ, Stock AM. (1989)

Protein phosphorylation and regulation of adaptive responses in bacteria. *Microbiol Rev.* 53;450–490.

Stock JB, Stock AM, Mottonen JM. (1990)

Signal transduction in bacteria. *Nature*. 344(6265):395-400.

Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW. (1990)

Use of T7 RNA polymerase to direct expression of cloned genes. J Mol Biol. 185:60-89.

Stülke J, Hillen W. (1999)

Carbon catabolite repression in bacteria. Curr Opin Microbiol. 2:195–201.

Suzuki K, Wang X, Weilbacher T, Pernestig AK, Melefors O, Georgellis D, Babitzke P, Romeo T. (2002)

Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of *Escherichia coli. J Bacteriol.* 184(18):5130-5140.

Tanabe H, Yamasaki K, Katoh A, Yoshioka S, Utsumi R. (1998)

Identification of the promoter region and the transcriptional regulatory sequence of the evgAS operon of *Escherichia coli. Biosci Biotechnol Biochem.* 62(2):286-290.

Tatusov RL, Galperin MY, Natale DA, Koonin EV. (2000)

The COG database: A tool for genome-scale analysis of protein functions and evolution. *Nucleic Acids Res.* 28, 33–36.

Tatusov RL, Koonin EV, Lipman DJ. (1997)

A genomic perspective on protein families. Science. 278(5338):631-637.

Throup JP, Koretke KK, Bryant AP, Ingraham KA, Chalker AF, Ge Y, Marra A, Wallis NG, Brown JR, Holmes DJ, Rosenberg M, Burnham MK. (2000)

A genomic analysis of two-component signal transduction in *Streptococcus pneumoniae*. *Mol Microbiol*. 35(3):566-576.

Tian ZX, Li QS, Buck M, Kolb A, Wang YP. (2001)

The CRP-cAMP complex and downregulation of the glnAp2 promoter provides a novel regulatory linkage between carbon metabolism and nitrogen assimilation in *Escherichia coli*. *Mol Microbiol*. 41(4):911-924.

Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, Karoui ME, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, Le Bouguénec C, Lescat M, Mangenot S, Martinez-Jéhanne V, Matic I, Nassif X, Oztas S, Petit MA, Pichon C, Rouy Z, Ruf CS, Schneider D, Tourret J, Vacherie B, Vallenet D, Médigue C, Rocha EP, Denamur E. (2009) Organised genome dynamics in the *Escherichia coli* species results in highly diverse adaptive paths. *PLoS Genet.* 5, e1000344.

Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA. (2006)

Overflow metabolism in *Escherichia coli* during steady-state growth: transcriptional regulation and effect of the redox ratio. *Appl Environ Microb*. 72(5):3653–3661.

Verhamme DT, Arents JC, Postma PW, Crielaard W, Hellingwerf KJ. (2001)

Glucose-6-phosphate-dependent phosphoryl flow through the Uhp two-component regulatory system. *Microbiology*. 147(Pt 12):3345-3352.

Vilhena C, Kaganovitch E, Shin JY, Grünberger A, Behr S, Kristoficova I, Brameyer S, Kohlheyer D, Jung K. (2017)

A single-cell view of the BtsSR/YpdAB pyruvate sensing network in *Escherichia coli* and its biological relevance. *J Bacteriol*. 200:e00536–17.

Villanueva M, García B, Valle J, Rapún B, Ruiz de Los Mozos I, Solano C, Martí M, Penadés JR, Toledo-Arana A, Lasa I. (2018)

Sensory deprivation in Staphylococcus aureus. Nat Commun. 9(1):523.

Wagner C, Saizieu Ad Ad, Schönfeld HJ, Kamber M, Lange R, Thompson CJ, Page MG. (2002) Genetic analysis and functional characterization of the *Streptococcus pneumoniae vic* operon. *Infect Immun*. 70(11):6121-6128.

Yamamoto K, Hirao K, Oshima T, Aiba H, Utsumi R, Ishihama A. (2005)

Functional characterization *in vitro* of all two-component signal transduction systems from *Escherichia coli. J Biol Chem.* 280(2):1448-1456.

Yamamoto K, Ishihama A. (2006)

Characterization of copper-inducible promoters regulated by CpxA/CpxrRin *Escherichia coli*. *Biosci. Biotechnol. Biochem.* 70, 1688–1695.

Yamamoto K, Ogasawara H, Fujita N, Utsumi R, Ishihama A. (2002)

Novel mode of transcription regulation of divergently overlapping promoters by PhoP, the regulator of two-component system sensing external magnesium availability. *Mol. Microbiol.* 45, 423–438.

Yamamoto K. (2014)

The hierarchic network of metal-response transcription factors in *Escherichia coli. Biosci Biotechnol Biochem.* 78(5):737-747.

Yamanaka Y, Oshima T, Ishihama A, Yamamoto K. (2014)

Characterization of the YdeO regulon in Escherichia coli. PLoS One. 9: e111962.

Yamanaka Y, Winardhi RS, Yamauchi E, Nishiyama SI, Sowa Y, Yan J, Kawagishi I, Ishihama A, Yamamoto K. (2018)

Dimerization site 2 of the bacterial DNA-binding protein H-NS is required for gene silencing and stiffened nucleoprotein filament formation. *J. Biol. Chem.* 293, 9496–9505.

Yamanaka Y, Watanabe H, Yamauchi E, Miyake Y, Yamamoto K. (2020)

Measurement of the promoter activity in *Eschrichia coli* by using a luciferase reporter. *Bio-prot*. 10(2): e3500.

Yamasaki S, Hirokawa T, Asai K, Fukui K. (2014)

Tertiary structure prediction of RNA-RNA complexes using a secondary structure and fragment-based method. *J Chem Inf Model*. 54(2):672-682.

Yang C, Huang TW, Wen SY, Chang CY, Tsai SF, Wu WF, Chang CH. (2012)

Genome-wide PhoB binding and gene expression profiles reveal the hierarchical gene regulatory network of phosphate starvation in *Escherichia coli*. *PLoS One*. 7, e47314.

Yao R, Xiong D, Hu H, Wakayama M, Yu W, Zhang X, Shimizu K. (2016)

Elucidation of the co-metabolism of glycerol and glucose in Escherichia coli by genetic engineering, transcription profiling, and (13)C metabolic flux analysis. *Biotechnol Biofuels*. 9:175.

Yasid NA, Rolfe MD, Green J, Williamson MP. (2016)

Homeostasis of metabolites in *Escherichia coli* on transition from anaerobic to aerobic conditions and the transient secretion of pyruvate. *R Soc Open Sci.* 3:160187.

Yoshida M, Ishihama A, Yamamoto K. (2015)

Cross talk in promoter recognition between six NarL-family response regulators of *Escherichia coli* two-component system. *Genes Cells*. 20(7):601-612.

Zere TR, Vakulskas CA, Leng Y, Pannuri A, Potts AH, Dias R, Tang D, Kolaczkowski B, Georgellis D, Ahmer BMM, Romeo T. (2015)

Genomic Targets and Features of BarA-UvrY (-SirA) Signal Transduction Systems. *PLoS One*. 10(12):e0145035.

Zhou L, Lei XH, Bochner BR, Wanner BL. (2003)

Phenotype microarray analysis of *Escherichia coli* K-12 mutants with deletions of all two-component systems. *J. Bacteriol.* 185, 4956–4972.

Zschiedrich CP, Keidel V, Szurmant H. (2016)

Molecular Mechanisms of Two-Component Signal Transduction. J Mol Biol. 428(19):3752-3775.

LIST OF PUBLICATIONS

1. Miyake Y, Yamamoto K. (2020)

Epistatic Effect of Regulators to the Adaptive Growth of Escherichia coli, Sci Rep. 10;3661.

2. Yamanaka Y, Watanabe H, Yamauchi E, Miyake Y, Yamamoto K. (2020)

Measurement of the Promoter Activity in *Escherichia coli* by Using a Luciferase Reporter, *Bio-prot.* 10(2): e3500.

3. Miyake Y, Inaba T, Watanabe H, Teramoto J, Yamamoto K, Ishihama A. (2019)

Regulatory roles of pyruvate-sensing two-component system PyrSR (YpdAB) in *Escherichia coli* K-12, *FEMS Microbiol Lett.* Volume 366, Issue 2, fnz009.

4. Maruyama H, Kimura T, Liu H, Ohtsuki S, Miyake Y, Isogai M, Arai F, Honda A. (2018)

Influenza virus replication raises the temperature of cells. *Virus Res.* 257:94-101.

5. Miyake Y, Ishii K, Honda A. (2017)

Influenza Virus Infection Induces Host Pyruvate Kinase M Which Interacts with Viral RNA-Dependent RNA Polymerase. *Front Microbiol*. 8:162.

6. Cho J, Miyake Y, Honda A, Kushiro K, Takai M. (2016)

Analysis of the Changes in Expression Levels of Sialic Acid on Influenza-Virus-Infected Cells Using Lectin-Tagged Polymeric Nanoparticles. *Front Microbiol*. 7:1147.

ACKNOWLEDGEMENTS

Over the last three years, I have benefitted greatly from my interactions with many people of Hosei University. I appreciate principal investigators, department of Frontier Bioscience Hosei University, for their professional assistance and coaching. My deepest gratitude goes to my supervisor, Professor Dr. Kaneyoshi Yamamoto. Without his guidance and persistent help, this dissertation would not have been possible. He also gave me many experiences for my growth as a scientist.

Special thanks are due to Dr. Hideaki Nojiri (Tokyo University), Dr. Ikuro Kawagishi, Dr. Tsutomu Sato, and Dr. Kenro Oshima, Hosei University, for reading the entire text in its original form.

For the study in Chapter 2, I would like to sincerely thank Dr. Akira Ishihama, Hosei University, for his grateful suggestion, discussion, and technical advice. I am thankful to Mr. Tatsuya Inaba (Hosei University) and Dr. Jun Teramoto (Kobe University) for sharing their data with me. I also thank Ms. Ayako Kori and Ms. Kayoko Yamada (Hosei University) for expression and purification of PyrR protein, Dr. Tomohiro Shimada (Meiji University) for tilling array assay of gSELEX fragments, and National Bioresource Project (NBRP) NIG (National Institute of Genetics) center for providing *E. coli* strains.

I appreciate Dr. Myu Yoshida, Mr. Hiroki Watanabe, Ms. Asami Sato, and Mr. Naoki Wakayama, Hosei University, for construction of pLUX reporter plasmids used in Chapter 3.

I also profoundly thank Mr. Shingo Sugawara and Ms. Misaki Sudo, Hosei University, for technical assistance with experiments, especially the construction of psgRNA plasmids and TCS mutants used in Chapters 4 and 5. I am thankful to Dr. Akira Katayama (Nippon Medical School) and Ms. Kumiko Tajima (Hosei University) for technical assistance.

Finally, I would like to thank the members of the Laboratory of Genomic Biology, Hosei University. They always encouraged me in my studies and gave me lots of invaluable support.

This work was supported by the Research Fellowship for Young Scientists from the Japan Society for the Promotion of Science (JP18J14641).

APPENDIX

Appendix Table 1. Oligonucleotides for pLUX cloning.

Appendix Figure 1. Two-component gene promoters for lux reporter plasmids.

Appendix Table 2. Promoter sequences of TCS genes in the E. coli K-12 genome.

Appendix Table 3. Oligonucleotides for psgRNA cloning and DNA amplification in the HoSeI method.

Appendix Table 4. Oligonucleotides for DNA fragment preparation in HoSeI method.

Appendix Figure 2. The growth capacity of the RR- and SK-knockout strain.

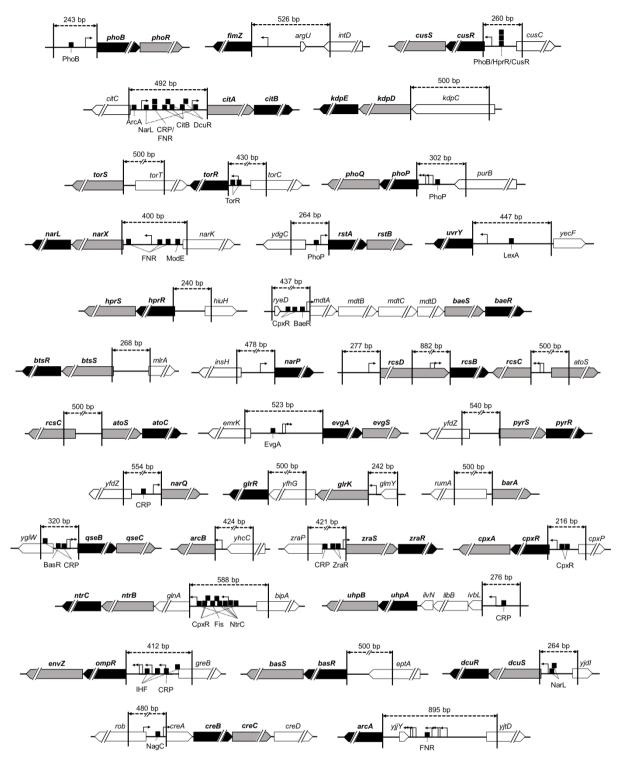
Appendix Table 5. Carbon source utilization of $\Delta 34$ RR and $\Delta 30$ SK strains.

Appendix Table 6. Viability of $\Delta 34$ RR and $\Delta 30$ SK strains under various osmolytes.

Appendix Table 7. Viability of $\Delta 34$ RR and $\Delta 30$ SK strains under different pH conditions.

Appendix Table 8. The sensitivity of $\Delta 34$ RR and $\Delta 30$ SK strains to various antimicrobials.

Appendix Figure 3. Single cell analysis of adaptive growth of single gene knockout *E. coli* strains.


Appendix Table 9. The amino acid sequence of OmpR family RRs.

Appendix Table 1. Oligonucleotides for pLUX cloning.

Name	Sequence (5' to 3')	Reference
arcA_LUX_F	TCGTCTTCACCTCGATAATGATATTTCGCCCGACTGCGCG	This study
arcA_LUX_R	ACTAACTAGAGGATCGTTTGCTACCTAAATTGCCAACTAA	This study
arcB LUX F	TCGTCTTCACCTCGAAGCGAGTGGTTGAAACCGGCGTGGA	This study
arcB LUX R	ACTAACTAGAGGATCTAGGGAATTCCTTCACGACAACCTG	This study
atoSC_Lux_F	TCGTCTTCACCTCGAAACAATCGGAGTCGGCAAACAGCGG	This study
atoSC_Lux_R	ACTAACTAGAGGATCGCTGAAATCCACTAGTCTTGTCCGG	This study
mdtA_LUX_F	TCGTCTTCACCTCGATGGCAGGATCGCAGACTACAAAGCC	This study
$mdtA_LUX_R$	ACTAACTAGAGGATCCGTTAAGAGTTTCTCTTCCTGAAAC	This study
barA LUX F	TCGTCTTCACCTCGAAAACCCCATCTGAAGTTGCTGTTT	This study
barA LUX R	ACTAACTAGAGGATCGGAGTTCCGTTATGGGACAATTAAG	This study
uvrY_LUX_F	TCGTCTTCACCTCGAGTCATGTTGCAATGAAAATTTGCGG	This study
uvrY_LUX_R	ACTAACTAGAGGATCAGGAATATCTCCAGAAATAGGGATA	This study
basR_LUX_F	TCGTCTTCACCTCGAACCATCGGCAGCCACGGTCCGACCT	This study
basR_LUX_R	ACTAACTAGAGGATCTCACTCACTCTCCTGCAAGTTTGCA	This study
DPIB_LL_F	TCGTCTTCACCTCGACGCTCAAATCATTTTCATGC	This study
DPIB_LL_R	ACTAACTAGAGGATCTTCTCGTTAAGCTGCAACAT	This study
CPXR_LL_F	TCGTCTTCACCTCGAGTTATCGCCTGAACCGACTT	This study
CPXR_LL_R	ACTAACTAGAGGATCACTAACAGGATTTTATTCAT	This study
creA-lux-F	TCGTCTTCACCTCGAGGTAAATGTCTGTTG	This study
creA-lux-R	ACTAACTAGAGGATCCATATTGTTACCATT	This study
CUSR_LL_F	TCGTCTTCACCTCGATGCCGGACGCTGATAATCCG	This study
CUSR_LL_R	ACTAACTAGAGGATCTCGACAATCAACAGTTTCAT	This study
DCUS_LL_F	TCGTCTTCACCTCGAAATAGACATCGATCTTTTCG	This study
DCUS_LL_R	ACTAACTAGAGGATCTAGGGCAATGAATGTCTCAT	This study
OMPR_LL_F	TCGTCTTCACCTCGACAGACGCTTTTTATTATACT	This study
OMPR_LL_R	ACTAACTAGAGGATCATCTTGTAGTTCTCTTGCAT	This study
evgA_LUX_F	TCGTCTTCACCTCGATGACCAATAGGCATAGGCACCTGAA	This study
evgA_LUX_R	ACTAACTAGAGGATCAGATTATTCCCTTTGCAATGAAGCA	This study
fimZ_LUX_F	TCGTCTTCACCTCGAGATTCAGTCAGGCGTCCCATTATCA	This study
fimZ_LUX_R	ACTAACTAGAGGATCAGTTACCAGTCTCATAGGAGCGGAC	This study
zraSR_Lux_F	TCGTCTTCACCTCGAGTGCGCTGCTTTGAGCGTAAAAGTC	This study
zraSR_Lux_R	ACTAACTAGAGGATCCTTCTTCTTTGCCTGCTCATCCCTT	This study
kdpD_LUX_F	TCGTCTTCACCTCGACCCGCTGCTGACCACCGTACTGGGG	This study
kdpD_LUX_R	ACTAACTAGAGGATCCAAGTTTATCCAGCGCCAGATTGAG	This study
narQ LUX F	TCGTCTTCACCTCGACGTGGCTTTTACTTTTCCTGCCGCG	This study
narQ LUX R	ACTAACTAGAGGATCGCGTCTTCTCCACAAAAAATCATTA	This study
narP_LUX_F	TCGTCTTCACCTCGAGGCGAAGGTAAGTTGATGACTCATG	This study
narP_LUX_R	ACTAACTAGAGGATCAGTAGTCTCCTGAGGTTTTATTAGA	This study
NARX_LL_F	TCGTCTTCACCTCGAGACAGCTCCAGTAGCCCTTT	This study
NARX_LL_R	ACTAACTAGAGGATCGAGAGACAACGTTTAAGCAT	This study
glnA_Lux_F	TCGTCTTCACCTCGAGATGTTGATACGGTAATCATTCCAT	This study
glnA_Lux_R	ACTAACTAGAGGATCACTTTAACTCTCCTGGATTGGTCAT	This study
PHOP_LL_F	TCGTCTTCACCTCGAAAGCAGTTTATCGATGGTCT	This study
PHOP_LL_R	ACTAACTAGAGGATCTCAACAACCAGTACGCGCAT	This study
phoB-lux-F	TCGTCTTCACCTCGAACTGTAGAAGTTCTG	This study

Appendix Table 1. Oligonucleotides for pLUX cloning. (Continued.)

Name	Sequence (5' to 3')	Reference
phoB-lux-R	ACTAACTAGAGGATCCATGATTTGCCCTGT	This study
QSEB_LL_F	TCGTCTTCACCTCGATCTACAGTCGTTACGCTGCC	This study
QSEB_LL_R	ACTAACTAGAGGATCTCTATCAGTAAAATTCGCAT	This study
RCSD_LL_F	TCGTCTTCACCTCGACTTGTTAACTATTTCACAAA	This study
RCSD_LL_R	ACTAACTAGAGGATCGTTGTCTCTTTCTGACGCAT	This study
rcsB_LUX_F	TCGTCTTCACCTCGAGCCTGACGTTCCGCATTCTGGACAC	This study
rcsB_LUX_R	ACTAACTAGAGGATCAGTAGTCTCCTGAGGTTTTATTAGA	This study
rcsC LUX F	TCGTCTTCACCTCGATTATCGCATCCAGCATTTTGTTGTA	This study
rcsC LUX R	ACTAACTAGAGGATCAGGGGCGAAGCTCCGCCTCAGGTGA	This study
RSTA_LL_F	TCGTCTTCACCTCGAGCAAAGGTCGGGAAAAGTGG	This study
RSTA_LL_R	ACTAACTAGAGGATCACAAATACGATAGTGTTCAT	This study
torS LUX F	TCGTCTTCACCTCGATCACCTGGGGAGCATCAATAGCATT	This study
torS LUX R	ACTAACTAGAGGATCGGTCGGTGCACTTTAGGTGAAAAAG	This study
torR_LUX_F	TCGTCTTCACCTCGAAGATATCATTGCTCGCTTCCAGTTT	This study
torR_LUX_R	ACTAACTAGAGGATCCAGAGGGTTTTACTCATTCTGTTCA	This study
$IVBL_LL_F(uhpA)$	TCGTCTTCACCTCGACAAAATTCGTGCCGAAATTG	This study
$IVBL_LL_R(uhpA)$	ACTAACTAGAGGATCTTGAGCATGGAAGTAGTCAT	This study
YEDW_LL_F	TCGTCTTCACCTCGATAAGAATGTTTTGTTGTGCG	This study
YEDW_LL_R	ACTAACTAGAGGATCTCAATAAGTAGAATCTTCAT	This study
YEHU_LL_F	TCGTCTTCACCTCGACACTTCACCAATTGTGTAAA	This study
YEHU_LL_R	ACTAACTAGAGGATCACCAGATTAAAATCGTACAT	This study
glrK_Lux_F	TCGTCTTCACCTCGAAGTGGCTCATTCACCGACTTATGTC	This study
glrK_Lux_R	ACTAACTAGAGGATCGGTGTTACTCTCGTCAGACGCGAAT	This study
glrR_LUX_F	TCGTCTTCACCTCGAAACCAATCCGCTTTACTGGCTGCGG	This study
glrR_LUX_R	ACTAACTAGAGGATCCAGGAGTGACCTCATGGGTGGATGG	This study
YPDA_LL_F	TCGTCTTCACCTCGACACCGTCCGGGTTACCCATG	This study
YPDA_LL_R	ACTAACTAGAGGATCATGTTGAATATTTCGTGCAC	This study

Appendix Figure 1. Two-component gene promoters for lux reporter plasmids. All two-component system genes and their promoter regions in the *E. coli* K-12 W3110 genome (4.6 Mb) are shown with arrows and length (bp). Each arrow shows sensor kinase genes (gray), response regulator genes (black), and other genes (white). The direction of arrows indicates the direction of genes in the *E. coli* genome. The dashed double arrow shows the promoter region that was inserted into the pLUX vector, and it shows the promoter length (bp). RegulonDB (http://regulondb.ccg.unam.mx/) was used to identify the promoter region for each gene. Each promoter region contains one or more transcription start sites and transcription factor (TF) binding site(s). In the case of genes without consensus sequences and TF-binding sites, I identified the promoter region as 500 bp upstream of the start codon of the gene. The thin arrow marks the transcription start site, and the black box marks the identified transcription factor binding site. As described in the Materials and Methods, the promoter regions of each TCS gene (operon) were PCR amplified and inserted into pLUX vectors (Burton *et al.* 2010). The DNA sequences of each inserted gene in the resulting plasmids are shown in **Appendix Table 2**.

Appendix Table 2. Promoter sequences of TCS genes in the E. coli K-12 genome.

Dromotor	Appendix Table 2. Promoter sequences of TCS genes in the E. coli K-12 genome. Sequence (5'-3')
Promoter	ACTGTAGAAGTTCTGGCCGAGATGCCAGTCTGAGGTGTGAAGGATGCGCATAACGGTTCCCTGGCGAAAAAGCATGGGCGCGATTATACCCAAACAGATG
PphoB	TGCCATTTGCTTTTTTCTGCGCCACGGAAATCAATAACCTGAAGATATGTGCGACGAGGCTTTTCATAAATCTGTCATAAATCTGACGCATAATGACGTCGC
	ATTAATGATCGCAACCTATTTATTACAACAGGGCAAATCATG GATTCAGTCAGGCGTCCCATTATCAGTGCTTCAGGAAATGGGCGGATGGGAGTCCATAGAAATGGTTCGTAGGTATGCTCACCTTGCGCCTAATCATTTGA
PfimZ	CAGAGCATGCGAGGAAAATAGACGACATTTTTGGTGATAATGTCCCAAATATGTCCCACTCTGAAATTATGGAGGATATAAAGAAGGCGTAACTGATTGAATTGTAATGGCGCGCCCTGCAGGATTCGAACCTGCGCCCACGACTTAGAAGGTCGTTGCTCTATCCAACTGAGCTAAGGGCGCGCTTGATACCGCAATGCGATGCTATCCAACTGAGCTAAGGGCGCGCTTGATACCGCAATGCGATGCTATACCGCAATGCGAGCTAAGGGCGCGCTTGATACCGCAATGCGAGCTAAGGGCGCGCTTGATACCGCAATGCGAGCTAAGGGCGCGCTTGATACCGCAATGCGAGCTAAGGGCGCGCTTGATACCGCAATGCGAGCTAAGGGCGCGCTTGATACCGCAATGCGAGCTAAGGGCGCGCTTGATACCGCAATGCGAGCTAAGGGCGCGCTTGATACCGCAATGCGAGCTAAGGGCGCGCTTGATACCGCAATGCGAGCTAAGGGCGCGCTTGATACCGCAATGCGAGCTAAGGGCGCGCTTGATACCGCAATGCGAGCTAAGGGCGCGCTTGATACCGCAATGCGAGCTAAGGGCGCCACGACTTAGAAGGTCGTTGATACCGAAGTGAGAGGCTAAGGGCGCGCTTGATACCGCAATGCGAGCTAAGGGCGCCGCTTGATACGGCCAATGCGAGCTAAGGGCCGCGCTTGATACCGCAATGCGAGCTAAGGGCCGCCTTGATACGAGCTAAGGGCCAATGCGAGCTAAGGGCCAATGCGAGAGGAGAGAGA
TIME	$\label{thm:control} GTGTAATCGCGTGAATCAACGCTTGCTGAGTCAATGGCTTTTGATCTGGTTGCTGAACGAAC$
	CCGCTCCTATGAGACTGGTAACT
PcusR	TGCCGGACGCTGATAATCCGGTGCCAGTGAACAACCGGTTAGCGCAAGGGCCACACAAAAATGGCAGAAGTTTACAAGGAGACATAGGCTCATAATTTCTGGTGATTTTATGCCGCCAACTTTACTCGCCAGGCTCTGATTTTCCGGTGACAGAAAATTGACAAAATTGTCATTTTTGCCAATAAGCGATTGCCATCTGATCCCAGACAGA
	CGCTACTCTAGAATTGCCCGGGCAACATGCGGAGGAAATATGAAACTGTTGATTGTCGA CGCTCAAATCATTTTCATGCAGGAATTGGCGGACATATTCCGCCATTTTTTTATTTTCTGAACGTTTTACGCGGGTGAAAATATCATTGCCGAACATAATAAATA
D-34A	$\tt GTATCCTGAAGGTGCATGTTGTTATCGATTTGCAACGAATGTTGTTCAATGTTGCAAACTGATAACCTTTTATTTTCACTTGGGAGAAAGGGGGTGATCGAGGTGATCGAGGTGATCGAGGAGAAAGGGGGGTGATCGAGGAGAAAGGGGGGTGATCGAGGAGAAACTGATAACCTTTTATTTTCACTTGGGAGAAAGGGGGGTGATCGAGGAGAAAGGGGGGTGATCGAGGAGAAACTGATAAACCTTTTATTTTCACTTGGGAGAAAGGGGGGTGATCGAGGAGAAAGGGGGGTGATCGAGGAGAAACTGATAAACCTTTTATTTTCACTTGGGAGAAAGGGGGGTGATCGAGGAGAAAGGGGGGTGATCGAGGAGAAACTGATAAACCTTTTATTTTCACTTGGGAGAAAGGGGGGTGATCGAGGAGAAAGGGGGGTGATCGAGAGAACTGATAAACCTTTTATTTTCACTTTGGGAGAAAGGGGGGTGATCGAGGAGAAAGGGGGGTGATCGAGAGAACTGATAAACCTTTTATTTTCACTTTGGGAGAAAGGGGGGTGATCGAGAAACTGATAAACCTTTTATTTTCACTTTGGGAAAAGGGGGGTGATCGAGAGAACTGATAAACCTTTTATTTTCACTTTGGGAAAAGGGGGGTGATCGAGAGAAGGGGGGTGATCGAGAAACTGATAAACCTTTTTATTTTCACTTTGGGAAAAGGGGGGTGATCGAGAGAAACTGATAAACCTTTTTATTTTCACTTTGGGAAAAGGGGGGTGATCGAGAACTGATAAACCTTTTTATTTTCACTTTGGGAAAACTGATAAACTGATAAACTGATAAACCTTTTTATTTTCACTTTGGAAAACTGATAAACCTTTTTATTTTCACTTTGGAAAACTGATAAACCTTTTTATTTTATTTTATTTTATTTTATTTTATTTTATTTT$
PcitA	GTATATCTTTTTCTCCTTTCGCTATACATCCTAAGGAGTATTTCGGCGTGAAATTTTGATTTATTT
	ATTTTGATCAACATTTTAATTACATCCGTCAAAGAGGCTCGGGACAACCCGCAAGGAAAACAATGTTGCAGCTTAACGAGAA CCCGCTGCTGACCACCGTACTGGGGCAATGGTTCGCTGGCAGGCCAATGGTTCGTTGATTCGTGAAGGTGATACGGTGCGCGGTTCGGCATTAATCGG
	${\tt GCAGAATTTTACCGGCAACGGCTATTTTCATGGTCGCCCGTCGGCAACGGCAGAAATGCCCTATAATCCACAGGCTTCTGGCGGAGCAATCTGGCGGTCACGGCAGAATTTTACCGGCGGAGCAATCTGGCGGTCACGGCAGAAATGCCCTATAATCCACAGGCTTCTGGCGGGAGCAATCTGGCGGTCACGGCAGAAATGCCCTATAATCCACAGGCTTCTGGCGGAGCAATCTGGCGGTCACGGCAGAAATGCCCTATAATCCACAGGCTTCTGGCGGAGCAATCTGGCGGTCACGGCAGAAATGCCCTATAATCCACAGGCTTCTGGCGGAGCAATCTGGCGGTCACGGCAGAAATGCCCTATAATCCACAGGCTTCTGGCGGAGCAATCTGGCGGTCACGGCAGAAATGCCCTATAATCCACAGGCTTCTGGCGGAGCAATCTGGCGGTCACGGCAGAAATGCCCTATAATCCACAGGCTTCTGGCGGAGCAATCTGGCGGTCACGGCAGAAATGCCCTATAATCCACAGGCTTCTGGCGGAGCAATCTGGCGGTCACGGCAGAAATGCCCTATAATCCACAGGCTTCTGGCGGAGCAATCTGGCGGTCACGGCAGAAATGCCCTATAATCCACAGGCTTCTGGCGGGAGCAATCTGGCGGTCACGGCAGAAATGCCCTATAATCCACAGGCTTCTGGCGGGAGCAATCTGGCGGTCACGGCAGAAATGCCCTATAATCCACAGGCTTCTGGCGGGAGCAATCTGGCGGTCACGAAATGCCACAGGCTTCTGGCGGAGCAATCTGGCGGAGAAATGCCCTATAATCCACAGGCTTCTGGCGGAGAATCTGGCGGAGAAATGCCCTATAATCCACAGGCTTCTGGCGGAGAATCTGGCGGAGAAATGCCCTATAATCCACAGGCTTCTGGCGGGAGCAATCTGGCGGAGCAATCTGGCGGAGAATGCCCTATAATGCACAGGCTTCTGGCGGGAGCAATCTGGCGGAGAAATGCCCTATAAATGCACAGAGAAATGCCCTATAATGCACAGAGAAATGCCCTATAATGCACAGAGAATGCCACAGAAATGCCCTATAATAATCCACAGAGAAATGCCCTATAATAATCCACAGAGAAATGCCCTATAAATGCACAGAGAAATGCCCTATAAATGCACAGAGAAATGCCCTATAAATGCACAGAGAAATGCCCTATAAATGCACAGAGAAATGCCCTATAAATGCACAGAAATGCCCTATAAATGCACAGAAATGCCCTATAAATGCACAGAAATGCCCTATAAATGCACAGAAATGCCCTATAAATGCACAGAAATGCCCTATAAATGCACAGAAAATGCCACAGAAAATGCCACAAAATGCACAAAAATGCCACAAAAATGCCACAAAAAAAA$
PkdpD	$\label{thm:condition} GTAACCCTGAGCTGGATAAACTAATAGCCGCACGCGTTGCTGCATTACGGGCCGCTAACCCGGATGCCAGCGCGAGCGTTCCGGTTGAACTGGTGACGGCATCCGCCAGGCGGCGAAGCGGGGAAATCTCAGCGTTGAACAGCTCACGCTCGCAAATCCCACGCGTGGCGAAAGCGCGTAATCTCAGCGTTGAACAGCTCACGCTAGCAAATCCCACGCGTGGCGAAAGCGCGTAATCTCAGCGTTGAACAGCTCACGCTAGCCACGCTAGCACAGCTCACGCTAGCACAGCTCACGCTAGCACAGCTCACGCTAGCACAGCTCACGCTAGCACAGCTCACGCTAGCACAGCTCACGCTAGCACAGCTCACGCTAGCACAGCTCACGCTAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCA$
	AACTGATCGCAAAATACAGCCAACAACCGCTGGTGAAATATATCGGCCAGCCGGTTGTCAACATTGTTGAACTCAATCTGGCGCTGGATAAACTTG
	TCACCTGGGGAGCATCAATAGCATTTACCAGTTCGATCACCGGCAGACTTGCTACCTGCTTTTTGCAGGTCGGGAAATGAGGTCGTGCTACCTAC
PtorS	$CGGCGAGCAGCCTCCTGCATACCATAGTTCAACGATAACCAATATGAATCTTTCAGGCTGGGATAAAGCGCGCACAGTTTCCATGCGCGTTTGGCTTTAAG\\CGGCGTAGAGGCTTGCACCGTGAAATGCTGCGCATCATGCCAGCGCAACAGGTTATCAGCCGAAAATGCCGGCAACATGAAAAAGGGAAAGGAAGTAAAAA\\$
	TAGCAGTACGCGCATGATAGCCTCATCAATAATAAGGCTTTATGCTAGATGCATTCCGCTTTGCGACTCAACCTTTTTCACCTAAAGTGCACCGACC
	AGATATCATTGCTCGCTTCCAGTTTGCGCTTCACCATGCCTGGAATATCCGGCGGGATATGACAGTCATGGCATTCAGCTCGCACGCCGGAGGCGTTCTGG AAATGCACCGACTGTTTATATTCTTCATACACCGGTTGCATACTGTGGCAACTGACACAAAATTCGGTTGTGCTGGTGACCTTTGATCCCAACGTGTGGCAA
PtorR	TACAATCAGCGCAATGCCAATCACAATCCCAATTGCGACCAGCGCCAGTACCGACCAACGAGCACTGGGTCGGCGTAGCGCGTTCCAGAGTTTCCGCATA ATAACCCCTGTAGAATTATGGTTTAGTGAAGCGATCTTAATGAGCAAATATGAACAGCGGCACTGGTCAGGATGAACGGCTTACGGCAGAATATGAACAG
	ATATGAACAGAATGAGTAAAACCCTCTG
PphoP	AAGCAGTTTATCGATGGTCTGGCGTTGCCAGAAGAAGAAGACGCCGCCTGAAAGCGATGACGCCGGCTAACTATATTGGTCGAGCTATCACGATGGTTG ATGAGCTGAAATAAACCTCGTATCAGTGCCGGATGGCGATGCCGCTGCCGCCTGCTTATTAAGATTATCCGCTTTTTATTTTTTCACTTTACCTCCCCCCCC
	GCTGGTTTATTTAATGTTTACCCCCATAACCACATAATCGCGTTACACTATTTTAATAATTAAGACAGGGAGAAATAAAAATGCGCGTACTGGTTGTTGA
PnarX	eq:GCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG
ThatA	GTGCTGTAAAATCCCTACCCTTACCGATGTAAAGCGACTAACCACACGGCAAATAAGGAGTAACTCTTTCCGGGTATGGGTATACTTCAGCCAATAGCCG AGAATACTGCCATTCCAGAATGTATCGTCACATTCATTAAAGGTTATTGCTCATTTAAAGCCTGAAGGAAG
	${\tt GCAAAGGTCGGGAAAAGTGGAATCAGCCCGGCGATATAATAATTTTTCGTTTTTGCTAAAACACCAATCAACAGCACTACCAGCGCACCGAGCGCGCTT}$
PrstA	TGATTACCAGCCCCATCTTTTTACCTTAACACTTCCATAACAAGTCATCAGTAGAATACCTGATGAAAACTTGTTTAGAAACGATTGATAGTAAGTA
	$GCCATGTTGCAATGAAAATTTTGCGGTGAAAAATGTTAAGGCGGCGGAGTATACCATAAGCTTTGCTAAAAATAGCAGTGGTTGTTTTTTTGAGCGTGATATC\\GGCAGTGCTATAAAAATACGTTAATATAATGACCAATAAATA$
PuvrY	GGCTGATTTTCATTTTTGCTGAATAAAGTCAATTTTTGTCACATTTCATCGTAGGGCTTACTGTGAAACGATCCGGTAAGCCGTTGGTGACGGGCGTGACCA TAACTGTGGACAATCGAATTGACAAAAACGAGAGAAAAATCGAATACCCACCATTTTTAACGTTTCAAAGTTGCAATAAAAAACCGCTAATATACGAATG
	ACTAACTATCAGTAGCGTTATCCCTATTTCTGGAGATATTCCT
PhprR	$TAAGAATGTTTTGTTGTGGGGGCATTAACCAAAGAAGGTAATGAAAATGCTGCCGTTGCTACCGAGAGTACTAAAATAACGCTTTAACATGTTTATATCCTTG\\TCATGTGAATGAGTTTTGAGGATAGCGAAAAAGCGTCCAGGGTAACCTTACAGCAGCATTACAATTTTGTAATGAACCAGGCTGTTTCTATAACATATGAT\\TCATGTGAATGAGTTTTGAAGGATAGCGAAAAAGCGTCCAGGGTAACCTTACAGCAGCATTACAATTTTGTAATGAACCAGGCTGTTTCTATAACATATGAT\\TCATGTGAATGAGTTTTGTAATGAACCAGGCTGTTTCTATAACATATGATATGATATGAACCAGGCTGTTTCTATAACATATGATATGATATGATATGATATGATATGATATGATATGATATGATATGATATGAACCAGGCTGTTTCTATAACATATGATATATGATATGATATATGATATATATATATGATATATGATATATGAT$
	TTATGGCATATTATTTTCATGAAGATTCTACTTATTGA TGGCAGGATCGCAGACTACAAAGCCTGCGGATTGACAATCTTATCGTGAAGGCATACTTTCAGGAGTGAGGGGTAGAGCGGGGTTTCCCCCGCCCTGGTAGT
	$\tt CTTAGTAAGCGGGGAAGCTTATGACTAAGAGCACCACGATGATGAGTAGCTTCATCATGACCCTTTCCTTATTTAT$
PmdtA	$CGTTTCAGCGTCCCGCTGAAATCGTCGGCTTACCTCCTTTCGCCATGCAAGCAGTCTATCGCTAACGCGTAGATAAAATAGTTTCCTGTGTTATTACTGGAT\\GCGTGCTCGCAAATGTGCCCGTCATTCAGACGATTCCAGACAGTGTTTCATAATTCCTCCATTTTTTCTCCCTTATTGGCTGGC$
	GAAACGTTTCAGGAAGAAACTCTTAACG CACTTCACCAATTGTGTAAAGCGCCATCGTCTCACCCTTGCTCGCGAGGTCCCGGTTTAACTTTAGACGCAGTTTTGCGAACCAGGTAGTTTTGCCCGTTTT
PbtsS	TTGTGCATCTATAGGGTGATTTTATTTTTGCCAGGCGATTTTGAGTGATCGTACTCACGAATTCTCATTTTTCTGCAAGGATTCAAAGAAAG
	GCAATGTATGTTACGCGTTTTAAAGGGAAGTGTGGGTTTGCGGGTATGTACGATTTTAATCTGGT GGCGAAGGTAAGTTGATGACTCATGATGAACCCTGTTCTATGGCTCCAGATGACAAACATGATCTCATATCAGGGACTTGTTCGCACCTTCCATAACGCTG
PnarP	TAGCCACCAGAACAGATATTGCGGAACGACAAAGAGAAACAGAACCAGATTGATGCATTGAGCTTTCATCCTATGAAATTAATT
1 11411	${\tt GATGAGAAGCTGATGCAAAATTCCGTCTTTATAATGAAAATGATGCCAAAGCGAACGACAAGGTTGTAGTTTTCACTACATGTCCATACATA$
	TAACATTCACGCGCCTGGTAGCGTTACCAACGCTACGCT
PrcsC	ATACGCTCCTCACGTGGTAAGTCGATGTAGAGATCATAGCGATCGCCTAGTGCCTGATTAAGCAGGTTGACCACGGCAGAAAGTTTTTTCTCTTTTTCAGA TAAGACTGCTGAACGTCCTTCCGTTTCTACGATATAACCAATAGTAAGCGTTGGGACAATGACCATCAGGATTGCCATCAGGATCATTTGATTGCGTAAGC
FICSC	GGCGTGGATAAATCCACTTCATATAATGCATGCTGAAATCCACTAGTCTTGTCCGGTATATGACGATTATCAGAGGTTAAGGTGATGATTTCTCGGCGGTGATGATTTCTCGGCGGTGATGATTTCTCGGCGGTGATGATTTCTCGGCGGTGATGATTTCTCGGCGGTGATGATGATGATGATGATGATGATGATGATGATGATG
	TATCATATTCCAGAGAAGAGAAGACATTGCGGTAACACGCTTTTACCGCTACCTTAACCACACTCCATCGGTCACCTGAGGCGGAGCTTCGCCCCT GCCTGACGTTCCGCATTCTGGACACGGGAGAAGGCGTAAGTATTCATGAAATGGATAATTTGCACTTCCCGTTTATCAACCAGACCCAAAACGATCGCTA
	TGGCAAGGCGGACCCGCTGGCATTCTGGCTGAGCGATCAACTGGCACGTAAACTGGGCGGTCATTTAAACATCAAAACGCGGGATGGGCTTGGTACACGCCGCTAAACTGGGCGGTCATTTAAACATCAAAACGCGGGATGGGCTTGGTACACGCCGCTAAACTGGGCGGTCATTTAAACATCAAAACGCGGGATGGGCTTGGTACACGCCGCTAAACTGGGCGGTCATTTAAACATCAAAACGCGGGATGGGCTTGGTACACGCCGCTAAACTGGGCGGTCATTTAAACATCAAAACGCGGGGATGGGCTTGGTACACGCCGCTAAACTGGGCGGTCATTTAAACATCAAAACGCGGGATGGGCTTGGTACACGCCGCTAAACTGGGCGGTCATTTAAACATCAAAACGCGGGGATGGGCTTGGTACACGCCGCTAAACTGGGCGGTCATTTAAACATCAAAACGCGGGGATGGGCTTGGTACACGCCGCTAAACTGGGCGGTCATTTAAACATCAAAACGCGGGGATGGGCTTGGTACACGCCGTAAACTGGGCGGTCATTTAAACATCAAAACGCGGGGATGGGCTTGGTACACGCCGTAAACTGGGCGGTCATTTAAACATCAAAACGCGGGGATGGGCTTGGTACACGCCGTAAACTGGGCGGTCATTTAAAACATCAAAAACGCGGGGATGGGCTTGGTACACGCCGTAAAACTGGGCGGTAAAACTGGGCGGTAAAACTGGGCGGTAAAACTGGGCGGTAGGGCTTGGTACACGCCGGGATGGGCTTGGTACACGCGCGGTAAACTGGGCGGTAAACTGGGCGGTAAACTGGGCGGTAAACTGGGCGGTAAACTGGGCGGTAAACTGGGCGGTAAACTGGGCGGTAAACTGGGCGGTAAACTGGGCGGTAAACTGGGCGGGTAGGGCTTGGGGCTTGGGGCTTGGGGCTTGGGGCTGGGGCTTGGGGCTTGGGGCGGGGGG
	TACTCTGTGCATATCAAAATGCTCGCAGCTGACCCGGAAGTTGAAGAGGAAGAAGAGCGTTTACTGGATGATGTCTGCGTAATGGTGGATGTTACTTCGGCAGAAATTCGGAAAATTCGGAAAATTCGGAAAAATTCGGAAAAATTCGGAAAAATTCGGAAAATTATTATAGTCAAGATTATTATTATAGTCAAGATTATTTTTTTAATTCACTCCAGTGAAAGATTATTATTAGTCAAGATTATTATTTTTTTT
PrcsB	$ACGGATAATCCGTCTAATCTTACTGCCTCTGGCTTGCTTTTAAGCGATGATGAGTCTGGCGTACGGGAAAATTGGGCCTGGTCAATTGTGCGTCAACTTCAAT\\ ATGAGCAACGCTATGCAGGAAGCGGTCTTACAATTAATTGAAGTGCAACTGGCGCAGGAAGAGGTGACAGAATCGCCTCTGGGCGGAGATGAAAATGCGC\\ ACGCAACGCTATGCAGGAAGCGGTCTTACAATTAATTGAAGTGCAACTGGCGCAGGAAGAGGTGACAGAATCGCCTCTGGGCGGAGATGAAAATGCGC\\ ACGCAACGCTATGCAGGAAGCGGTCTTACAATTAATTGAAGTGCAACTGGCGCAGGAAGAGGTGACAGAATCGCCTCTGGGCGGAGATGAAAATGCGC\\ ACGCAACGCTATGCAGGAAGCGGTCTTACAATTAATTGAAGTGCAACTGGCGCAGGAAGAGGTGACAGAATCGCCTCTTGGGCGGAGATGAAAATGCGCCTCTGGGCGAGAAAAATTGAAATTAATT$
	AACTCCATGCCAGCGGCTATTATGCGCTCTTTGTAGACACAGTACCGGATGATGTTAAGAGGCTGTATACTGAAGCAGCAGCAGCGACTTTGCTGCGTTA
	GCCCAAACGGCTCATCGTCTTAAAGGCGTATTTGCCATGCTAAATCTGGTACCCGGCAAGCAGTTATGTGAAACGCTGGAACATCTGATTCGTGAGAAGG ATGTTCCAGGAATAGAAAAATACATCAGCGACATTGACAGTTATGTCAAGAGCTTGCTGTAGCAAGGTAGCCTATTAC
PrcsD	CTTGTTAACTATTTCACAAATAATTAACATCCGCATAATTTCCAGCAATCTTTGTTTATTTGCAATTATTTTTGTTGGGCTTTTTGTAGGTTATTTTGTACAGC AAAATGGCGCTTGTACATCTATTTCCCCCAATGCAGGATGATAAATATCACGGGAGAATAGAGAATCATCAATCA
FICSD	TACCCTTTATACTGCCCTATCACTTCGCGAAGTTTTAACAGGTCATAAACACGAATGCGTCAGAAAGAGACAAC

