
PDF issue: 2025-06-03

Researches on Hierarchical Bare Bones
Particle Swarm Optimization for Single-
Objective Optimization Problems

GUO, Jia

(開始ページ / Start Page)
1

(終了ページ / End Page)
115

(発行年 / Year)
2020-03-24

(学位授与番号 / Degree Number)
32675甲第491号

(学位授与年月日 / Date of Granted)
2020-03-24

(学位名 / Degree Name)
博士(理学)

(学位授与機関 / Degree Grantor)
法政大学 (Hosei University)
(URL)
https://doi.org/10.15002/00022971



Researches on Hierarchical Bare Bones Particle

Swarm Optimization for Single-Objective

Optimization Problems

Jia Guo



Doctoral Dissertation Reviewed by Hosei University

Researches on Hierarchical Bare Bones Particle

Swarm Optimization for Single-Objective

Optimization Problems

Jia Guo





Abstract

In experiments and applications, optimization problems aim at finding the best solution from all

possible solutions. According to the number of objective functions, optimization problems can

be divided into single-objective problems and multi-objective problems. In this thesis, we focus

on solutions for single-objective optimization problems. The purpose of this thesis is to clarify a

means for realizing high search accuracy without parameter adjustment.

To achieve high accuracy results for single-objective optimization problems, there are four

major points to note: the local search ability in unimodal problems, the global search ability in

multimodal problems, diverse search patterns for different problems, and the convergence speed

controlling. Population-based methods like the particle swarm optimization (PSO) algorithms

are often used to solve single-objective optimization problems. However, the PSO is a parameter-

needed method which means it needs to adjust parameters for better performances. The adjust-

ment of parameters becomes an overhead when considering for engineering applications. Besides,

the bare bones particle swarm optimization (BBPSO) algorithm is a parameter-free method but

unable to change the search pattern according to different problems. Also, the convergence speed

of the BBPSO is too fast to achieve high accuracy results. To cross the shortcoming of existing

methods and present high accuracy results for single-objective optimization problems, seven dif-

ferent hierarchical strategies are combined with the BBPSO in this thesis. Four of the proposed
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algorithms are designed with swarm division which are able to converge to the global optimum

fast. The other three algorithms are designed with swarm reconstruction which are able to slow

down the convergence and solve shifted or rotated problems. Moreover, no parameter adjustment

is needed when controlling the convergence speed.

First of all, four algorithms with swarm division are proposed. In the pair-wise bare bones

particle swarm optimization (PBBPSO) algorithm, the swarm splits into several search units.

Two particle are placed in one unit to enhance the local search ability of the particle swarm.

To increase the global search ability, the dynamic allocation bare bones particle swarm op-

timization (DABBPSO) algorithm is proposed. Particles in DABBPSO are divided into two

groups before evaluation according to their personal best position. One group is named as the

core group (CG) and the other one is called the edge group (EG). The CG focuses on digging

and trying to find the optimal point in the current local optimum. Conversely, the EG aims at

exploring the research area and giving the whole swarm more chances to escape from the local

optimum. The two groups work together to find the global optimum in the search area.

To solve the shifted of rotated problems, traditional methods usually need to increase the

population size. However, the growth of population size may increase the computing time. To

cross this shortcoming, a multilayer structure is used in the triple bare bones particle swarm

optimization (TBBPSO) algorithm. The TBBPSO is able to present high accuracy results in

shifted and rotated problems without the increasing of population size.

In real-world applications, optimization methods are required to solve different types of opti-

mization problems. However, the original BBPSO can not change its search pattern according to

different problems. To solve this problem, a bare bones particle swarm optimization algorithm

with dynamic local search (DLS-BBPSO) is proposed. The dynamic local search strategy is able

to provide different search patterns based on different questions.

In engineering applications, the optimization results can be improved by controlling the con-
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vergence speed. Normally, traditional methods need parameter adjustment to control the con-

vergence speed. It is difficult to adjust the parameters for every single problem. To solve this

problem, three different reorganization strategies are combined with the BBPSO. In the bare

bones particle swarm optimization algorithm with co-evaluation (BBPSO-C), a shadow swarm

is used to increase the diversity of the original swarm. A dynamic grouping method is used to

disperse both the shadow particle swarm and the original particle swarm. After the dispersion,

an exchanging process will be held between the two swarms. The original swarm will be more

concentrated and the shadow swarm will be more scattered. With the moving of particles be-

tween the two swarms, the BBPSO-C gains the ability to slow down the convergence without

parameter adjustment.

With the improvement of technologies, it is possible to get high accuracy results with a long

calculation. In the dynamic reconstruction bare bones particle swarm optimization (DRBBPSO)

algorithm, a dynamic elite selection strategy is used to improve the diversity of the swarm. After

elite selection, the swarm will be reconstructed by elite particles. According to experimental

results, the DRBBPSO is able to provide high accuracy results after a long calculation.

To adapt to different types of optimization problems, a fission-fusion hybrid bare bones bare

bones particle swarm optimization (FHBBPSO) is proposed. The FHBBPSO combines a fission

strategy and a fusion strategy to sample new positions of the particles. The fission strategy

aims at splitting the search space. Particles are assigned to different local groups to sample the

corresponding regions. On the other side, the fusion strategy aims at narrowing the search space.

Marginal groups will be gradually merged by the central groups until only one group is left. The

two strategies work together for the theoretically best solution. The FHBBPSO shows perfect

results on experiments with multiple optimization functions.

To conclude, the proposed hierarchical strategies provide each of the BBPSO-based algo-

rithms variants with different search characteristics, which makes them able to realize high
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search accuracy without parameter adjustment.
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Chapter 1

Introduction

1.1 Research Background

During the last decade, the evolutionary computation (EC) started to receive significant at-

tention in different fields[1]. Plenty of researchers engaged in theories and applications of the

EC. Different types of evolutionary algorithms (EAs) including genetic algorithm (GA), differ-

ential evolution (DE), etc. have been developed for different requirements. As an important

branch of the EC, the swarm intelligence (SI) has shown remarkable performances in the field of

optimization.

Most of the SI algorithms are inspired from the natural creatures like the ant colony opti-

mization (ACO) [2–4], the particle swarm optimization (PSO) [5], etc.. The PSO is inspired by

bird flocking and fish schooling. Particles are used in the PSO to simulate the team behavior

of fishes or birds. The PSO algorithms show significant performance in economic dispatch [6],

power systems [7], and many other fields [8–10].
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1.2 Research Motivation

1.2.1 The global optimization problems

The optimization problems appear everywhere in our lives and researches. For instance, if we

want to travel to another city, we can choose to use a bus, a flight or a bicycle. Different

choices will link to different fuel costs, time costs and danger levels. These problems can be

summarized as a combination of optimization problems. These problems may be discontinuous

or noise contained. In the research field, optimization problems exist in a wild range of subjects

like mathematics, physical, chemistry, etc.. More precisely, the numerous global optimization

(GO) problems can be described in Equation 1.1:

f : X → R

x∗ ∈ X

f(x∗) ≤ f(X)

(1.1)

where X ⊂ RD is a nonempty compact set that contains all feasible solutions, D is the

dimension of the problem, f is a real valued objective function, x∗ is the theoretical optimal

solution [11]. The purpose of an optimization algorithms is finding the x∗, even the objective

functions maybe non-convex, multimodal, or badly scaled [12].

The GO is often described as a minimal problem because a maximum problem can be transfer

to a minimal problem by Equation 1.2:

f(x) = (−1) ∗ g(x) (1.2)

where g(x) is the original maximum problem, f(x) is the target minimal problem. In exper-

iments and applications, a GO problem is often described as a numerical optimization problem
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which aims at finding the point with the smallest fitness value.

In this thesis, all functions we talk about are minimal numerical functions. The aim of our

methods is finding a solution which can minimize the function. Hence, in this thesis, a best

solution is a solution can minimize the function. In addition, all of the seven proposed methods

are population-based algorithms. The optimization will be implemented by particles. For better

explanation, in the following chapters, when we talk about “ compare two particles” we mean

compare the personal best position of the two particles. Moreover, a better particle is a particle

with better position. A better position is a position make the functions reach a smaller value.

The same definition applies to the word “best”, “worse”, and “worst”.

1.2.2 Aim of this thesis

The single-objective optimization problem (SOP) is a basic and important part of GO problems.

Most of GO problems can be treated as some combinations or variations of SOPs. Basically,

SOPs contain unimodal functions and multimodal functions. A unimodal function contains only

one local best in the feasible area while a multimodal functions contains more than one local

best. A local best in a continuous function is a point with a reciprocal equals zero. Soling the

unimodal problems and multimodal problems need different strategies. More complex, in real-

world applications, the feature of problems are unknown. Hence, to sole SOPs, there four major

sub-problems to cross.

(1) The convergence speed.

Different users have different needs with optimization problems. It is possible some of them

need a fast response while others may prefer higher accuracy although it may take a longer time.

(2) The precision in unimodal problems.

In a population-based optimization algorithm, the optimization is implemented by search

units. The search units sample the feasible area to find the global best solution. In the unimodal
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problems, these units need to gather in a small area to increase the precision. However, some

complex problems contain a wide range of gentle zones which might prevent the gathering of the

units.

(3) The local minimal escape in multimodal problems.

The multimodal can be considered at a combination of several unimodal problems. Each

local best will be a valley. If the search units are over concentrated, they might be trapped in

some sub-valley and unable to reach the global best. If units disperse too much the precision

will decline.

(4) The wide adaptability for multiple problems.

In most real-world applications, it is difficult to identify the types of a problem. Hence the

algorithm need to have balanced ability on both unimodal problems and multimodal problems. In

addition, in real applications, optimization problems might be complicated and noise-contained.

In the past few years, population-based methods like the particle swarm optimization (PSO)

algorithm and the bare bones particle swarm optimization (BBOSO) algorithm are often used to

solve single-objective optimization problems. However, the PSO is a parameter-needed method

which means it needs to changes parameters for different problems. The BBPSO is a parameter-

free method but lacks accuracy. Both of them are unable to completely solve the single-objective

optimization problems. In this thesis, to completely solve these problems, seven different BBPSO-

based algorithms are proposed. Several novel hierarchical evolutionary strategies are used in

proposed methods to obtain better accuracy with fewer parameters.

In addition, in the application area, the needs of users become more diverse. For instance,

applications on mobile devices need less storage space and faster calculation while applications

in the research area need ultimate accuracy. However, existing methods are unable to serve

these demands ideally. To solve these problems, four of the proposed algorithms are designed

for fast calculation. Linear space complexity and linear time complexity are achieved. On the
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other hand, three of the proposed algorithms are designed for ultimate accuracy. These methods

can solve complex and hybrid problems. According to experimental results, proposed algorithms

have better performance than existing methods.

1.3 The Overview of the Thesis

In summary, this thesis is organized as follows:

Chapter 1 presents the back ground and motivation of this thesis.

Chapter 2 introduces several evolutionary algorithms including the standard bare bones

particle swarm optimization algorithms.

Chapter 3, 4, 5 and 6 propose four algorithms for fast convergence. These methods are

composed by linear storage space and linear time complexity. Highlights and relationships of

fast convergence algorithms are shown in Fig 1.3.

Chapter 3 proposes a pair-wise bare bones particle swarm optimization algorithm.

Chapter 4 proposes a dynamic allocation bare bones particle swarm optimization algorithm.

Chapter 5 proposes a triple bare bones particle swarm optimization algorithm.

Chapter 6 proposes a bare bones particle swarm optimization algorithm with dynamic local

search.

Chapter 7, 8 and 9 propose three algorithms for slow convergence. These methods can

be used for complex and hybrid problems. Highlights and relationships of slow convergence

algorithms are shown in Fig 1.3.

Chapter 7 proposes a bare bones particle swarm optimization algorithm with co-evaluation.