	Appendix Table 2. Promoter sequences of TCS genes in the <i>E. coli</i> K-12 genome. (Continued.)
Promoter	AACAATCGGAGTCGGCAAACAGCGGTTCAAACGCAGGCACATCCGCCTGCGTTTCTCGTCCACGCGGGGAAAGCACACCGTTTTCTCGCCGATAAGCGATTTTCGGCGATGTACTTCAGC TCTTTCATCACATCA
PatoS	TGAAAAAGCAATCAACAGCCAGAGCACTAACGCCAATGCTCTGAACATGTAGCGCGAGGCTTTCAGGGTTGTACGAAAAGAAGCAAGGTATTTCAAAGGGGCGAAGCTCCGCCTCAGGTGACCGATGGAGTGTGGTTAAGGTAGCGGAAAAGCAAGGTTCTCTCTC
PevgA	TGACCAATAGGCATAGGCACCTGAAAACGCAATAAATAAA
PpyrS	CACCGTCCGGGTTACCCATGCTGAAATCGATAATATCTTCGCCGGCGCGACGCGACGCACCCATTTTCAGTTCAGCGGTGATGTTAAAAACGTAGGGCGGGAGACGATCAATGCGCGTAAAGGGCGGCGACGGTCAATGCGCGTAAAGGGCGGGGAGGTGATGAGGGCGAGGGAGCGACGATGGATG
PnarQ	CGTGGCTTTTACTTTTCCTGCCGCGACGGGTGCAGGACGATTTGCATCGTACCAAAAGGACAGGCCACCACGCAGGATTTACAGCCAATACACTTTTGCTGATTGACCTGAATGCTGTC ATCAACGTGGCTGATTGCGCCATTAGGGCAGCACGCAGCGCGCGGGCGCATCTTCACAATGGTGACAGGTCACTGCACTACGTTGCTGTTGATGTTTGATAACCGTAATTCGGGGATGAA AATGGTGGTTGGGCTCAGGACATGTTGCTCATCATTGTGAGCCATGACACACGAGCATTTCACAAGCATGCACACCCAGACATTGCTGTGTCGTGTTGATAAAAACGATTCATAACGAT CTTCTTTTTTTGGTTGTAAAAAACCTTATTCTTTATATGAGTGTTGTTATTATCACAGGCGAATCGCCAATGATGTCATGTGCCCAGAATAAGTAACTATTTCGCTATAAACTGTGGC AGATCAAATAATCCCATCACTGACTAAATTGCGTTTCAGCGAACTTGAACAATTATTTTTTTT
PglrK	GGTGTTACTCTCGTCAGACGCGAATAGCCTGATGCTAACCGAGGGGAAGTTCAGATACAACAAAGCCGGGAATTACCCCGGCTTTGTTATGGAATAAGGCGGTGCCTAACTCGACGTTTC GCCCGATGGTTGATATAGCTACGCTGATATCAGAAGTTGGACGGCAGGCA
PglrR	AACCATCCGCTTTACTGGCTGCGGGCGATGGGTTGTGTGATCGTTTAATGCCTGCC
PbarA	AAACCCCATCTGAAGTTGCTTTGTTTTCGGTAAGTAGTTCAGACTTAAACGCCGCGCGACGGCGATAGCCCCAGGGAACATCGGCGATCACTTCAGAGACATCGTGTTTCATTAATCGGG CGAGTGCCGCACTTTTGCTTCCTCCTGTAAAATCCACGCTGGCGTGTTGTTGCTGACAGCCACCGCATACCCCCAAAATGAGGACAGCGTGCGGTTTTCCGGGTTTCCGGCTTAACC GGCGTACGACTTTAGCCGCGGGCATACTGTTTTTTATCTTCAGTAACAGTAACTTCCGCGTTTTTCCTGCGGCAATAATCCGGGGATAAATAGCGTTTTGCCGTTATGTCGCCCACCGCCT GACCAAAAGAGTCGAGGTCGTTGACTGAAACGGTTATGATCTGACGCGTCGTCGTCGTCGTTTTGCAGATAGAATTGCGCCATTGGCGAGACTTTCCAATTTAACAGTGTGACCTTA ATTGTCCCATAACGGAACTCC
PqseB	TCTACAGTCGTTACGCTGCCGTTCGGCCCCTGGAATCCTCCGGCCTGACTTTGCGTTGCCGATGGGCCAGAAAAACCGCCCTGCTCTCTCCCATCACCGGTGCGCTGCACAGGGCCATTACTGCGATTACTGCTGCTGCCATCACCGGTTTATTTTTCATGTTTATTACTCCCTTTAATGTCTGTTTCCGAGCATTTAACAAGATAGTCCTTAACAACTTCTTAAGGGAAAAAAATTAAGTGCTGTACCAGGGCCGTTACAACACCGGTTTACTGCAGCAGCAGCAAATACCGGTTATCGCAGGGATGAAAAAATGCGAATTTTACTGATAGA
ParcB	A OCGAGTIGGTTGAAACCGGCGTGGACGGCATAAAGCTGCATCCGCTGCATATTGTGAAAGGCAGCATTATGGGGAAAGCCTGGGAAGCGGGGCGTTTGAACGGTATTGAACTGGAGGATTACACCGCCATTATTGAACTGGAGGATTACACCGCATTATTGAACTGGAGGATTACGCCATGCGCGAAATGATTCTGCATTGGAACGGAATGATCACCGCATTTCCGCATGCGCCGCGCCGCCCGACGCCCGACGCTGCTTCCCGCTTGGTGGGAAATCGATGGGGAGGATGGTGGGAGGGA
PzraS	$\label{eq:coccocc} GGCTGATAAAGGCATTATGGATTTTCTGCCACGCTGTCTGT$
PcpxR	$\label{thm:collinear} GTTATCGCCTGAACCGACCTTCAGCAGCGTGGCTTAATGAACTGACTG$
PglnA	GATGITGATACGGTAATCATTCCATTTGATAGCGGTGTTTTTCGCGAGGATGGTAATCCCACGCTCTTTCTCCAAATCGTTGGAGTCCATCACGCGCTCTTGGGTTTCGGCACGAGAGTCG AACGTACCGGATTGTTGGAGCAGCTTGTCTACCAGGGTGGTTTTACCATGGTCTACGGTGCGCGATGATGGCGATATTACGCAATTTTTCCATCACAACTTTGCCTCAGGCATTAGAAATA GCGCGTTATTTGTACACGGATTAATCGCACTACAAAAACAGGATCACAAACATCCTCCCGCAAACAAGTATTTGCAGAGTCCCTTTTGGACGTACCGCTTAAAAAGGGGTTATCCA AAGGTCATTGCACCAACATGGTGCCTTAATGTTTCCATTGAAGCACTATATTGGTGCAACAACTTCACATCGTGGTGCAGCCCTTTTTGCACCGATGGTGCCCATGATAACACCCTTTTTAGGGGCA ATTTAAAAGTTGGCACCACAATTTCGCTTTATCTTTTTTTACGGCGACACGGCCAAAATAATTTCACGATTTTACCACCACACCACCATGACCAATCCAGGAGAGTTAAAGT
PivbL	CAAAATTCGTGCCGAAATTGCGCGTTCTGCGCGGAACACGTATACTTTCAGTGTTGACATAATACAGTGTGCTTTTGCGGTTACCAGCCGCAGGCGACTGACGAAACCTCGCTCCGGCGG GGTTTTTTGTTATCTGCAATTCAGTACAAAACGTGATCAACCCCTCAATTTTCCCTTGCTGAAAAATTTTCCATTGTCTCCCCTGTAAAGCTGTGCTTGTATAAATATTGTTAAACACAA AACCAACAAGGTCCCCAATGACTACTTCCATGCTCAA
PompR	CAGACGCTTTTTATTATACTGATAGTCAGCATTTTCGCTGCGGTCGCCCAGACTTGCGGCCCAGGTCACCTTTTTTTGTGACCTCCGGGCGTTCTTCACGCCAGAGATAATTAAGCTCTTGTTTGAGTTTTTCATAACCCTTCCCGGGTAACCAGGGGCGTTTTCATCACGCAGATCAATTCAGCTGTTTGATAAACTGGATCAATTAAGCTGATCATATCAACAGAATCAATAAATTGTTCGCCGAAAAAAATTGTATACCTTCAGCTGGTGAATAAAATTGTTAACCTGAGCTGCTGTATAATATGCTTTGTAACAATTTAAGCTGAAAATTCAATACCCGGAACTAACAGGTGAGCAACTGGAGCTTTTTTAAGAATACACGCTTACAAAATTGTTGCGAACCTTTGGGAGTACAAACAA
PbasR	ACCATCGGCAGCCACGGTCCGACCTATTACAACCGCTATCCGCCTCAGTTCAGGAAATTTACCCCCAACCTGCGACACCAGGACCCAGTGAGCCCAACGGGCCAACGGTGACCAACGGCGGCAACCGGTGACCAACGGCGGTGAACAACGCGTGGTTAACTTTCTGACCACCGGTGAAACACGCTGGTTAACTTTCTTCACCACCGGTGAAACGGTGAAAACGGATAAAATTTACCACCCAGCCTGGTTTATCTTTTCTGACCACGGTGAAACGGTTAGCCATCGCCCGGGTAGCCCAAAAACAGGTGCCGATGCTGGCTG
PdcuS	AATAGACATCGATCTTTTCGCCGGTATAACAGCGATAACCCCCGGTCGATGCGCCTGATCCATGACCTTCCCTCTCATCAGTATGATTATCGCTATAAGCATAGCCCCGGAATCTTCATACAGCACTGGCAGTTTCCGTTGCCAGAGTTATCGCTATAAGCAATAGCCCAATCATTCTTACTCCCTTTGAATTACCCGCCTCATCAGAGATAATGCTTAAGAAATTTGTCACACAAGGAAGCTGATGAGACATTCATT
PcreA	GGTAAATGTCTGTTGAAGAGTCGAAGCGGTATTGCAGCGCGATGTCCAGAATCGGACGCGCAGTCAGGCGTAGTGCGACCGCCGATTTCGACAAACGACGAGCACGAATAACCGCCCA ATAGCATGGCCAGTGACATCTTTAAACATTCTCTGTAAGTGCCACTTGGAATAACCTGCTTTCGCCGCTACATTGTCGAGCGACAGGGGCTGATCCAGATGACCTTCCAGCCAG
ParcA	TAATGATATTTCGCCCGACTGCGCGCAGTGGTGGCGACAGTGAAATCGACATCGTGTAACGATTCAGCCAATGTCGGGAAAACTTTAATTATTAATAATAATAATAACACAGATCCATGTGC GACCCAGCGGGTGGCTGGCTCCAGGTGGCCTGACATCGACAATCCGCAGATCGCTAAACCCCATCGTTTTCATTGCCCGCCGCCCGC

 ${\bf Appendix\ Table\ 3.\ Oligonucleotides\ for\ psgRNA\ cloning\ and\ DNA\ amplification\ in\ the\ HoSeI\ method.}$

Name	Sequence (5' to 3')
For psgRNA cloning	
pEX_For	GGAGCAGACAAGCCCGTCAGG
pEX_Rev	CAGGCTTTACACTTTATGCTTCCGGC
phoP_sgRNA_N20	CCGCAGCGGTTTCAGGATATTGCGATTGTCGATCTGTTTTAGAGCTAGAA
phoP_sgRNA_com	TTCTAGCTCTAAAACAGATCGACAATCGCAATATCCTGAAACCGCTGCGG
phoB_sgRNA_N20	CCGCAGCGGTTTCAGCGAACAAAATGGCTTTCAGCGTTTTAGAGCTAGAA
phoB_sgRNA_com	TTCTAGCTCTAAAACGCTGAAAGCCATTTTGTTCGCTGAAACCGCTGCGG
citB_sgRNA_N20	CCGCAGCGGTTTCAGCGTTGAGGACGAAACGCCGCGTTTTAGAGCTAGAA
citB_sgRNA_com	TTCTAGCTCTAAAACGCGGCGTTTCGTCCTCAACGCTGAAACCGCTGCGG
ompR_sgRNA_N20	CCGCAGCGGTTTCAGAACGTTCCAGCAGCGCACGCGTTTTAGAGCTAGAA
ompR_sgRNA_com	TTCTAGCTCTAAAACGCGTGCGCTGCTGGAACGTTCTGAAACCGCTGCGG
narL_sgRNA_com	TTCTAGCTCTAAAACGATGCTGCGAACTGGCGTAACTGAAACCGCTGCGG
narL_sgRNA_N20	CCGCAGCGGTTTCAGTTACGCCAGTTCGCAGCATCGTTTTAGAGCTAGAA
cpxR_sgRNA_N20	CCGCAGCGGTTTCAGTTAATAGGGAAGTCAGCTCTGTTTTAGAGCTAGAA
cpxR_sgRNA_com	TTCTAGCTCTAAAACAGAGCTGACTTCCCTATTAACTGAAACCGCTGCGG
uhpA_sgRNA_N20	CCGCAGCGGTTTCAGGATCACCTCATCGTCCGCTCGTTTTAGAGCTAGAA
uhpA_sgRNA_com	TTCTAGCTCTAAAACGAGCGGACGATGAGGTGATCCTGAAACCGCTGCGG
rstA_sgRNA_N20	CCGCAGCGGTTTCAGTTCACTGATTGCCGCGTACCGTTTTAGAGCTAGAA
rstA_sgRNA_com	TTCTAGCTCTAAAACGGTACGCGGCAATCAGTGAACTGAAACCGCTGCGG
evgA_sgRNA_com	TTCTAGCTCTAAAACGCTGAACGGCACTTCCGCCTCTGAAACCGCTGCGG
evgA_sgRNA_N20	CCGCAGCGGTTTCAGAGGCGGAAGTGCCGTTCAGCGTTTTAGAGCTAGAA
kdpE_sgRNA_N20	CCGCAGCGGTTTCAGTATTCGTCGCTTTCTGCGCAGTTTTAGAGCTAGAA
kdpE_sgRNA_com	TTCTAGCTCTAAAACTGCGCAGAAAGCGACGAATACTGAAACCGCTGCGG
torR_sgRNA_N20	CCGCAGCGGTTTCAGTGTTATTGTTGAAGATGAGCGTTTTAGAGCTAGAA
torR_sgRNA_com	TTCTAGCTCTAAAACGCTCATCTTCAACAATAACACTGAAACCGCTGCGG
uvrY_sgRNA_com	CCGCAGCGGTTTCAGATAAAAGGGTATAAAAGTCGTGTTTTAGAGCTAGAA
uvrY_sgRNA_N20	TTCTAGCTCTAAAACACGACTTTTATACCCTTTATCTGAAACCGCTGCGG
qseB_sgRNA_N20	CCGCAGCGGTTTCAGAGCGTCGACTGGTTTACACAGTTTTAGAGCTAGAA
qseB_sgRNA_com	TTCTAGCTCTAAAACTGTGTAAACCAGTCGACGCTCTGAAACCGCTGCGG
arcA_sgRNA_N20	CCGCAGCGGTTTCAGGTTGAAAAGTATTTTCGAAGGTTTTAGAGCTAGAA
arcA_sgRNA_com	TTCTAGCTCTAAAACCTTCGAAAATACTTTTCAACCTGAAACCGCTGCGG
atoC_sgRNA_N20	CCGCAGCGGTTTCAGTATCCATCAACACCACATCAGTTTTAGAGCTAGAA
atoC_sgRNA_com	TTCTAGCTCTAAAACTGATGTGGTGTTGATGGATACTGAAACCGCTGCGG
baeR_sgRNA_N20	CCGCAGCGGTTTCAGTCTTCCACGATCAAAATACGGTTTTAGAGCTAGAA
baeR_sgRNA_com	TTCTAGCTCTAAAACCGTATTTTGATCGTGGAAGACTGAAACCGCTGCGG
ntrC_sgRNA_com	TTCTAGCTCTAAAACGCGAGCGCACGTTCAAGCACCTGAAACCGCTGCGG
ntrC_sgRNA_N20	CCGCAGCGGTTTCAGGTGCTTGAACGTGCGCTCGCGTTTTAGAGCTAGAA
rcsB_sgRNA_com	TTCTAGCTCTAAAACATAGTCTTGTTCGGTATTCGCTGAAACCGCTGCGG
rcsB_sgRNA_N20	CCGCAGCGGTTTCAGCGAATACCGAACAAGACTATGTTTTAGAGCTAGAA
pyrR_sgRNA_N20	CCGCAGCGGTTTCAGAATTAAAGAGCACAGCCAGAGTTTTAGAGCTAGAA
pyrR_sgRNA_com	TTCTAGCTCTAAAACTCTGGCTGTGCTCTTTAATTCTGAAACCGCTGCGG
btsR_sgRNA_N20	CCGCAGCGGTTTCAGCGCAGGTTCTCCCGTGCTAAGTTTTAGAGCTAGAA
btsR_sgRNA_com	TTCTAGCTCTAAAACTTAGCACGGGAGAACCTGCGCTGAAACCGCTGCGG
creB_sgRNA_N20	CCGCAGCGGTTTCAGGCAAGGGATAGCCGACACGCGTTTTAGAGCTAGAA
creB_sgRNA_com	TTCTAGCTCTAAAACGCGTGTCGGCTATCCCTTGCCTGAAACCGCTGCGG

Appendix Table 3. Oligonucleotides for psgRNA cloning and DNA amplification in the HoSeI method. (Continued.)

Name	Sequence (5' to 3')
For psgRNA cloning	
basR_sgRNA_N20	CCGCAGCGGTTTCAGATTCTGGCGGCGCAAACCGAGTTTTAGAGCTAGAA
basR_sgRNA_com	TTCTAGCTCTAAAACTCGGTTTGCGCCGCCAGAATCTGAAACCGCTGCGG
cusR_sgRNA_N20	CCGCAGCGGTTTCAGACCGGAGAATACTTGACCAAGTTTTAGAGCTAGAA
cusR_sgRNA_com	TTCTAGCTCTAAAACTTGGTCAAGTATTCTCCGGTCTGAAACCGCTGCGG
narP_sgRNA_N20	CCGCAGCGGTTTCAGCTCTGAAGTGGTCGCCGAAGGTTTTAGAGCTAGAA
narP_sgRNA_com	TTCTAGCTCTAAAACCTTCGGCGACCACTTCAGAGCTGAAACCGCTGCGG
zraR_sgRNA_N20	CCGCAGCGGTTTCAGAAGCCTGCAAAATAGTGCAGGTTTTAGAGCTAGAA
zraR_sgRNA_com	TTCTAGCTCTAAAACCTGCACTATTTTGCAGGCTTCTGAAACCGCTGCGG
rssB_sgRNA_N20	CCGCAGCGGTTTCAGTTCGCTCGCTTCTGGATTCAGTTTTAGAGCTAGAA
rssB_sgRNA_com	TTCTAGCTCTAAAACTGAATCCAGAAGCGAGCGAACTGAAACCGCTGCGG
glrR_sgRNA_N20	CCGCAGCGGTTTCAGATTATTGGTCGATGACGATCGTTTTAGAGCTAGAA
glrR_sgRNA_com	TTCTAGCTCTAAAACGATCGTCATCGACCAATAATCTGAAACCGCTGCGG
fimZ_sgRNA_N20	CCGCAGCGGTTTCAGTCAATAGACATTCTGATGATGTTTTAGAGCTAGAA
$fimZ_sgRNA_com$	TTCTAGCTCTAAAACATCATCAGAATGTCTATTGACTGAAACCGCTGCGG
ygeK_sgRNA_N20	CCGCAGCGGTTTCAGATTATCCCATCAATCATAAAGTTTTAGAGCTAGAA
ygeK_sgRNA_com	TTCTAGCTCTAAAACTTTATGATTGATGGGATAATCTGAAACCGCTGCGG
dcuR_sgRNA_N20	CCGCAGCGGTTTCAGGTTCCACAGCATTGAAAGCCGTTTTAGAGCTAGAA
dcuR_sgRNA_com	TTCTAGCTCTAAAACGGCTTTCAATGCTGTGGAACCTGAAACCGCTGCGG
yhjB_sgRNA_N20	CCGCAGCGGTTTCAGAGTTTACAGCAGCGTATTCCGTTTTAGAGCTAGAA
yhjB_sgRNA_com	TTCTAGCTCTAAAACGGAATACGCTGCTGTAAACTCTGAAACCGCTGCGG
cheB_sgRNA_N20	CCGCAGCGGTTTCAGGGTGTTATCTGTCGATGATTGTTTTAGAGCTAGAA
cheB_sgRNA_com	TTCTAGCTCTAAAACAATCATCGACAGATAACACCCTGAAACCGCTGCGG
cheY_sgRNA_N20	CCGCAGCGGTTTCAGGTTACGCACTATGCGTCGCAGTTTTAGAGCTAGAA
cheY_sgRNA_com	TTCTAGCTCTAAAACTGCGACGCATAGTGCGTAACCTGAAACCGCTGCGG
hprR_sgRNA_N20	CCGCAGCGGTTTCAGTGAAGATAATCAAAGGACCCGTTTTAGAGCTAGAA
hprR_sgRNA_com	TTCTAGCTCTAAAACGGGTCCTTTGATTATCTTCACTGAAACCGCTGCGG
cusS_sgRNA_N20	CCGCAGCGGTTTCAGGGCTGATAAAAAAGGTCAGGGTTTTAGAGCTAGAA
cusS_sgRNA_com	TTCTAGCTCTAAAACCCTGACCTTTTTTATCAGCCCTGAAACCGCTGCGG
zraS_sgRNA_N20	CCGCAGCGGTTTCAGGTTAAGCGCGATCCTCCCCGGTTTTAGAGCTAGAA
zraS_sgRNA_com	TTCTAGCTCTAAAACCGGGGAGGATCGCGCTTAACCTGAAACCGCTGCGG
kdpD_sgRNA_N20	CCGCAGCGGTTTCAGTCCCGACCCCGATCGTCTGCGTTTTAGAGCTAGAA
kdpD_sgRNA_com	TTCTAGCTCTAAAACGCAGACGATCGGGGTCGGGACTGAAACCGCTGCGG
phoQ_sgRNA_N20	CCGCAGCGGTTTCAGGTTTCGATAAAACTACGTTTGTTTTAGAGCTAGAA
phoQ_sgRNA_com	TTCTAGCTCTAAAACAAACGTAGTTTTATCGAAACCTGAAACCGCTGCGG
basS_sgRNA_N20	CCGCAGCGGTTTCAGTTGAGCTGATCAGCGTCTTCGTTTTAGAGCTAGAA
basS_sgRNA_com	TTCTAGCTCTAAAACGAAGACGCTGATCAGCTCAACTGAAACCGCTGCGG
baeS_sgRNA_N20	CCGCAGCGGTTTCAGTATTACCGGCAAACTGTTTCGTTTTAGAGCTAGAA
baeS_sgRNA_com	TTCTAGCTCTAAAACGAAACAGTTTGCCGGTAATACTGAAACCGCTGCGG
cpxA_sgRNA_N20	CCGCAGCGGTTTCAGCGCGCATCTTCGCCATCTTCGTTTTAGAGCTAGAA
cpxA_sgRNA_com	TTCTAGCTCTAAAACGAAGATGGCGAAGATGCGCGCTGAAACCGCTGCGG
envZ_sgRNA_N20	CCGCAGCGGTTTCAGGACGATGAGCAATAACGTACGTTTTAGAGCTAGAA
envZ_sgRNA_com	TTCTAGCTCTAAAACGTACGTTATTGCTCATCGTCCTGAAACCGCTGCGG
evgS_sgRNA_N20	CCGCAGCGGTTTCAGATCTTCGTCTGCGAAACTTAGTTTTAGAGCTAGAA
evgS_sgRNA_com	TTCTAGCTCTAAAACTAAGTTTCGCAGACGAAGATCTGAAACCGCTGCGG

Appendix Table 3. Oligonucleotides for psgRNA cloning and DNA amplification in the HoSeI method. (Continued.)