Chapter 8 proposes a dynamic reconstruction bare bones particle swarm optimization algo-

rithm.

Chapter 9 proposes a fission-fusion hybrid bare bones particle swarm optimization algo-
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PBBPSO

TBBPSO

DABBPSO

DLS-BBPSO

CPU Time

BBPSO

Local search 
ability increased

Global search 
ability increased

Able to  solve shifted or rotated 
problems

Able to  change search pattern 
according to different peoblems

Figure 1.1: Highlights and relationships of fast convergence algorithms

BBPSO-C

FHBBPSO

DRBBPSO

CPU Time

BBPSO

Able to provide high accuracy 
results with a long calculation

Able to solve  multiple problems 
like hybrid problems and 

composition problems

Able to control the convergence 
speed with out parameter 

adjustment

Figure 1.2: Highlights and relationships of slow convergence algorithms

rithm.

Chapter 10 presents the conclusion and future work of this thesis.
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Chapter 2

Related Work

2.1 PSO and its variants

Particles in particle swarm optimization (PSO) [5] is a population-based optimization algorithm.

The optimization is implemented by particles. PSO emulates the swarm behavior and the parti-

cles represent points in the search area. A particle represents a potential solution. In a numerical

optimization problem, a potential solution is a set of coordinates. Also, particles are designed to

have memories. For each particle, the best position it has ever been will be recorded as personal

best position. From all particles, the best position discovers by the swarm will be recorded as

the global best position. The moving trend of each particle is controlled by the velocity. More

precisely, the velocity and next position of the ith particle is calculated by Equation 2.1:

vt+1(i) = w ∗ vt(i) + r1c1 ∗ (xbest(i)− xt(i))

+r2c2 ∗ (gbest− xt(i))

xt+1(i) = xt(i) + c3vt+1

(2.1)
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where xbest = (xbest(1), xbest(2), ..., xbest(n)) is a matrix for recording the best position each

element has ever reached; gbest is the best position that all elements has ever reached; t is the

iteration time; r1 and r2 are random number from 0 to 1; w, c1, c2 and c3 are the parameters

to control the convergence speed. And according to [13], c1 and c2 are usually set as 2.05; c3 is

usually set as 0.7298.

To increase the performance of PSO, a fully informed particle swarm (FIPS) is proposed by

Mendes [14]. Particles in FIPS are affected by all of their neighborhoods rather than they are only

affected by best neighborhoods in PSO. The FIPS has been applied in multimodal optimization

problem and is improved in 2006 [15].

Liang proposes a comprehensive learning particle swarm optimizer (CLPSO), which uses a

novel learning strategy whereby all other particles’ historical best information is used to update

a particle’s velocity. The proposed strategy enables the diversity of the swarm to be preserved

to discourage premature convergence [16].

2.2 BBPSO and its variants

In 2003, Kennedy [17] proposed the Bare Bones Particle Swarm Optimization (BBPSO), which is

a simple version of PSO. The standard BBPSO is originally formulated as a means of studying the

particle distribution of PSO. It cancels the velocity and uses a Gaussian distribution to sample

the searching space. Particles generate with a normal distributed random number around the

mean of personal best position and global best position on each dimension. During the iteration

process, the personal and global best position keep detecting and exploring in the search area.

Moreover, parameter-free means the algorithm can easily adapt to different problems. Hence,

both varies BBPSO and numbers of methods based on it are proposed for real world applications.

Omran [18] proposed a clustering method based on bare bones. The proposed algorithm finds
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the centroids of a user specified the number of clusters, where each cluster groups together

similar patterns. Moreover, the application of the proposed clustering algorithm to the problem

of unsupervised classification and segmentation of images is investigated.

In bare bones particle swarm optimization (BBPSO), the next position of a particle is cal-

culated by its personal best position and the global best position of the swarm. Because of

the cancel of the velocity, BBPSO does not need any parameter. Moreover, in order to speed

up convergence, Kennedy [17] introduce the interaction probability (IP) to BBPSO. The next

position of the ith particle is calculated by Equation 2.2:

µ =
pi + gbest

2

σ = |pi − gbest|

x(t+ 1) =


N(µ, σ) (when ω > 0.5)

pi else

(2.2)

where P = (p1, p2, ..., pn) is the best position of each particle; gbest is the best position of the

whole swarm; ω is a random number from 0 to 1.

To increase the accuracy during the optimization process, a bare bone particle swarm op-

timization with an integration of global and local learning strategies is proposed by Chen [19].

Moreover, Blackwell formulates the dynamic update rule of particle swarm optimization. This

rule is expressed as a second-order stochastic difference equation. Also, general relations are

derived for search focus, search spread, and swarm stability at stagnation. The relations are

introduced to standard PSO, it’s variant and BBPSO. Also, the simplicity of the Bare Bones

swarm facilitates theoretical analysis, and a further no-collapse condition is derived, according

to Blackwell’s research [20].

In order to minimize the effects of the control parameters, in the research of Wang, a Gaussian
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bare-bones differential evolution (GBDE) and its modified version are proposed [21]. The original

differential evolution (DE) is a population-based stochastic optimization algorithm, which has

already shown the noteworthy performance on both real-world and benchmark optimization

problems. However, the DE is affected by several significant parameters in the algorithm. To

solve this problem, the proposed algorithm presents some eliminating and dynamically adjusting

strategies.

Krohling [22] introduces a jump strategy to bare bones particle swarm to solve the problem

that BBPSO shows weak performance with functions with many local minima in high dimension

area. The jump strategy is implemented based on the Gaussian or the Cauchy probability

distribution. When there is no improvement of fitness value, the proposed will try to help the

algorithm jump out of the current local wave. To verify the ability of the proposed algorithm, a

set of well-known benchmark functions are used in the experiment. Simulation results show that

the BBPSO with the jump strategy performs well in all functions investigated. Moreover, Chen

[23] insists that in the BBPSO, if a particle is restricted to move to a new position only when

the new position is better than its original position, the particle then retains the best position it

ever found. Based on this observation, all personal best particles are no longer required. Hence

a revised BBPSO is proposed by Chen. The proposed algorithm tends to eliminate personal best

particle. This strategy makes the use of memory more efficient, especially when dealing with

large scale problems or in microprocessor based applications.

Campos proposes a BBPSO with scale matrix adaptation (SMA-BBPSO) [24]. The proposed

algorithm aims at solving the premature convergence problem of BBPSO with a strategy that

selecting next position of a particle from a multivariate t-distribution with a rule for adaptation

of its scale matrix. Also, to verify the searching ability of proposed algorithm, a set of well-known

benchmark functions are used in the experiment. Moreover, a theoretical analysis is developed

to explain how SMA-BBPSO works.
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Richer points out that many foragers and wandering animals follow the Lévy distribution

of steps. The Lévy distribution is introduced to both PSO and BBPSO algorithm. From the

Lévy distribution BBPSO, long step and short step are combined to explore the searching area.

Moreover, in the comparative experiment, proposed strategies show powerful ability for searching

the global best position [25].

Vafashoar points out that BBPSO is highly prone to premature convergence and stagnation.

To solve this problem, cellular learning automata bare bones particle swarm optimization (CLA-

BBPSO), a new multi swarm version of BBPSO is proposed in his research. Different with

standard BBPSO, several probability distributions are used in the proposed algorithm. Hence the

diversity of particles increase. Moreover, a new approach for adaptive determination of covariance

matrices, which are used in the updating distributions, has been proposed in the research. As the

result that the searching ability of CLA-BBPSO has been confirmed by experiments, to improve

the convergence speed can be the main future work [26].

In 2013, Cai et al. [27] proposed the neighborhood and direction information based DE (NDi-

DE). The neighbor guided selection scheme for parents involved in mutation and the direction

induced mutation strategies are used in the NDi-DE. The NDi-DE not only utilizes the informa-

tion of neighboring individuals to exploit the regions of minima and accelerate convergence but

also incorporates the direction information to prevent an individual from entering an undesired

region and move to a promising area.

In 2016, Du et al. [28] proposed an event-triggered impulsive (ETI) control scheme for the

DE. In the ETI scheme the event-triggered mechanism (ETM) and the impulsive control (IPC)

are introduced to change the search performance of the population in a positive way. Also,

both stabilizing and destabilizing impulses are used. Stabilizing impulses help the individuals

with lower rankings instantly move to a desired state determined by the individuals with better

fitness values. Destabilizing impulses randomly alter the positions of inferior individuals within
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the range of the current population.
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Chapter 3

A Pair-wise Bare Bones Particle

Swarm Optimization Algorithm

In the BBPSO algorithm, the next position of every particle is calculated with the global best

particle. Particles will get similar and gather together in a short generation times. All particles

might be converged too early and unable to find the global best solution. To solve this problem,

a pair-wise bare bones particle swarm optimization (PBBPSO) algorithm is proposed in this

chapter. A separate iteration strategy is used in the pair-wise operator to enhance the diversity

of the swarm. Each particle is designed to evolve with a partner particle. Different evolutionary

strategies are used to different particles to slow down the diversity losing. The search accuracy

of the swarm is increased by the pair-wise strategy. To verify the performance of the proposed

algorithm, a set of well-known nonlinear benchmark functions are used in the experiment. In the

control group, PSO and BBPSO are evaluated on the same functions. Finally, the experimental

results and statistical analysis confirm the performance of PBBPSO.
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3.1 Overview and Preliminaries

With the development of technologies, optimization problems grow high dimensional and mul-

timodal. Traditional methods like the BBPSO are difficult to offer ideal results. To improve

the performance of the BBPSO, researchers tried to introduce new methods or new strategies to

BBPSO. The improvement of their results are exchanged by the calculation times. In addition,

combining the BBPSO with inappropriate methods or harsh parameters may cause the algorithm

difficult to apply to real-world applications. To solve these problems, the pair-wise strategy is

proposed in this chapter.

3.2 Separate Exploration strategy for BBPSO

The separate exploration (SE) system is proposed in this section to keep the balance between

exploration and exploitation during the optimization process. This system is inspired by human

social class, which arranges different works for different classes. The integral swarm is divided

into two different groups, the director group (DG) and the worker group (WG). The SE system

is implemented by a random selection strategy. Each time two particles are placed into one team

to compare with each other. The one who has a smaller fitness value will be in the DG while

the other one will be placed in the WG. Moreover, this process is not static. This judgment will

be carried out in each iteration. It is possible that one particle in the DG moves to WG in the

next generation.

In order to maintain the stability of the algorithm, the next position of a particle in the DG

is calculated by Equation 3.1:
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µ =
pbest(i) + gbest

2

σ = |pbest(i)− gbest|

xt+1(i) =


N(µ, σ) if(ω > 0.5)

pbest(i) else

(3.1)

where Pbest = (pbest(1), pbest(2), ..., pbest(n)) is the best position of each particle; gbest is the

best position of the whole swarm; ω is a random number from 0 to 1.

Also, if one particle gets a new global best position, its strategy in the next iteration will

only depend on its current position. Specifically, the next position of a global best particle is

calculated from Equation 3.2:

xt+1(i) = xt(i) + α ∗ xt(i) (3.2)

where α is a random number between -1 and 1. This means the particles that reach the global

best position will swing with the current position as the center. When a particle reaches the top

of its swarm, any other particles become useless reference objects. So it is reasonable to make

the top particle swinging around itself.

Conversely, in order to jump out of current local minimal, the particles in the WG will move

boldly with the Equation 3.3:

u = pbest(director)

l = |pbest(director)− pbest(worker)|

xt+1(worker) = N(u, l)

(3.3)

where pbest = (pbest(1), pbest(2), ..., pbest(n)) is a matrix for recording the personal best

position of each particle; the N(u, l) is a Gaussian distribution with a mean value u and a
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standard deviation l.