Name Sequence (5' to 3') For psgRNA cloning glrK_sgRNA_N20 CCGCAGCGGTTTCAGATTACGACAACTGGTAATGCGTTTTAGAGCTAGAA TTCTAGCTCTAAAACGCATTACCAGTTGTCGTAATCTGAAACCGCTGCGG glrK_sgRNA_com qseC_sgRNA_N20 CCGCAGCGGTTTCAGGTTATCCGTTGTTTGTTTCCGTTTTAGAGCTAGAA qseC_sgRNA_com TTCTAGCTCTAAAACGGAAACAACAACGGATAACCTGAAACCGCTGCGG rcsC_sgRNA_N20 CCGCAGCGGTTTCAGCATGTAGCGCGAGGCTTTCAGTTTTAGAGCTAGAA rcsC_sgRNA_com TTCTAGCTCTAAAACTGAAAGCCTCGCGCTACATGCTGAAACCGCTGCGG rcsD_sgRNA_N20 CCGCAGCGGTTTCAGACTGTTGATCATTGTGTTACGTTTTAGAGCTAGAA TTCTAGCTCTAAAACGTAACACAATGATCAACAGTCTGAAACCGCTGCGG rcsD_sgRNA_com CCGCAGCGGTTTCAGCTTCCTTGTGATGTCTCTGCGTTTTAGAGCTAGAA rstB_sgRNA_N20 rstB_sgRNA_com TTCTAGCTCTAAAACGCAGAGACATCACAAGGAAGCTGAAACCGCTGCGG hprS sgRNA N20 CCGCAGCGGTTTCAGATATTGCTACTGTCTGTTGCGTTTTAGAGCTAGAA TTCTAGCTCTAAAACGCAACAGACAGTAGCAATATCTGAAACCGCTGCGG hprS_sgRNA_com atoS_sgRNA_N20 CCGCAGCGGTTTCAGACGCAATCAAATGATCCTGAGTTTTAGAGCTAGAA TTCTAGCTCTAAAACTCAGGATCATTTGATTGCGTCTGAAACCGCTGCGG atoS_sgRNA_com barA_sgRNA_N20 CCGCAGCGGTTTCAGACGCATGATGATTCTGATCCGTTTTAGAGCTAGAA TTCTAGCTCTAAAACGGATCAGAATCATCATGCGTCTGAAACCGCTGCGG barA_sgRNA_com creC_sgRNA_N20 CCGCAGCGGTTTCAGTTTAACTTCTTTGACAAAAAGTTTTAGAGCTAGAA creC sgRNA com TTCTAGCTCTAAAACTTTTTGTCAAAGAAGTTAAACTGAAACCGCTGCGG CCGCAGCGGTTTCAGGGTTGGCGTAATGGATCGCCGTTTTAGAGCTAGAA ntrB_sgRNA_N20 ntrB_sgRNA_com TTCTAGCTCTAAAACGGCGATCCATTACGCCAACCCTGAAACCGCTGCGG phoR_sgRNA_N20 CCGCAGCGGTTTCAGCACCCAGGATGAAAGCCGGGGTTTTAGAGCTAGAA TTCTAGCTCTAAAACCCCGGCTTTCATCCTGGGTGCTGAAACCGCTGCGG phoR_sgRNA_com CCGCAGCGGTTTCAGACTCCACAGGCAAAACCATGGTTTTAGAGCTAGAA uhpB_sgRNA_N20 uhpB_sgRNA_com TTCTAGCTCTAAAACCATGGTTTTGCCTGTGGAGTCTGAAACCGCTGCGG btsS_sgRNA_N20 CCGCAGCGGTTTCAGATTATTCATACCGTTAATGCGTTTTAGAGCTAGAA $btsS_sgRNA_com$ TTCTAGCTCTAAAACGCATTAACGGTATGAATAATCTGAAACCGCTGCGG CCGCAGCGGTTTCAGGGATACGGATGAGAAAGAACGTTTTAGAGCTAGAA pyrS_sgRNA_N20 TTCTAGCTCTAAAACGTTCTTTCTCATCCGTATCCCTGAAACCGCTGCGG pyrS_sgRNA_com arcB_sgRNA_N20 CCGCAGCGGTTTCAGCCTGATGATGAAGTTAGGTCGTTTTAGAGCTAGAA arcB_sgRNA_com TTCTAGCTCTAAAACGACCTAACTTCATCATCAGGCTGAAACCGCTGCGG citA_sgRNA_N20 CCGCAGCGGTTTCAGAATATTTGTCATTGCAGCCCGTTTTAGAGCTAGAA citA_sgRNA_com TTCTAGCTCTAAAACGGGCTGCAATGACAAATATTCTGAAACCGCTGCGG dcuS_sgRNA_N20 CCGCAGCGGTTTCAGACTGTGGTACTCAATTTCATGTTTTAGAGCTAGAA TTCTAGCTCTAAAACATGAAATTGAGTACCACAGTCTGAAACCGCTGCGG dcuS_sgRNA_com narQ_sgRNA_N20 CCGCAGCGGTTTCAGCGTCTCGGCCAGTCTGGCCCGTTTTAGAGCTAGAA TTCTAGCTCTAAAACGGGCCAGACTGGCCGAGACGCTGAAACCGCTGCGG narQ_sgRNA_com narX_sgRNA_N20 CCGCAGCGGTTTCAGTCCGCTCACCCTGGTTAATCGTTTTAGAGCTAGAA narX_sgRNA_com TTCTAGCTCTAAAACGATTAACCAGGGTGAGCGGACTGAAACCGCTGCGG CCGCAGCGGTTTCAGTCAGGGTTAACAGCGCCATCGTTTTAGAGCTAGAA torS_sgRNA_N20 TTCTAGCTCTAAAACGATGGCGCTGTTAACCCTGACTGAAACCGCTGCGG torS_sgRNA_com CCGCAGCGGTTTCAGTGATGAAGCGGACGAACTGTGTTTTAGAGCTAGAA cheA_sgRNA_N20 cheA_sgRNA_com TTCTAGCTCTAAAACACAGTTCGTCCGCTTCATCACTGAAACCGCTGCGG

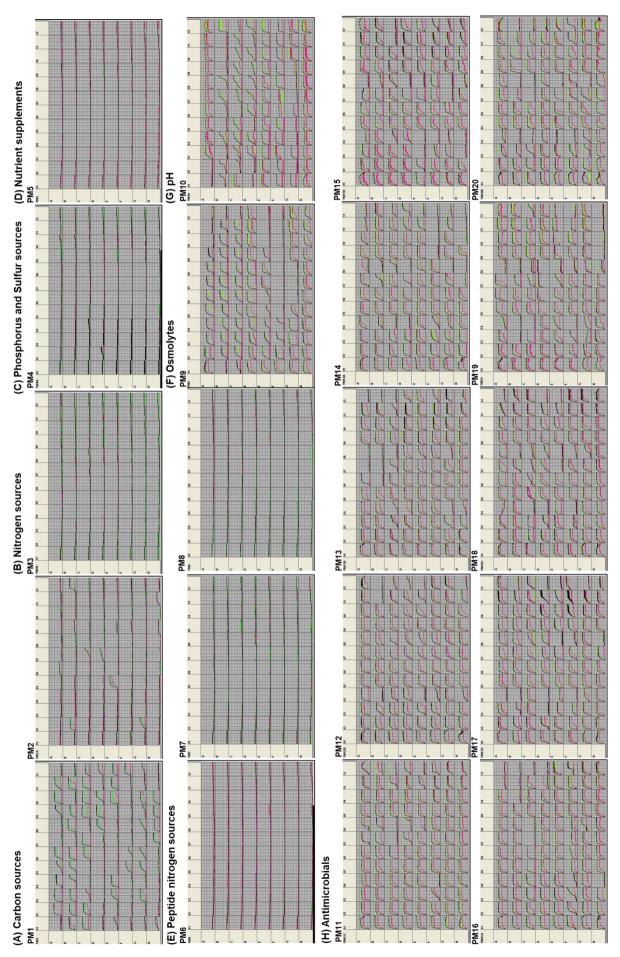
Appendix Table 3. Oligonucleotides for psgRNA cloning and DNA amplification in the HoSeI method. (Continued.)

Name	Sequence (5' to 3')		
For DNA amplification			
phoP_LL_F	TCGTCTTCACCTCGAAAGCAGTTTATCGATGGTCT		
phoP_check_R	CTATTACGCCGCATTAATGCCTGCA		
phoB_K030S	GAGGCAAGATCTGCGGCGCATGTCCGGCGC		
phoB_check_R	TTTCAAGGCCGCGCACGCGATCTTC		
CITA_LL_F	TCGTCTTCACCTCGACGCTCAAATCATTTTCATGC		
citB_check_R	AACACCACGTCGCCGGGATAATGCG		
ompR_K306T	CAGCCAGATCTAGGAGGTTAAGACTCTTCC		
ompR_check_R	GTCACCATAATGATCGGCATCGGGT		
narL_K427T	CGTAACGAAGATCTTGCATCCTGGGCGCAG		
narL_check_R	ATGCGCCCTGAGAGGGACTTTTCGC		
cpxR_K365T	CCCACAGATCTTGGGGGAAGACAGGGATGG		
cpxR_check_R	GCATCAACTTCCAGTGTCGGTGAAC		
uhpA_K334T	ATGATAGATCTTCAGGAGATGGCGACCGCC		
uhpA_check_R	CTGTCGTGAACGGAGAGCATAATCG		
rstA_LL_F	TCGTCTTCACCTCGAGCAAAGGTCGGGAAAAGTGG		
rstA_check_R	GCTTTGTAGGGAGTCAGAGACGTTT		
evgA_K227S	GAGTGAGATCTTGGCATCAGTTTTATCCAG		
evgA_check_R	TTCATGCCTTCTTTTTACTCACGA		
kdpE_K425S	TCAGGCAGAGATCTTAACGCTCGATCTGGC		
kdpE_check_R	TCGCTCTCTCGCTGCGGAAA		
torR_K097T	ACTGCAGATCTAAGCCGCTACTCATATCCG		
torR_check_R	ACCAGAATAATCCCCACCGTTGAGC		
uvrY_K179T	GCCGGAGATCTATTACTGACGGTAGGCTTG		
uvrY_check_R	ATGATTTTGACATCAGCTGTGGAAC		
qseB_K283S	TTCGCAGATCTGTAGTTGAGCAATTCAGGG		
qseB_check_R	CACAGATAATCGTCAGCTCCCAGAC		
arcA_K421T	CCATCGAGATCTTTGCCCGCGCCGCTGCCC		
arcA_check_R	AGGAACATCAACGCAACATTCGCCT		
atoC_K213S	GCATTTAGATCTTTATTGATGCGTTCATGC		
atoC_check_R	ACGATTAAATTCAACTCATCGAGAT		
baeR_K190S	TGGGCAGATCTGCGCAAGACTTCAACCAGC		
baeR_check_R	CGACGAATTTCCCGGCACAGCGTCA		
ntrC_K360T	GTTTCCCAGATCTGGCAGCTAACCCGTACC		
ntrC_check_R	CTGACGGCAGCATCCAGATCGGAAT		
rcsB_K211S	CGGGAAGATCTTGGTACACGCTACTCTGTG		
rcsB_check_R	CTTGGGAAATGGCGCTTGATGTACT		
pyrR_K432S	CTGTCGCAGATCTTCTCCACGCAACTGGAG		
pyrR_check_R	TCTTTCCACGCGGTGATGAACACAA		
btsR_K430T	CGGCGCAGATCTTTGCCGGGCAATATGAGC		
btsR_check_R	ACAATATACGGGCGATGTTCCGGGT		
creB_K420S	GCACCAGATCTCAGGTAATTGGATAATAGC		
creB_check_R	TCACTTCGGGCCGTCAGGAACAGTA		
basR_K389T	AGGCGAGATCTATATCATTCAGCGAGCGGG		
basR_check_R	GCGATTTTGTCGGTCAGCGTATCGC		

Appendix Table 3. Oligonucleotides for psgRNA cloning and DNA amplification in the HoSeI method. (Continued.)

Name	Sequence (5' to 3')
For DNA amplification	
cusR_K052T	GCGCATAGATCTGTTGCTGATTGAAATAGC
cusR_check_R	GCGGTAAGCAACAGAATCGGCATCC
narP_K204S	CGCGCCAGATCTCAGGTTGTACCAATGCTG
narP_check_R	CGAATATGTACTTTTACTGTCTGCT
zraR_K438S	CGCTGGGAGATCTTGCGGCAGGCGTTGCCC
zraR_check_R	GTCATAATCAGCACCGGAATTGCCG
rssB_K116S	GATCGAGATCTGTTCCCGTCGCTTTGCGGC
rssB_check_R	TCTGCCATATTTTCAGTGGCAGATA
glrR_K244T	GCGACAGATCTTTCAACGATTATTGCCCCG
glrR_check_R	ATAATTACCGGCATTCCCGGCTGCA
fimZ_K049T	GTGATAGATCTGGCAAGCATCACAAATGGG
fimZ_check_R	ACTTTCACTGTGCTCTGGATTTGTT
ygeK_K422T	CCTGTAGATCTCCATATACCTACCAGTTTC
ygeK_check_R	TGAGCATCTATCTTATGCGATTTAA
dcuR_K440T	GACTCGAAGATCTGGTCAACTATGCTGACG
dcuR_check_R	TCACTTTTGCAACGCGCGTTATGCA
yhjB_K320T	TCATGAGATCTGGCGTGAGTTTGACCCGTC
yhjB_check_R	ATAACTTCCTGTAACCACCGTTTAT
cheB_K173T	CCGACTAGATCTTCGTTTGCGTTCGCTGGG
cheB_check_R	ACGGGCATTGGACGCAAACGCATTA
cheY_K428T	GTACGGCAGATCTGGCGAGCCTTGCAGCAC
cheY_check_R	ACTGGCAATGCCGACATCGCGCCAT
hprR_K182T	TACATAGATCTGCATTAACTGCCACGATAG
hprR_check_R	CTTGCAGTAAGGCAAATAACAGGGG
cusS_K423T	CCGGAGAGATCTTGACCAAAGGGTTAACCG
cusS_check_R	CCACTGACGATATCTTCCAGCGTCA
zraS_K373S	TGGCAAGATCTGATTTCTGTCGCTGGCAAC
zraS_check_R	GGCTGTCCCGCCATCTCTTCCAGAA
kdpD_K068T	GCGTGAGATCTAAACCGCTTACCGCTTCTG
kdpD_check_R	TTTAACGGCAGAACAGCCAGCCCTT
phoQ_PHOP_LL_F	TCGTCTTCACCTCGAAAGCAGTTTATCGATGGTCT
phoQ_check_R	TTCGATTTCAGCCAGTCAGGCTGGA
basS_K439T	GGGACTAGATCTGGCGGCGCAAACCGAAGG
basS_check_R	TGCAGCTCCGCCAGCGGGCGGTGA
baeS_K189S-2	GTGCTAGATCTGCTGCACGCCAGAAATAAC
baeS_check_R	ATCTGAAAGACAAAGCGATCATTGT
cpxA_K437T	ATGACCGAGATCTGACTTCCCTATTAAAGG
cpxA_check_R	GGCGGTGCCCACTTATCAATCGCCC
envZ_K434T	TGCAAGAGATCTACAAGATTCTGGTGGTCG
envZ_check_R	ATCTCCCGACGGAAAGCGGGAGGCA
evgS_K431S	CTTAGCAGATCTGACTGAAGGCGGAAGTGC
evgS_check_R	GCATTAATACCACGAACCCGTTGCT
glrK_K245T-2	GGAACGAGATCTCCGTACTGTCAGCAACTC
glrK_check_R	GCCAGGGTTGGGTCCAGCACGC

Appendix Table 3. Oligonucleotides for psgRNA cloning and DNA amplification in the HoSeI method. (Continued.)


Name	Sequence (5' to 3')
For DNA amplification	
qseC_K433S	GATAGAAGATCTCATGCTGATTGGCGACGG
qseC_check_R	AGGACCATTCTGCCGTCGTGGGTAA
rcsC_K212T	CCGAGGAGATCTCCATTACGCTCAATGGGG
rcsC_check_R	GCGATGTACTTCAGCTCTTTCATCA
rcsD_K210S	CATACAGATCTACCCTCATTAATCAGTCGG
rcsD_check_R	TCCTGTTTCAGGCGCGTCTCTTGTA
rstB_K471S	GATGCAGATCTCGGTTCACTGATTGCCGCG
rstB_check_R	TCATCAAGATGGTATTTACTCAGTG
hprS_K429T	GCTGGCAGATCTTACAAACGTTAAGAACAG
hprS_check_R	TTATTGATGCTATCACCATGAATAA
atoS_K213S	GCATTTAGATCTTTATTGATGCGTTCATGC
atoS_check_R	GCAAGTTCTGCATTTAATGCGCGGA
barA_K262S	ATCTGCAGATCTTAGCGGTGCGGTATGGCG
barA_check_R	ATATCGGAATGCCGATGCAGTA
creC_K441S	GGGAAAAGATCTGGTTAGTGGAAGATGAGC
creC_check_R	TTGCGCACTTTGTTAATGCCACCGA
ntrB_K360T	GTTTCCCAGATCTGGCAGCTAACCCGTACC
ntrB_check_R	ACAGAAAGGATATGCGAGCGCCCGT
phoR_K031S	GGCTTAGATCTGGTCGAAGCGGAAGATTAT
phoR_check_R	TTTCGCAGCTGCATCTGGTGTAAGC
uhpB_K435T	TATAGAAGATCTCCTCATCGTCCGCTCCGG
uhpB_check_R	ATCAATAACGGAAAATGGGTTAAAC
YEHU_LL_F	TCGTCTTCACCTCGACACTTCACCAATTGTGTAAA
btsS_check_R	ATCGAATATCGATGTAAGCCGCCGG
YPDA_LL_F	TCGTCTTCACCTCGACACCGTCCGGGTTACCCATG
pyrR_check_R	ACCCACGGGCCAAACAGAATCCCGC
arcB_K293T	GTGTGAGATCTCGCCCGGACTGCGTGCCGG
arcB_check_R	AGACGTTGTCGTGACTCCTCCAGTT
citA_K062S	AGATGAGATCTGTGCCGCTCATAGGCGAGG
citA_check_R	GCGATGGTCGCCAGCCGTTTGTAGT
dcuS_K392T	CCCATAGATCTCGAATATCATCATCCCC
dcuS_check_R	CCACTCTCCTGCGGTTTTTTCTGCA
narQ_K238S	CACGGTAGATCTTCCTGACGCGCGGTGCGC
narQ_check_R	GAATGCAGTGCCTGAAATAACT
narX_K114T	GCCAGAGATCTGGAATAATCAGAATACCGG
narX_check_R	GCCGTTTGTTCCATCTCTTTAATTA
torS_K096T	CCGGCAGATCTTGCGCGAAAACCTTCGACC
torS_check_R	CCCTGCGCCTGCCACATCTTTTCGT
cheA_K174T	GGCGGAGATCTCATTTCTAATAGTGAAAGC
cheA_check_R	ATGTCGGTGTTGAGTTGCATCTCAC

phoP_PAMstop phoP_PAMstop_com phoB PAMstop phoB_PAMstop_com citB_PAMstop citB_PAMstop_com ompR_PAMstop ompR_PAMstop_com narL_PAMstop narL_PAMstop_com cpxR PAMstop cpxR PAMstop com uhpA PAMstop uhpA_PAMstop_com rstA_PAMstop rstA_PAMstop_com evgA_PAMstop evgA_PAMstop_com kdpE_PAMstop kdpE_PAMstop_com torR_PAMstop torR_PAMstop_com $uvrY_PAMstop$ uvrY_PAMstop_com qseB_PAMstop qseB_PAMstop_com arcA_PAMstop arcA_PAMstop_com atoC_PAMstop atoC_PAMstop_com baeR_PAMstop baeR_PAMstop_com ntrC_PAMstop ntrC_PAMstop_com rcsB_PAMstop $rcsB_PAMstop_com$ ypdB_PAM_stop ypdB_PAM_stop_com yehT_PAM_stop yehT_PAM_stop_com creB_PAMstop creB PAMstop com basR_PAMstop basR_PAMstop_com cusR_PAMstop cusR_PAMstop_com narP_PAMstop narP_PAMstop_com $zraR_PAMstop$ zraR_PAMstop_com rssB_PAMstop rssB_PAMstop_com glrR_PAMstop glrR_PAMstop_com fimZ_PAMstop fimZ_PAMstop_com $ygeK_PAMstop$ $ygeK_PAMstop_com$ dcuR_PAMstop dcuR_PAMstop_com yhjB_PAMstop yhjB_PAMstop_com cheB PAMstop

cheB_PAMstop_com

Sequence (5' to 3') CGAAATGGTCTGCTTCGTGGTCGAACAAAATGGCTTTCAGTAAGTCGAAGAGAGATTATGACAGTGCTGTGAATCAACTGAATCCGGGA ATGTGA CGA ATATATTCCGC ATGC ATCTCTGCTTA CGGCGTTTCGTCCTC A ACGATC A ATAGGGTTA ATGGA GCT GGAAGCCTTGTTCGGTGAGATAACGTTCCAGCAGCGCACGTTAGCGCATGTCGTCATCGACCACCAGAATCTTGTAGTTCTCT TAATCAGGAACCGGCTACTATCCTGCTGATTGACGATCACTAAATGCTGCGAACTGGCGTAAAACAGCTTATCAGTATGGCAC $\tt CTACCTGCAAATCAGGTTCCAGCCCCAGCAGCTGCGCAAATTAGGAGCGGACGATGAGGTGATCGTCTATAAGGGCAACGGTGATCGTCTATAAGGGACGATCGTCTATAAGGATCAAGAT$ GATTGTTGAAGATGAACAGGCTATTCGTCGCTTTCTGCGCTAAGCGCTGGAGGGCGACGGGATGCGCGTCTTTGAGGCCGAAA AGAGAAGTATGACCGAGTTACCAATCGACGAAAACACATAACGTATTTTGATCGTGGAAGATGAACCGAAGCTGGGGCAGT TTACATGAACAATATGAACGTAATTATTGCCGATGACCATTAAATAGTCTTGTTCGGTATTCGCAAATCACTTGAGCAAATTG CA ATTTGCTCA AGTGA TTTGCGA A TA CCGA A CA AGACTA TTTA A TGGTCA TCGGCA A TA ATTA CGTTCA TA TTGTTCA TGTA A ACACGTCCAGACCGTCGTCAAAGGTGCCGACAATCTCCATTTAGCTGTGCTCTTTAATTAGCCAGCTCAGTTCCTGTTGTGCCAGTTCCTGTTGTGCCAGTTCATCTGCTCCTGCAAAAATACACGCAGGTTCTCCCGTGCTAATTATTCATCATCGACAATTAAGACTTTAATCATGCCTCGTCCCGGTCTGGTTAGTGGAAGATGAGCAAGGGATAGCCGACACGTAAGTCTACATGTTGCAGCAGGAAGGTTTTTGCCGTCGAGGTCT $\tt GTTACTGGAGCTTGATCCTGGCTCTGAAGTGGTCGCCGAATAAGGCGACGCGCGAGCGCTATCGATCTGGCGAATAGACTGAATAGACTGGCGAATAGACTGGCGAATAGACTGAATAGACTGGAATAGACTGAATAGAATAGACTGAATAGACTGAATAGAATAGACTGAATAGAAT$ GAGCCATAAACCTGCGCATTTATTATTGGTCGATGACGATTAAGGATTGCTGAAACTGCTTGGCCTGCGCCTGACCAGCGAAG TGTTTTTTTGCAACAGAACTTCAATAGACATTCTGATGATTTAATGAGTATCCATAATGATCACCGACGTTGGTTTCATAGTT GATAATGTCCGAGAAATCCAATTATCCCATCAATCATAAATTACTGCTGATCTGAAACTACAATTTTAATTTTTCCCATATAT GCCATAACTCGTCTGCCTGACTGGCCCCCTGAATACTCACTTATGGAATACGCTGCTGTAAACTGATTTTCATTCCATGAATA

Name Sequence (5' to 3') cheY PAMstop GGATAAAGAACTTAAATTTTTGGTTGTGGATGACTTTTCCTAAATGCGACGCATAGTGCGTAACCTGCTGAAAGAGCTGGGAT cheY PAMstop_com TTTCATGAAGATTCTACTTATTGAAGATAATCAAAGGACCTAAGAATGGGTAACGCAGGGGCTTTCCGAAGCGGGTTATGTCA hprR PAMstop hprR_PAMstop_com TGACATAACCCGCTTCGGAAAGCCCCTGCGTTACCCATTCTTAGGTCCTTTGATTATCTTCAATAAGTAGAATCTTCATGAAA GGTCAGTAAGCCATTTCAGCGCCCGTTTTCGCTGGCAACCTAACTGACCTTTTTTATCAGCCTGGCCACCATCGCGGCGTTTT cusS_PAM_stop A A A A CGCCGCGA TGGTGGCC A GGCTGA TA A A A A A GGTC A GTTA GGTTGCC A GCGA A A A CGGGCGCGCTGA A A TGGCTTA CTGA CC cusS_PAM_stop_com zraS PAM stop zraS PAM stop com GATGAATAACGAACCCTTACGTCCCGACCCCGATCGTCTGTAAGAACAAACTGCCGCGCCGCATCGGGGGAAGCTGAAAGTTT kdpD PAM stop $kdpD_PAM_stop_com$ A A A CTTTC A GCTTCCCCCGA TGCGGCGCGCCA GTTTGTTCTT A C A GA CGA TCGGGGTCGGGA CGT A A GGGTTCGTT A TTC A TC phoO PAMstop F phoO PAMstop R basS PAMstop F basS_PAMstop_R ${\tt GCTCAAACAGCTGAATCTGCTCGGTACTTTCATGCCATAGTTAGAAGACGCTGATCAGCTCAAACAACAACAAAATGGCCCCGGTACTTCATGCCATAGTTAGAAGACGCTGATCAGCTCAAACAACAACAAAATGGCCCCGGTACTTCATGCCATAGTTAGAAGACGCTGATCAGCTCAAACAACAACAAAATGGCCCCGGTACTTCATGCCATAGTTAGAAGACGCTGATCAGCTCAAACAACAACAACAAAATGGCCCCGGTACTTCAGAAGACGCTGATCAGCTCAAACACCAACAAAAATGGCCCCGGTACTTCAGAAGAACACCAACAAAAATGGCCCCCGGTACTTCAGAAGAACACCAACAAAAATGGCCCCGGTACTTCAGAACACAACAAAAATGGCCCCGGTAGTTAGAAGACGCTGATCAGCTCAAACAACAACAAAAATGGCCCCCGGTACTTCAGAACAACAACAAAAATGGCCCCCGGTACTTCAGAACAACAACAAAAATGGCCCCCGGTAGTTAGAAGAACACCAACAAAAATGGCCCCCGGTACTTCAGAACAACAACAACAAAAATGGCCCCCGGTAGTCAGATCAG$ AATGAAGTTCTGGCGACCCGGTATTACCGGCAAACTGTTTTAAGCGATTTTCGCCACCTGCATTGTCTTGCTGATCAGTATGC baeS_PAM_stop baeS PAM stop com cpxA_PAM_stop cpxA_PAM_stop_com $\tt GTAACATCAAAACCAACATCAACACCAGCGCCAGCGTCAGTTAGAAGATGGCGAAGATGCGCGGGGTTAAGCTGCCTATCATGAGTAGAAGATGGCGAAGATGCGCGGGGTTAAGCTGCCTATCATGAGAAGATGGCGAAGATGGCGGGGGTTAAGCTGCCTATCATGAGAAGATGGCGAAGATGCGCGGGGTTAAGCTGCCTATCATGAGAAGATGGCGAAGATGGCGGAAGATGGCGGGGGTTAAGCTGCCTATCATGAGAAGATGGCGAAGATGGCGGAAGATGGCGGGGTTAAGCTGCCTATCATGAGAAGATGGCGAAGATGGCGGGGGTTAAGCTGCCTATCATGAGATGAGAAGATGGCGAAGATGGCGGAAGATGGGCGAAGATGGCGGAAGATGGGCGAAGATGAAGATGAGATGAGATGAGATGAGATGAGATGAGATGAGATGAGATGAGATGAGATGAGATGAGATGAAT$ envZ_PAMstop_F envZ PAMstop R evgS_PAM_stop evgS_PAM_stop_com glrK_PAM_stop glrK_PAM_stop_com gseC PAMstop F $qseC_PAMstop_R$ TGTCGAACAATTCATCGACGTTATCCGTTGTTTGTTTCCATTAGACAAAGCTGGAAAGCAGCCAGGTCACCGAGGCCAGAATT GAGCTTCGCCCCTTTGAAATACCTTGCTTCTTTTCGTACATAACTGAAAGCCTCGCGCTACATGTTCAGAGCATTGGCGTTAG rcsC_PAM_stop rcsC_PAM_stop_com GAGCATTACCCGCTTCTTTTTACTGTTGATCATTGTGTTATAAGTGACGATGGGTGTAATGGTACAAAGCGCCGTTAACGCCT rcsD PAM stop rcsD_PAM_stop_com AGGCGTTAACGGCGCTTTGTACCATTACACCCATCGTCACTTATAACACAATGATCAACAGTAAAAAGAAGCGGGTAATGCTC TTACCTGTTATTGTTTGTCTGCTTCCTTGTGATGTCTCTGTAAGTTGGGCTGGTGTACAAATTTACCGCCGAACGCGCGGGCA rstB_PAM_stop $rstB_PAM_stop_com$ CCGTTTAACCTTGCTTTTTATATTGCTACTGTCTGTTGCTTAAGCCGGAATTGTCTGGACTCTCTATAATGGCCTGGCAAGTGhprS_PAM_stop hprS PAM stop com atoS_PAM_stop ${\tt GTGGATTTATCCACGCCGCTTACGCAATCAAATGATCCTGTAAGCAATCCTGATGGTCATTGTCCCAACGCTTACTATTGGTTATGGTT$ atoS_PAM_stop_com barA PAM stop barA PAM stop com creC_PAM_stop creC_PAM_stop_com ntrB_PAM_stop CAACTCGCTGATTAACAGTATTTTGTTAATCGATGACAACTAAGCGATCCATTACGCCAACCCTGCCGCAACACTGCTCGntrB PAM stop com phoR PAMstop F phoR PAMstop R $uhpB_PAMstop_F$ uhpB PAMstop R ATGGTTAATGAGTAAAACGCCATTATTCATACCGTTAATGTAAGTCACGGTTCGTCTGCCGCATAAATTTCTCTGCTACATCG btsS_PAM_stop $btsS_PAM_stop_com$ pyrS_PAM_stop pyrS_PAM_stop_com arcB PAM stop arcB_PAM_stop_com TTTGCTGATTCTGGTGTTCTCAATATTTGTCATTGCAGCCTAAGCGCAATATTTTACGGCCAGTTTTGAGGACTATTTAACGCCTAGTGTTTTAACGCTAGTGTTTTAACGCCTAGTGTTTAACGCCTAGTGTTTAACGCTAGTGTTTAACGCTAGTGTTTAACGCTAGTGTTTAACGCTAGTGTTTAACGCTAGTGTTTAACGCTAGTGTTTAACGCTAGTGTTTAACGCTAGTGTTTAACGCTAGTGTTTAACGCTAGTGTTTAACGCTAGTGTTTTAACGCTAGTGTTTAACGCTAGTGTTTAACGCTAGTGTTAACGCTAGTGTTTAACGCTAGTGTTAACGCTAGTGTTTAACGCTAGTGTTAACGCTAGTGTTTAACGCTAGTGTTAACGCTAGTGTTAACGCTAGTGTTAACGCTAGTGTTAACGCTAGTGTTAACGCTAGTGTTAACGCTAGTGTTAACGCTAGTGTTAACGCTAGTGTTAACGCTAGTGTTAACGCTAGTGTTAACGCTAGTGTTAACGCTAGTGTAGTGTTAACGCTAGTGTTAACGCTAGTGTTAACGCTAGTGTTAACGCTAGTGTTAACGCTAGTGcitA_PAMstop citA_PAMstop_com GCGTTAAATAGTCCTCAAAACTGGCCGTAAAATATTGCGCTTAGGCTGCAATGACAAATATTGAGAACACCAGAATCAGCAAA GATGAGACATTCATTGCCCTACCGCATGTTACGCAAACGTTAAATGAAATTGAGTACCACAGTGATCTTAATGGTCAGTGCGG dcuS_PAM_stop dcuS_PAM_stop_com narQ_PAM_stop $narQ_PAM_stop_com$ $narX_PAM_stop$ narX_PAM_stop_com torS_PAM_stop GAATTTAACCCTGACCCGAAGACTCTGGATGGGCTTTGCCTAAATGGCGCTGTTAACCCTGACCAGTACCCTGGTGGGATGGT torS_PAM_stop_com cheA_PAM_stop CGATTTTTATCAGACATTTTTTGATGAAGCGGACGAACTGTAAGCTGACATGGAGCAGCATTTGCTGGTTTTGCAGCCGGAAG $cheA_PAM_stop_com$

Appendix Figure 2. The growth capacity of the RR- and SK-knockout strain. The Phenotype Microarray testing was performed to characterize the growth capacity of the RR mutant (magenta), the SK mutant (green), and the parent strain (black). Each strain was inoculated for 96 hours at 37°C under 1920 environmental conditions. Each graph shows the growth of three strains (x-axis; incubate time, y-axis; the level of reduced dye) under various culture conditions such as carbon sources [A], nitrogen sources [B], phosphorus and sulfur sources [C], nutrient supplements [D], peptide nitrogen sources [E], osmolytes [F], pH [G], and inhibitory compounds [H]. The more detailed information is shown in Appendix Table 5, 6, 7, and 8.

Appendix Table 5. Carbon source utilization of $\Delta 34~RR$ and $\Delta 30~SK$ strains.

Carbon source	Plate/Well	Parent	Δ34 RR	Δ30 SK
Negative Control	PM01/A01	×	×	×
L-Arabinose	PM01/A02	0	×	×
N-Acetyl-D-Glucosamine	PM01/A03	0	×	\circ
D-Saccharic Acid	PM01/A04	0	×	\circ
Succinic Acid	PM01/A05	Δ	×	×
D-Galactose	PM01/A06	0	×	0
L-Aspartic Acid	PM01/A07	×	×	×
L-Proline	PM01/A08	×	×	×
D-Alanine	PM01/A09	0	×	×
D-Trehalose	PM01/A10	0	×	0
D-Mannose	PM01/A11	0	×	Δ
Dulcitol	PM01/A12	×	×	×
D-Serine	PM01/B01	©	Ô	©
D-Sorbitol	PM01/B02	0	×	0
Glycerol	PM01/B03	0		0
L-Fucose	PM01/B03	0	×	0
D-Glucuronic Acid		0	×	
	PM01/B05	_	×	0
D-Gluconic Acid	PM01/B06	(×	0
D,L-α-Glycerol- Phosphate	PM01/B07	×	×	×
D-Xylose	PM01/B08	©	×	0
L-Lactic Acid	PM01/B09	0	×	\circ
Formic Acid	PM01/B10	X	×	×
D-Mannitol	PM01/B11	0	\circ	\triangle
L-Glutamic Acid	PM01/B12	×	×	×
D-Glucose-6-Phosphate	PM01/C01	0	×	\circ
D-Galactonic Acid-γ-Lactone	PM01/C02	0	×	0
D,L-Malic Acid	PM01/C03	\triangle	×	×
D-Ribose	PM01/C04	×	×	×
Tween 20	PM01/C05	×	×	\triangle
L-Rhamnose	PM01/C06	0	×	\bigcirc
D-Fructose	PM01/C07	0	×	0
Acetic Acid	PM01/C08	×	×	×
α-D-Glucose	PM01/C09	0	×	\triangle
Maltose	PM01/C10	0	×	\triangle
D-Melibiose	PM01/C11	0	×	0
Thymidine	PM01/C12	×	×	×
L-Asparagine	PM01/D01	×	×	×
D-Aspartic Acid	PM01/D02	×	×	×
D-Glucosaminic Acid	PM01/D03	×	×	×
1,2-Propanediol	PM01/D04	×	×	×
Tween 40	PM01/D05	×	×	×
α-Keto-Glutaric Acid	PM01/D05	×	×	×
α-Keto-Guttaric Acid	PM01/D07	×	×	×
α-Methyl-D-Galactoside	PM01/D07	× ⊚		Δ
α-Metnyl-D-Galactoside α-D-Lactose			×	
	PM01/D09	©	×	\triangle
Lactulose	PM01/D10	0	×	Δ
Sucrose	PM01/D11	×	×	×
Uridine	PM01/D12	(i)	×	×
L-Glutamine	PM01/E01	Δ	×	×
m-Tartaric Acid	PM01/E02	×	×	×
D-Glucose-1-Phosphate	PM01/E03	0	\triangle	©
D-Fructose-6-Phosphate	PM01/E04	0	×	0

②: Rapid growth to stationary phase in 24 hours, 〇: Delayed growth but same cell mass,

 $[\]triangle \colon Delayed$ growth and small cell mass, $\times \colon No$ growth

Appendix Table 5. Carbon source utilization of Δ34 RR and Δ30 SK strains. (Continued.)