3.3 Proposal of the Pair-wise BBPSO

On the basis of the SE system, the pair-wise bare bones particle swarm optimization (PBBPSO)

is proposed in this section. The PBBPSO can solve both unimodal problems and multimodal

problems without parameter adjustment.

3.3.1 Initialization

Initialization is the first step of the PBBPSO. We only need to know the number of particles

N ; the dimension of the problem D; the fitness function F , the max iteration times T , and the

search range R. No parameter is needed to control the evolution. Then all particles are randomly

spread in R. After that, first personal best positions, pbest, are calculated by F . Moreover, the

global best position gbest can be obtained.

3.3.2 Pair-wise strategy

In order to balance the exploration and exploitation abilities of the particle swarm, a pair-wise

strategy is introduced to BBPSO. The pair-wise strategy aims at slowing down the speed of swarm

diversity losing. This is inspired by an old Chinese saying “never put all eggs in one basket.”

The saying means we may lose all eggs when accidents happen in the basket with all eggs.

Applying this concept into optimization algorithms, every particle moving to the same global

best position may cause the whole swarm losing diversity very fast, and increasing the possibility

of fall into local minimal. The pair-wise strategy is proposed to ameliorate this situation. By

offering different strategies to different groups, the pair-wise strategy aims at slowing down the

diversity losing of the whole swarm.

16



Before iteration, two particles are randomly selected from the swarm. The one with a better

position, which means it has a lower fitness value in a minimum problem, will be placed into the

leader group (LG), and the other one will be in the follower group (FG). Then the two particles

will update their position with the rules of their own group. This strategy will repeat until every

particle is selected.

Particles in different group evolute with respective ways. Specifically, if the ith particle is in

LG, the next position of the ith particle is selected by Equation 3.4:

u =
(pbest(i) + gbest)

2

l = |pbest(i)− gbest|

x(i)new = N(u, l)

(3.4)

where pbest = (pbest(1), pbest(2), ..., pbest(n)) is a matrix used for recording the best position

each element has ever reached; x(i)new is the new position of the ith particle; gbest is the best

position that all element has ever reached; N(u, l) is a Gaussian distribution with mean u and

standard deviation l. This equation is inherited from the standard BBPSO.

Conversely, particles in FG aim at supporting the LG. If the ith particle is the corresponding

leader of the jth particle, the next position of the jth particle is selected by Equation 3.5:

p =
(pbest(i) + pbest(j))

2

q = |pbest(i)− pbest(j)|

x(j)new = N(p, q)

(3.5)

where Pbest = (pbest(1), pbest(2), ..., pbest(n)) is a matrix used for recording the best position

each particle has ever reached; x(j)new is the new position of the jth particle; gbest is the best
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FG Particle

Global Best Particle

Local Search Global Search

Figure 3.1: Possible situations of the pair-wise strategy

position that all element has ever reached; N(p, q) is a Gaussian distribution with a mean p and

a standard deviation q. The FG particles move toward to their leaders under this rule. Some

possible situations of the pair-wise strategy are shown in Fig. 3.1.

According to Fig. 3.1, FG particles have an opportunity to implement both local and global

search. This strategy can enhance the diversity of the swarm, also can do a deeply search around

the current global best position. Moreover, this process is all random, and no parameter is

needed, which means that the proposed system can be easily applied to different functions.

3.3.3 Pseudo code of PBBPSO

To show the working flow of PBBPSO, the pseudo code is given in Algorithm 1.
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Algorithm 1 PBBPSO

Require: Max iteration time, T
Require: Dimension of the problem, D
Require: Fitness function, f
Require: Searching Range. R
Require: Number of particles n, n need to be an even
Require: Particle swarm X = x1, x2, ...xn
Require: Personal best position Pbest = p1, p2, ...pn
Require: Global best position Gbest
Ensure: all particles are in R
1: t = 1
2: while t <= T do
3: while X 6= ∅ do
4: Randomly select and remove two particles, xi and xj , from X
5: if f(xi) < f(xj) then
6: Update xi with Equation 3.4
7: Update xj with Equation 3.5
8: else
9: Update xi with Equation 3.5

10: Update xj with Equation 3.4
11: end if
12: end while
13: Update Pbest
14: Update Gbest
15: t = t+ 1
16: end while

3.4 Experiments

3.4.1 Benchmark functions

In order to conduct a comprehensive evaluation of the optimization capabilities of PBBPSO,

six famous benchmark functions including unimodal function and multimodal functions are se-

lected for the experiment. These functions can be divided into three groups according to their

properties:

1. Group 1, ( f1 − f2), unimodal functions;

2. Group 2, (f3 − f5), multimodal functions without shifted or rotated operator;

3. Group 3, (f6), shifted multimodal function.
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Table 3.1: Benchmark Functions

Function Search Range Minimum Reference

f1= Sphere Function (100, 100) 0 [16][24]

f1(x) =
D∑
i=1

xi
2

f2=Rosenbrock Function (−2.048, 2.048) 0 [16][24]

f2(x) =
D−1∑
i=1

(
100(xi

2 − xi+1)
2

+ (xi − 1)
2
)

f3= Rastrigin Function (−5.12, 5.12) 0 [16][24]

f3(x) =
D∑
i=1

(xi
2 − 10 cos(2πxi) + 10)

f4= Ackley Function (−32.768, 32.768) 0 [16][24]

f4(x) = −20 exp

(
−0.2

√
1
D

D∑
i=1

xi2

)
− exp

(
1
D

D∑
i=1

cos(2πxi)

)
+ 20 + e

f5= Griewank Function (−600, 600) 0 [16][24]

f5(x) =
D∑
i=1

( xi
2

4000 )−
D∏
i=1

cos( xi√
i
) + 1

f6= Shifted Rastrigin’s Function (−5 , 5) −330 [24][29]

f6(x) =
D∑
i=1

(zi
2 − 10 cos(2πzi) + 10) + shifted , z = (x− o)

o is the shifted global optimum, shifted = −330

These functions are considered in some early studies [16][29]. All of the 6 functions are

minimum value problem; the summarize of all functions are shown in Table 3.1.