Carbon source	Plate/Well	Parent	Δ34 RR	Δ30 SK
Tween 80	PM01/E05	×	×	×
α-Hydroxy Glutaric Acid-γ-Lactone	PM01/E06	×	×	×
α-Hydroxy-Butyric Acid	PM01/E07	×	×	×
β-Methyl-D-Glucoside	PM01/E08	×	×	×
Adonitol	PM01/E09	×	×	×
Maltotriose	PM01/E10	0	Δ	Δ
2`-Deoxy-Adenosine	PM01/E11	0	×	$\overline{\bigcirc}$
Adenosine	PM01/E12	0	×	0
Glycyl-L-Aspartic Acid	PM01/F01	×	×	×
Citric Acid	PM01/F02	×	×	×
M-Inositol	PM01/F03	×	×	×
D-Threonine	PM01/F04	×	×	×
Fumaric Acid	PM01/F05	Ô		
Bromo-Succinic Acid			×	×
	PM01/F06	Δ	×	×
Propionic Acid	PM01/F07	×	×	×
Mucic Acid	PM01/F08	×	×	×
Glycolic Acid	PM01/F09	×	×	×
Glyoxylic Acid	PM01/F10	×	×	×
D-Cellobiose	PM01/F11	×	×	×
Inosine	PM01/F12	0	×	0
Glycyl-L-Glutamic Acid	PM01/G01	×	×	×
Tricarballylic Acid	PM01/G02	×	×	×
L-Serine	PM01/G03	0	\circ	\circ
L-Threonine	PM01/G04	×	×	×
L-Alanine	PM01/G05	0	×	©
L-Alanyl-Glycine	PM01/G06	\circ	×	\triangle
Acetoacetic Acid	PM01/G07	×	×	×
N-Acetyl-β-D-Mannosamine	PM01/G08	\triangle	×	0
Mono Methyl Succinate	PM01/G09	×	×	×
Methyl Pyruvate	PM01/G10	0	\triangle	\circ
D-Malic Acid	PM01/G11	×	×	×
L-Malic Acid	PM01/G12	×	×	×
Glycyl-L-Proline	PM01/H01	×	×	×
p-Hydroxy-Phenylacetic Acid	PM01/H02	×	×	×
m-Hydroxy-Phenylacetic Acid	PM01/H03	×	×	×
Tyramine	PM01/H04	×	×	×
D-Psicose	PM01/H05	×	×	×
L-Lyxose	PM01/H06	×	×	×
Glucuronamide	PM01/H07	0	×	\bigcirc
Pyruvic Acid	PM01/H08	0	×	×
L-Galactonic Acid-γ-Lactone	PM01/H09	0	×	\triangle
D-Galacturonic Acid	PM01/H10	0	×	\bigcirc
Phenylethylamine	PM01/H11	×	×	×
Ethanolamine	PM01/H12	×	×	×
Negative Control	PM02/A01	×	×	×
Chondroitin Sulfate C	PM02/A02	×	×	×
α-Cyclodextrin	PM02/A03	×	×	×
β-Cyclodextrin	PM02/A04	×	×	×
γ-Cyclodextrin	PM02/A05	×	×	×
Dextrin	PM02/A06	×	×	×
Gelatin	PM02/A07	×	×	×
Glycogen	PM02/A08	×	×	×
Inulin	PM02/A09	×	×	×

②: Rapid growth to stationary phase in 24 hours, O: Delayed growth but same cell mass,

 $[\]triangle$: Delayed growth and small cell mass, \times : No growth

Appendix Table 5. Carbon source utilization of Δ34 RR and Δ30 SK strains. (Continued.)

Carbon source	Plate/Well	Parent	Δ34 RR	Δ30 SK
Laminarin	PM02/A10	×	×	×
Mannan	PM02/A11	×	×	×
Pectin	PM02/A12	×	×	×
N-Acetyl-D-Galactosamine	PM02/B01	×	×	×
N-Acetyl-Neuraminic Acid	PM02/B02	0	×	\circ
β-D-Allose	PM02/B03	×	×	×
Amygdalin	PM02/B04	×	×	×
D-Arabinose	PM02/B05	×	×	×
D-Arabitol	PM02/B06	×	×	×
L-Arabitol	PM02/B07	×	×	×
Arbutin	PM02/B08	×	×	×
2-Deoxy-D-Ribose	PM02/B09	×	×	×
I-Erythritol	PM02/B10	×	×	×
D-Fucose	PM02/B11	×	×	×
3-0-β-D-Galactopyranosyl-D-Arabinose	PM02/B12	0	×	×
Gentiobiose	PM02/C01	×	×	×
L-Glucose	PM02/C02	×	×	×
D-Lactitol	PM02/C03	×	×	^ ×
D-Melezitose	PM02/C04	×	×	×
Maltitol	PM02/C05	×	×	
α-Methyl-D-Glucoside	PM02/C05			×
β-Methyl-D-Galactoside	PM02/C07	×	×	×
3-O-Methyl-Glucose		_	×	×
	PM02/C08	×	×	×
β-Methyl-D-Glucuronic Acid	PM02/C09	×	×	×
α-Methyl-D-Mannoside	PM02/C10	×	×	×
β-Methyl-D-Xyloside	PM02/C11	×	×	×
Palatinose	PM02/C12	×	×	×
D-Raffinose	PM02/D01	×	×	×
Salicin	PM02/D02	×	×	×
Sedoheptulosan	PM02/D03	×	×	×
L-Sorbose	PM02/D04	×	×	×
Stachyose	PM02/D05	×	×	×
D-Tagatose	PM02/D06	×	×	×
Turanose	PM02/D07	Δ	×	0
Xylitol	PM02/D08	×	×	×
N-Acetyl-D-Glucosaminitol	PM02/D09	×	×	×
γ-Amino-Butyric Acid	PM02/D10	×	×	×
δ-Amino-Valeric Acid	PM02/D11	×	×	×
Butyric Acid	PM02/D12	×	×	×
Capric Acid	PM02/E01	×	×	×
Caproic Acid	PM02/E02	×	×	×
Citraconic Acid	PM02/E03	×	×	×
D,L-Citramalic Acid	PM02/E04	×	×	×
D-Glucosamine	PM02/E05	0	\circ	0
2-Hydroxy-Benzoic Acid	PM02/E06	×	×	×
4-Hydroxy-Benzoic Acid	PM02/E07	×	×	×
β-Hydroxy-Butyric Acid	PM02/E08	×	×	×
γ-Hydroxy-Butyric Acid	PM02/E09	×	×	×
α-Keto-Valeric Acid	PM02/E10	×	×	×
Itaconic Acid	PM02/E11	×	×	×
5-Keto-D-Gluconic Acid	PM02/E12	×	×	×
D-Lactic Acid Methyl Ester	PM02/F01	×	×	×
Malonic Acid	PM02/F02	×	×	×

②: Rapid growth to stationary phase in 24 hours, 〇: Delayed growth but same cell mass,

 $[\]triangle \colon Delayed$ growth and small cell mass, $\times \colon No$ growth

Appendix Table 5. Carbon source utilization of $\Delta 34$ RR and $\Delta 30$ SK strains. (Continued.)

Carbon source	Plate/Well	Parent	Δ34 RR	Δ30 SK
Melibionic Acid	PM02/F03	×	×	×
Oxalic Acid	PM02/F04	×	×	×
Oxalomalic Acid	PM02/F05	×	×	×
Quinic Acid	PM02/F06	×	×	×
D-Ribono-1,4-Lactone	PM02/F07	×	×	×
Sebacic Acid	PM02/F08	×	×	×
Sorbic Acid	PM02/F09	×	×	×
Succinamic Acid	PM02/F10	×	×	×
D-Tartaric Acid	PM02/F11	×	×	×
L-Tartaric Acid	PM02/F12	×	×	×
Acetamide	PM02/G01	×	×	×
L-Alaninamide	PM02/G02	\circ	×	\circ
N-Acetyl-L-Glutamic Acid	PM02/G03	×	×	×
L-Arginine	PM02/G04	×	×	×
Glycine	PM02/G05	×	×	×
L-Histidine	PM02/G06	×	×	×
L-Homoserine	PM02/G07	×	×	×
4-Hydroxy-L-Proline (trans)	PM02/G08	×	×	×
L-Isoleucine	PM02/G09	×	×	×
L-Leucine	PM02/G10	×	×	×
L-Lysine	PM02/G11	×	×	×
L-Methionine	PM02/G12	×	×	×
L-Ornithine	PM02/H01	×	×	×
L-Phenylalanine	PM02/H02	×	×	×
L-Pyroglutamic Acid	PM02/H03	×	×	×
L-Valine	PM02/H04	×	×	×
D,L-Carnitine	PM02/H05	×	×	×
Sec-Butylamine	PM02/H06	×	×	×
D,L-Octopamine	PM02/H07	×	×	×
Putrescine	PM02/H08	×	×	×
Dihydroxy-Acetone	PM02/H09	×	×	×
2,3-Butanediol	PM02/H10	×	×	×
2,3-Butanone	PM02/H11	×	×	×
3-Hydroxy-2-Butanone	PM02/H12	×	×	×

②: Rapid growth to stationary phase in 24 hours, 〇: Delayed growth but same cell mass,

 $[\]triangle$: Delayed growth and small cell mass, \times : No growth

Appendix Table 6. Viability of $\Delta 34~RR$ and $\Delta 30~SK$ strains under various osmolytes.

Osmolyte	Plate/Well	Parent	Δ34 RR	Δ30 SK
1% NaCl	PM09/A01	0	Δ	0
2% NaCl	PM09/A02	0	Δ	0
3% NaCl	PM09/A03	0	×	0
4% NaCl	PM09/A04	0	×	×
5% NaCl	PM09/A05	0	×	Δ
5.5% NaCl	PM09/A06	0	×	\triangle
6% NaCl	PM09/A07	©	×	\triangle
6.5% NaCl	PM09/A08	©	×	\triangle
7% NaCl	PM09/A09	0	×	×
8% NaCl	PM09/A10	×	×	×
9% NaCl	PM09/A11	×	×	×
10% NaCl	PM09/A12	×	×	×
6% NaCl	PM09/B01			
		×	×	×
6% NaCl + Betaine	PM09/B02	_	×	×
6% NaCl + N-N Dimethyl Glycine	PM09/B03	0	×	0
6% NaCl + Sarcosine	PM09/B04	0	×	0
6% NaCl + Dimethyl Sulphonyl Propionate	PM09/B05	0	×	
6% NaCl + MOPS	PM09/B06	0	×	\circ
6% NaCl + Ectoine	PM09/B07	0	×	\triangle
6% NaCl + Choline	PM09/B08	0	×	\circ
6% NaCl + Phosphorylcholine	PM09/B09	0	×	×
6% NaCl + Creatine	PM09/B10	0	×	×
6% NaCl + Creatinine	PM09/B11	0	×	×
6% NaCl + L-Carnitine	PM09/B12	×	×	×
6% NaCl + KCl	PM09/C01	Δ	×	×
6% NaCl + L-Proline	PM09/C02	©	×	\triangle
6% NaCl + N-Acetyl-L-Glutamine	PM09/C03	©	×	0
6% NaCl + β-Glutamic Acid	PM09/C04	0	×	\circ
6% NaCl + γ-Amino-n-Butyric Acid	PM09/C05	(×	\circ
6% NaCl + Glutathione	PM09/C06	0	×	\circ
6% NaCl + Glycerol	PM09/C07	0	×	\circ
6% NaCl + Trehalose	PM09/C08	0	×	\bigcirc
6% NaCl + Trimethylamine-N-Oxide	PM09/C09	0	×	\triangle
6% NaCl + Trimethylamine	PM09/C10	0	×	\bigcirc
6% NaCl + Octopine	PM09/C11	0	×	\triangle
6% NaCl + Trigonelline	PM09/C12	×	×	×
3% Potassium Chloride	PM09/D01	0	\triangle	\bigcirc
4% Potassium Chloride	PM09/D02	0	\triangle	\triangle
5% Potassium Chloride	PM09/D03	(\triangle	\triangle
6% Potassium Chloride	PM09/D04	0	×	×
2% Sodium Sulfate	PM09/D05	0	\triangle	\circ
3% Sodium Sulfate	PM09/D06	0	×	\circ
4% Sodium Sulfate	PM09/D07	0	×	0
5% Sodium Sulfate	PM09/D08	0	×	0
5% Ethylene Glycol	PM09/D09	0	\triangle	0
10% Ethylene Glycol	PM09/D10	0	\triangle	0
15% Ethylene Glycol	PM09/D11	0	\triangle	0
20% Ethylene Glycol	PM09/D12	0	\triangle	0
1% Sodium Formate	PM09/E01	0	\triangle	0
2% Sodium Formate	PM09/E02	0	×	0
3% Sodium Formate	PM09/E03	Δ	×	0
4% Sodium Formate	PM09/E04	\triangle	×	×
170 Socialii I Office	1 1/10 // EUT	Δ	^	^

②: Rapid growth to stationary phase in 24 hours, O: Delayed growth but same cell mass,

 $[\]triangle :$ Delayed growth and small cell mass, $\times :$ No growth

Appendix Table 6. Viability of Δ34 RR and Δ30 SK strains under various osmolytes. (Continued.)

Osmolyte	Plate/Well	Parent	Δ34 RR	Δ30 SK
6% Sodium Formate	PM09/E06	Δ	×	×
2% Urea	PM09/E07	0	\circ	0
3% Urea	PM09/E08	0	\circ	\circ
4% Urea	PM09/E09	0	×	×
5% Urea	PM09/E10	×	×	×
6% Urea	PM09/E11	×	×	×
7% Urea	PM09/E12	×	×	×
1% Sodium Lactate	PM09/F01	0	(a)	0
2% Sodium Lactate	PM09/F02	0	×	\circ
3% Sodium Lactate	PM09/F03	\circ	×	×
4% Sodium Lactate	PM09/F04	0	×	×
5% Sodium Lactate	PM09/F05	×	×	×
6% Sodium Lactate	PM09/F06	×	×	×
7% Sodium Lactate	PM09/F07	×	×	×
8% Sodium Lactate	PM09/F08	×	×	×
9% Sodium Lactate	PM09/F09	×	×	×
10% Sodium Lactate	PM09/F10	×	×	×
11% Sodium Lactate	PM09/F11	×	×	×
12% Sodium Lactate	PM09/F12	×	×	×
20mM Sodium Phosphate pH 7	PM09/G01	0	\triangle	0
50mM Sodium Phosphate pH 7	PM09/G02	0	\triangle	0
100mM Sodium Phosphate pH 7	PM09/G03	0	×	0
200mM Sodium Phosphate pH 7	PM09/G04	0	×	0
20mM Sodium Benzoate pH 5.2	PM09/G05	Ö	Δ	Ö
50mM Sodium Benzoate pH 5.2	PM09/G06	×	×	×
100mM Sodium Benzoate pH 5.2	PM09/G07	×	×	×
200mM Sodium Benzoate pH 5.2	PM09/G08	×	×	×
10mM Ammonium Sulfate pH 8	PM09/G09	©	Δ	©
20mM Ammonium Sulfate pH 8	PM09/G10	0	\triangle	0
50mM Ammonium Sulfate pH 8	PM09/G11	0	\triangle	Ö
100mM Ammonium Sulfate pH 8	PM09/G12	0	\triangle	Ö
10mM Sodium Nitrate	PM09/H01	0	\triangle	0
20mM Sodium Nitrate	PM09/H02	0	\triangle	0
40mM Sodium Nitrate	PM09/H03	0	\triangle	0
60mM Sodium Nitrate	PM09/H04	0	\triangle	0
80mM Sodium Nitrate	PM09/H05	0	\triangle	0
100mM Sodium Nitrate	PM09/H06	0	\triangle	©
10mM Sodium Nitrite	PM09/H07	0	\triangle	0
20mM Sodium Nitrite	PM09/H08	0	\triangle	0
40mM Sodium Nitrite	PM09/H09	0	\triangle	0
60mM Sodium Nitrite	PM09/H10	0	\triangle	0
80mM Sodium Nitrite	PM09/H11	0	×	0
				Δ
100mM Sodium Nitrite	PM09/H12	0	×	

^{©:} Rapid growth to stationary phase in 24 hours, O: Delayed growth but same cell mass,

 $[\]triangle$: Delayed growth and small cell mass, \times : No growth

Appendix Table 7. Viability of $\Delta 34$ RR and $\Delta 30$ SK strains under different pH conditions.

pН	Plate/Well	Parent	Δ34 RR	Δ30 SK
pH 3.5	PM10/A01	×	×	×
pH 4	PM10/A02	×	×	×
pH 4.5	PM10/A03	0	\triangle	0
pH 5	PM10/A04	0	\triangle	0
pH 5.5	PM10/A05	0	\triangle	0
pH 6	PM10/A06	0	\triangle	0
pH 7	PM10/A07	0	\triangle	0
pH 8	PM10/A08	0	\triangle	0
pH 8.5	PM10/A09	0	\triangle	0
pH 9	PM10/A10	0	\triangle	0
pH 9.5	PM10/A11	0	0	0
pH 10	PM10/A12	0	0	0
pH 4.5	PM10/B01	Ō	×	×
pH 4.5 + L-Alanine	PM10/B02	Ō	×	×
pH 4.5 + L-Arginine	PM10/B03	×	×	×
pH 4.5 + L-Asparagine	PM10/B04	0	×	×
pH 4.5 + L-Aspartic Acid	PM10/B05	×	×	×
pH 4.5 + L-Glutamic Acid	PM10/B06	×	×	×
pH 4.5 + L-Glutamine	PM10/B07	Ô	×	Ô
pH 4.5 + Glycine	PM10/B08	0	×	0
pH 4.5 + L-Histidine	PM10/B09	×	×	×
pH 4.5 + L-Isoleucine	PM10/B10	×	×	×
pH 4.5 + L-Leucine	PM10/B11	×	×	×
pH 4.5 + L-Lysine	PM10/B12	<u> </u>	×	Ô
pH 4.5 + L-Methionine	PM10/C01	0	Δ	0
pH 4.5 + L-Phenylalanine	PM10/C02	×	×	×
pH 4.5 + L-Proline	PM10/C03	Ô	×	×
pH 4.5 + L-Serine	PM10/C04	0	×	Ô
pH 4.5 + L-Threonine	PM10/C05	0	×	0
pH 4.5 + L-Tryptophan	PM10/C06	×		
pH 4.5 + L-Tryptophan pH 4.5 + L-Tyrosine	PM10/C07	Δ	×	×
pH 4.5 + L-1 yrosine pH 4.5 + L-Valine	PM10/C07	0	×	0
pH 4.5 + Hydroxy-L-Proline		0	×	0
	PM10/C09 PM10/C10	0	×	
pH 4.5 + L-Ornithine		0	×	Δ
pH 4.5 + L-Homoarginine	PM10/C11		×	(
pH 4.5 + L-Homoserine	PM10/C12	×	×	×
pH 4.5 + Anthranilic Acid	PM10/D01	×	×	×
pH 4.5 + L-Norleucine	PM10/D02	×	×	×
pH 4.5 + L-Norvaline	PM10/D03	0	\triangle	0
pH 4.5 + α-Amino-N-Butyric Acid	PM10/D04	0	×	0
pH 4.5 + p-Aminobenzoate	PM10/D05	×	×	×
pH 4.5 + L-Cysteic acid	PM10/D06	0	×	0
pH 4.5 + D-Lysine	PM10/D07	0	×	0
pH 4.5 + 5-Hydroxy-L-Lysine	PM10/D08	\circ	×	×
pH 4.5 + 5-Hydroxy-L-Tryptophan	PM10/D09	\triangle	0	0
pH 4.5 + D,L Diamino pimelic Acid	PM10/D10	\circ	×	\circ
pH 4.5 + Trimethylamine-N-Oxide	PM10/D11	×	×	×
pH 4.5 + Urea	PM10/D12	\circ	×	\triangle
pH 9.5	PM10/E01	0	\triangle	0
pH 9.5 + L-Alanine	PM10/E02	0	0	0
pH 9.5 + L-Arginine	PM10/E03	0	×	0
pH 9.5 + L-Asparagine	PM10/E04	0	×	\circ
pH 9.5 + L-Aspartic Acid	PM10/E05	0	\triangle	\circ

①: Rapid growth to stationary phase in 24 hours, ①: Delayed growth but same cell mass,

 $[\]triangle$: Delayed growth and small cell mass, \times : No growth

Appendix Table 7. Viability of Δ34 RR and Δ30 SK strains under different pH conditions. (Continued.)

pH Appendix Table 7. Viability of A34 RR and A30 SK stra	Plate/Well	Parent	Δ34 RR	Δ30 SK
pH 9.5 + L-Glutamic Acid	PM10/E06	©	×	0
pH 9.5 + L-Glutamine	PM10/E07	0	Δ	Ö
pH 9.5 + Glycine	PM10/E08	0	\triangle	Ö
pH 9.5 + L-Histidine	PM10/E09	0	×	Ö
pH 9.5 + L-Isoleucine	PM10/E10	0	×	Ö
pH 9.5 + L-Leucine	PM10/E11	0	×	×
pH 9.5 + L-Lysine	PM10/E12	0	×	©
pH 9.5 + L-Methionine	PM10/F01	0	×	×
pH 9.5 + L-Phenylalanine	PM10/F02	0	×	×
pH 9.5 + L-Proline	PM10/F03	0		0
pH 9.5 + L-Serine	PM10/F04	0	×	×
pH 9.5 + L-Threonine	PM10/F05	0	×	0
pH 9.5 + L-Tryptophan	PM10/F06	×	×	×
pH 9.5 + L-Tyrosine	PM10/F07	×	×	×
pH 9.5 + L-Valine	PM10/F08	©	×	0
pH 9.5 + Hydroxy-L-Proline	PM10/F09	0	×	×
pH 9.5 + L-Ornithine	PM10/F10	0	×	×
pH 9.5 + L-Homoarginine	PM10/F11	0	×	×
pH 9.5 + L-Homoserine	PM10/F12	0	×	×
pH 9.5 + Anthranilic Acid	PM10/G01	0	×	×
pH 9.5 + L-Norleucine	PM10/G02	×	×	×
pH 9.5 + L-Norvaline	PM10/G03	©	×	×
pH 9.5 + Agmatine	PM10/G04	×	×	×
pH 9.5 + Cadaverine	PM10/G05	×	×	×
pH 9.5 + Putrescine	PM10/G06	0	×	×
pH 9.5 + Histamine	PM10/G07	×	×	×
pH 9.5 + Phenylethylamine	PM10/G08	×	×	×
pH 9.5 + Tyramine	PM10/G09	×	×	×
pH 9.5 + Tryptamine	PM10/G10	0	0	0
pH 9.5 + Trimethylamine-N-Oxide	PM10/G11	0	Δ	©
pH 9.5 + Urea	PM10/G12	0	\triangle	×
X-Caprylate	PM10/H01	0	\triangle	0
X-α-D-Glucoside	PM10/H02	0	\triangle	0
X-β-D-Glucoside	PM10/H03	©	\triangle	0
X-α-D-Galactoside	PM10/H04	0	\triangle	0
X-β-D-Galactoside	PM10/H05	0	\triangle	0
X-α-D-Glucuronide	PM10/H06	0	\triangle	0
X-β-D-Glucuronide	PM10/H07	0	\triangle	©
X-β-D-Glucosaminide	PM10/H08	0	\triangle	©
X-β-D-Galactosaminide	PM10/H09	0	\triangle	0
X-α-D-Mannoside	PM10/H10	0	\triangle	©
X-PO4	PM10/H11	0	<u> </u>	0
X-SO4	PM10/H12	0	Δ	Δ
	- 1.11 0/1112			

①: Rapid growth to stationary phase in 24 hours, ①: Delayed growth but same cell mass,

 $[\]triangle :$ Delayed growth and small cell mass, $\times :$ No growth

Appendix Table 8. The sensitivity of Δ34 RR and Δ30 SK strains to various antimicrobials. Antibiotics Parent Δ34 RR Δ30 SK Plate/Well Concentration Mode of Action Amikacin protein synthesis, aminoglycoside PM11/A01 Amikacin PM11/A02 protein synthesis, aminoglycoside 0 0 Amikacin PM11/A03 protein synthesis, aminoglycoside (O) (O) △ △ **@** PM11/A04 Amikacin protein synthesis, aminoglycoside 0 Chlortetracycline PM11/A05 protein synthesis, tetracycline (O) Δ 0 0 Chlortetracycline PM11/A06 protein synthesis, tetracycline Λ PM11/A07 0 0 Chlortetracycline protein synthesis, tetracycline 0 Chlortetracycline PM11/A08 protein synthesis, tetracycline 0 () () protein synthesis protein synthesis Lincomycin PM11/A09 Δ PM11/A10 0 Lincomycin </l> </l Lincomycin PM11/A11 protein synthesis (O) (O) 0 PM11/A12 Lincomycin protein synthesis PM11/B01 0 Amoxicillin wall, lactan Δ Amoxicillin PM11/B02 wall, lactan 0 \triangle 0 0 PM11/B03 0 wall, lactam Amoxicillin PM11/B04 wall, lactam 0 0 Amoxicillin Cloxacillin PM11/B05 wall, lactam 0 \triangle 0 PM11/B06 0 0 Cloxacillin wall, lactam Cloxacillin PM11/B07 wall, lactam 0 0 Cloxacillin PM11/B08 wall, lactam 0 PM11/B09 0 Lomefloxacin DNA topoisomerase, quinolone Δ Lomefloxacin PM11/B10 DNA topoisomerase, quinolone (O) (O) Δ (O) PM11/B11 DNA topoisomerase, quinolone Lomefloxacin Δ Lomefloxacin PM11/B12 DNA topoisomerase, quinolone × (0) 0 Bleomycin PM11/C01 DNA polymerase Λ PM11/C02 DNA polymerase 0 0 Bleomycin Δ DNA polymerase PM11/C03 0 0 Bleomycin DNA polymerase membrane, cyclic peptide Bleomycin PM11/C04 0 Δ ര 0 0 Colistin PM11/C05 Colistin PM11/C06 membrane, cyclic peptide 0 Colistin PM11/C07 membrane, cyclic peptide Colistin PM11/C08 membrane, cyclic peptide protein synthesis, tetracycline protein synthesis, tetracycline Minocycline PM11/C09 0 Δ 0 0 0 Minocycline PM11/C10 Λ Õ Minocycline PM11/C11 protein synthesis, tetracycline ☆ Minocycline PM11/C12 protein synthesis, tetracycline ☆ 0 Capreomycin PM11/D01 respiration, Na+-K+ ATPase Λ 0 Capreomycin PM11/D02 2 respiration, Na+-K+ ATPase 0 Δ 0 PM11/D03 0 0 Capreomycin respiration, Na+-K+ ATPase Capreomycin PM11/D04 0 0 0 respiration, Na+-K+ ATPase protein synthesis, tetracycline Demeclocyline PM11/D05 Δ 0 Demeclocyline PM11/D06 protein synthesis, tetracycline 0 Δ 0 Demeclocyline PM11/D07 protein synthesis, tetracycline 0 Δ 0 Demeclocyline PM11/D08 protein synthesis, tetracycline Nafcillin PM11/D09 wall. lactam ര 0 0 PM11/D10 0 Nafcillin wall, lactam Δ PM11/D11 0 0 Nafcillin wall, lactan △ ⊚ ⊚ Nafcillin PM11/D12 wall, lactam PM11/E01 Δ 0 Cefazolin wall, cephalosporin Cefazolin PM11/E02 wall, cephalosporin 0 0 Cefazolin PM11/F03 wall, cephalosporin 0 Δ 0 0 Δ Cefazolin PM11/E04 0 wall, cephalosporin Enoxacin PM11/E05 DNA topoisomerase, quinolone (O) (O) 0 0 Enoxacin PM11/E06 DNA topoisomerase, quinolone Λ PM11/E07 0 0 DNA topoisomerase, quinolone Δ Enoxacin Enoxacin PM11/E08 DNA topoisomerase, quinolone 0 0 DNA topoisomerase Nalidixic Acid PM11/E09 Δ DNA topoisomerase Nalidixic Acid PM11/E10 0 0 Nalidixic Acid PM11/E11 DNA topoisomerase 0 Δ Nalidixic Acid DNA topoisomerase PM11/E12 Cefotaxime PM11/F01 wall, cephalosporin 0 0 Cefotaxime PM11/F02 wall, cephalosporin 0 Δ 0 Cefotaxime PM11/F03 wall, cephalosporin Δ Cefotaxime PM11/F04 wall, cephalosporin 0 0 protein synthesis, macrolide Δ Erythromycin PM11/F05 PM11/F06 protein synthesis, macrolide 0 0 Erythromycin Δ Erythromycin PM11/F07 protein synthesis, macrolide (O) (O) Δ (O) (O) PM11/F08 protein synthesis, macrolide Δ Erythromycin PM11/F09 protein synthesis, aminoglycoside 0 Δ 0 Neomycin Neomycin PM11/F10 protein synthesis, aminoglycoside 0000 0 (O) (O) 0 PM11/F11 protein synthesis, aminoglycoside Neomycin Neomycin PM11/F12 protein synthesis, aminoglycoside 0 Ceftriaxone PM11/G01 wall, cephalosporin Δ 0 0 Δ 0 Ceftriaxone PM11/G02 wall, cephalosporin Ceftriaxone PM11/G03 wall, cephalosporin (O) (O) (O) (O) Ceftriaxone PM11/G04 wall, cephalosporin Λ 0 Δ 0 Gentamicin PM11/G05 protein synthesis, aminoglycoside Gentamicin PM11/G06 protein synthesis, aminoglycoside 0 0 protein synthesis, aminoglycoside 0 Gentamicin PM11/G07 Δ PM11/G08 protein synthesis, aminoglycoside 0 Gentamicin Norfloxacin PM11/G09 DNA topoisomerase, quinolone 000 Δ 0 0 Norfloxacin PM11/G10 DNA topoisomerase, quinolone Norfloxacin PM11/G11 DNA topoisomerase, quinolone 0 DNA topoisomerase, quinolone wall, cephalosporin Norfloxacin PM11/G12 0 0 0 0 Cephalothin PM11/H01 Δ 0 Cephalothin PM11/H02 wall, cephalosporin Cephalothin PM11/H03 wall, cephalosporin

Cephalothin
 PM11/H04
 4
 wall, cephalosporin

 ©: Rapid growth to stationary phase in 24 hours, ○: Delayed growth but same cell mass, △: Delayed growth and small cell mass, ×: No growth, ★: Faster growth than the parent strain.

Antibiotics		Concentration			Δ34 RR	Δ30 SK
Kanamycin Kanamycin	PM11/H05 PM11/H06	1 2	protein synthesis, aminoglycoside protein synthesis, aminoglycoside	© ©	Δ	0
Kanamycin	PM11/H06 PM11/H07	3	protein synthesis, aminoglycoside protein synthesis, aminoglycoside	0	Δ	0
Kanamycin	PM11/H08	4	protein synthesis, aminoglycoside	0	Δ	Δ
Ofloxacin	PM11/H09	1	DNA topoisomerase, quinolone	0	Δ	0
Ofloxacin	PM11/H10	2	DNA topoisomerase, quinolone	0	Δ	0
Ofloxacin	PM11/H11	3	DNA topoisomerase, quinolone	0	Δ	0
Ofloxacin	PM11/H12	4	DNA topoisomerase, quinolone	Δ	0	×
Penicillin G	PM12/A01	1	wall, lactam	0	Δ	0
Penicillin G	PM12/A02	2	wall, lactam	0	Δ	0
Penicillin G	PM12/A03	3	wall, lactam	0	Δ	0
Penicillin G	PM12/A04	4	wall, lactam	0	×	×
Tetracycline	PM12/A05	1	protein synthesis, tetracycline	0	Δ	0
Tetracycline	PM12/A06	2	protein synthesis, tetracycline	0	Δ	0
Tetracycline	PM12/A07	3	protein synthesis, tetracycline	0	Δ	0
Tetracycline	PM12/A08	4	protein synthesis, tetracycline	0	Δ	0
Carbenicillin	PM12/A09	1		0	Δ	0
Carbenicillin	PM12/A10	2		0	Δ	0
Carbenicillin	PM12/A11	3		0	Δ	0
Carbenicillin	PM12/A12	4		0	Δ	0
Oxacillin	PM12/B01	1	wall, lactam	0	Δ	0
Oxacillin	PM12/B02	2	wall, lactam	0	Δ	0
Oxacillin Oxacillin	PM12/B03 PM12/B04	3 4	wall, lactam wall, lactam	0	Δ ×	Δ
	PM12/B04	1		×	Δ	×
Penimepicycline Penimepicycline	PM12/B05	2	protein synthesis, tetracycline protein synthesis, tetracycline	0	Δ	0
Penimepicycline	PM12/B07	3	protein synthesis, tetracycline	0	Δ	0
Penimepicycline Penimepicycline	PM12/B07 PM12/B08	4	protein synthesis, tetracycline	0	Δ	0
Polymyxin B	PM12/B08	1	membrane, outer	0	Δ	0
Polymyxin B	PM12/B09	2	membrane, outer	0	Δ	0
Polymyxin B	PM12/B11	3	membrane, outer	×	×	×
Polymyxin B	PM12/B12	4	membrane, outer	×	×	×
Paromomycin	PM12/C01	1	protein synthesis, aminoglycoside	0	Δ	0
Paromomycin	PM12/C02	2	protein synthesis, aminoglycoside	0	Δ	0
Paromomycin	PM12/C03	3	protein synthesis, aminoglycoside	0	Δ	0
Paromomycin	PM12/C04	4	protein synthesis, aminoglycoside	Ö	Δ	0
Vancomycin	PM12/C05	1	protein synthesis	0	Δ	0
Vancomycin	PM12/C06	2	protein synthesis	0	Δ	0
Vancomycin	PM12/C07	3	protein synthesis	0	×	×
Vancomycin	PM12/C08	4	protein synthesis	0	×	×
D,L-Serine Hydroxamate	PM12/C09	1	tRNA synthetase	0	Δ	0
D,L-Serine Hydroxamate	PM12/C10	2	tRNA synthetase	0	Δ	0
D,L-Serine Hydroxamate	PM12/C11	3	tRNA synthetase	0	0	0
D,L-Serine Hydroxamate	PM12/C12	4	tRNA synthetase	Δ	0	0
Sisomicin	PM12/D01	1	protein synthesis, aminoglycoside	0	Δ	0
Sisomicin	PM12/D02	2	protein synthesis, aminoglycoside	0	0	0
Sisomicin	PM12/D03	3	protein synthesis, aminoglycoside	0	Δ	0
Sisomicin	PM12/D04	4	protein synthesis, aminoglycoside	×	×	×
Sulfamethazine	PM12/D05	1	folate antagonist	0	Δ	0
Sulfamethazine	PM12/D06	2	folate antagonist	0	Δ	0
Sulfamethazine	PM12/D07	3	folate antagonist	0	Δ	Δ
Sulfamethazine	PM12/D08	4	folate antagonist	0	Δ	×
Novobiocin Novobiocin	PM12/D09	1 2	DNA topoisomerase	© ©	Δ	0
Novobiocin	PM12/D10 PM12/D11	3	DNA topoisomerase	0	Δ	Δ
Novobiocin	PM12/D11	4	DNA topoisomerase DNA topoisomerase	Δ	×	×
2,4-Diamino-6,7-Diisopropylpteridine	PM12/E01	1	DIVI toposometase	0	Δ	0
2,4-Diamino-6,7-Diisopropylpteridine	PM12/E02	2		0	Δ	0
2,4-Diamino-6,7-Diisopropylpteridine	PM12/E03	3		Ö	Δ	Ö
2,4-Diamino-6,7-Diisopropylpteridine	PM12/E04	4		×	×	×
Sulfadiazine	PM12/E05	1	folate antagonist	0	0	0
Sulfadiazine	PM12/E06	2	folate antagonist	0	Δ	Õ
Sulfadiazine	PM12/E07	3	folate antagonist	0	Δ	×
Sulfadiazine	PM12/E08	4	folate antagonist	0	Δ	×
Benzethonium Chloride	PM12/E09	1	membrane, detergent, cationic	0	0	0
Benzethonium Chloride	PM12/E10	2	membrane, detergent, cationic	0	Δ	0
Benzethonium Chloride	PM12/E11	3	membrane, detergent, cationic	0	×	×
Benzethonium Chloride	PM12/E12	4	membrane, detergent, cationic	×	×	×
Tobramycin	PM12/F01	1	protein synthesis, aminoglycoside	0	Δ	0
Tobramycin	PM12/F02	2	protein synthesis, aminoglycoside	0	0	0
Tobramycin	PM12/F03	3	protein synthesis, aminoglycoside	0	Δ	0
Tobramycin	PM12/F04	4	protein synthesis, aminoglycoside	Δ	×	×
Sulfathiazole	PM12/F05	1	folate antagonist	0	0	0
Sulfathiazole	PM12/F06	2	folate antagonist	0	0	0
Sulfathiazole	PM12/F07	3	folate antagonist	0	Δ	×
Sulfathiazole	PM12/F08	4	folate antagonist	0	Δ	×
5-Fluoroorotic Acid	PM12/F09	1		0	0	0
5-Fluoroorotic Acid	PM12/F10	2		0	0	0
5-Fluoroorotic Acid	PM12/F11	3		0	0	0
5-Fluoroorotic Acid	PM12/F12	4	protein curthoris	0	0	0
Spectinomycin Spectinomycin	PM12/G01	1	protein synthesis	0	Δ	0
Specinomycin	PM12/G02	2	protein synthesis	© ©	Δ	0
	PM12/G03	3	protein synthesis	0	Δ	
Spectinomycin		4	protein synthesis folate antagonist	0	Δ	0
Spectinomycin Spectinomycin	PM12/G04 PM12/G05	1	DOWN HOURSHIM			\cup
Spectinomycin Spectinomycin Sulfamethoxazole	PM12/G05	1				
Spectinomycin Spectinomycin Sulfamethoxazole Sulfamethoxazole	PM12/G05 PM12/G06	2	folate antagonist	0	0	0
Spectinomycin Spectinomycin Sulfamethoxazole Sulfamethoxazole Sulfamethoxazole	PM12/G05 PM12/G06 PM12/G07	2 3	folate antagonist folate antagonist	O	0	×
Spectinomycin Spectinomycin Sulfamethoxazole Sulfamethoxazole Sulfamethoxazole Sulfamethoxazole	PM12/G05 PM12/G06 PM12/G07 PM12/G08	2 3 4	folate antagonist folate antagonist folate antagonist	OO	Ο Ο Δ	×
Spectinomycin Spectinomycin Sulfamethoxazole Sulfamethoxazole Sulfamethoxazole Sulfamethoxazole L-Aspartic-β-Hydroxamate	PM12/G05 PM12/G06 PM12/G07 PM12/G08 PM12/G09	2 3 4 1	folate antagonist folate antagonist folate antagonist tRNA synthetase	<!--</td--><td>○ ○ △ ⊚</td><td>× × ©</td>	○ ○ △ ⊚	× × ©
Spectinomycin Spectinomycin Sulfamethoxazole Sulfamethoxazole Sulfamethoxazole Sulfamethoxazole	PM12/G05 PM12/G06 PM12/G07 PM12/G08	2 3 4	folate antagonist folate antagonist folate antagonist	OO	Ο Ο Δ	×

③: Rapid growth to stationary phase in 24 hours, ○: Delayed growth but same cell mass, △: Delayed growth and small cell mass, ×: No growth, ★: Faster growth than the parent strain.