3.4.2 Results and discussion

To minimize the impact of accidental factors, the empirical error is calculated from 30 inde-

pendent runs on each function with 1500 times iteration. The empirical error is defined as

| gbest −Minimun |. Where gbest is the final global best value given by an algorithm, and

Minimun is the theoretical optimal solution of the function. Experimental results keep three

20



Table 3.2: Comparisons of empirical error between PSO, BBPSO, and BBPSOwj

Function

PSO[30] BBPSO[17] BBPSOwj[20]

Mean Mean Mean

SD SD SD

f1

1.13E−10 2.48E−09 4.34E−03

7.94E−11 3.96E−09 2.37E−02

f2

5.26E+01 3.25E+01 6.50E+01

4.20E+01 1.41E+01 4.22E+01

f3

8.36E+01 4.96E+01 1.11E+01

1.98E+01 1.27E+01 3.45E+00

f4

1.90E+01 2.71E−01 1.54E−01

3.59E+00 6.36E−01 3.55E−01

f5

2.10E−03 1.35E−02 3.05E−02

4.16E−03 1.86E−03 2.84E−02

f6

6.70E+01 6.87E+01 1.02E+01

1.54E+01 1.49E+01 2.86E+00

significant digits. Also, the dimension of each function is set as 30, the number of particles is set

as 30.

In Table 3.2 and 3.3, the mean and standard division of the 30 independent results are

displayed. Best results of each team are shown in boldface.

In group 1, PBBPSO gives excellent results with the two unrotated unimodal functions. The

3.37E−15 empirical error on f1 has an obvious advantage than other algorithms. Because of

the second rank algorithm, PSO only gives 1.13E−10. However, although PBBPSO still keeps
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Table 3.3: Comparisons of empirical error between FIPS, Lévy BBPSO, and PBBPSO

Function

FIPS[14][15] Lévy BBPSO[25] PBBPSO

Mean Mean Mean

SD SD SD

f1

1.03E−04 2.23E−10 3.37E−15

6.95E−05 4.59E−10 4.11E−15

f2

4.29E+01 6.01E+01 2.85E+01

4.01E+01 8.55E+01 1.12E+01

f3

7.78E+01 3.19E+01 2.79E+01

1.63E+01 1.83E+01 6.36E+00

f4

6.86E−01 1.27E+00 4.47E−02

1.04E+00 8.70E−01 5.46E−01

f5

5.53E−02 6.12E−01 8.70E−03

8.15E−02 7.96E−03 8.50E−03

f6

1.26E+02 3.82E+01 4.97E+01

3.19E+01 6.18E+00 1.24E+01
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its lead on f2, the advantage decreases. The 2.85E+01 empirical error gets the 1st rank in all

algorithm. But compares with FIPS, the second rank algorithm, the BBPSO gets a lead of 33.6%.

These results are direct evidence that PBBPSO has good performance on unimodal functions.

This can be attributed to the pair-wise system. When the minimum point is in the area that

between FG particles and its leader, the crossover search enhance the probability of reaching the

best point.

In group 2, PBBPSO gets one best and two second rank in all three unrotated multimodal

functions. In f3, PBBPSO is defeated by BBPSOwj, win the second place. The 2.79E+01

empirical error PBBPSO gives, is more than two times larger than BBPSOwj gives. However,

the result of PBBPSO is 87.4% of the third algorithm. In f4, PBBPSO beats all other algorithms.

The second rank algorithm, BBPSOwj, gives a 1.54E−01 empirical error while PBBPSO gives

4.47E−02. In f5, PBBPSO takes the third rank. The empirical error it gives is 8.70E−03, which

is more than four times larger than the first rank algorithm. From the experimental results of

group 2, it is able to confirm that PBBPSO can give better results than other algorithms on

unrotated multimodal functions.

In group 3, PBBPSO gets the third rank. The empirical error of PBBPSO is more than four

times larger than the empirical error of BBPSOwj.

To sum up, a ranking comparison is proposed to describe the searching ability of all algorithms

in the experiment. Each function provides a rank value from 1 to 6 to all algorithms. The

algorithm presents best results will get 1 and the algorithm presents worst results will get 6. The

mean ranking value from all functions is calculated in the Table 3.4.
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Table 3.4: Average ranking

Algorithm Average Ranking

PBBPSO 1.86

BBPSOwj 3.00

PSO 3.71

BBPSO 3.57

Lévy BBPSO 4.29

FIPS 4.57

3.5 Summary

A pair-wise bare bones particle swarm optimization (PBBPSO), which can solve both unimodal

and multimodal problems, is proposed in this chapter. The PBBPSO inherits advances from

BBPSO such as simplicity and parameter-free. Moreover, it extends the searching concept from

the original algorithm. In order to keep the diversity of the swarm and avoid premature con-

vergence, the pair-wise strategy is used in the proposed algorithm. Particles are classified into

two groups, the leader group and the follower group. Different iteration strategies are used to

different groups to slow down the speed of diversity losing.

To verify the performance of PBBPSO, six famous benchmark functions are used in the

experiment. Furthermore, severe variants of BBPSO and some other evolutionarily algorithms

are also evaluated on the same functions as the control group. Finally, the experimental results

and statistical analysis confirmed the performance of PBBPSO.
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Chapter 4

A Dynamic Allocation Bare

Bones Particle Swarm

Optimization Algorithm

In Chapter 3, particles are divided into several different local groups. Each local group has

a leader and a follower. Particles in a same local group has a close contact but there are no

connection between the particles in different local groups. The isolation of local groups may

reduce the search precision of the algorithm. To solve this problem, a dynamic allocation bare

bones particle swarm optimization (DABBPSO) algorithm is proposed in this chapter. A pre-

processing method is used in the DABBPSO to enhance the connection between particles.
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4.1 Overview and Preliminaries

The bare bones particle swarm optimization algorithm is widely used in different areas. However,

this algorithm may suffer from premature convergence by getting trapped in a local optimum

when dealing with multimodal functions. To solve this problem, a dynamic allocation bare bones

particle swarm optimization (DABBPSO) algorithm is proposed in this chapter. According to

their personal best positions, particles are divided into two different local groups before evalua-

tion. One group is named as core group (CG) and the other one is called the edge group (EG).