Antibiotics Spiramycin	Plate/Well Co	1	ion Mode of Action protein synthesis, macrolide	©	Δ34 RR Δ	<u>Δ30 31</u> ⊚
Spiramycin	PM12/H02	2	protein synthesis, macrolide	0	Δ	0
Spiramycin	PM12/H03	3	protein synthesis, macrolide	0	Δ	0
Spiramycin	PM12/H04	4	protein synthesis, macrolide	Δ	×	×
Rifampicin	PM12/H05	1	RNA polymerase	0	Δ	0
Rifampicin	PM12/H06	2	RNA polymerase	0	Δ	0
Rifampicin	PM12/H07	3	RNA polymerase	0	Δ	0
Rifampicin	PM12/H08	4	RNA polymerase	0	Δ	0
Dodecyltrimethyl Ammonium Bromide	PM12/H09	1	membrane, detergent, cationic	0	Δ	0
Dodecyltrimethyl Ammonium Bromide	PM12/H10	2	membrane, detergent, cationic	0	Δ	0
Dodecyltrimethyl Ammonium Bromide	PM12/H11	3	membrane, detergent, cationic	Δ	×	☆
Dodecyltrimethyl Ammonium Bromide	PM12/H12	4	membrane, detergent, cationic	×	×	×
Ampicillin	PM13/A01	1	wall, lactam	0	Δ	0
Ampicillin	PM13/A02	2	wall, lactam	0	Δ	0
Ampicillin Ampicillin	PM13/A03	3 4	wall, lactam	© ©	Δ	
*	PM13/A04		wall, lactam	0		0
Dequalinium	PM13/A05	1	ion channal inhibitor, K ⁺ (m)		Δ	
Dequalinium	PM13/A06	2	ion channal inhibitor, K ⁺ (m)	0	×	×
Dequalinium	PM13/A07	3	ion channal inhibitor, K ⁺ (m)	×	×	×
Dequalinium	PM13/A08	4	ion channal inhibitor, K ⁺ (m)	×	×	×
Nickel chloride	PM13/A09	1	toxic cation	0	Δ	0
Nickel chloride	PM13/A10	2	toxic cation	0	Δ	0
Nickel chloride	PM13/A11	3	toxic cation	0	Δ	0
Nickel chloride	PM13/A12	4	toxic cation	×	×	×
Azlocillin	PM13/B01	1	wall, lactam	0	Δ	0
Azlocillin	PM13/B02	2	wall, lactam	0	Δ	0
Azlocillin	PM13/B03	3	wall, lactam	0	Δ	0
Azlocillin	PM13/B04	4	wall, lactam	0	Δ	Δ
2,2'-Dipyridyl	PM13/B05	1	chelator, Fe ⁺⁺	0	Δ	0
2,2'-Dipyridyl	PM13/B06	2	chelator, Fe ⁺⁺	×	×	×
2,2'-Dipyridyl	PM13/B07	3	chelator, Fe ⁺⁺	×	×	×
2,2'-Dipyridyl	PM13/B08	4	chelator, Fe	×	×	
						×
Oxolinic acid	PM13/B09	1	DNA unwinding, gyrase (GN), topoisomerase (GP), quinolone	© ©	Δ	0
Oxolinic acid	PM13/B10	2	DNA unwinding, gyrase (GN), topoisomerase (GP), quinolone		Δ	© ^
Oxolinic acid	PM13/B11	3	DNA unwinding, gyrase (GN), topoisomerase (GP), quinolone	0	Δ	Δ
Oxolinic acid	PM13/B12	4	DNA unwinding, gyrase (GN), topoisomerase (GP), quinolone	×	×	×
6-Mercaptopurine	PM13/C01	1 2	nucleic acid analog, purine	0	0	
6-Mercaptopurine 6-Mercaptopurine	PM13/C02 PM13/C03	3	nucleic acid analog, purine nucleic acid analog, purine	0	Δ	0
6-Mercaptopurine	PM13/C03	4	nucleic acid analog, purine	Δ	×	×
Doxycycline	PM13/C04 PM13/C05	1	protein synthesis, tetracycline	Δ ©	ô	o
Doxycycline	PM13/C05	2		0	Ö	Ö
Doxycycline	PM13/C07	3	protein synthesis, tetracycline protein synthesis, tetracycline	0	×	×
Doxycycline	PM13/C08	4	protein synthesis, tetracycline	×	×	×
Potassium chromate	PM13/C09	1	toxic anion	0	Δ	0
Potassium chromate	PM13/C10	2	toxic anion	Ö	×	0
Potassium chromate	PM13/C11	3	toxic anion	Δ	×	×
Potassium chromate	PM13/C12	4	toxic anion	×	×	×
Cefuroxime	PM13/D01	1	wall, cephalosporin second generation	0	Δ	0
Cefuroxime	PM13/D02	2	wall, cephalosporin second generation	0	Δ	0
Cefuroxime	PM13/D03	3	wall, cephalosporin second generation	Ö	0	0
Cefuroxime	PM13/D04	4	wall, cephalosporin second generation	×	☆	☆
5-Fluorouracil	PM13/D05	1	nucleic acid analog, pyrimidine	0	Δ	0
5-Fluorouracil	PM13/D06	2	nucleic acid analog, pyrimidine	0	Δ	0
5-Fluorouracil	PM13/D07	3	nucleic acid analog, pyrimidine	0	Δ	0
5-Fluorouracil	PM13/D08	4	nucleic acid analog, pyrimidine	0	Δ	0
Rolitetracycline	PM13/D09	1	protein synthesis, 30S ribosomal subunit, tetracycline	0	Δ	0
Rolitetracycline	PM13/D10	2	protein synthesis, 30S ribosomal subunit, tetracycline	0	Δ	0
Rolitetracycline	PM13/D11	3	protein synthesis, 30S ribosomal subunit, tetracycline	0	0	0
Rolitetracycline	PM13/D12	4	protein synthesis, 30S ribosomal subunit, tetracycline	0	Δ	0
Cytosine arabinoside	PM13/E01	1	nucleic acid analog, pyrimidine	0	0	0
Cytosine arabinoside	PM13/E02	2	nucleic acid analog, pyrimidine	0	0	0
Cytosine arabinoside	PM13/E03	3	nucleic acid analog, pyrimidine	0	Δ	0
Cytosine arabinoside	PM13/E04	4	nucleic acid analog, pyrimidine	0	Δ.	Δ
Geneticin (G418)	PM13/E05	1	protein synthesis, aminoglycoside	0	Δ.	0
Geneticin (G418)	PM13/E06	2	protein synthesis, aminoglycoside	0	Δ	0
Geneticin (G418)	PM13/E07	3	protein synthesis, aminoglycoside	0	Δ	0
Geneticin (G418)	PM13/E08	4	protein synthesis, aminoglycoside	0	Δ.	0
Ruthenium red	PM13/E09	1	respiration, mitochondrial Ca ⁺⁺ porter	0	Δ	0
Ruthenium red	PM13/E10	2	respiration, mitochondrial Ca ⁺⁺ porter	0	Δ	0
Ruthenium red	PM13/E11	3	respiration, mitochondrial Ca ⁺⁺ porter	0	Δ	0
Ruthenium red	PM13/E12	4	respiration, mitochondrial Ca ⁺⁺ porter	0	Δ	0
Cesium chloride	PM13/F01	1	toxic cation	0	Δ	0
Cesium chloride	PM13/F01 PM13/F02	2	toxic cation	0	Δ	0
Cesium chloride	PM13/F03	3	toxic cation	0	Δ	0
Cesium chloride	PM13/F03	4	toxic cation	0	Δ	Δ
Glycine	PM13/F05	1	wall	0	Δ	©
Glycine	PM13/F06	2	wall	0	Δ	0
Glycine	PM13/F07	3	wall	0	Δ	0
Glycine	PM13/F08	4	wall	0	Δ	0
Γhallium (I) acetate	PM13/F09	1	toxic cation	0	Δ	0
Γhallium (I) acetate	PM13/F10	2	toxic cation	0	ō	0
Γhallium (I) acetate	PM13/F11	3	toxic cation	Ö	×	0
Γhallium (I) acetate	PM13/F12	4	toxic cation	ŏ	×	×
Cobalt chloride	PM13/G01	1	toxic cation	0	Δ	0
Cobalt chloride	PM13/G02	2	toxic cation	0	Δ	0
Cobalt chloride	PM13/G03	3	toxic cation	Ö	×	Δ
Cobalt chloride	PM13/G03	4	toxic cation	×	×	×
Manganese (II) chloride	PM13/G04 PM13/G05	1	toxic cation	0	ô	
Manganese (II) chloride	PM13/G05	2	toxic cation	0	Δ	0
oove (xx) elliotide		-				
Manganese (II) chloride	PM13/G07	3	toxic cation	0	Δ	0

^{©:} Rapid growth to stationary phase in 24 hours, ○: Delayed growth but same cell mass, △: Delayed growth and small cell mass, ×: No growth, ★: Faster growth than the parent strain.

Trifluoperazine Trifluoperazine Trifluoperazine Trifluoperazine	PM13/G09 PM13/G10	1				
Trifluoperazine	DM13/G10		cell cycle modulation, DNA synthesis, Ca ²⁺ /calmodulin dependent protein phosphorylation and lipid	0	0	0
•	1 W113/G10	2	cell cycle modulation, DNA synthesis, Ca ²⁺ /calmodulin dependent protein phosphorylation and lipid	0	0	0
Trifluoperazine	PM13/G11	3	cell cycle modulation, DNA synthesis, Ca ²⁺ /calmodulin dependent protein phosphorylation and lipid	0	Δ	0
	PM13/G12	4	cell cycle modulation, DNA synthesis, Ca ²⁺ /calmodulin dependent protein phosphorylation and lipid	0	×	×
Cupric chloride	PM13/H01	1	toxic cation	0	0	0
Cupric chloride	PM13/H02	2 3	toxic cation	©	0	© ©
Cupric chloride Cupric chloride	PM13/H03 PM13/H04	4	toxic cation toxic cation	Δ	×	×
Moxalactam	PM13/H05	1	wall, lactam	0	Δ	<u></u>
Moxalactam	PM13/H06	2	wall, lactam	0	Δ	0
Moxalactam	PM13/H07	3	wall, lactam	0	Δ	0
Moxalactam	PM13/H08	4	wall, lactam	0	Δ	0
Tylosin	PM13/H09	1 2	protein synthesis, 50S ribosomal subunit, macrolide	© ©	Δ	0
Tylosin Tylosin	PM13/H10 PM13/H11	3	protein synthesis, 50S ribosomal subunit, macrolide protein synthesis, 50S ribosomal subunit, macrolide	Ö	Ö	0
Tylosin	PM13/H12	4	protein synthesis, 50S ribosomal subunit, macrolide	Δ	×	×
Acriflavine	PM14/A01	1	DNA intercalator	0	Δ	0
Acriflavine	PM14/A02	2	DNA intercalator	0	0	0
Acriflavine	PM14/A03	3	DNA intercalator	0	0	0
Acriflavine Furaltadone	PM14/A04	4	DNA intercalator	© ©	О Д	0
Furaltadone	PM14/A05 PM14/A06	2	DNA synthesis, nitro-compound, multiple sites DNA synthesis, nitro-compound, multiple sites	0	Δ	0
Furaltadone	PM14/A07	3	DNA synthesis, nitro-compound, multiple sites	Ö	Δ	ŏ
Furaltadone	PM14/A08	4	DNA synthesis, nitro-compound, multiple sites	×	☆	×
Sanguinarine	PM14/A09	1	ATPase, Na ⁺ /K ⁺ and Mg ⁺⁺	0	0	0
Sanguinarine	PM14/A10	2	ATPase, Na ⁺ /K ⁺ and Mg ⁺⁺	0	Δ	0
Sanguinarine	PM14/A11	3	ATPase, Na ⁺ /K ⁺ and Mg ⁺⁺	Δ	×	Δ
Sanguinarine	PM14/A12	4	ATPase, Na ⁺ /K ⁺ and Mg ⁺⁺	×	×	☆
9-Aminoacridine	PM14/B01	1	DNA intercalator	0	Δ	0
9-Aminoacridine	PM14/B02	2	DNA intercalator	0	0	0
9-Aminoacridine	PM14/B03	3	DNA intercalator	0	Δ	0
9-Aminoacridine	PM14/B04	4	DNA intercalator	Δ	×	×
Fusaric Acid	PM14/B05	1	chelator, lipophilic	© ©	Δ	0
Fusaric Acid Fusaric Acid	PM14/B06 PM14/B07	2 3	chelator, lipophilic chelator, lipophilic	0	Δ ×	O ×
Fusaric Acid	PM14/B08	4	chelator, lipophilic	×	×	×
Sodium Arsenate	PM14/B09	1	transport, toxic anion, PO4 analog	0	Δ	0
Sodium Arsenate	PM14/B10	2	transport, toxic anion, PO4 analog	0	Δ	0
Sodium Arsenate	PM14/B11	3	transport, toxic anion, PO4 analog	0	Δ	0
Sodium Arsenate	PM14/B12	4	transport, toxic anion, PO4 analog	0	Δ	Δ
Boric Acid Boric Acid	PM14/C01 PM14/C02	1 2	transport, toxic anion transport, toxic anion	© ©	Δ	© ©
Boric Acid	PM14/C03	3	transport, toxic anion	0	×	0
Boric Acid	PM14/C04	4	transport, toxic anion	×	×	×
1-Hydroxy-Pyridine-2-thione	PM14/C05	1	chelator, lipophilic	0	Δ	0
1-Hydroxy-Pyridine-2-thione	PM14/C06	2	chelator, lipophilic	0	Δ	0
1-Hydroxy-Pyridine-2-thione	PM14/C07	3	chelator, lipophilic	©	Δ	0
1-Hydroxy-Pyridine-2-thione Sodium Cyanate	PM14/C08 PM14/C09	4	chelator, lipophilic transport, toxic anion	0	×	△ ⊚
Sodium Cyanate	PM14/C10	2	transport, toxic anion	0	Δ	0
Sodium Cyanate	PM14/C11	3	transport, toxic anion	0	Δ	0
Sodium Cyanate	PM14/C12	4	transport, toxic anion	Δ	×	0
Cadmium Chloride	PM14/D01	1	transport, toxic cation	0	Δ	0
Cadmium Chloride	PM14/D02	2	transport, toxic cation	© ©	×	0
Cadmium Chloride Cadmium Chloride	PM14/D03 PM14/D04	3 4	transport, toxic cation transport, toxic cation	×	×	×
Iodoacetate	PM14/D05	1	oxidation, sulfhydryl	0	Δ	ô
Iodoacetate	PM14/D06	2	oxidation, sulfhydryl	0	0	0
Iodoacetate	PM14/D07	3	oxidation, sulfhydryl	0	×	×
Iodoacetate	PM14/D08	4	oxidation, sulfhydryl	×	×	×
Sodium Dichromate	PM14/D09	1	transport, toxic anion, SO4 analog transport, toxic anion, SO4 analog	© ©	Δ	© ©
Sodium Dichromate Sodium Dichromate	PM14/D10 PM14/D11	2 3	transport, toxic anion, SO4 analog transport, toxic anion, SO4 analog	0	Δ	0
Sodium Dichromate	PM14/D12	4	transport, toxic anion, SO4 analog	ŏ	×	Ö
Cefoxitin	PM14/E01	1	wall, cephalosporin	0	Δ	0
Cefoxitin	PM14/E02	2	wall, cephalosporin	0	Δ	0
Cefoxitin	PM14/E03	3	wall, cephalosporin	0	Δ	0
Cefoxitin	PM14/E04	4	wall, cephalosporin	<!--</td--><td>Δ</td><td>0</td>	Δ	0
Nitrofurantoin Nitrofurantoin	PM14/E05 PM14/E06	1 2	DNA synthesis, nitro-compound, multiple sites DNA synthesis, nitro-compound, multiple sites	0	Δ	0 0
Nitrofurantoin	PM14/E07	3	DNA synthesis, nitro-compound, multiple sites	0	Δ	0
Nitrofurantoin	PM14/E08	4	DNA synthesis, nitro-compound, multiple sites	Ö	Δ	0
Sodium Metaborate	PM14/E09	1	transport, toxic anion	0	Δ	0
Sodium Metaborate	PM14/E10	2	transport, toxic anion	0	Δ	0
Sodium Metaborate	PM14/E11	3	transport, toxic anion	0	×	0
Sodium Metaborate Chloramphenicol	PM14/E12 PM14/F01	4	transport, toxic anion protein synthesis	×	×	☆ ⊚
Chloramphenicol	PM14/F01 PM14/F02	2	protein synthesis	0	Δ	0
Chloramphenicol	PM14/F03	3	protein synthesis	Ö	Δ	0
Chloramphenicol	PM14/F04	4	protein synthesis	Δ	Δ	Δ
Piperacillin	PM14/F05	1	wall, lactam	0	Δ	0
Piperacillin	PM14/F06	2	wall, lactam	0	Δ	0
Piperacillin	PM14/F07	3	wall, lactam	0	Δ	0
	PM14/F08 PM14/F09	4 1	wall, lactam transport, toxic anion, PO4 analog	© ×	O ×	⊚ ×
Piperacillin Sodium Metayanadate		2	transport, toxic anion, PO4 analog transport, toxic anion, PO4 analog	×	×	×
Sodium Metavanadate	PM14/F10		_I ,	* *		
	PM14/F10 PM14/F11	3	transport, toxic anion, PO4 analog	×	×	×
Sodium Metavanadate Sodium Metavanadate			transport, toxic anion, PO4 analog transport, toxic anion, PO4 analog	×		×
Sodium Metavanadate Sodium Metavanadate Sodium Metavanadate Sodium Metavanadate Chelerythrine	PM14/F11 PM14/F12 PM14/G01	3 4 1	transport, toxic anion, PO4 analog protein kinase C	× ©	× × Δ	× × ©
Sodium Metavanadate Sodium Metavanadate Sodium Metavanadate Sodium Metavanadate	PM14/F11 PM14/F12	3 4	transport, toxic anion, PO4 analog	×	×	×

[©] Rapid growth to stationary phase in 24 hours, O: Delayed growth but same cell mass, \(\triangle \). Delayed growth and small cell mass, \(\triangle \): No growth, \(\pi \): Faster growth than the parent strain.

Antibiotics Carbenicillin	Plate/Well Co PM14/G05	ncentrati 1	on Mode of Action wall, lactam	Parent	Δ34 RR △	∆30 Sk
Carbenicillin	PM14/G05 PM14/G06	2	wan, factam wall, lactam	0	Δ	0
Carbenicillin	PM14/G07	3	wall, lactam	Ö	ō	0
Carbenicillin	PM14/G08	4	wall, lactam	×	×	×
Sodium Nitrite	PM14/G09	1	transport, toxic anion	0	Δ	0
Sodium Nitrite	PM14/G10	2	transport, toxic anion	0	Δ	0
Sodium Nitrite	PM14/G11	3	transport, toxic anion	Δ	×	0
Sodium Nitrite	PM14/G12	4	transport, toxic anion	×	×	×
EGTA	PM14/H01	1	chelator, Ca ⁺⁺	0	Δ	0
EGTA	PM14/H02	2	chelator, Ca ⁺⁺	0	×	0
EGTA	PM14/H03	3	chelator, Ca ⁺⁺	0	×	0
EGTA	PM14/H04	4		0	Δ	0
			chelator, Ca ⁺⁺	0		
Promethazine Promethazine	PM14/H05 PM14/H06	1 2	cyclic nucleotide phosphodiesterase	0	Δ	0 0
Promethazine	PM14/H07	3	cyclic nucleotide phosphodiesterase cyclic nucleotide phosphodiesterase	Δ	×	Δ
Promethazine	PM14/H08	4	cyclic nucleotide phosphodiesterase	×	×	×
Sodium Orthovanadate	PM14/H09	1	transport, toxic anion, PO4 analog	ô	ô	ô
Sodium Orthovanadate	PM14/H10	2	transport, toxic anion, PO4 analog	×	×	×
Sodium Orthovanadate	PM14/H11	3	transport, toxic anion, PO4 analog	×	×	×
Sodium Orthovanadate	PM14/H12	4	transport, toxic anion, PO4 analog	×	×	×
Procaine	PM15/A01	1	ion channal inhibitor, Na ⁺ (m)	0	Δ	0
Procaine	PM15/A02	2		0	0	0
			ion channal inhibitor, Na ⁺ (m)			
Procaine	PM15/A03	3	ion channal inhibitor, Na ⁺ (m)	0	×	0
Procaine	PM15/A04	4	ion channal inhibitor, Na ⁺ (m)	Δ	×	0
Guanidine hydrochloride	PM15/A05	1	membrane, chaotropic agent	0	Δ	0
Guanidine hydrochloride	PM15/A06	2	membrane, chaotropic agent	0	Δ	0
Guanidine hydrochloride	PM15/A07	3	membrane, chaotropic agent	0	×	×
Guanidine hydrochloride	PM15/A08	4	membrane, chaotropic agent	×	×	×
Cefmetazole	PM15/A09	1	wall, cephalosporin second generation	0	Δ	0
Cefmetazole	PM15/A10	2	wall, cephalosporin second generation	© ©	Δ	0
Cefmetazole	PM15/A11	3	wall, cephalosporin second generation	0	Δ	0
Cefmetazole	PM15/A12	4	wall, cephalosporin second generation	0	Δ	0
D-Cycloserine D-Cycloserine	PM15/B01 PM15/B02	1 2	wall, sphingolipid synthesis wall, sphingolipid synthesis	0	Δ	0
D-Cycloserine	PM15/B03	3	wall, sphingolipid synthesis	0	Δ	0
D-Cycloserine	PM15/B03	4	wall, sphingolipid synthesis	0	Δ	0
EDTA	PM15/B05	1	chelator, hydrophilic	0	Δ	0
EDTA	PM15/B06	2	chelator, hydrophilic	0	Δ	Ó
EDTA	PM15/B07	3	chelator, hydrophilic	0	×	×
EDTA	PM15/B08	4	chelator, hydrophilic	×	×	×
5,7-Dichloro-8-hydroxy-quinaldine	PM15/B09	1	chelator, lipophilic	0	Δ	0
5,7-Dichloro-8-hydroxy-quinaldine	PM15/B10	2	chelator, lipophilic	0	Δ	0
5,7-Dichloro-8-hydroxy-quinaldine	PM15/B11	3	chelator, lipophilic	0	Δ	0
5,7-Dichloro-8-hydroxy-quinaldine	PM15/B12	4	chelator, lipophilic	0	0	0
5,7-Dichloro-8-hydroxyquinoline	PM15/C01	1	chelator, lipophilic	0	Δ	0
5,7-Dichloro-8-hydroxyquinoline	PM15/C02	2	chelator, lipophilic	0	Δ	0
5,7-Dichloro-8-hydroxyquinoline	PM15/C03	3	chelator, lipophilic	0	Δ	0
5,7-Dichloro-8-hydroxyquinoline	PM15/C04	4	chelator, lipophilic	Δ	×	×
Fusidic acid	PM15/C05	1	protein synthesis, elongation factor	0	Δ	0
Fusidic acid	PM15/C06	2	protein synthesis, elongation factor	0	Δ	0
Fusidic acid Fusidic acid	PM15/C07 PM15/C08	3 4	protein synthesis, elongation factor protein synthesis, elongation factor	0	0	0 0
				0	0	0
1,10-Phenanthroline	PM15/C09	1	chelator, Fe ⁺⁺ , Zn ⁺⁺ , divalent metal ions			
1,10-Phenanthroline	PM15/C10	2	chelator, Fe ⁺⁺ , Zn ⁺⁺ , divalent metal ions	0	Δ	0
1,10-Phenanthroline	PM15/C11	3	chelator, Fe ⁺⁺ , Zn ⁺⁺ , divalent metal ions	×	×	×
1,10-Phenanthroline	PM15/C12	4	chelator, Fe++, Zn++, divalent metal ions	×	×	×
Phleomycin	PM15/D01	1	DNA damage, oxidative, ionizing ratiation	0	Δ	0
Phleomycin	PM15/D02	2	DNA damage, oxidative, ionizing ratiation	0	Δ	0
Phleomycin	PM15/D03	3	DNA damage, oxidative, ionizing ratiation	0	Δ	0
Phleomycin	PM15/D04	4	DNA damage, oxidative, ionizing ratiation	0	Δ	×
Domiphen bromide	PM15/D05	1	membrane, detergent, cationic, fungiside	0	Δ	0
Domiphen bromide	PM15/D06	2	membrane, detergent, cationic, fungiside	0	0	0
Domiphen bromide	PM15/D07	3	membrane, detergent, cationic, fungiside	0	×	0
Domiphen bromide	PM15/D08	4	membrane, detergent, cationic, fungiside	×	×	×
Nordihydroguaiaretic acid	PM15/D09	1	lipoxygenase, fungicide	0	Δ	0
Nordihydroguaiaretic acid Nordihydroguaiaretic acid	PM15/D10 PM15/D11	2	lipoxygenase, fungicide lipoxygenase, fungicide	© ©	0	0
Nordihydroguaiaretic acid	PM15/D12	4	lipoxygenase, fungicide	0	Δ	0
Alexidine	PM15/E01	1	membrane, biguanide, electron transport	0	×	0
Alexidine	PM15/E02	2	membrane, biguanide, electron transport	Ö	×	×
Alexidine	PM15/E03	3	membrane, biguanide, electron transport	×	×	×
Alexidine	PM15/E04	4	membrane, biguanide, electron transport	×	×	×
Nitrofurazone	PM15/E05	1	DNA damage, multiple sites, nitrofuran analog	0	Δ	0
Nitrofurazone	PM15/E06	2	DNA damage, multiple sites, nitrofuran analog	0	Δ	Õ
Nitrofurazone	PM15/E07	3	DNA damage, multiple sites, nitrofuran analog	0	×	×
Nitrofurazone	PM15/E08	4	DNA damage, multiple sites, nitrofuran analog	×	×	×
Methyl viologen	PM15/E09	1	oxidizing agent	0	Δ	0
Methyl viologen	PM15/E10	2	oxidizing agent	0	Δ	0
Methyl viologen	PM15/E11	3	oxidizing agent	0	Δ	0
Methyl viologen	PM15/E12	4	oxidizing agent	0	Δ	0
3, 4-Dimethoxybenzyl alcohol	PM15/F01	1	oxidizing agent, free radical-peroxidase substrate	0	Δ	0
3, 4-Dimethoxybenzyl alcohol	PM15/F02	2	oxidizing agent, free radical-peroxidase substrate	0	Δ	0
3, 4-Dimethoxybenzyl alcohol	PM15/F03	3	oxidizing agent, free radical-peroxidase substrate	Δ	Δ	0
3, 4-Dimethoxybenzyl alcohol	PM15/F04	4	oxidizing agent, free radical-peroxidase substrate	×	×	×
Oleandomycin	PM15/F05	1	protein synthesis, 50S ribosomal subunit, macrolide	0	Δ	0
Oleandomycin	PM15/F06	2	protein synthesis, 50S ribosomal subunit, macrolide	0	Δ	0
Oleandomycin	PM15/F07	3	protein synthesis, 50S ribosomal subunit, macrolide	0	Δ	0
Oleandomycin	PM15/F08	4	protein synthesis, 50S ribosomal subunit, macrolide	0	×	0
Puromycin	PM15/F09	1	protein synthesis, 30S ribosomal subunit, premature chanin termination	0	Δ	0
Puromycin	PM15/F10	2	protein synthesis, 30S ribosomal subunit, premature chanin termination	0	Δ	0
Puromycin	PM15/F11	3	protein synthesis, 30S ribosomal subunit, premature chanin termination	Ō	0	0
Puromycin	PM15/F12	4	protein synthesis, 30S ribosomal subunit, premature chanin termination	0	×	×

②: Rapid growth to stationary phase in 24 hours, ○: Delayed growth but same cell mass, △: Delayed growth and small cell mass, ×: No growth, ★: Faster growth than the parent strain.

Appendix Table 8. The sensitivity of $\Delta 34$ RR and $\Delta 30$ SK strains to various antimicrobials. (Continue	ed.)
---	------

Antibiotics	Plate/Well C	oncentrati	tivity of Δ34 RR and Δ30 SK strains to various antimicrobials. (Continued.) on Mode of Action			Δ30 SK
CCCP	PM15/G01	1	respiration, ionophore, H ⁺	0	0	0
CCCP	PM15/G02	2	respiration, ionophore, H ⁺	0	0	0
CCCP	PM15/G03	3	respiration, ionophore, H ⁺	0	×	×
CCCP	PM15/G04	4	respiration, ionophore, H ⁺	×	×	×
Sodium azide	PM15/G05	1	respiration, uncoupler	0	Δ	0
Sodium azide	PM15/G06	2	respiration, uncoupler	0	Δ	Δ
Sodium azide Sodium azide	PM15/G07	3 4	respiration, uncoupler	×	×	×
Menadione	PM15/G08 PM15/G09	1	respiration, uncoupler respiration, uncoupler	× ©	×	× ©
Menadione	PM15/G10	2	respiration, uncoupler	0	Δ	0
Menadione	PM15/G11	3	respiration, uncoupler	Ö	0	0
Menadione	PM15/G12	4	respiration, uncoupler	Δ	0	0
2-Nitroimidazole	PM15/H01	1	ribonucleotide DP reductase	0	Δ	0
2-Nitroimidazole	PM15/H02	2	ribonucleotide DP reductase	0	Δ	0
2-Nitroimidazole	PM15/H03	3	ribonucleotide DP reductase	×	×	×
2-Nitroimidazole Hydroxyurea	PM15/H04 PM15/H05	4 1	ribonucleotide DP reductase ribonucleotide DP reductase, antifolate (inhibits thymine and methionine synthesis)	× ©	×	× ©
Hydroxyurea	PM15/H06	2	ribonucleotide DP reductase, antifolate (inhibits thymine and methionine synthesis)	0	Δ	0
Hydroxyurea	PM15/H07	3	ribonucleotide DP reductase, antifolate (inhibits thymine and methionine synthesis)	0	Ō	Δ
Hydroxyurea	PM15/H08	4	ribonucleotide DP reductase, antifolate (inhibits thymine and methionine synthesis)	×	×	×
Zinc chloride	PM15/H09	1	toxic cation	0	Δ	0
Zinc chloride	PM15/H10	2	toxic cation	0	Δ	0
Zinc chloride	PM15/H11	3	toxic cation	Δ	×	Δ
Zinc chloride	PM15/H12	4	toxic cation	Δ	×	×
Cefotaxime	PM16/A01	1	wall, cephalosporin	0	Δ	0
Cefotaxime	PM16/A02	2 3	wall, cephalosporin	© ©	Δ	© ©
Cefotaxime Cefotaxime	PM16/A03 PM16/A04	4	wall, cephalosporin	0	Δ	0
Phosphomycin	PM16/A04 PM16/A05	1	wall, cephalosporin wall	0	Δ	0
Phosphomycin	PM16/A06	2	wall	0	Δ	0
Phosphomycin	PM16/A07	3	wall	0	Δ	0
Phosphomycin	PM16/A08	4	wall	0	Δ	0
5-Chloro-7-Iodo-8-Hydroxyquinoline	PM16/A09	1	chelator, lipophilic	0	Δ	0
5-Chloro-7-Iodo-8-Hydroxyquinoline	PM16/A10	2	chelator, lipophilic	0	Δ	0
5-Chloro-7-Iodo-8-Hydroxyquinoline	PM16/A11	3	chelator, lipophilic	×	×	×
5-Chloro-7-Iodo-8-Hydroxyquinoline	PM16/A12	4	chelator, lipophilic	×	×	×
Norfloxacin	PM16/B01	1	DNA topoisomerase, quinolone	0	Δ	0
Norfloxacin	PM16/B02	2 3	DNA topoisomerase, quinolone	© ©	Δ	© ©
Norfloxacin Norfloxacin	PM16/B03 PM16/B04	3 4	DNA topoisomerase, quinolone DNA topoisomerase, quinolone	0	Δ	×
Sulfanilamide	PM16/B05	1	folate antagonist	0	Δ	0
Sulfanilamide	PM16/B06	2	folate antagonist	0	Δ	0
Sulfanilamide	PM16/B07	3	folate antagonist	0	Δ	0
Sulfanilamide	PM16/B08	4	folate antagonist	0	Δ	0
Trimethoprim	PM16/B09	1	folate antagonist, dihyldrofolate reductase	0	0	0
Trimethoprim	PM16/B10	2	folate antagonist, dihyldrofolate reductase	×	×	×
Trimethoprim	PM16/B11	3	folate antagonist, dihyldrofolate reductase	×	×	×
Trimethoprim	PM16/B12	4	folate antagonist, dihyldrofolate reductase	×	×	×
Dichlofluanid Dichlofluanid	PM16/C01 PM16/C02	1 2	fungicide, phenylsulphamide fungicide, phenylsulphamide	© ©	Δ	©
Dichlofluanid	PM16/C03	3	fungicide, phenylsulphamide	0	×	ő
Dichlofluanid	PM16/C04	4	fungicide, phenylsulphamide	Ö	×	Ö
Protamine Sulfate	PM16/C05	1	membrane, ATPase	0	×	0
Protamine Sulfate	PM16/C06	2	membrane, ATPase	0	×	×
Protamine Sulfate	PM16/C07	3	membrane, ATPase	×	×	×
Protamine Sulfate	PM16/C08	4	membrane, ATPase	×	×	×
Cetylpyridinium Chloride	PM16/C09	1	membrane, detergent, cationic	0	Δ	0
Cetylpyridinium Chloride	PM16/C10	2	membrane, detergent, cationic	0	Δ	0
Cetylpyridinium Chloride Cetylpyridinium Chloride	PM16/C11 PM16/C12	3 4	membrane, detergent, cationic membrane, detergent, cationic	×	×	×
1-Chloro-2,4-Dinitrobenzene	PM16/D01	1	oxidation, glutathione	<u></u>	Δ	0
1-Chloro-2,4-Dinitrobenzene	PM16/D02	2	oxidation, glutathione	0	Δ	0
1-Chloro-2,4-Dinitrobenzene	PM16/D03	3	oxidation, glutathione	0	Δ	0
1-Chloro-2,4-Dinitrobenzene	PM16/D04	4	oxidation, glutathione	0	Δ	0
Diamide	PM16/D05	1	oxidation, glutathione	0	Δ	0
Diamide	PM16/D06	2	oxidation, glutathione	0	Δ	0
Diamide	PM16/D07	3	oxidation, glutathione	0	Δ	0
Diamide Cinevacin	PM16/D08	4	oxidation, glutathione	0	Δ	0
Cinoxacin	PM16/D09	1 2	protein synthesis	© ©	Δ	© ©
Cinoxacin Cinoxacin	PM16/D10 PM16/D11	3	protein synthesis protein synthesis	(O) ×	△	×
Cinoxacin	PM16/D12	4	protein synthesis	×	×	×
Streptomycin	PM16/E01	1	protein synthesis, aminoglycoside	0	Δ	0
Streptomycin	PM16/E02	2	protein synthesis, aminoglycoside	0	Δ	0
Streptomycin	PM16/E03	3	protein synthesis, aminoglycoside	0	Δ	0
Streptomycin	PM16/E04	4	protein synthesis, aminoglycoside	0	Δ	0
5-Azacytidine	PM16/E05	1	DNA methyltransferase	0	Δ	0
5-Azacytidine	PM16/E06	2	DNA methyltransferase	0	Δ	0
5-Azacytidine	PM16/E07 PM16/E08	3 4	DNA methyltransferase	© ©	Δ	© ©
5-Azacytidine Rifamycin SV	PM16/E08 PM16/E09	1	DNA methyltransferase RNA polymerase	0	Δ	0
Rifamycin SV Rifamycin SV	PM16/E10	2	RNA polymerase RNA polymerase	0	Δ	0
Rifamycin SV	PM16/E11	3	RNA polymerase	0	Ō	Ö
Rifamycin SV	PM16/E12	4	RNA polymerase	0	0	0
Potassium Tellurite	PM16/F01	1	transport, toxic anion	0	Δ	0
Potassium Tellurite	PM16/F02	2	transport, toxic anion	0	Δ	0
Potassium Tellurite	PM16/F03	3	transport, toxic anion	0	×	0
Potassium Tellurite	PM16/F04	4	transport, toxic anion	×	×	×
Sodium Selenite	PM16/F05	1	transport, toxic anion	0	Δ	0
Sodium Selenite	PM16/F06	2	transport, toxic anion	0	×	0
Sodium Selenite	PM16/F07	3 4	transport, toxic anion	0	×	0
Sodium Selenite	PM16/F08		transport, toxic anion same cell mass, ∆: Delayed growth and small cell mass, ×: No growth, ★: Faster growth than the parent strain	0	Δ	0

②: Rapid growth to stationary phase in 24 hours, 〇: Delayed growth but same cell mass, △: Delayed growth and small cell mass, ×: No growth, ‡: Faster growth than the parent strain.

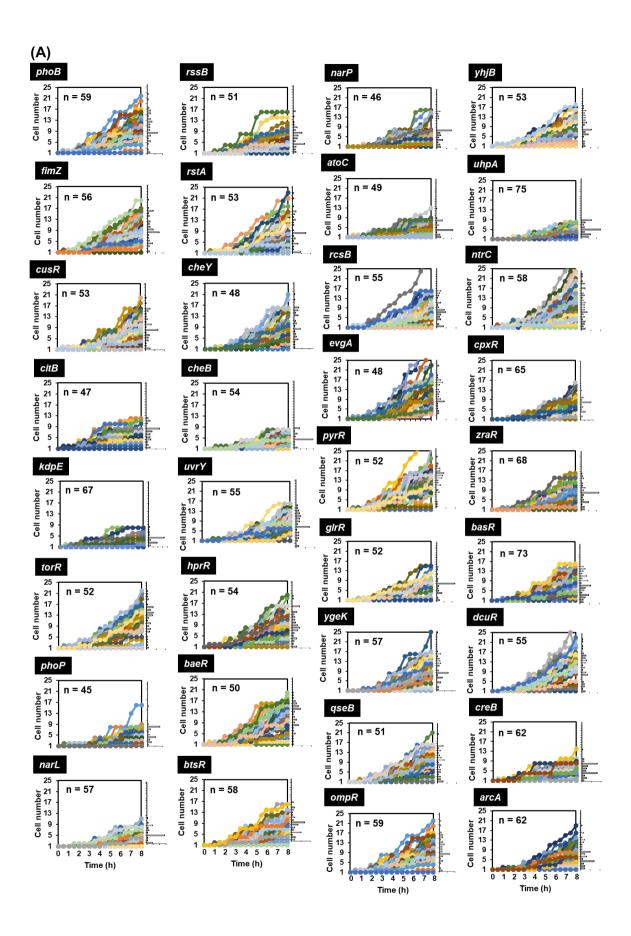
Antibiotics	• •	Concentration	rity of Δ34 RR and Δ30 SK strains to various antimicrobials. (Continued.) Mode of Action	Parent	Δ34 RR	Δ30 SK
Aluminum Sulfate	PM16/F09	1	transport, toxic cation	0	Δ	0
Aluminum Sulfate	PM16/F10	2	transport, toxic cation	0	Δ	0
Aluminum Sulfate Aluminum Sulfate	PM16/F11 PM16/F12	3 4	transport, toxic cation transport, toxic cation	©	Δ ×	O ×
Chromium Chloride	PM16/G01	1	transport, toxic cation	0	Â	©
Chromium Chloride	PM16/G02	2	transport, toxic cation	0	Δ	0
Chromium Chloride	PM16/G03	3	transport, toxic cation	0	Δ	0
Chromium Chloride	PM16/G04	4	transport, toxic cation	0	Δ	0
Ferric Chloride	PM16/G05	1	transport, toxic cation	0	Δ	0
Ferric Chloride	PM16/G06	2 3	transport, toxic cation	© ©	Δ	© ©
Ferric Chloride Ferric Chloride	PM16/G07 PM16/G08	4	transport, toxic cation transport, toxic cation	0	×	0
L-Glutamic-γ-Hydroxamate	PM16/G09	1	tRNA synthetase	0	Δ	0
L-Glutamic-γ-Hydroxamate	PM16/G10	2	tRNA synthetase	0	Δ	0
L-Glutamic-γ-Hydroxamate	PM16/G11	3	tRNA synthetase	0	0	0
L-Glutamic-γ-Hydroxamate	PM16/G12	4	tRNA synthetase	0	0	0
Glycine Hydroxamate	PM16/H01	1	tRNA synthetase	0	Δ	© ©
Glycine Hydroxamate Glycine Hydroxamate	PM16/H02 PM16/H03	2 3	tRNA synthetase tRNA synthetase	0	Δ ×	×
Glycine Hydroxamate	PM16/H04	4	tRNA synthetase	×	×	×
Chloroxylenol	PM16/H05	1	fungicide	0	Δ	0
Chloroxylenol	PM16/H06	2	fungicide	0	Δ	0
Chloroxylenol	PM16/H07	3	fungicide	0	Δ	0
Chloroxylenol	PM16/H08	4	fungicide	0	Δ	0
Sorbic Acid	PM16/H09	1	respiration, ionophore, H ⁺	0	0	0
Sorbic Acid	PM16/H10	2	respiration, ionophore, H ⁺	0	Δ	0
Sorbic Acid	PM16/H11	3	respiration, ionophore, H ⁺	0	Δ	0
Sorbic Acid	PM16/H12	4	respiration, ionophore, H ⁺	0	0	0
D-Serine	PM17/A01	1	inhibits 3PGA dehydrogenase (L-serine and pantothenate synthesis)	0	0	0
D-Serine	PM17/A02	2	inhibits 3PGA dehydrogenase (L-serine and pantothenate synthesis)	0	© ^	0
D-Serine D-Serine	PM17/A03 PM17/A04	3 4	inhibits 3PGA dehydrogenase (L-serine and pantothenate synthesis) inhibits 3PGA dehydrogenase (L-serine and pantothenate synthesis)	⊚ ×	Δ ×	O ×
β-Chloro-L-Alanine	PM17/A04 PM17/A05	1	amino acid analog, alanine, aminotransferase inhibitor	0	Δ	
β-Chloro-L-Alanine	PM17/A06	2	amino acid analog, alanine, aminotransferase inhibitor	0	Δ	0
β-Chloro-L-Alanine	PM17/A07	3	amino acid analog, alanine, aminotransferase inhibitor	0	Δ	0
β-Chloro-L-Alanine	PM17/A08	4	amino acid analog, alanine, aminotransferase inhibitor	0	Δ	0
Thiosalicylate	PM17/A09	1	anti-capsule, thiol	0	Δ	0
Thiosalicylate	PM17/A10	2	anti-capsule, thiol	0	Δ	0
Thiosalicylate Thiosalicylate	PM17/A11 PM17/A12	3 4	anti-capsule, thiol anti-capsule, thiol	© ©	Δ	© ©
Salicylate	PM17/B01	1	anti-capsule, anti-inflammatory, mar inducer	0	Δ	0
Salicylate	PM17/B02	2	anti-capsule, anti-inflammatory, mar inducer	Ö	Δ	Ō
Salicylate	PM17/B03	3	anti-capsule, anti-inflammatory, mar inducer	Δ	×	×
Salicylate	PM17/B04	4	anti-capsule, anti-inflammatory, mar inducer	×	×	×
Hygromycin B	PM17/B05	1	protein synthesis, aminoglycoside	0	Δ	0
Hygromycin B	PM17/B06	2	protein synthesis, aminoglycoside	0	Δ	0
Hygromycin B Hygromycin B	PM17/B07 PM17/B08	3 4	protein synthesis, aminoglycoside protein synthesis, aminoglycoside	© ©	Δ	© ©
Ethionamide	PM17/B09	1	anti-tuberculosic	0	Δ	0
Ethionamide	PM17/B10	2	anti-tuberculosic	0	Δ	0
Ethionamide	PM17/B11	3	anti-tuberculosic	0	Δ	0
Ethionamide	PM17/B12	4	anti-tuberculosic	×	×	×
4-Aminopyridine	PM17/C01	1	ion channel, K ⁺	0	Δ	0
4-Aminopyridine	PM17/C02	2	ion channel, K ⁺	0	Δ	0
4-Aminopyridine	PM17/C03	3	ion channel, K ⁺	0	Δ	0
4-Aminopyridine	PM17/C04	4	ion channel, K ⁺	0	Δ	0
Sulfachloropyridazine	PM17/C05	1	folate antagonist	0	Δ	0
Sulfachloropyridazine	PM17/C06	2	folate antagonist	0	Δ	0
Sulfachloropyridazine	PM17/C07	3	folate antagonist	0	Δ	×
Sulfachloropyridazine	PM17/C08	4	folate antagonist	0	Δ	×
Sulfamonomethoxine Sulfamonomethoxine	PM17/C09 PM17/C10	1 2	folate antagonist folate antagonist	© ©	Δ	©
Sulfamonomethoxine	PM17/C11	3	folate antagonist	Õ	ō	×
Sulfamonomethoxine	PM17/C12	4	folate antagonist	Ō	Ō	×
Oxycarboxin	PM17/D01	1	fungicide, carboxamide, respiratory enzymes	0	Δ	0
Oxycarboxin	PM17/D02	2	fungicide, carboxamide, respiratory enzymes	0	Δ	0
Oxycarboxin	PM17/D03	3	fungicide, carboxamide, respiratory enzymes	×	×	×
Oxycarboxin	PM17/D04	4	fungicide, carboxamide, respiratory enzymes	×	×	×
Aminotriazole Aminotriazole	PM17/D05 PM17/D06	1 2	histidine biosynthesis, catalase histidine biosynthesis, catalase	© ©	Δ	© ©
Aminotriazole	PM17/D07	3	histidine biosynthesis, catalase	0	Δ	0
Aminotriazole	PM17/D08	4	histidine biosynthesis, catalase	0	×	Ó
Chlorpromazine	PM17/D09	1	phenothiazine	0	Δ	0
Chlorpromazine	PM17/D10	2	phenothiazine	0	Δ	0
Chlorpromazine	PM17/D11	3	phenothiazine	0	×	×
Chlorpromazine	PM17/D12	4	phenothiazine	×	×	×
Niaproof Niaproof	PM17/E01 PM17/E02	1 2	membrane, detergent, anionic membrane, detergent, anionic	© ©	⊚ △	© ©
Niaproof	PM17/E03	3	membrane, detergent, anionic	Δ	0	0
Niaproof	PM17/E04	4	membrane, detergent, anionic	Δ	Ö	☆
Compound 48/80	PM17/E05	1	phospholipase C, ADP ribosylation	0	Δ	0
Compound 48/80	PM17/E06	2	phospholipase C, ADP ribosylation	0	Δ	0
Compound 48/80	PM17/E07	3	phospholipase C, ADP ribosylation	0	×	×
Compound 48/80	PM17/E08	4	phospholipase C, ADP ribosylation	×	×	×
Sodium Tungstate Sodium Tungstate	PM17/E09 PM17/E10	1 2	transport, toxic anion, molybdate analog	©	Δ ×	0
Sodium Tungstate Sodium Tungstate	PM17/E10 PM17/E11	3	transport, toxic anion, molybdate analog transport, toxic anion, molybdate analog	0	×	Δ
Sodium Tungstate	PM17/E12	4	transport, toxic anion, molybdate analog	×	×	×
Lithium Chloride	PM17/F01	1	transport, toxic cation	0	Δ	0
Lithium Chloride	PM17/F02	2	transport, toxic cation	0	Δ	0
Lithium Chloride	PM17/F03	3	transport, toxic cation	Δ	×	0
Lithium Chloride	PM17/F04	4	transport, toxic cation	×	×	×

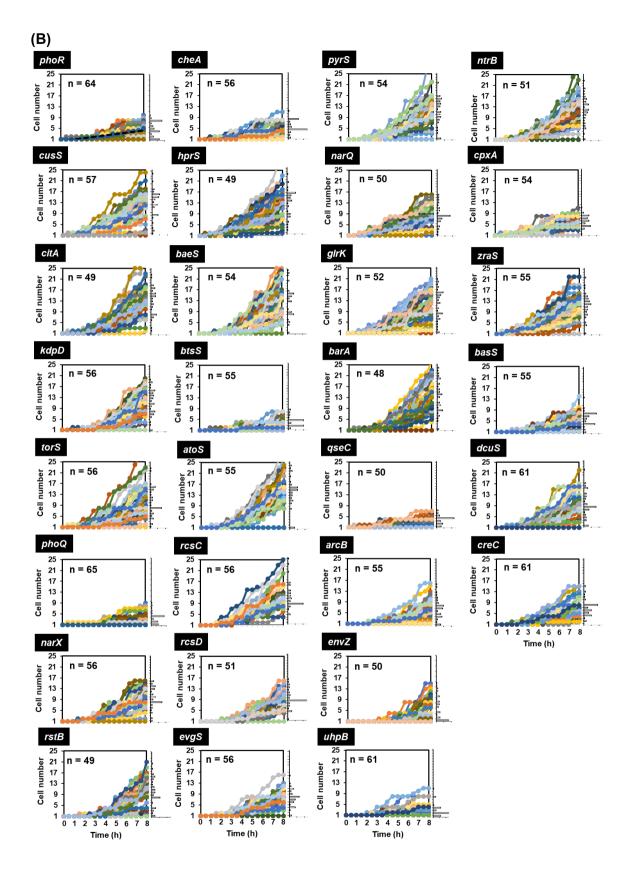
Skapid growth to stationary phase in 24 hours, O: Delayed growth but same cell mass, Δ: Delayed growth and small cell mass, x: No growth, x: Faster growth than the parent strain.

_	Append Antibiotics		The sensitive	rity of Δ34 RR and Δ30 SK strains to various antimicrobials. (Continued.) Mode of Action	Parent	Δ34 RR	Δ30 SK
	,L-Methionine Hydroxamate	PM17/F05	1	tRNA synthetase	0	Δ	0
Ε	,L-Methionine Hydroxamate	PM17/F06	2	tRNA synthetase	0	Δ	0
Ε	D,L-Methionine Hydroxamate	PM17/F07	3	tRNA synthetase	0	0	0
	D,L-Methionine Hydroxamate	PM17/F08	4	tRNA synthetase	Δ	×	0
	Cannic acid	PM17/F09	1	antimicrobial, from plants	0	Δ	0
	Cannic acid	PM17/F10	2	antimicrobial, from plants	0	Δ	0
	Cannic acid	PM17/F11	3	antimicrobial, from plants	0	Δ	0
	Cannic acid	PM17/F12	4	antimicrobial, from plants	0	×	×
	Chlorambucil	PM17/G01	1		0	Δ	0
	Chlorambucil	PM17/G02	2		0	Δ	0
	Chlorambucil	PM17/G03	3		0	0	0
	Chlorambucil	PM17/G04	4		0	0	0
	Cefamandole	PM17/G05	1	wall, cephalosporin	© ©	Δ	© ©
	Cefamandole Cefamandole	PM17/G06 PM17/G07	2 3	wall, cephalosporin wall, cephalosporin	0	Δ ⊚	0
	Cefamandole	PM17/G07	4	wall, cephalosporin	0	Δ	0
	Cetoperazone	PM17/G08	1	wall, cephalosporin	0	Δ	0
	Cetoperazone	PM17/G09	2	wall, cephalosporin	0	Δ	0
	Cetoperazone	PM17/G10	3	wall, cephalosporin	Ö	<u>Δ</u>	0
	Cetoperazone	PM17/G11	4	wall, cephalosporin	×	×	×
	Cefsulodin	PM17/H01	1	wall, cephalosporin	0	Δ	0
	Cefsulodin	PM17/H02	2	wall, cephalosporin	0	Δ	0
	Cefsulodin	PM17/H03	3	wall, cephalosporin	0	Δ	0
	Cefsulodin	PM17/H04	4	wall, cephalosporin	0	Δ	0
	Caffeine	PM17/H05	1	cyclic AMP phosphodiesterase	0	Δ	0
	Caffeine	PM17/H06	2	cyclic AMP phosphodiesterase	0	Δ	0
	Caffeine	PM17/H07	3	cyclic AMP phosphodiesterase	0	×	0
	Caffeine	PM17/H08	4	cyclic AMP phosphodiesterase	×	×	×
	Phenylarsine Oxide	PM17/H09	1	tyrosine phosphotase	0	ô	
	Phenylarsine Oxide	PM17/H10	2	tyrosine phosphatase	0	Δ	0
	Phenylarsine Oxide	PM17/H11	3	tyrosine phosphatase	0	Δ	0
	Phenylarsine Oxide	PM17/H12	4	tyrosine phosphatase	Δ	×	×
	Ketoprofen	PM18/A01	1	anti-capsule	0	Δ	0
	Ketoprofen	PM18/A02	2	anti-capsule	0	0	0
	Ketoprofen	PM18/A03	3	anti-capsule	Õ	Õ	0
	Ketoprofen	PM18/A04	4	anti-capsule	×	×	×
	odium pyrophosphate decahydrate	PM18/A05	1	chelating agent	0	Δ	0
	odium pyrophosphate decahydrate	PM18/A06	2	chelating agent	0	×	0
	odium pyrophosphate decahydrate	PM18/A07	3	chelating agent	0	0	0
	odium pyrophosphate decahydrate	PM18/A08	4	chelating agent	0	×	×
	Thiamphenicol	PM18/A09	1	protein synthesis	0	Δ	0
	hiamphenicol	PM18/A10	2	protein synthesis	0	Δ	0
Т	hiamphenicol	PM18/A11	3	protein synthesis	0	0	0
	hiamphenicol	PM18/A12	4	protein synthesis	×	×	×
	rifluorothymidine	PM18/B01	1	thymidylate synthetase, DNA polymerase	0	Δ	0
Т	rifluorothymidine	PM18/B02	2	thymidylate synthetase, DNA polymerase	0	Δ	0
Т	rifluorothymidine	PM18/B03	3	thymidylate synthetase, DNA polymerase	0	Δ	0
Т	rifluorothymidine	PM18/B04	4	thymidylate synthetase, DNA polymerase	0	Δ	0
P	Pipemidic Acid	PM18/B05	1	DNA unwinding, gyrase (GN), topoisomerase (GP), quinolone	0	Δ	0
P	Pipemidic Acid	PM18/B06	2	DNA unwinding, gyrase (GN), topoisomerase (GP), quinolone	0	Δ	0
P	Pipemidic Acid	PM18/B07	3	DNA unwinding, gyrase (GN), topoisomerase (GP), quinolone	0	Δ	×
P	Pipemidic Acid	PM18/B08	4	DNA unwinding, gyrase (GN), topoisomerase (GP), quinolone	×	×	×
Α	Azathioprine	PM18/B09	1	nucleic acid analog, purine	0	Δ	0
Α	Azathioprine	PM18/B10	2	nucleic acid analog, purine	0	Δ	0
	Azathioprine	PM18/B11	3	nucleic acid analog, purine	0	0	0
	Azathioprine	PM18/B12	4	nucleic acid analog, purine	0	Δ	0
	Poly-L-lysine	PM18/C01	1	membrane, detergent, cationic	0	0	0
	Poly-L-lysine	PM18/C02	2	membrane, detergent, cationic	0	×	0
	Poly-L-lysine	PM18/C03	3	membrane, detergent, cationic	0	×	×
	Poly-L-lysine	PM18/C04	4	membrane, detergent, cationic	×	×	×
	Sulfisoxazole	PM18/C05	1	folate synthesis, PABA analog	0	0	×
	Sulfisoxazole	PM18/C06	2	folate synthesis, PABA analog	0	Δ	×
	Sulfisoxazole	PM18/C07	3	folate synthesis, PABA analog	Δ	×	×
	ulfisoxazole	PM18/C08	4	folate synthesis, PABA analog	×	×	×
	Pentachlorophenol (PCP)	PM18/C09	1	respiration, ionophore, H ⁺	0	Δ	0
P	Pentachlorophenol (PCP)	PM18/C10	2	respiration, ionophore, H ⁺	0	0	0
P	Pentachlorophenol (PCP)	PM18/C11	3	respiration, ionophore, H ⁺	0	0	0
	Pentachlorophenol (PCP)	PM18/C12	4	respiration, ionophore, H ⁺	0	0	0
	Sodium m-arsenite	PM18/D01	1	toxic anion	0	Δ	0
	Sodium m-arsenite	PM18/D01 PM18/D02	2	toxic anion	0	Δ	0
	odium m-arsenite	PM18/D02	3	toxic anion	Δ	×	Ö
	Sodium m-arsenite	PM18/D03	4	toxic anion	×	×	×
	Sodium bromate	PM18/D04 PM18/D05	1	toxic anion	×	Δ	×
	odium bromate	PM18/D05	2	toxic anion	Ö	Δ	0
	odium bromate	PM18/D07	3	toxic anion	ŏ	Δ	0
	Sodium bromate	PM18/D08	4	toxic anion	Δ	×	×
	Lidocaine	PM18/D09	1	ion channal inhibitor, Na ⁺	0	ô	
	Lidocaine	PM18/D10	2	ion channal inhibitor, Na ⁺	0	Δ	0
L	Lidocaine	PM18/D11	3	ion channal inhibitor, Na ⁺	0	×	×
L	Lidocaine	PM18/D12	4	ion channal inhibitor, Na ⁺	×	×	×
S	odium metasilicate	PM18/E01	1	toxic anion	0	Δ	0
	odium metasilicate	PM18/E02	2	toxic anion	0	Δ	0
	odium metasilicate	PM18/E03	3	toxic anion	0	Δ	0
	odium metasilicate	PM18/E04	4	toxic anion	0	×	Ō
	odium periodate	PM18/E05	1	toxic anion, oxidizing agent	0	Δ	0
	Sodium periodate	PM18/E06	2	toxic anion, oxidizing agent	0	Δ	0
	Sodium periodate	PM18/E07	3	toxic anion, oxidizing agent	×	×	×
	odium periodate	PM18/E08	4	toxic anion, oxidizing agent	×	×	×
S				toxic cation	0	Δ	0
	Antimony (III) chloride	PM18/E09	1	toak cation	•		
Α	Antimony (III) chloride Antimony (III) chloride	PM18/E09 PM18/E10	2	toxic cation	Ö	Δ	0
A							

Antimony (III) Chloruc PNI OEL 4 OAK. Cation

©: Rapid growth to stationary phase in 24 hours, ○: Delayed growth but same cell mass, △: Delayed growth and small cell mass, ×: No growth, ★: Faster growth than the parent strain.


Appendit Antibiotics	Table 8.		ity of Δ34 RR and Δ30 SK strains to various antimicrobials. (Continued.) Mode of Action	D4	424 DD	120 CV
Semicarbazide hydrochloride	PM18/F01	1	carbonyl agent, semicarbazide-sensitive amine oxidase, DNA damage	©	Δ34 RR Δ	Δ30 SK ⊚
Semicarbazide hydrochloride	PM18/F02	2	carbonyl agent, semicarbazide-sensitive amine oxidase, DNA damage	0	Δ	0
Semicarbazide hydrochloride	PM18/F03	3	carbonyl agent, semicarbazide-sensitive amine oxidase, DNA damage	Δ	×	Ö
Semicarbazide hydrochloride	PM18/F04	4	carbonyl agent, semicarbazide-sensitive amine oxidase, DNA damage	×	×	×
Tinidazole	PM18/F05	1	Mutagen, nitroimidazole (GP, GN)	0	Δ	0
Tinidazole	PM18/F06	2	Mutagen, nitroimidazole (GP, GN)	0	Δ	0
Tinidazole	PM18/F07	3	Mutagen, nitroimidazole (GP, GN)	0	Δ	0
Tinidazole	PM18/F08	4	Mutagen, nitroimidazole (GP, GN)	×	×	×
Aztreonam	PM18/F09	1	wall, lactam	0	Δ	0
Aztreonam	PM18/F10	2 3	wall, lactam wall, lactam	0	△ ⊚	0
Aztreonam Aztreonam	PM18/F11 PM18/F12	4	wall, lactam	0	0	0
Triclosan	PM18/G01	1	bacterial fatty acid synthesis, enoyl-acyl carrier protein reductase	0	Δ	0
Triclosan	PM18/G02	2	bacterial fatty acid synthesis, enoyl-acyl carrier protein reductase	0	Δ	0
Triclosan	PM18/G03	3	bacterial fatty acid synthesis, enoyl-acyl carrier protein reductase	0	Δ	0
Triclosan	PM18/G04	4	bacterial fatty acid synthesis, enoyl-acyl carrier protein reductase	0	Δ	0
3,5- Diamino-1,2,4-triazole (Guanazole)	PM18/G05	1	ribonucleotide DP reductase	0	Δ	0
3,5- Diamino-1,2,4-triazole (Guanazole)	PM18/G06	2	ribonucleotide DP reductase	0	Δ	0
3,5- Diamino-1,2,4-triazole (Guanazole)	PM18/G07	3	ribonucleotide DP reductase	0	0	0
3,5- Diamino-1,2,4-triazole (Guanazole)	PM18/G08	4	ribonucleotide DP reductase	Δ	Δ	Δ
Myricetin	PM18/G09	1	DNA & RNA synthesis, polymerase inhibitor (E. coli)	0	0	0
Myricetin	PM18/G10	2	DNA & RNA synthesis, polymerase inhibitor (E. coli)	0	() ()	0
Myricetin Myricetin	PM18/G11 PM18/G12	3 4	DNA & RNA synthesis, polymerase inhibitor (<i>E. coli</i>) DNA & RNA synthesis, polymerase inhibitor (<i>E. coli</i>)	© ©	0	0
5-Fluoro-5'-deoxyuridine	PM18/H01	1	pyrimidine antimetabolite: inhibits nucleic acid replication	0	Δ	0
5-Fluoro-5'-deoxyuridine	PM18/H02	2	pyrimidine antimetabolite: inhibits nucleic acid replication	0	Δ	0
5-Fluoro-5'-deoxyuridine	PM18/H03	3	pyrimidine antimetabolite: inhibits nucleic acid replication	0	Δ	0
5-Fluoro-5'-deoxyuridine	PM18/H04	4	pyrimidine antimetabolite: inhibits nucleic acid replication	0	Δ	0
2- Phenylphenol	PM18/H05	1	DNA intercalator	0	Δ	0
2- Phenylphenol	PM18/H06	2	DNA intercalator	0	Δ	0
2- Phenylphenol	PM18/H07	3	DNA intercalator	0	Δ	0
2- Phenylphenol	PM18/H08	4	DNA intercalator	0	Δ	0
Plumbagin	PM18/H09	1	oxidizing agent	0	Δ	0
Plumbagin	PM18/H10	2	oxidizing agent	0	Δ	0
Plumbagin	PM18/H11	3	oxidizing agent	0	0	0
Plumbagin	PM18/H12	4	oxidizing agent	0	©	0
Josamycin Josamycin	PM19/A01 PM19/A02	1 2	protein synthesis, macrolide protein synthesis, macrolide	0	Δ	0
Josamycin	PM19/A03	3	protein synthesis, macrolide	0	Δ	0
Josamycin	PM19/A04	4	protein synthesis, macrolide	Δ	×	0
Gallic Acid	PM19/A05	1	antimicrobial, from plants	0	Δ	Ó
Gallic Acid	PM19/A06	2	antimicrobial, from plants	0	Δ	Δ
Gallic Acid	PM19/A07	3	antimicrobial, from plants	0	0	0
Gallic Acid	PM19/A08	4	antimicrobial, from plants	×	×	×
Coumarin	PM19/A09	1	DNA intercalator	0	Δ	0
Coumarin	PM19/A10	2	DNA intercalator	0	Δ	0
Coumarin	PM19/A11	3	DNA intercalator	0	Δ	0
Coumarin	PM19/A12	4	DNA intercalator	0	Δ	0
Methyltrioctylammonium Chloride	PM19/B01	1	membrane, detergent, cationic	0	Δ	0
Methyltrioctylammonium Chloride Methyltrioctylammonium Chloride	PM19/B02 PM19/B03	2 3	membrane, detergent, cationic membrane, detergent, cationic	×	Δ ×	© ×
Methyltrioctylammonium Chloride	PM19/B03	4	membrane, detergent, cationic	×	×	×
Harmane	PM19/B05	1	imidazoline binding sites, agonist	0	Δ	0
Harmane	PM19/B06	2	imidazoline binding sites, agonist	0	Δ	0
Harmane	PM19/B07	3	imidazoline binding sites, agonist	0	×	0
Harmane	PM19/B08	4	imidazoline binding sites, agonist	×	×	×
2,4-Dintrophenol	PM19/B09	1	respiration, ionophore, H ⁺	0	Δ	0
2,4-Dintrophenol	PM19/B10	2	respiration, ionophore, H ⁺	0	Δ	0
2,4-Dintrophenol	PM19/B11	3	respiration, ionophore, H ⁺	0	Δ	0
2,4-Dintrophenol	PM19/B12	4	respiration, ionophore, H	0	Δ	Δ
Chlorhexidine	PM19/C01	1	membrane, biguanide, electron transport	0	Δ	0
Chlorhexidine	PM19/C01	2	membrane, biguanide, electron transport	0	Δ	0
Chlorhexidine	PM19/C03	3	membrane, biguanide, electron transport	0	×	×
Chlorhexidine	PM19/C04	4	membrane, biguanide, electron transport	×	×	×
Umbelliferone	PM19/C05	1	DNA intercalator	0	Δ	0
Umbelliferone	PM19/C06	2	DNA intercalator	0	Δ	0
Umbelliferone	PM19/C07	3	DNA intercalator	0	×	Δ
Umbelliferone	PM19/C08	4	DNA intercalator	×	×	×
Cinnamic Acid	PM19/C09	1	respiration, ionophore, H ⁺	0	Δ	0
Cinnamic Acid	PM19/C10	2	respiration, ionophore, H ⁺	0	Δ	0
Cinnamic Acid	PM19/C11	3	respiration, ionophore, H ⁺	0	Δ	0
Cinnamic Acid	PM19/C12	4	respiration, ionophore, H	Δ	×	Δ
Disulphiram	PM19/D01	1	fungicide	0	Δ	0
Disulphiram	PM19/D02	2	fungicide	0	Δ	0
Disulphiram	PM19/D03	3	fungicide	0	Δ	0
Disulphiram	PM19/D04	4	fungicide	0	Δ	0
Iodonitro Tetrazolium Violet	PM19/D05	1	respiration	0	0	0
Iodonitro Tetrazolium Violet	PM19/D06	2	respiration	0	0	0
Iodonitro Tetrazolium Violet	PM19/D07	3	respiration	0	0	0
Iodonitro Tetrazolium Violet	PM19/D08	4	respiration	0	© ^	0
Phenyl-Methyl-Sulfonyl-Fluoride (PMSF)		1	protease inhibitor, serine	0	Δ	© ^
Phenyl-Methyl-Sulfonyl-Fluoride (PMSF)		2	protease inhibitor, serine	0	Δ	Δ
Phenyl-Methyl-Sulfonyl-Fluoride (PMSF)		3	protesse inhibitor, serine	0	Δ	Δ
Phenyl-Methyl-Sulfonyl-Fluoride (PMSF) FCCP		4	protease inhibitor, serine	©	△ ⊚	© ©
	PM19/E01	1	respiration, ionophore, H ⁺			
FCCP	PM19/E02	2	respiration, ionophore, H ⁺	0	0	0
FCCP	PM19/E03	3	respiration, ionophore, H ⁺	0	0	0
FCCP	PM19/E04	4	respiration, ionophore, H ⁺	0	Δ	0
D,L-Thioctic Acid	PM19/E05	1	oxidizing agent	0	Δ	0
D,L-Thioctic Acid	PM19/E06	2	oxidizing agent	0	Δ	0
D,L-Thioctic Acid	PM19/E07	3	oxidizing agent	0	×	0
D,L-Thioctic Acid	PM19/E08	4	oxidizing agent e cell mass A: Delayed growth and small cell mass x: No growth &: Faster growth than the parent strain	×	×	×


^{©:} Rapid growth to stationary phase in 24 hours, ○: Delayed growth but same cell mass, △: Delayed growth and small cell mass, ×: No growth, ★: Faster growth than the parent strain.

			itivity of Δ34 RR and Δ30 SK strains to various antimicrobials. (Continued.)			
Antibiotics Lawsone	Plate/Well C PM19/E09	oncentra 1	tion Mode of Action oxidizing agent	Parent	Δ34 RR ○	Δ30 SK ⊚
Lawsone	PM19/E10	2	oxidizing agent	0	ŏ	Ö
Lawsone	PM19/E11	3	oxidizing agent	0	×	0
Lawsone	PM19/E12	4	oxidizing agent	×	×	×
Phenethicillin	PM19/F01	1	wall, lactam	0	Δ	0
Phenethicillin	PM19/F02	2	wall, lactam	0	Δ	0
Phenethicillin	PM19/F03	3	wall, lactam	0	×	×
Phenethicillin	PM19/F04	4	wall, lactam	×	×	×
Blasticidin S	PM19/F05	1	protein synthesis	0	Δ	0
Blasticidin S	PM19/F06	2	protein synthesis	0	Δ	0
Blasticidin S	PM19/F07	3	protein synthesis	0	Δ	0
Blasticidin S	PM19/F08	4	protein synthesis	×	×	×
Sodium Caprylate	PM19/F09	1	respiration, ionophore, H ⁺	0	0	0
Sodium Caprylate	PM19/F10	2	respiration, ionophore, H ⁺	0	Δ	Δ
Sodium Caprylate	PM19/F11	3	respiration, ionophore, H ⁺	Δ	×	×
Sodium Caprylate	PM19/F12	4	respiration, ionophore, H ⁺	×	×	×
Lauryl sulfobetaine	PM19/G01	1	membrane, detergent, zwitterionic	0	Δ	0
Lauryl sulfobetaine	PM19/G02	2	membrane, detergent, zwitterionic	0	Δ	0
Lauryl sulfobetaine	PM19/G03	3	membrane, detergent, zwitterionic	Δ	×	0
Lauryl sulfobetaine	PM19/G04	4	membrane, detergent, zwitterionic	Δ	Δ	Δ
Dihydrostreptomycin	PM19/G05	1	protein synthesis, aminoglycoside	0	Δ	0
Dihydrostreptomycin	PM19/G06	2	protein synthesis, aminoglycoside	0	Δ	0
Dihydrostreptomycin	PM19/G07	3	protein synthesis, aminoglycoside	0	Δ	0
Dihydrostreptomycin	PM19/G08	4	protein synthesis, aminoglycoside	Δ	0	×
Hydroxylamine	PM19/G09	1	DNA damage, mutagen, antifolate (inhibits thymine and methionine synthesis)	0	Δ	0
Hydroxylamine	PM19/G10	2	DNA damage, mutagen, antifolate (inhibits thymine and methionine synthesis)	0	0	0
Hydroxylamine	PM19/G11	3	DNA damage, mutagen, antifolate (inhibits thymine and methionine synthesis)	0	0	0
Hydroxylamine	PM19/G12	4	DNA damage, mutagen, antifolate (inhibits thymine and methionine synthesis)	0	Δ	Δ
Hexaminecobalt (III) Chloride	PM19/H01	1	DNA synthesis	0	Δ	0
Hexaminecobalt (III) Chloride	PM19/H02	2	DNA synthesis	0	0	0
Hexaminecobalt (III) Chloride	PM19/H03	3	DNA synthesis	0	Δ	0
Hexaminecobalt (III) Chloride	PM19/H04	4	DNA synthesis	0	Δ	0
Thioglycerol	PM19/H05	1 2	reducing agent, thiol, adenosyl methionine antagonist	© ©	Δ	0
Thioglycerol Thioglycerol	PM19/H06 PM19/H07	3	reducing agent, thiol, adenosyl methionine antagonist reducing agent, thiol, adenosyl methionine antagonist	0	△ ⊚	0
Thioglycerol	PM19/H08	4	reducing agent, thiol, adenosyl methionine antagonist reducing agent, thiol, adenosyl methionine antagonist	×	×	☆
Polymyxin B	PM19/H08 PM19/H09	1	membrane, outer	×	×	×
Polymyxin B	PM19/H10	2	membrane, outer	×	×	×
Polymyxin B	PM19/H11	3	membrane, outer	×	×	×
Polymyxin B	PM19/H12	4	membrane, outer	×	×	×
Amitriptyline	PM20/A01	1	membrane, transport	0	Δ	0
Amitriptyline	PM20/A02	2	membrane, transport	0	ō	0
Amitriptyline	PM20/A03	3	membrane, transport	Õ	Δ	☆
Amitriptyline	PM20/A04	4	membrane, transport	×	×	×
Apramycin	PM20/A05	1	antimicrobial, aminocyclitol	0	Δ	0
Apramycin	PM20/A06	2	antimicrobial, aminocyclitol	0	Δ	0
Apramycin	PM20/A07	3	antimicrobial, aminocyclitol	0	Δ	0
Apramycin	PM20/A08	4	antimicrobial, aminocyclitol	0	Δ	0
Benserazide	PM20/A09	1	fungicide	0	Δ	0
Benserazide	PM20/A10	2	fungicide	0	0	0
Benserazide	PM20/A11	3	fungicide	0	Δ	×
Benserazide	PM20/A12	4	fungicide	×	×	×
Orphenadrine	PM20/B01	1	cholinergic antagonist	0	Δ	0
Orphenadrine	PM20/B02	2	cholinergic antagonist	0	Δ	0
Orphenadrine	PM20/B03	3	cholinergic antagonist	Δ	×	×
Orphenadrine	PM20/B04	4	cholinergic antagonist	×	×	×
D,L-Propranolol	PM20/B05	1	beta-adrenergic blocker	0	Δ	0
D,L-Propranolol	PM20/B06	2	beta-adrenergic blocker	0	Δ	0
D,L-Propranolol	PM20/B07	3	beta-adrenergic blocker	Δ	×	×
D,L-Propranolol	PM20/B08	4	beta-adrenergic blocker	×	×	×
Tetrazolium Violet	PM20/B09	1	respiration	0	0	0
Tetrazolium Violet	PM20/B10	2	respiration	© ^	×	0
Tetrazolium Violet	PM20/B11	3	respiration	Δ	×	0
Tetrazolium Violet Thioridazine	PM20/B12 PM20/C01	4 1	respiration respiration	× ©	×	× ©
Thioridazine	PM20/C01 PM20/C02	2	respiration respiration	0	×	0
Thioridazine	PM20/C02	3	respiration	Ö	×	×
Thioridazine	PM20/C04	4	respiration	×	×	×
Atropine	PM20/C05	1	acetylcholine receptor, antagonist	0	Â	ô
Atropine	PM20/C06	2	acetylcholine receptor, antagonist	0	Δ	0
Atropine	PM20/C07	3	acetylcholine receptor, antagonist	×	×	×
Atropine	PM20/C08	4	acetylcholine receptor, antagonist	×	×	×
Ornidazole	PM20/C09	1	protein glycosolation	0	Δ	0
Ornidazole	PM20/C10	2	protein glycosolation	0	Δ	0
Ornidazole	PM20/C11	3	protein glycosolation	Δ	×	0
Ornidazole	PM20/C12	4	protein glycosolation	×	×	×
Proflavine	PM20/D01	1	RNA synthesis	0	Δ	0
Proflavine	PM20/D02	2	RNA synthesis	0	Δ	0
Proflavine	PM20/D03	3	RNA synthesis	0	Δ	0
Proflavine	PM20/D04	4	RNA synthesis	Δ	×	×
Ciprofloxacin	PM20/D05	1	DNA topoisomerase, quinolone	0	Δ	0
Ciprofloxacin	PM20/D06	2	DNA topoisomerase, quinolone	0	Δ	0
	PM20/D07	3	DNA topoisomerase, quinolone	0	Δ	0
Ciprofloxacin		4	DNA topoisomerase, quinolone	0	Δ	0
Ciprofloxacin	PM20/D08					0
Ciprofloxacin 18-Crown-6-Ether	PM20/D09	1	respiration, ionophore	0	Δ	
Ciprofloxacin 18-Crown-6-Ether 18-Crown-6-Ether	PM20/D09 PM20/D10	1 2	respiration, ionophore	0	Δ	0
Ciprofloxacin 18-Crown-6-Ether 18-Crown-6-Ether 18-Crown-6-Ether	PM20/D09 PM20/D10 PM20/D11	1 2 3	respiration, ionophore respiration, ionophore	0	Δ ×	© ()
Ciprofloxacin 18-Crown-6-Ether 18-Crown-6-Ether 18-Crown-6-Ether 18-Crown-6-Ether	PM20/D09 PM20/D10 PM20/D11 PM20/D12	1 2 3 4	respiration, ionophore respiration, ionophore respiration, ionophore	© © ×	Δ × ×	© ○ ×
Ciprofloxacin 18-Crown-6-Ether 18-Crown-6-Ether 18-Crown-6-Ether 18-Crown-6-Ether Crystal Violet	PM20/D09 PM20/D10 PM20/D11 PM20/D12 PM20/E01	1 2 3 4 1	respiration, ionophore respiration, ionophore respiration, ionophore respiration	© © × ©	Δ × × Δ	©
Ciprofloxacin 18-Crown-6-Ether 18-Crown-6-Ether 18-Crown-6-Ether 18-Crown-6-Ether	PM20/D09 PM20/D10 PM20/D11 PM20/D12	1 2 3 4	respiration, ionophore respiration, ionophore respiration, ionophore	© © ×	Δ × ×	© ○ ×

^{©:} Rapid growth to stationary phase in 24 hours, O: Delayed growth but same cell mass, \triangle : Delayed growth and small cell mass, \times : No growth, \star : Faster growth than the parent strain.