The CG focuses on digging and trying to find the optimal point in the current local optimum.

Conversely, the EG aims at exploring the research area and giving the whole swarm more chances

to escape from the local optimum. The two groups work together to find the global optimum in

the search area.

4.2 Proposal of the Dynamic Allocation

The dynamic allocation (DA) strategy is proposed in this section. This strategy is inspired by

the construct of the human society. Different people are doing different jobs according to their

talents or interests. This measure ensures the stability and robustness of human society. It is

obvious that if everyone is assigned to do the same job our society will collapse; also, if everyone

does the job he or she is not good at, our society may fall into chaos. The same logic applies

to the swarm-based algorithms. The DA aims at balancing the exploration and exploitation of

the swarm. All of the particles are divided into two groups by the DA. The DA considers that

particles with better position have more chance to reach the global optimum while the particles

with worse position have more chance to escape from current local optimum. Particularly, since

all test functions in this research are minimal problems, a particle which has a smaller personal

best value is considered to have a better position. Following this principle, the particles at the
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better position will be in the CG and others will be in the EG. Before iteration, all particles will

be ranked according to their personal best position. The top 50% particles will be in the CG. If

the ith particle is in the CG, the next position of it will be selected by the Equation 4.1:

u = (pbest(i)+gbest)
2

l = |pbest(i)− gbest)|

x(i)new = N(u, l)

(4.1)

where Pbest = (pbest(1), pbest(2), ..., pbest(n)) is a matrix used for recording the best position

each particle has ever reached; x(i)new is the new position of the ith particle; gbest stands for

the global best position of the swarm; N(u, l) is a Gaussian distribution. In addition, the rest

particles will be put in the EG. All EG particles will find the next position by the Equation 4.2:

p = (pbest(EG(j))+pbest(EG(j−1)))
2

q = |pbest(EG(j))− pbest(EG(j − 1))|

x(j)new = N(p, q)

(4.2)

where the pbest(EG(i)) stands for the personal best position of the EG particles; gbest stands

the global best position of the swarm; N(p, q) is a Gaussian distribution.

Before iteration, an information initialization will be held. All particles will be randomly put

into the searching area. Each particle can get its first personal best position and the swarm can

get the first global best position. Then, the dynamic allocation system will disperse the swarm

into two groups according to their personal best position. In each iteration, all particles will

choose a new position under the direction of their team rules. To explain the working process of

the DABBPSO more clearly, the pseudo code of the algorithm is given in Algorithm 2.
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Algorithm 2 DABBPSO

Require: Max iteration time, T
Require: Fitness function, f
Require: Searching Range, R
Require: The number of all particles, n
Require: Particle swarm X = x1, x2, ...xn
Require: Personal best position Pbest = p1, p2, ...pn
Require: Global best position Gbest
Ensure: All particles are in R
1: t = 1
2: while t <= T do
3: Rank all the particles
4: Put the top 50% particles into CG, put the rest into EG
5: Choose a new position for CG particles according to Equation 4.1
6: Choose a new position for EG particles according to Equation 4.2
7: for i from (1, n) do
8: if f(new xi) < f(Pbest(i)) then
9: X(i) = new xi

10: end if
11: if f(new xi) < f(Gbest) then
12: Gbest = new xi
13: end if
14: end for
15: t = t+ 1
16: end while
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Table 4.1: Experimental environments

Operating system Windows 10

Coding language Matlab

CPU Intel(R) Core(TM) i7

RAM 16 GB

4.3 Experiments

4.3.1 Experimental environments and benchmark functions

To verify the searching ability of the DABBPSO, a set of comprehensive experiments are proposed

in this section. The experimental environments are displayed in Table 4.1.

Five famous benchmark functions are selected for experiment. The Rastrigin function is

a typical example of a non-linear multimodal function. It is a non-convex function used as a

performance test problem for optimization algorithms. The Ackley function is widely used for

testing optimization algorithms. In its two-dimensional form, it is characterized by a nearly flat

outer region, and a large hole at the center. The function poses a risk for optimization algorithms,

to be trapped in one of its many local minima. The Griewank function has many widespread

local minima, which are regularly distributed. The Sphere function and the Rosenbrock function

are unimodal functions. More details for the test functions are displayed in Table 4.2.

To reduce the accidental error, each algorithm will have 30 independent runs on every func-

tion, and the empirical error is defined as |gbest− TheoreticalMinimum|. Specifically, all the

algorithms have 1500 iteration times; and the dimension for all problems is 30. Experimental

results keep three significant digits.
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Table 4.2: Benchmark functions

Name Optimal solution optimal value

f1 = Rastrigin 0.00d 0

f1(x) = 10 ∗ d+
d∑

i=1

(x2i − 10 cos(2πxi))

x ∈ (−5.12, 5.12)

f2 = Ackely 0.00d 0

f2(x) = −20 ∗ exp

(
−0.2

√
1
D

D∑
i=1

xi2

)
− exp

(
1
D

D∑
i=1

cos(2πxi)

)
+ 20 + e

x ∈ (−32.768, 32.768)

f3 = Griewank 0.00d 0

f3(x) =
D∑
i=1

( xi
2

4000 )−
D∏
i=1

cos( xi√
i
) + 1

x ∈ (−600, 600)

f4 = Sphere 0.00d 0

f4(x) =
D∑
i=1

xi
2

x ∈ (−100, 100)

f5 = Rosenbrock 0.00d 0

f5(x) =
D−1∑
i=1

(
100(xi

2 − xi+1)
2

+ (xi − 1)
2
)

x ∈ (−2.048, 2.048)
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4.3.2 Experimental results and discussion

The experimental results are presented in Table 4.3. The “Mean” in the table stands for the

mean empirical error of the 30 test. The “SD” stands for the standard deviation of the 30

results. The best results of each function are shown in bold. In f1, the mean empirical error

of the DABBPSO is 24.80 % smaller than the result of the BBPSO, 52.57% smaller than the

result of FIPS. In f2, the mean empirical error of the DABBPSO is 81.51% smaller than the

result of the BBPSO, 92.70% smaller than the result of FIPS. In f3, the mean empirical error of

the DABBPSO is 52.59% smaller than the result of the BBPSO, 87.16% smaller than the result

of FIPS. In f4, the empirical error of the DABBPSO is 99.99% smaller than the result of the

BBPSO and the FIPS. In f5, the empirical error of the DABBPSO is 41.72% smaller than the

result of the FIPS.