Antibiotics	Plate/Well	Concentration	Mode of Action	Parent	Δ34 RR	Δ30 SK
Dodine	PM20/E05	1	fungicide, guanidine, membrane permeability	0	Δ	0
Dodine	PM20/E06	2	ngicide, guanidine, membrane permeability		0	0
Dodine	PM20/E07	3	fungicide, guanidine, membrane permeability	0	×	×
Dodine	PM20/E08	4	fungicide, guanidine, membrane permeability	×	×	×
Hexachlorophene	PM20/E09	1	membrane, electron transport	0	0	0
Hexachlorophene	PM20/E10	2	membrane, electron transport	0	0	0
Hexachlorophene	PM20/E11	3	membrane, electron transport	0	0	0
Hexachlorophene	PM20/E12	4	membrane, electron transport	0	0	0
4-Hydroxycoumarin	PM20/F01	1	DNA intercalator	0	Δ	0
4-Hydroxycoumarin	PM20/F02	2	DNA intercalator	0	Δ	0
4-Hydroxycoumarin	PM20/F03	3	DNA intercalator	0	×	0
4-Hydroxycoumarin	PM20/F04	4	DNA intercalator	×	×	×
Oxytetracycline	PM20/F05	1	protein synthesis, tetracycline	0	Δ	0
Oxytetracycline	PM20/F06	2	protein synthesis, tetracycline	0	Δ	0
Oxytetracycline	PM20/F07	3	protein synthesis, tetracycline	0	0	0
Oxytetracycline	PM20/F08	4	protein synthesis, tetracycline	0	☆	☆
Pridinol	PM20/F09	1	cholinergic antagonist	0	Δ	0
Pridinol	PM20/F10	2	cholinergic antagonist	0	Δ	0
Pridinol	PM20/F11	3	cholinergic antagonist	0	×	×
Pridinol	PM20/F12	4	cholinergic antagonist	0	×	×
Captan	PM20/G01	1	fungicide, carbamate, multisite	0	0	×
Captan	PM20/G02	2	fungicide, carbamate, multisite	0	×	0
Captan	PM20/G03	3	fungicide, carbamate, multisite	0	×	☆
Captan	PM20/G04	4	fungicide, carbamate, multisite	0	×	×
3,5-Dinitrobenzene	PM20/G05	1	respiration, ionophore, H ⁺	0	Δ	0
3,5-Dinitrobenzene	PM20/G06	2	respiration, ionophore, H ⁺	0	0	0
3,5-Dinitrobenzene	PM20/G07	3	respiration, ionophore, H ⁺	0	×	×
3,5-Dinitrobenzene	PM20/G08	4	respiration, ionophore, H ⁺	×	×	×
8-Hydroxyquinoline	PM20/G09	1	chelator, lipophilic	0	Δ	0
8-Hydroxyquinoline	PM20/G10	2	chelator, lipophilic	0	Δ	0
8-Hydroxyquinoline	PM20/G11	3	chelator, lipophilic	0	0	0
8-Hydroxyquinoline	PM20/G12	4	chelator, lipophilic	0	Δ	0
Patulin	PM20/H01	1	antifungal, tubulin binding	0	Δ	0
Patulin	PM20/H02	2	antifungal, tubulin binding	0	Δ	0
Patulin	PM20/H03	3	antifungal, tubulin binding	0	Δ	0
Patulin	PM20/H04	4	antifungal, tubulin binding	0	Δ	0
Tolylfluanid	PM20/H05	1	fungicide, phenylsulphamide	0	Δ	0
Tolylfluanid	PM20/H06	2	fungicide, phenylsulphamide	0	×	0
Tolylfluanid	PM20/H07	3	fungicide, phenylsulphamide	0	×	Ō
Tolylfluanid	PM20/H08		fungicide, phenylsulphamide	0	×	×
Troleandomycin	PM20/H09		protein synthesis, macrolide	0	0	0
Troleandomycin	PM20/H10		protein synthesis, macrolide	0	0	0
Troleandomycin	PM20/H11	3	protein synthesis, macrolide	0	0	0
Troleandomycin	PM20/H12		protein synthesis, macrolide	0	Δ	Ô

Appendix Figure 3. Single cell analysis of adaptive growth of single gene knockout *E. coli* **strains.** Strains were cultured, spread on M9 glucose agar plate, and imaged on a microscope as described in **Fig. 5-3**. The cell division (hours, showed in x axis) and the population of cell in each microcolony (y axis) were measured and the histograms of cell population in a microcolony at after 8 hours were showed on the right side of each graph. The number of measured cell (n) are shown in each graph. **[A]** The results of single RR-gene knockout strains. **[B]** The results of single SK-gene knockout strains.

Sub-family	Appendix Table 9 Bacteral strain	O. The amino a Gene name	cid sequence of OmpR family RRs. Amino acid sequence
A A	Escherichia coli str. K-12 substr. MG1655	arcA	$\label{thm:model} MQTPHILIVEDELVTRNTLKSIFEAEGYDVFEATDGAEMHQILSEYDINLVIMDINLPGKNGLLLAR ELREQANVALMFLTGRDNEVDKILGLEIGADDYITKPFNPRELTIRARNLLSRTMNLGTVSEERRS$
A	Escherichia coli str. K-12 substr. MG1655	ompR	VESYKFNGWELDINSRSLIGPDGEQYKLPRSEFRAMLHFCENPGKIQSRAELLKKMTGRELKPHD RTVDVTIRRIRKHFESTPDTPEIIATHIGEGYRFCGDLED MQENYKILVVDDDMRLRALLERYLTEQGFQVRSVANAEQMDRLLTRESFHLMVLDLMLPGEDG LSICRRLRSQSNPMPIIMVTAKGEEVDRIVGLEIGADDYIPKPFNPRELLARIRAVLRRQANELPGA
A	Escherichia coli str. K-12 substr. MG1655	rstA	PSQEEAVIAFGKFKLNLGTREMFREDEPMPLTSGEFAVLKALVSHPREPLSRDKLMNLARGREYS AMERSIDVQISRLRRMVEEDPAHPRYIQTVWGLGYVFVPDGSKA MNTIVFVEDDAEVGSLIAAYLAKHDMQVTVEPRGDQAEETILRENPDLVLLDIMLPGKDGMTICR DLRAKWSGPIVLLTSLDSDMNHILALEMGACDYILKTTPPAVLLARLRLHLRQNEQATLTKGLQE
A	Escherichia cou su. x-12 subsu. MO1033	7314	$TSLTPYKALHFGTLTIDPINRVVTLANTEISLSTADFELLWELATHAGQIMDRDALLKNLRGVSYD\\ GLDRSVDVAISRLRKKLLDNAAEPYRIKTVRNKGYLFAPHAWE\\ MPHHIVIVEDEPVTQARLQSYFTQEGYTVSVTASGAGLREIMQNQSVDLILLDINLPDENGLMLTR$
A	Escherichia coli str. K-12 substr. MG1655	torR	ALRERSTVGIILVTGRSDRIDRIVGLEMGADDYVTKPLELRELVVRVKNLLWRIDLARQAQPHTQ DNCYRFAGYCLNVSRHTLERDGEPIKLTRAEYEMLVAFVTNPGEILSRERLLRMLSARRVENPDL RTVDVLIRRLRHKLSADLLVTQHGEGYFLAADVC
A	Pseudomonas aeruginosa PAO1	parR	MDCPTLSKVLLVEDDQKLARLIASFLSQHGFEVRQVHRGDAAFAAFLJFKPQVVVLDLMLPGQN GLQVCREIRRVANLPILILTAQEDDLDHILGLESGADDYVIKPIEPPVLLARLRALMRRHAPLPASP ESLTFGKLNIDRRREAELEGLGIELTTMEFELLWLLASQAGEILSRDEILNQIRGIGFDGLNRSVDV CISKLRNKLKDNPREPVRIKTVWGKGYLFNPLGWEL
A	Pseudomonas aeruginosa PAO1	gltR	MSANGRSILL VDDDQEIREL ETYLSRAGFQVRSVSRGADFRQALCEEEASL ALLDVMLPDEDGFS LCRWIRSHQRLACKMPIIMLTASSDEADR VIGLEL GADDYLGKPFSPRELLARIKALLRRAQFTQVR GGDVLAFEDWRLDTVSHRLFHEDGEEFFLSGADFALL KLFLDHPQQILDRDTIANATRGREVLPLE RIVDMAVSRLRQRLRDTGKAPRLIQTVRGSGYLLAAQVRPHLQP
A	Pseudomonas aeruginosa PAO1	bfmR	MEHVDHILIVDDDREIRELVGNYLKKNGLRTTIVADGRQMRAFLEANTVDLIVLDIMMPGDDGL LLCRELRVGKHKATPVLMLTARNDETDRIIGLEMGADDYLTKPFSARELLARINAVLRRTRMLPP NLTVSESSRLIGFGQWQLDTSARHLLDDAGTVVALSGAEYRLLRVFLDHPQRVLSRDQLLNLTQG READIFDRSIDLLVSRLRQRLGDDARFPEYIKTVRSEGYVFSLPVRLVEAHP
A	Pseudomonas aeruginosa PAO1	PA4983	MAMVPRVLVVDDDPVIRELLQAYLGEEGYDVLCAGNAEQAEACLAECAHLGQPVELVLLDIRL PGKDGLTLTRELRVRSEVGIILITGRNDEIDRIVGLECGADDYVIKPLNPRELVSRAKNLIRRVRHA QASAGPARQALRQFGDWLLDADRRRLIDHAGNETLLTHGEFQLLGAFLRNSGHTLSRDQLMDQI RNREWLPSDRSIDVLVGRLRRKLRDDPAFPQLITTHGAGYLFTAAASDA
A	Pseudomonas aeruginosa PAO1	PA1157	MEQEAWRILIVEDDRRLAELTREYLEGNGLKVDIEANGALAAARILAERPDLVVLDLMLPGEDGL SICRQVRPQFDGPILMLTARTIDDMDEVLGLEMGADDYVCKPVRPRVLLARIRALLRRSEAPEAG APAADSKRLAFGRLVIDNAMREAWLDGTTIELTSAEFDLLWLLAANAGRILSREEIFNALRGIEYD GQDRSIDVRISRIRPKIGDDPMHPRLIKTVRSKGYLFVGEG
A	Pseudomonas aeruginosa PAO1	amgR	MSNPAALAEGEKILVVDDDARLRRLLERFLDEQGYRVRAVENTEQMDRLLSRELFQLVVLDLML PGEBGLTACRRLREQNNQVPIMLTAKGDEGSRIQGLELGADDYLAKPFNPRELLARIKAVLRRQ APLVPGAPAGADEVVTFGDYQLFLATRELKKGDEVHMLTTGEFAVLKALVQHAREPLTRDKLM NLARGREWDALERSIDVQISRLRRLIEFDPSKPRYIQTVWGVGYVFVPDGNARKA
A	Haemophilus influenzae Rd KW20	arcA	MTTPKILVVEDEIVTRNTLKGIFEAEGYDVFEAENGVEMHHILANHNINLVVMDINLPGKNGLLL ARELRELSLPLIELTGRDNEVDKILGLEIGADDYLTKPFNPRELTIRARNLLHRAMPHQEKENTFG REFYRFNGWKLDLNSHSLITPEGQEFKLPRSEFRAMLHFCENPGKLQTREELLKKMTGRELKPQD RTVDVTIRRIRKHFEDHPNTPNIIMTIHGEGYRFCGDIE
A	Salmonella enterica subsp. Enterica serovar Typhimurium str. LT2	rstA	MNRIVFVEDDAEVGSLIAAYLAKHDIDVIVEPRGDRAEDLILTTQPDLVLLDIMLPGKDGMTICRD LRHRWQGPIVLLTSLDSDMNHILALEMGACDYILKTTPPAVLLARLRLHLRQSEQTQQAKSLQES ALTPHKALRFGALTIDPLNRAVQLNGDFISLSTADFELLWELATHAGQIMDRDALLKTLRGVNYD GLDRSVDVAISRLRKKLLDSAAEPYRIKTIRNKGYLFAPHAWDETTG
A	Salmonella enterica subsp. Enterica serovar Typhimurium str. LT2	ompR	MQENYKILVVDDDMRLRALLERYLTEQGFQVRSVANAEQMDRLLTRESFHLMVLDLMLPGEDG LSICRRLRSQSNPMPIIMVTAKGEEVDRIVGLEIGADD YIPKPFNPRELLARIRAVLRRQANELPGA PSQEEA VIAFGKFKLNLGTREMFREDEPMPLTSGEFAVLKALVSHPREPLSRDKLMNLARGREYS AMERSIDVQISRLRRMVEEDPAHPRYIQTVWGLGYVFVPDGSKA
A	Salmonella enterica subsp. Enterica serovar Typhimurium str. LT2	torR	MSHHIVIVEDEPVTQARLQAYFEQEGYRVSVTDSGAGLRDIMEHEHVSLILLDINLPDENGLMLTR ALBERSTVGIILVTGRCDQIDRIVGLEMGADDYVTKPLELRELVVRVKNLLWRIDLARPTPQNAS ENCYMFSGYCLNVMNHTLEHNGEAIKLTRAEYELLLAFVTNPGKVLHRERLLRMLSARRVETPD LRTIDVLVRRLRHKITPELLVTQHGGYFLASEVY
A	Salmonella enterica subsp. Enterica serovar Typhimurium str. LT2	arcA	MQTPHILIVEDELVTRNTLKSIFEAEGYDVFEATDGAEMHQILSEYDINLVIMDINLPGKNGLLLAR ELREQANVALMELTGRDNEVDKILGLEIGADDYTTKPFNPRELTIRARNLLSRTMNLGTVSEERRS VESYKFNGWELDINSRSLIGPDGEQYKLPRSEFRAMLHFCENPGKIQSRAELLKKMTGRELKPHD RTVDVTIRRIRKHFESTPDTPEIIATHIGEGYRFCGDLQD
A	Shigella dysenteriae 1617	Asd161705396	MKPVVLVVDDDTAICALLQDVLSEHVFTVSVCHTGQEAILRIEGDPDIALVVLDMMLPDTNGLR VLQQIQKLRPTLPVVMLTGMGSKSDVVVGLEMGADDYICKPFTPRVVVARLKAVLRRVGALAV NDEKSAGLSFNGWYLDTMRCQLHNPLQQHVELTQGEYGLLLALAQNASRVLSREQLLAFTHSDS VEVFDRTIDVLIMRLRRKIELNPHOPMLIKTLRGLGYVFAADVH
A	Shigella dysenteriae 1617	rstA	MTFFISTVNVMNTIVFVEDDAEVGSLIAAYLAKHDMQVTVEPRGDQAEETILRENPDLVLLDIML PGKDGMTICRDLRAKWSGPIVLLTSLDSDMNHILALEMGACDYMPPAVLLARLRLHLRQNEQAT LTKGLQETSLTPYKALHFGTLTIDPINRVVTLANTEISLSTADFELLWELATHAGQIMDRDALLKN LRGVSYDGLDRSVDVAISRLRKKILDNAAEPYRIKTVRNKGYLFAPHAWE
A	Shigella dysenteriae 1617	ompR	MGVQTMQENYKILVVDDDMRLRALLERYLTEQGFQVRSVANAEQMDRLLTRESFHLMVLDLM LPGEDGI.SICRRLRSQSNPMPIIMVTAKGEEVDRIVGLEIGADDYIPKPFNPREI.LARIRAVLRRQA NELPGAPSQEEAVIAFGKFKLNLGTREMFREDEPMPLTSGEFAVLKALVSHPREPLSRDKLMNLA RGBEYSAMERSIDVQISRLRRMYEEDPAHPRYIQTVWGLGYVFVPDGSKA
В	Escherichia coli str. K-12 substr. MG1655	baeR	MTELPIDENTPRILIVEDEPKLGQLLIDYLRAASYAPTLISHGDQVLPYVRQTPPDLIILDLMLPGT DGLTLCREIRRFSDIPIVMVTAKIEEIDRLLGLEIGADDYICKPYSPREVVARVKTILRRCKPQRELQ QQDAESPLIIDEGRFQASWRGKMLDLTPAEFRLLKTLSHEPGKVFSREQLLNHLYDDYRVVTDRT IDSHIKNLRRKLESLDAEQSFIRAVYGYGYRWEADACRIV
В	Escherichia coli str. K-12 substr. MG1655	creB	MQRETVWLVEDEQGIADTLVYMLQQEGFAVEVFERGLPVLDKARKQVPDVMILDVGLPDISGFE LCRQLLALHPALPVLFLTARSEEVDRLLGLEIGADDYVAKPFSPREVCARVRTLLRRVKKFSTFSP VIRIGHFELNEPAAQISWFDTPLALTRYEFLLLKTLLKSPGRVWSRQQLMDSVWEDAQDTYDRTV DTHIKTLRAKLRAINPDLSPINTHRGMGYSLRGL
В	Escherichia coli str. K-12 substr. MG1655	phoB	MARRILVVEDEAPIREMVCFVLEQNGFQPVEAEDYDSAVNQLNEPWPDLILLDWMLPGGSGIQFI KHLKRESMTRDIPVVMLTARGEEEDRVRGLETGADDYTTKPFSPKELVARIKAVMRRISPMAVEE VIEMQGLSLDPTSHRVMAGEEPLEMGPTEFKLLHFFMTHPERVYSREQLLNHVWGTNVYVEDRT VDVHIRRLRKALEPGGHDRMVQTVRGTGYRFSTRF
В	Bacillus subtilis substr. subtilis str. 168	yclK	MKILMIEDNVSVCTMTEMFFFKEGFEAEFVHDGLEGYQRFTEENWDLIILDIMLPSMDGVTICRKI RETSTVPIIMLTAKDTESDQVIGFEMGADDYVTKPFSPLTLVARIKAVIRRYKATGKAVIDEDMIE TECFTINKKTREVLLNGEPVENLTPKEFDLLYYLVQNPRQVFSREQLLEQVWGYQFYGDERTVD VHIKRLRKKLASEDKPFLYTVWGYGYKFDED
В	Bacillus subtilis substr. subtilis str. 168	yycF	MDKKILVVDDEKPIADILEFNLRKEGYEVHCAHDGNEAVEMVEELQPDLILLDIMLPNKDGVEV CREVRKKYDMPIIMLTAKDSEIDKVIGLEIGADDYVTKPFSTRELLARVKANLRRQLTTAPAEEEP SSNEIHIGSLVIFPDAYVVSKRDETIELTHREFELLHYLAKHIGQVMTREHLLQTVWGYDYFGDVR TVDVTVRRLREKIEDNPSHPNWIVTRRGVGYYLRNPEQD

Appendix Table 9. The amino acid sequence of OmpR family RRs. (Continued.)

			equence of OmpR family RRs. (Continued.)
Sub-family	Bacteral strain	Gene name	A .
В	Bacillus subtilis substr. subtilis str. 168	resD	MDQTNETKILVVDDEARIRRLLRMYLERENYAIDEAENGDEAIAKGLEANYDLILLDLMMPGTD GIEVCRQIREKKATPIIMLTAKGEEANRVQGFEAGTDDYIVKPFSPREVVLRVKALLRRASQTSYF NANTPTKNVLVFSHLSIDHDAHRVTADGTEVSLTPKEYELLYFLAKTPDKVYDREKLLKEVWQY EFFGDLRTVDTHVKRLREKLNKVSPEAAKKIVTVWGVGYKFEVGAE
В	Bacillus subtilis substr. subtilis str. 168	phoP	MNKKILVVDDEESIVTLLQYNLERSGYPDVITASDGEEALKKAETEKPDLIVLDVMLPKLDGIEVC KQLRQQKLMFPILMLTAKDEEFDKVLGLELGADDYMTKPFSPREVNARVKAILRRSEIAAPSSEM KNDEMEGGIVIGDLKILPDHYEAYFKESQLELTPKEFELLLYLGRHKGRVLTRDLLLSAVWNYDF AGDTRIVDVHISHLRDKIENNTKKPIYIKTIRGLGYKLEEPKMNE
В	Mycobacterium tuberculosis H37Rv	regX	MTSVLIVEDEESLADPLAFILIREGFEATVVTDGPAALAEFDRAGADIVILIDLMLPGMSGTDVCK QLRARSSVPVIMVTARDSEIDKVVGLELGADDYVTKPYSARELIARIRAVLRRGGDDDSEMSDGV LESGPVRMDVERHVVSVNGDTITLPLKEFDLLEYLMRNSGRVLTRGQLIDRVWGADYVGDTKTL DVHVKRLRSKIEADPANPVHLVTVRGLGYKLEG
В	Mycobacterium tuberculosis H37Rv	Rv0818	MLELLLLTSELYPDPVLPALSLLPHTVRTAPAEASSLLEAGNADAVLVDARNDLSSGRGLCRLLSS TGRSIPVLAVVSEGGLVAVSADWGLDEILLLSTGPAEIDARLRLVVGRRGDLADQESLGKVSLGEL VIDEGTYTARLRGRPLDLTYKEFELLKYLAQHAGRVFTRAQLLHEVWGYDFFGGTRTVDVHVRR LRAKLGPEHEALIGTVRNVGYKAVRPARGRPPAADPDDEDADPGRDGMQEPLVDPLRSQ
В	Mycobacterium tuberculosis H37Rv	Rv2884	MPTGPTTGKWHPHEVWRYLLEVLLLTDEADLESALPELESFAQSVQRAPLDDPGAAKGADADV AIIDARADLAAARRVCRRLTTSAPALAVVAVVAPANFVAVDGDWIFDDVLLNAAGGAELQARL RLAITRRRSTLAGTLQFGDLVLHPASYTASLGDRDLGLTLTEFKLMNFLVQHAGRAFTRTRLMRE VWGYECHGRIRTVDVHVRRLRAKLGAEHESMIDTVRGVGYMAVTPPQPRWIISESILNRCK
В	Mycobacterium tuberculosis H37Rv	mtrA	MDTMRQRILVVDDDASLAEMLTIVLRGEGFDTAVIGDGTQALTAVRELRPDLVLLDLMLPGMNG IDVCRVLRADSGYPIVMLTAKTDTVDVVLGLESGADDYIMKPFKPKELVARVRARLRRNDDEPA EMLSIADVEIDVPAHKVTRNGEQISLTPLEFDLLVALARKPRQVFTRDVLLEQVWGYRHPADTRL VNVHVQRLRAKVEKDPENPTVVLTVRGVGYKAGPP
В	Pseudomonas aeruginosa PAO1	creB	MPHILIVEDEAAIADTILLYALQAEGFATTWVTLAGEALALQERQPADLLILDVGLPDISGFEACKR LRRFSEVPVIELTARDAEIDRVVGLEIGADDYVVKPFSPREVAARVKAILKRMAPRPAALEEAAP SGPFQVDEERVRIHYRDTPLNLTRHEFRLLQTLLGQPERVFSREQLLDALGVASEAGYERNIDSHI KSLRAKLRQVNERGEAIQTHRGLGYSYSPDHA
В	Pseudomonas aeruginosa PAO1	phoB	MVGKTILIVDDEAPIREMIAVALEMAGYECLEAENTQQAHAVIVDRKPDLIILDWMLPGTSGIEL ARRLKRDELTVDIPIIMLTAKGEEDNKIQGLEVGADDYITKPFSPRELVARLKAVLRRTGPGDSEA PIEVGGLLLDPISHRVTIDGKPAEMGPTEYRLLQFFMTHQERAYTRGQLLDQVWGGNVYVEERTV DVHIRRLRKALGEVYENLVQTVRGTGYRFSTKS
В	Corynebacterium glutamicum ATCC 13032	cgtR4	MTRILIVEDEESLADPLAFLLRKEGFDTIIAGDGPTALVEFSRNEIDIVLLDLMLPGMSGTDVCKEL RSVSTVPVIMVTARDSEIDKVVGLELGADDYVTKPYSSRELJARIRAVLRRRGVTETEAEELPLDD QILEGGRVRMDVDSHTVTVGGEPVSMPLKEFDLLEYLLRNAGRVLTRGQLIDRIWGADYVGDTK TLDVHVKRLRSKIEEPSRPRYLVTVRGLGYKFEL
В	Corynebacterium glutamicum ATCC 13032	mtrA	MSQKILVVDDDPAISEMLTIVLSAEGFDTVAVTDGALAVETASREQPDLILLDLMLPGMNGIDICR LIRQESSVPIIMLTAKTDTVDVVLGLESGADDYVNRPFKAKELVARIRARLBATVDEPSEIIEVGD LSIDVPAHTVKRRGAEISLTPLEFDLLIELARKPQQVFTREELLGKVWGYRHASDTRLVNVHVQR LRAKIEKDPENPQIVLTVRGVGYKTGHND
В	Corynebacterium glutamicum ATCC 13032	cgtR5	MTNPSPALNETLSGRVLIVEDERPLARMISLYLSKAGFDTTTIHDGAAAPDKVAHLRPDVVILDLG LPGLDGLEVCKRIRAFTDCYLIMLTARGSERDRITGLEIGADDYTTKPFNIRELVIRIQSVMRRPRKI DETIQNGLTLTYGHIELDTLAHEVTVKGVGVTLTRTEFFELLQALMHKPGEAVSRRDLVSQVWDTT WVGDERIVDVHIGNLRRKLEAPAPGSHFIDTIRGVGYRMAFK
В	Corynebacterium glutamicum ATCC 13032	cgtR9	MADRTPTTATPPCRVLVVDDEQPLAQMVASYLIRAGFDTRQAHTGTQAVDEARRFSPDVVVLD LGLPELDGLEVCRRIRTFSDCYLIMLTARGSEDDKISGLTLGADDYITKPFSIRELVTRVHAVLRRP RTSTTPPQVTTPLIVGDLILDPVAHQVWVGETTVELTRTEFELLVALALRPGQVLTRHDLITEVWD TTWVGDERIVDVHIGNLRRKLGTDTRGRGFIDTVRGVGYRVGQP
В	Haemophilus influenzae Rd KW20	phoB	MTRKILIVEDECAIREMIALI-SQKYYDVIEASDFKTAINKIKENPKLIILLDWMI-PGRSGIQFIQYIK KQESYAAIPIIMLTAKSTEEDCIACLNAGADDYITKPFSPQILLARIEAVWRRIYEQQSQFIQIDELSI DENAQRVFFQQQEINLSSTEFKLLHFFMRHPEKVYSREQLLNRIWHNDLEVEYRTVDSYIRRLRR NLAPFQCEHYIQTVRGSGYRFSSYLRDKQ
В	Salmonella enterica subsp. Enterica serovar Typhimurium str. LT2	phoB	MARRILVVEDEAPIREMVCFVLEQNGFQPVEAEDYDSAVNKLNEPWPDLILLDWMLPGGSGLQF IKHLKREAMTRDIPVVMLTARGEEEDRVRGLETGADDYTTKPFSPKELVARIKAVMRRISPMAVE EVIEMQGLSLDPGSHRVMTGDSPLDMGPTEFKLLHFFMTHPERVYSREQLLNHVWGTNVYVEDR TVDVHIRRLRKALEHSGHDRMVQTVRGTGYRFSTRF
В	Salmonella enterica subsp. Enterica serovar Typhimurium str. LT2	baeR	MTELPIDENTPRILIVEDEPKLGQLLIDYLRAASYAPTLINHGDKVLPYVRQTPPDLILLDLMLPGT DGLTLCREIRRFSDIPIVMVTAKIEEIDRILGI.EIGADDYICKPYSPREVVARVKTILRRCKPQRELQ QQDAESPLMIDESRFQASWCGKALDLTPAEFRLLKTLSLEPGKVFSREQLLNHLYDDYRVVTDRT IDSHIKNLRRKLESLDAEQSFIRAVYGVGYRWEADACRLV
В	Salmonella enterica subsp. Enterica serovar Typhimurium str. LT2	creB	MQQPQVWLVEDEQGIADTLIYTLQLEGFTVELFARGLPALEKARQQRPDAVILDVGLPDISGFEL CRQLLERHPALPILFLTARSDEVDRLLGLEIGADDYVAKPFSPREVSARVRTLLRRVKKFAAPSPV VRTGHFELNEPAAQIAWFGTPLSLTRYEFLLLKTLLLSPERVYSRQQLMDIVWSDAQETFDRTVD THIKTLRAKLRAINPELSPINTHRGMGYSLRSV
В	Shigella dysenteriae 1617	phoB	MARRILVVEDEAPIREMVCFVLEQNGFQPVEAEDYDSAVNQLNEPWPDLILLDWMLPGGSGIQFI KHLKRESMTRDIPVVMLTARGEEEDRVRGLETGADDYITKPFSPKELVARIKAVMRRISPMAVEE VIEMQGLSLDPTSHRVMTGEEPLEMGPTEFKLLHFFMTHPERVYSREQLLNHVWGTNVYVEDRT VDVHIRRLKKALEPGGHDRMVQTVRGTGYRFSTRF
В	Shigella dysenteriae 1617	baeR	MTELPIDENTPRILIVEDEPKLGQLLIDYLRAASYAPTLISHGDQVLPYVRQTPPDLILLDLMLPGT DGLTLCREIRRFSDIPIVMVTAKIEEIDRLLGLEIGADDYJCKPYSPREVVARVKTILRRCKPQRELQ QQDAESPLIIDEGRFQASWRGKMLDLTPAEFRLLKTLSHEPGKVFSREQLLNHLYDDYRVVTDRT IDSHIKNLRRKLESLDAEQSFIRAVYGVGYRWEADACRIV
В	Shigella dysenteriae 1617	creB	MQRETVWLVEDEQGIADTLVYMLQQEGFAVEVFERGLPVLDKARQQAPDVMILDVGLPDISGFE LCRQLLALHPALPVLF.TARSEEVDRLLGLEIGADDYVAKPFSPREVCARVRTLLRVKKFSSPSP VIRIGHFELNEPAAQISWFDTPLTLTRYEFLLLKTLLKSPGRVWSRQQLMDSVWEDAQDTYDRTV DTHIKTLRAKLRAINPDLSPINTHRGMGYSLRGL
С	Escherichia coli str. K-12 substr. MG1655	basR	MKILIVEDDTILLQGLILAAQTEGYACDSVTTARMAEQSLEAGHYSLVVLDLGLPDEDGLHFLAR IRQKKYTLPVLLITARDTILTDKIAGILDVGADDYLVKPFALEELHARIRALLRRHNNQGESELIVGN LTLNMGRRQVWMGGEELILTPKEYALLSRLMLKAGSPVHREILYNDIYNWDNEPSTNTLEVHIH NIADKVGKARIRTVRGFGYMLVANEEN
С	Escherichia coli str. K-12 substr. MG1655	cpxR	MNKILLVDDDRELTSLLKELLEMEGFNVIVAHDGEQALDLLDDSIDLLLLDVMMPKKNGIDTLK ALRQTHQTPVIMI.TARGSELDRVLGI.ELGADDYLPKPFNDRELVARIRAILRRSHWSEQQQNND NGSPTLEVDALVLNPGRQEASFDGQTLELTGTEFTLLYLLAQHLGQVVSREHLSQEVLGKRLTPF DRAIDMHISNLRRKLPDRKDGHPWFKTLRGRGYLMVSAS
С	Escherichia coli str. K-12 substr. MG1655	cusR	MKLLIVEDEKKTGEYLTKGLTEAGFVVDLADNGLNGYHLAMTGDYDLIILDIMLPDVNGWDIVR MLRSANKGMPILLITALGTIEHRVKGLELGADDYLVKPFAFAELLARVRTLLRRGAAVIESQFQV ADLMVDLVSRKVTRSGTRITLTSKEFTLLEFFLRHQGEVLPRSLIASQVWDMNFDSDTNAIDVAV KRLRGKIDNDFEPKLIQTVRGVGYMLEVPDGQ
C	Escherichia coli str. K-12 substr. MG1655	kdpE	MTNVLIVEDEQAIRRFLRTALEGDGMRVFEAETLQRGLLEAATRKPDLIILDLGLPDGDGIEFIRDL RQWSAVPVIVLSARSEESDKIAALDAGADDYLSKPFGIGELQARLRVALRRHSATTAPDPLVKFS DVTVDLAARVIHRGEEEVHLTPIEFRLLAVLLNNAGKVLTQRQLLNQVWGPNAVEHSHYLRIYM GHLRQKLEQDPARPRHFITETGIGYRFML

Appendix Table 9. The amino acid sequence of OmpR family RRs. (Continued.)

			equence of OmpR family RRs. (Continued.)
Sub-family	Bacteral strain	Gene name	· · · · · · · · · · · · · · · · · · ·
С	Escherichia coli str. K-12 substr. MG1655	phoP	MRVLVVEDNALLRHHILKVQIQDAGHQVDDAEDAKEADYYLNEHIPDIAIVDLGLPDEDGLSLIR RWRSNDVSLPILVLTARESWQDKVEVLSAGADDYVTKPFHIEEVMARMQALMRRNSGLASQVIS LPPFQVDLSRRELSINDEVIKLTAFEYTIMETLIRNNGKVVSKDSLMLQLYPDAELRESHTIDVLM GRLRKKIQAQYPQEVITTVRGQGYLFELR
C	Escherichia coli str. K-12 substr. MG1655	qseB	MRILLIEDDMLIGDGIKTGLSKMGFSVDWFTQGRQGKEALYSAPYDAVILDLTLPGMDGRDILRE WREKGQREPVLILTARDALAERVEGLRLGADDYLCKPFALIEVAARLEALMRRTNGQASNELRH GNVMLDPGKRIATLAGEPLTLRPKEFALLELLMRNAGRVLSRKLIEEKLYTWDEEVTSNAVEVH VHHLRRKLGSDFIRTVHGIGYTLGEK
C	Escherichia coli str. K-12 substr. MG1655	hprR	MKILLIEDNQRTQEWVTQGLSEAGYVIDAVSDGRDGLYLALKDDYALIILDIMLPGMDGWQILQT LRTAKQTPVICLTARDSVDDRVRGLDSGANDYLVKPFSFSELLARVRAQLRQHHALNSTLEISGL RMDSVSHSVSRDNISITLTRKEFQLLWLLASRAGEIIPRTVIASEIWGINFDSDTNTVDVAIRRLRAK VDDPFPEKLIATIRGMGYSFVAVKK
C	Bacillus subtilis substr. subtilis str. 168	ykoH	MEKGHILIVEDEEKIARVLQLELEYEGYSVTIKHNGTEGLDAAAEGGYSLVLLDVMLPGLSGLEVL RRLRKTDSQTPVILLTARDSIPDKVTGLDIGANDYVTKPFEIEELLARIRAALRQNGTKTEDIGTFL TYDDLRVNEKTREVRRGDKEVELTPREFDLLVYMLKHPQQVLTREQILSSVWGFDYIGDTNVVD VYIRYIRKKLDYPYEKQLIHTIRGVGYAIKG
С	Bacillus subtilis substr. subtilis str. 168	cssR	MSYTIYLVEDEDNLNELLTKYLENEGWNITSFTKGEDARKKMTPSPHLWILDIMLPDTDGYTLIK EIKAKDPDVPVIFISARDADIDRVLGLELGSNDYISKPFLPRELIIRVQKLLQLVYKEAPPVQKNEI AVSSYRVAEDAREVYDENGNIINLTSKEFDLLLLFIHHKGHPYSREDILLKVWGHDYFGTDRVVD DLVRRLRRKMPELKVETTYGFGYRMMSS
C	Mycobacterium tuberculosis H37Rv	tcrA	MADETTMRAGRGPGRACGRVSGVRILVVEDEPKMTALLARALTEEGHTVDTVADGRHAVAAV DGGDYDAVVLDVMLPGIDGFEVCARLRRQRVWTPVLMLTARGAVTDRIAGLDGGADDYLTKPF NLDELFARLRALSRRGPIPRPPTLEAGDLRLDPSEHRVWRADTEIRLSHKEFTLLEALIRRPGIVHT RAQLLERCWDAAYEARSNIVDVYIRYLRDKIDRPFGVTSLETIRGAGYRLRKDGGRHALPR
C	Mycobacterium tuberculosis H37Rv	phoP	MRKGVDLVTAGTPGENTTPEARVLVVDDEANIVELLSVSLKFQGFEVYTATNGAQALDRARETR PDAVILDVMMPGMDGFGVLRRLRADGIDAPALFLTARDSLQDKIAGLTLGGDDYVTKPFSLEEV VARLRVILRRAGKGNKEPRNVRLTFADIELDEETHEVWKAGQPVSLSPTEFTLLRYFVINAGTVLS KPKILDHVWRYDFGGDVNVVESYVSYLRRKIDTGEKRLLHTLRGVGYVLREPR
С	Mycobacterium tuberculosis H37Rv	prrA	MGGMDTGVTSPRVLVVDDDSDVLASLERGLRLSGFEVATAVDGAEALRSATENRPDAIVLDINM PVLDGVSVVTALRAMDNDVPVCVLSARSSVDDRVAGI EAGADDYLVKPFVLAELVARVKALL RRRGSTATSSSETITVGPLEVDIPGRRARVNGVDVDLTKREFDLLAVLAEHKTAVLSRAQLLELV WGYDFAADTNVVDVFIGYLRRKLEAGGGPRLHTVRGVGFVLRMO
С	Mycobacterium tuberculosis H37Rv	kdpE	MTLVLVIDDEPQILRALRINLTVRGYQVITASTGAGALRAAAEHPPDVVILDLGLPDMSGIDVLGG LRGWLTAPVIVLSARTDSSDKVQALDAGADDYVTKPFGMDEFLARLRAAVRRNTAAAELEQPVI ETDSFTVDLAGKKVIKDGAEVHLTPTEWGMLEMLARNRGKLVGRGELLKEVWGPAYATETHYL RVYLAQLRRKLEDDPSHPKHLLTESGMGYRFEA
С	Mycobacterium tuberculosis H37Rv	trcR	MTTMSGYTRSQRPRQAILGQLPRIHRADGSPIRVLLVDDEPALTNLVKMALHYEGWDVEVAHDG QEAIAKFDKVGFDVLVLDIMLFDVDGLEILRRVRESDVYTPTLFLTARDSVMDRVTGLTSGADDY MTKPFSLEELVARLRGLLRRSSHLERPADEALRVGDLTLDGASREVTRDGTPISLSSTEFELLRFLM RNPRRALSKTEILDRVWNYDFAGRTSIVDLYISYLRKKIDSDREPMIHTVRGIGYMLRPPE
C	Mycobacterium tuberculosis H37Rv	tcrX	MRRADGQPVTVLVVDDEPVLAEMVSMALRYEGWNITTAGDGSSAIAAARRQRPDVVVLDVML PDMSGLDVLHKLRSENPGLPVLLLTAKDA VEDRIAGLTAGGDDYVTKPFSIEEVVLRLRALLRRT GVTTVDSGAQLVVGDLVLDEDSHEVMRAGEPVSLTSTEFELLRFMMHNSKRVLSKAQILDRVWS YDFGGRSNIVELYISYLRKKIDNGREPMIHTLRGAGYVLKPAR
C	Mycobacterium tuberculosis H37Rv	mrpA	MRILVVDDDRAVRESLRRSLSFNGYSVELAHDGVEALDMIASDRPDALVLDVMMPRLDGLEVC RQLRGTGDDLPILVLTARDSVSERVAGLDAGADDYLPRFFALEELLARMRALLRRTRPEDAAES MAMRFSDLTLDPVTREVNRGQRRISLTRTEFALLEMLIANPRRVLTRSRILEEVWGFDFPTSGNAL EVYVGYLRRKTEADGEPRLIHTVRGVGYVLRETPP
С	Pseudomonas aeruginosa PAO1	PA0756	MRILLVEDHPQLAESVVQALKGAGWTVDLLQDGVAADLALASEEYALAILDVGLPRMDGFEVL ARLRGRGKTLPVLMLTARGEVKDRVHGI.NLGADDYLAKPFELSELEARVKALLRRSVLGGEQLQ RCGALVYDLGTRRFSLDEQPLTLTSREQAVLEAMIARPGRVMSKEQLAAQVFGLDEEASADAIEI YVHRLRKKLEGGAVRIVTFRGLGYLLEAQGD
С	Pseudomonas aeruginosa PAO1	PA1437	MRVLIVEDEAKTADYLNRGLSEQGFTVDLADNGIDGRHLALHGEYDVIVLDVMLPGVDGYGVL RALRERRQTPVIMLTARERVEDRVRGLREGADDYLIKPFSFLELVARLQALTRRGGNHESHSQMR IADLSIDLLSRKVFRGNTRLELTAKEYALLCVLAQRSGEILSKTAIAELVWDINFDTDTNVVEVAIK RLRAKLDGPFENKLLHTIRGMGYVLENRALAESG
C	Pseudomonas aeruginosa PAO1	pfeR	MIVQPSAVAKGWPIATTLLPASCGPADPKPEPKPKQRRLCRKVFPLRARCGALAHCPIPGKNEIF TNVNHSHISIPSPRILLVEDDPRLREDLDAHFRRRGFRVTVCGDGSHGLEAAGREAFDLVLLDIML PGLDGLALLESLRREQATPVMLMSALGAEQDRISGFTRGADDYLPKPFSLAELDARTDALLRRVR LDRLPLAQRRDTRLVFDDQAQDVLHQGLPAGLTPSEYRLLATLREHAGEALSKPFLYRSVLHRS YTRLDRGLDVHVCNLRRKLAVVAVRHLQIQAVRGQGYLLVETEHP
С	Pseudomonas aeruginosa PAO1	PA4032	MRVAILDDESAELDRVEQTLQQIPAQGEQAWTVHRFARGEDLLKQLKRETFDLLILDWQLPDLS GLQLLRWSREHLDAPPPAIMLTSRDAEQDIVQALNSGADDYVSKPFRPNELKARVAAVLRRHGG TRPAQHEVQTFNDLSFDDAELTVTRAGAPISLTEREYRLARCLFANLGRPLSREYLYERFWPHEE VLSSRPLDTHIYRLRNKLGLTAERGWQLLTIYGYGYRLESVATVD
С	Pseudomonas aeruginosa PAO1	irlR	MRILVIEDDTKTGEYLKKGLGESGYAVDWSQHGADGLYLALENRYDLVVLDVMLPGLDGWQIM EVLRKKHDVPVLFLTARDQLQDRIRGLELGADDYLVKPRSFTELLLRIRTLLRRGVVREAEQVQL ADLQLDVLRRKVSRQGQVIALTNKEFALLHLLMRREGEVLSRTLIASEVWDMNFDSDTNVVDVA IKRIRAKVDNPFPNKLIHTVRGIGYVCEERPCPPAAP
C	Pseudomonas aeruginosa PAO1	PA0929	MFPSLTPDPRLLAIEDDPTLGAHLFQHLNGSGFEVTWCRDGEEGLAAARSGGYDLILMDIMLPGR DGLEILRQLRQEQALPVILMSALGAEQDRIAGFSQGADDYLPKPFSLAELRVRIDAILRRIALERGG APGRCAEPLARPSLQFSADVCDVSLGERFAGLTPTEYRLLETFLAAEGETLTKAFLYQHVLHRGH TQHDRSLDMHVSHLRRKLQRLGYAGHQLHTVWGKGYVLTPAP
C	Pseudomonas aeruginosa PAO1	PA2479	MHVILTEDDDLIASGIVAGLNAQGLTVDRVASAADTQALLQVARFDVLVLDLGLPDEDGLRLLQ RLRQQGVDLPVLVLTARDAVTDRVAGLQAGADDYLLKPFDLRELGARLHTLQRRSAGRCVNVI EHGRLSYDPSTRETWLDGRPVELSRREQALLQALLNNRGRILSGEQLKDSVYGFGDEVESNALNV HIHHLRRKLGNAIVQTVRGLGYRLGPARGDGDDA
C	Pseudomonas aeruginosa PAO1	PA3204	MSELLLIDDDRELCELLGTWLVQEGFSVRASHDGAQARRALAEQTPDAVVLDVMLPDGSGLELL KQLRGDHPDLPVLMLSARGEPLDRILGLELGADDYLAKPCDPRELTARLRAVLRRTHPAQPSAQ MQLGGLSLNLTRGVAQIDGQEISLTLSESRILEALLRQPGEPLDKQALAQLALGRKLTLYDRSLDM HVSNLRKKLGSHPDGSPRILALRGRGYYYSH
С	Pseudomonas aeruginosa PAO1	PA2523	MRILIIEDEVKTADYLHQGLTESGYIVDRANDGIDGLHMALQHPYELVILDVNLPGIDGWDLLRR LBERSSARVMMLTGHGRLTDKVRGLDLGADDFMVKPFQFPELLARVRSLLRRHDQAPMQDVLR VADLELDASRHRAFRGRVRINLTTKEFALLHLLMRRNGDVITRTQIISLIWDMNFDNDSNVVEVAI CRLRAKIDDGFDLKLIHTIRGVGYVLEARR
С	Pseudomonas aeruginosa PAO1	copR	MKLLIVEDEPRIGQYLRQGLAEAGFAVDLSDDGNEGEQLALGGDYDLLILDVMLPGRDGWQILRS VRDAGMTYPVLFLTARDAVEDRVRGLEQGADDYLVKPFAFVELLARVRTLLRRGSQQLQETTL QLADLELDLLRRRVQRQGKRIDLTAKEFALLELLLRRSGEVLPKSLIASQVWDMNFDSDTNVIEV AIRRLRAKVDDDYPQRLIHTVRGMGYYLEERDE
C	Pseudomonas aeruginosa PAO1	PA4381	MRILVVEDNRDILANLADYLSLKGYTVDCAQDGLSGLHLAATEHYDLIVLDVMLPGIDGYALCR RLREDARRDTPVIMLTARDQLDDRLQGFRSGADDYLVKPFALSELSARIEAVLRRAQGGGRRELS VADLSYDLDTLEVKRAGKSLKLNPIGLKLLAVLMQKSPHVVRRDALEEAVWGDDCPDSDSLRS HVHQLRQVIDKPFSVALLHTVHGVGYRLAEEPNGV

Sub-family	Appendix Table 9. The a Bacteral strain	mino acid sec Gene name	quence of OmpR family RRs. (Continued.) Amino acid sequence
Sub-raininy	Bacterai strain	Gene name	MKLLVVEDEALLRHHLYTRLGEQGHVVDAVPDAEEALYRVSEYHHDLAVIDLGLPGMSGLDLIR
			ELRSQGKSFPILILTARGNWQDKVEGLAAGADDYVVKPFQFEELEARLNALLRRSSGFVQSTIEAG
C	Pseudomonas aeruginosa PAO1	phoP	PLVLDLNRKQALVEEQPVALTAYEYRILEYLMRHHQQVVAKERLMEQLYPDDEERDANVIEVL
			VGRLRRKLEACGGFKPIDTVRGQGYLFTERCR
			MTQLQNSILLIDDEPQIRKFLRISLNAQGYRVLEAGTGEEGLAQAALNRPDLVVLDLGLPDRDGQ
С	Page damanga gamain aga PAO1	h du E	${\tt DILRDLREWSQVPVLVLSVRASEGEKVLALDGGANDYVTKPFGIQEFLARVRVLLRQAAQGESPE}$
C	Pseudomonas aeruginosa PAO1	kdpE	ASVAVGPLQVDFAYRRVTLEGAEVALTRKEYAVLAALARHLGRVVTQQQLLKDIWGPTHVEDT
			HYLRVVVGHLRQKLGDDPASPRFLVTEAGVGYRLRDS
			MRLLLVEDHVPLADELMASLTRQGYAVDWLADGRDAAVQGASEPYDLIILDLGLPGRPGLEILQ
C	Pseudomonas aeruginosa PAO1	PA2657	EWRGLGLATPVLILTARGSWAERIDGLKAGADDYLTKPFHPEELALRIQALLRRAHGLANQSQLE
			AAGLRLDEQRQCVCLNGADVDLTAAEFRLLRYFMLHPGQVLSKGHLAEHLYDGETERDSNVIEV
			HVNHLRRKLGREVIETRRGQGYRYAGVAAG
			MHIHVLVVEDNFDLAGTVIDYLEAAGVVCDHARDGQAGLNLARANRYDVILLDIMLPRINGRQ VCRQLREAGLQTPVLMLTALDTLQDKLDGFDAGADDYLLKPFELPELLVRLQALSRRRSGQAQR
C	Pseudomonas aeruginosa PAO1	PA3077	LQVDDLVMDLDSRQASRGGTPLALSPTAWKILECLMRASPALVTREQLGRSVWGDEPPESNTLN
			VHMHHLRSTVDKGFATPLIHTLHSVGFQLERK
			MRILLAEDDLLLGDGIRAGLRLEGDTVEWVTDGVAAENALVTDEFDLLVLDIGLPRRSGLDILRN
	n i nia		LRHQGLLTPVLLLTARDKVADRVAGLDSGADDYLTKPFDLDELQARVRALTRRTTGRALPQLV
C	Pseudomonas aeruginosa PAO1	pmrA	HGELRLDPATHQVTLSGQAVELAPREYALLRLLLENSGKVLSRNQLEQSLYGWSGDVESNAIEVH
			VHHLRRKLGNQLIRTVRGIGYGIDQPAP
			MSKILLAEDDAGIADFIVRGLIREGFECEVTES GAEAFARAHSGDFDLMVLDLGLPHMDGTDVLE
С	Corynebacterium glutamicum ATCC 13032	cgtR1	QLRNLQVTLPIIVLTARTNIEDRLRTLEGGADDYMPKPFQFAELLARIKLRLAKHTPQETPTDARV
	coryneration guidanteum 111 cc 13032	cgiiti	LRNGDLELDLRTQRVLIDGSWHDLSRREVDLLETLMRHPGQILSRVQLLRLVWDMDWDPGSNV
			VDVYIRALRKKIGAHRVETIRGSGYRLR
			MFQRVDVLIGRKSVTDWKTKRVSMKILVVDDEQAVRDSLRRSLSFNGYNVVLAEDGIQALEMID
C	Corynebacterium glutamicum ATCC 13032	cgtR2	KEQPALVILDVMMPGMDGLEVCRHLRSEGDDRPILILTARDNVSDRVGGLDAGADDYLAKPFAL
	, ,		EELLARVRSLVRRSAVESNQSSSIEQALLSCGDLTLDPESRDVYRNGRAISLTRTEFALLQLLLKNQ
***************************************			RKVLTRAQILEEVWGCDFPTSGNALEVYIGYLRRKTELEGEDRLIHTVRGVGYVLRETAP
			MDNQSDGQIRVLVVDDEPNIVELLTVSLKFQGFAVMTANDGNEALKIAREFRPDAYILDVMMPG
C	Corynebacterium glutamicum ATCC 13032	cgtR3	MDGFELLTKLRGEGLDSPVLYLTAKDA VEHRIHGLTIGADDY VTKPFSLEEVITRLRVILRRGGAV
			EEDTSTSLQYADLTLNDETHEVTKAGELIDLSPTEFNLLRYLMLNAEVVLSKAKILDNVWHYDFG GDGNVVESYISYLRRKVDTQDPQLIQTVRGVGYVLRTPRS
			MSKLLLVDDDIELTELLSTLLELEGFDVETANNGLEALQKLNESYKLVLLDVMMPKLNGIETLKEI
			RKVSNVPVMMLTARGEDIDRVLGLELGADDCLPKPFNDRELIARIKAILRRSASPSNNISNVEILSF
C	Haemophilus influenzae Rd KW20	cpxR	DGITLHFSHGIATYNEENLNLTDYEFKILCLLLKSKGNVVSREELSLEVMEKPLTPFDRSLDMHISN
			LRRKLPKRKNKPSWFKTLRGKGYALVT
			MRILLIEDDNLIGNGLQIGLTKLGFAVDWFTDGKTGMAALTSAPYDAVVLDLTLPKLDGLEVLQQ
	H I I C DIMMO	***	WRSNHQDVPVLILTARDTLDERVKGLQSGADDYLCKPFALAEVAARLQALIRRRYGYHHSVIEQ
С	Haemophilus influenzae Rd KW20	ygiX	AGVKLDQNQRSVWLNNQPISLTSREYKLLELFMLNKDRVLSRSSIEEKLSSWDEEISSGALDVHIY
			NLRQKLGKQFIRTVHGVGYALGQVEK
			MTIMSSCWRFTDSLTSLWHTALMKILLIEDNQKTIEWVRQGLTEAGYVVDYACDGRDGLHLALQ
C	Salmonella enterica subsp. Enterica serovar Typhimurium str. LT2	copR	EHYSLIILDIMLPGLDGWQVLRALRTAHQSPVICLTARDSVEDRVKGLEAGANDYLVKPFSFAEL
	Sumoneila emerica saosp. Emerica scrovar Typianiariain sa. E12	сорк	LARVRAQLRQHVPAFTRLTINGLDMDATKQSVSRNGKPISLTRKEFLLLWLLASRAGEIVPRTAIA
			SEVWGINFDSETNTVDVAIRRLRAKVDDPFEKKLIMTVRGMGYRLQAETSQNG
			MTNVLIVEDEQAIRRFLRAALEGDGLRVYEAETLQRGLLEAATRKPDLIILDLGLPDGDGIDFIRDL
C	Salmonella enterica subsp. Enterica serovar Typhimurium str. LT2	kdpE	RQWSAIPVIVLSARSEESDKIAALDAGADDYLSKPFGIGELQARLRVALRRHAASPCADPIVRFSG
			VTVDLAARLIHRGDEEIHLTPIEFRLLAVLLNNTGKVLTQRQLLNQVWGPNAVEHSHYLRIYMGH
			LRQKLEQDPTRPRHFITETGIGYRFMP MMRVLVVEDNALLRHHLKVQLQDSGHQVDAAEDAREADYYLNEHLPDIAIVDLGLPDEDGLSL
			IRRWRSSDVSLPVLVLTAREGWQDKVEVLSSGADDYVTKPFHIEEVMARMQALMRRNSGLASQ
C	Salmonella enterica subsp. Enterica serovar Typhimurium str. LT2	phoP	VINIPPFQVDLSRRELSVNEEVIKLTAFEYTIMETLIRNNGKVVSKDSLMLQLYPDAELRESHTIDV
			LMGRLRKKIQAQYPHDVITTVRGQGYLFELR
			MRILLVEDDTLIGDGIKAGLSKMGFSVDWFTEGRPGKEALYSAPYDAVILDLTLPGMDGRDILRE
С	Colonial II and a colonial and a col	D	WREKGKQEPVLILTARDALAERVEGLRLGADDYLCKPFALIEVAARLEALVRRASGQASSELRH
C	Salmonella enterica subsp. Enterica serovar Typhimurium str. LT2	qseB	${\it GQVTLNPGNLVATLAGEPLALKPKEFALLELLLRNKGRVLPRKLIEEKLYNWDDDVSSNAVEVH}$
			VHHLRRKLGSEFIRTVHGIGYTLGDA
			MNKILLVDDDRELTSLLKELLEMEGFNVLVAHDGEQALELLDDSIDLLLLDVMMPKKNGIDTLK
C	Salmonella enterica subsp. Enterica serovar Typhimurium str. LT2	cpxR	ALRQTHQTPVIMLTARGSELDRVLGLELGADDYLPKPFNDRELVARIRAILRRSHWSEQQQSSDN
	2r		GSPTLEVDALSLNPGRQEASFDGQTLELTGTEFTLLYLLAQHLGQVVSREHLSQEVLGKRLTPFDR
			AIDMHISNLRRKLPERKDGHPWFKTLRGRGYLMVSAS
			MKILIVEDDTLLLQGLILAAQTEGYACDGVSTARAAEHSLESGHYSLMVLDLGLPDEDGLHFLTRI ROKKYTLPVLILTARDTLNDRITGLDVGADDYLVKPFALEELHARIRALLRRHNNOGESELTVGN
C	Salmonella enterica subsp. Enterica serovar Typhimurium str. LT2	basR	RQKKYTLPVLILTARDTLNDRITGLDVGADDYLVRPFALEELHARIKALLKRHNNQGESELTVGN LTLNIGRHQAWRDGQELTLTPKEYALLSRLMLKAGSPVHREILYNDIYNWDNEPSTNTLEVHIHN
			LRDKVGKSRIRTVRGFGYMLVATEES
			MNKILLVDDDRELTSLLKELLEMEGFNVIVAHDGEQALDLLDDSIDLLLLDVMMPKKNGIDTLK
			ALRQTHQTPVIMLTARGSELDRVLGLELGADDYLPKPFNDRELVARIRAILRRSHWSEQQQNND
C	Shigella dysenteriae 1617	cpxR	NGSPTLEVDALVLNPGRQEASFDGQTLELTGTEFTLLYLLAQHLGQVVSREHLSQEVLGKRLTPF
			DRAIDMHISNLRRKLPDRKDGHPWFKTLRGRGYLMVSAS
			MTNVLIVEDEQAIRRFLRTALEGDGMRVFEAETLQRGLLEAATRKPDLIILDLGLPDGDGIEFIRDL
	(II) II I I I I I I I I I I I I I I I I		RQWSAVPVIVLSARSEESDKIAALDAGADDYLSKPFGIGELQARMRVALRRHSATAAPDPLVKFS
C	Shigella dysenteriae 1617	kdpE	DVTVDLAARVIHRGEEEVHLTPIEFRLLAVLLNNAEKVLTQRQLLNQVWGPNAVEHSHYLRIYM
			GHLRQKLEQDPARPSHFITETGIGYRFML
			MRILLIEDDMLIGDGIKTGLSKMGFSVDWFTQGRQGKEALYSAPYDAVILDLTLPGMDGRDILRE
С	Shigella dysenteriae 1617	qseB	WREKGQREPVLILTARDALEERVEGLRLGADDYLCKPFALIEVAARLEALMRRTNGQTSNELRH
Ü		4502	${\tt GNVMLDPGKRIATLAGEPLTLKPKEFALLELLMRNAGRVLPRKLIEEKLYTWDEEVTSNAVEVH}$
			VHHLRRKLGSDFIRTVHGIGYTLGEK
			MSFEDSEKTSRVTLQQHYNFVMNQAVSITYDLWHIIFMKILLIEDNQRTQEWVTQGLSEAGYVID
C	Shigella dysenteriae 1617	yedW	AVSDGRDGLYLALKDDYALIILDIMLPGMDGWQILQTLRTAKQTPVICLTARDSVDDRVRGLDSG
	•		ANDYLVKPFSFSELLARVRAQLRQHHALNSTLEISGLRMDSVSQSVSRDNISITLTRKEFQLLWLL
			ASRAGEIIPRTVIASEIWGINFDSDTNTVDVAIRRLRAKVDDPFPVMLPISRTCVFQ
			MRVLVVEDNALLRHHLKVQIQDAGHQVDDAEDAKEADYYLNEHLPDIAIVDLGLPDEDGLSLIR
C	Shigella dysenteriae 1617	phoP	RWRSNDVSLPILVLTARESWQDKVEVLSAGADDYVTKPFHIEEVMARMQALMRRNSGLASQVIS
			LPPFQVDLSRRELSINDEVIKLTAFEYTIMETLIRNNGKVVSKDSLMLQLYPDAELRESHTIDVLM
			GRLRKKIQAQYPQEVITTVRGQGYLFELR MKGYRILIVEDDVMIGDLLQKILQREGYRVIWKTDGADVLSVIQKVDLVIMDVMLPGEDGYQMS
			AKIKKLGLGIPVIFLSARNDMDSKLQGLQIGEDYMVKPFDPRELLLRMRNMLEHHYGTFTQIKHL
D	Bacillus subtilis substr. subtilis str. 168	ybdK	YIDAVTKKVFNESLHDEVLFTAIERKIFFYLYENRDSILTKEHFFEYLWQLEDRNPNIVNVHIKKIR
			AKINDQAGEMIENIYGEGYRLNTVVKK
			MEKIKVCVADDNRELVSLLSEYIEGQEDMEVIGVAYNGQECLSLFKEKDPDVLVLDIIMPHLDGL
			AVLERLRESDLKKQPNVIMLTAFGQEDVTKKAVDLGASYFILKPFDMENLVGHIRQVSGNASSVT
D	Bacillus subtilis substr. subtilis str. 168	spo0A	HRAPSSQSSIIRSSQPEPKKKNLDASITSIIHEIGVPAHIKGYLYLREAISMVYNDIELLGSITKVLYP
			DIAKKFNTTASRVERAIRHAIEVAWSRGNIDSISSLFGYTVSMTKAKPTNSEFIAMVADKLRLEHK
			AS

Appendix Table 9. The amino acid sequence of OmpR family RRs. (Continued.)

	•		juence of OmpR family RRs. (Continued.)
Sub-family	Bacteral strain	Gene name	
D	Bacillus subtilis substr. subtilis str. 168	yrkQ	MAYRILVVEDDEDIGDLLEESLTRAGYEVLRAKDGKRALQLVNDSLDLVILDIMMPGISGIETCQH IRKSSNVPILFLTARSSTLDKTEGLLAGGDDYMTKPFSEEELHARVIAQLRRYTIYQEKKEQEETFL IGGKLRVSEEFNEVWKEEKQIKLSDLEYRILKLLMNKRNKIFSAQNIYESVWGQPYFYCSNNTVM VHIRKLRSKIEDDPARPVYIKTEWGRGYRFGAS
D	Bacillus subtilis substr. subtilis str. 168	yts B	MFKLLLIEDDESLFHEIKDRLTGWSYDVYGIQDFSQVLQEFAAVNPDCVIIDVQLPKFDGFHWCR LIRSRSNVPILFLSSRDHPADMVMSMQLGADDFIQKPFHIPDVLIAKIQAMFRRVHHYNTEPSTIKT WCGAAVDAEQNLVSNDKGSVELTKNEMFILKQLIEQKNKIVSREELIRSLWNDERFVSDNTLTVN VNRLRKKLDALQLGAYIETKVQGYJAKEEDKFYD
D	Bacillus subtilis substr. subtilis str. 168	psdS	MYRILLVEDDERIASLLGGHLQKYGYEVKIAEQLNDIKLEFAEMKPDLVLLDINLPFFDGFYWCR QIRTISNAPIIFISARTDELNQVMAIENGGDDYITKPFHLEVVMAKIKSVLRRTYGEYSPSLPQESRI VELGGLTIYPDQNEAEWNSVRILFSQKEFQLLSIFVREHKKIVSRDELLEALWDDVDFVDDNTLTV NVNRLRRKLENAGLTDCISTIRGOGYOFOVNRKDEAEC
D	Bacillus subtilis substr. subtilis str. 168	ywpD	MKIRERFSMVDLPVLIITAAIIGHDKYKAFHAGANDILQKPYHYSEFMARIQNLIMMKHTANQAT RMEMAFLQSQIKPHFLYNVLNTIISLTHLDIEKAREVTEEFTNYLRMSFDFQNTSAISSFRHELSIINS YLSIEKTRFSNRLEVLFDIDEDIDFILPPLMIQPLVENAVLHGVSKKRGGGWIKLTAKKQSKNEYHI KVEDNGPGITPEKQIDLLSTDFDRSVGLKNINQRLKHFCGSELMISSTPDAGTSVSMLIHLAETTGS PKELKDTERT
D	Bacillus subtilis substr. subtilis str. 168	tpeK	MNKIMIVEDSEDIRGILQNYLEKYGYQTVVAADFTAVLDVFLREKPDVVLLDINLPAYDGYYW CRQIRQHSTSPIIFISARSGEMDQVMAIENGGDDYIEKPFSYDIVLAKIKSQIRRAYGEYAAKQGEK VVEYAGVQLFVERFELRFQDEKSELSKKESKLLEVLLERGEKVTSRDRLMEKTWDTDIFIDDNTL NYYITRLRKKLRELNAPVSIEAVRGEGYOLRAOS
D	Bacillus subtilis substr. subtilis str. 168	ycbM	MI.VEDDHSISEMVDHYLITKEGFGIVHAFDGEEGIRLFQQGSYDLVLLDIMLPKLNGMDFLKIIREK SNIPVLMISAKDGDVDKALGI,GFGADDYIAKPFSMIELTARVKAAIRRATQYSAEEPAVNKVIRIH QLAIDIDNVSVLKNGEPLQLTSTEWQLLCLFASNPKKVFTKEQIYRSVWNEEYFDDQNIINVHMR RLREKIEDDPSSPQYIKTLWGIGYKLGEF
D	Bacillus subtilis substr. subtilis str. 168	yvrH	MENASILIVDDEKAIVDMIKRVLEKEGYRNILDAASAEEAIPVVKANKVDLIVLDVMMGGMSGFE ACTLIREYSDAPIFFLTARSSDADKLSGFAVGADDYITKPFNPLELAARIRAHLKRTYQSKETSSNQ TYTYDYFTFSPQNAELIVGGEAVACSAQLLQLLQYFCEHPNVVLSKDQIYEKVWGYPSYGDNNT VMVHIRKLREKIERDPSNPEYIVTVRGLGYRFIPNPEGKRS
D	Pseudomonas aeruginosa PAO1	PA5364	MSKVSALVVDDAPFIRDLMKKGLRDNFPGLHIEEAVNGRKAQQLLSRQNVDLILCDWEMPEMS GLELLTWCRAQENLKTTPFIMVTSRGDKENVVQAIQAGVSDYIGKPFSNDQLVAKIKKALSRSGK LEALAAHAPRREIASGMANDSLAALTGGRAEVIKPAASPAKPAPAPKPASAPQASARPAGSGNP LGQAQLRLPQSSMPCVIKAVSLKEAQLVVKRADPLPQVLESAVLDLEENSDVARLNGYLHAIAA LEPKPDSDWLLLTLRFVDRDPQKLDYLSRLIARGSTQKHYVPGA
D	Pseudomonas aeruginosa PAO1	PA2798	MHKVSATLLIIDDDEVVRESLAAYLEDSNFKVLQALNGLQGLQIFESEQPDLVICDLRMPQIDGLE LIRRIRQTASETPIIVLSGAGVMSDAVEALRLGAADYLIKPLEDLAVLEHSVRRALDRAYLRVENQ RYRDKLEAANRELQASLNLLQEDQNAGRQVQMNMLPVTPWSIEGLEFSHRIIPSLYLSGDFVDYF RVDERVAFYLADVSGHGASSAFVTVLKFMTTRLLYSERRNGTLPEFKPSEVLAHINRGLINTKL GKHVTMLGGVIDLEKNSLTYSIGGHLPLPVLFVEGQAGYLEGRGLPVGLFDDATYDDRVMELPPS FSISLFSDGILDVLPGATLKEKEASLPEQVAAAGGTLDGLRQVFGLANLAEMPDDIALLVLSRNLA
D	Haemophilus influenzae Rd KW20	HI0219a	MEDVDLNIMVAKTILEKLGHHVDVATNGKQAITLFEKNVYDILLLDIKLPDMSGFEIAQYLRENY ENGIYDFLPPMIAFTANVMQSEQEYLEMGMDGVLRKPISIKDLHHCLQQFFADESESIIEMNDDNE LSEQFDLALIETLGKSQILENLSLFKQTMPNYLAQLSKDNMKETEDTAHKIKGAAASVGLNHLRQ LADTLESAAKNSDVPNCGELIDKIGNLWLEDVEDLLKFCKF
D	Salmonella enterica subsp. Enterica serovar Typhimurium str. LT2	rssB	MTQPLVGKQILIVEDEPVFRSLLDSWFSSLGATTALAGDGVDALELMGRFTPDLMICDIAMPRMNGLKLVENLRNRGDQTPILVISATENMADIAKALRLGVEDVLLKPVKDLNRLRETVFACLYPNMFNSRVEEEERLFRDWDAMVSNPTAAAQLLQELQPPVQQVISHCRINYRQLVSADQPGLVLDIAPLSDELAFYCLDVTRAGDNGVLAALLLRALFNGLLQDQLGQQKHRLPELGALLKQVNHLLRQANLPGQFFLFVGYYHSELKNLILVSAGLNATLNTGAHQVQISSGVPLGTLGNAYLNQLSQRCDSWQCQIWGAGGRLRLMLSAE