4.4 Summary

A DABBPSO is proposed in this chapter. The DABBPSO is inspired by the social structure of

humane society. In our society, different people do the different jobs according to their interest

or talent. This division pattern activates the capacity of every single person. To simulate

this process, the dynamic allocation strategy is proposed. In the proposed algorithm, particles

with different personal best value are considered to have different capacity. To be specific, the

particles which have higher positions in the personal best value ranking will be good at finding

more accurately global best position while the rest are good at escaping from the current local

optimum. Under this concept, the top particles are assigned into the CG while others are placed

into the EG. The two groups work in different ways and their cooperation helps the algorithm to

find the global best position. Moreover, like the human society, the group is not static. Particles

may change their group in the next generation if they can get a better position than others.
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Table 4.3: Comparisons of empirical error between PSO, BBPSO, and BBPSOwj

Function

FIPS[14][15] BBPSO[17] DABBPSO

Mean Mean Mean

SD SD SD

f1

7.78E+01 4.96E+01 3.73E+01

1.63E+01 1.27E+01 7.71E+00

f2

6.86E−01 2.71E−01 5.01E−02

1.04E+00 6.36E−01 2.74E−01

f3

5.53E−02 1.35E−02 7.10E−03

8.15E−02 1.86E−03 8.90E−03

f4

1.03E−04 1.58E−06 8.88E−16

6.95E−05 1.75E−06 2.53E−15

f5

4.29E+01 9.47E+01 2.50E+01

4.01E+01 8.55E+01 1.33E+00
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To verify the search ability of the DABBPSO, five famous benchmark functions are used in the

experiments. All of the experimental results confirmed the search ability of the DABBPSO.
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Chapter 5

A Triple Bare Bones Particle

Swarm Optimization Algorithm

In Chapter 3, the 2-particle evolutionary unit shows good performance on basic functions. But

the optimization ability of PBBPSO is limited by its simple structure in each evolutionary unit.

The precision of experimental results in the shifted and rotated functions are not good. Hence,

to increase the precision of shifted and rotated unimodal problems, to increase the local minimal

escape ability of shifted and rotated multimodal problems, a triple bare bones particle swarm

optimization (TBBPSO) algorithm is proposed in this chapter. The size of the evolutionary unit

is expanded and the structure becomes more complicated. Three particles are placed in one local

group and a hierarchical method is used to classify particles in one local group. The experimental

results confirm the search ability of the TBBPSO.
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5.1 Overview and Preliminaries

The bare bones particle swarm optimization (BBPSO) is a population-based algorithm. The

BBPSO is famous for easy coding and fast applying. The Gaussian distribution is used to

control the behavior of the particles. However, every particle learning from a same particle may

cause the premature convergence. To solve this problem, a new triple bare bones particle swarm

optimization algorithm is proposed in this section. Three random particles are placed in one

group and exchanging information during the iteration process. And a hierarchical method is

used in every group. Therefore, the swarm gains an increase in diversity and more chances to

escape from the local optimum. Moreover, a mutated structure for the local group is presented

in this paper. To verify the ability of the proposed algorithms, a set of well-known benchmark

functions are used in the experiment. Also, to make the experiment more persuasive, several

evolutionary computation algorithms are applied to the same functions as the control group.

The experimental results show that the proposed algorithms perform well in the test functions.

5.2 Proposal of the TBBPSO

The TBBPSO divides the swarm into numbers of local groups. Each group is composed by leader

and teammates. The particle has the best position of the group will be the leader while others

will be its teammates. The leader of each group is in charge of communicating with the global

best particle and teammates are responsible for learning from their leaders.

In the standard BBPSO, the structure of the swarm is simple and direct. Each particle is

treated equally. Every particle gets the information from the global best particle and chooses a

new position by a Gaussian distribution. This is an effective strategy but convergence at a single

particle may cause the premature convergence. To solve this problem, a hierarchical operator

(HO) and mutated hierarchical operator (MHO) are proposed here.
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5.2.1 The hierarchical operator

In the HO, every three particles are grouped in one team. The grouping process is all random.

After that, the one who has a best position of the team will be the leader and the other two will

be the teammates. The teammates and the leader will iterate under different rules. Teammates

will gain information from their leader while the leader will gain information from the global

best particle. The next position of a leader is selected by Equation 5.1:

α =
(pbest(leader) + gbest)

2

β = |pbest(leader)− gbest|

x(leader) = N(α, β)

(5.1)

where the pbest(leader) is the personal best position of a leader; the gbest is the global best

position of the whole swarm; x(leader) is the next position we want to calculate, N(α, β) is the

Gaussian distribution with a mean α and a standard deviation β.

On the other hand, the teammates will learn from their own leader. Their next position is

selected by Equation 5.2:

η =
(pbest(leader) + pbest(teammate))

2

θ = |pbest(leader)− pbest(teammate)|

x(teammate) = N(η, θ)

(5.2)

where the pbest(teammate) is the personal best position of a teammate;the pbest(leader) is the

personal best position of a leader; x(teammate) is the next position we want to calculate. By

using this differentiated management, leaders and teammates perform their duties, seeking the

global optimum in the search space.
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Global best particle 

Leader of each group 

Teammates of each group

Figure 5.1: The lcoal structure of the TBBPSO

Generally speaking, the structure of HO is described in Fig 5.1. It can be found that the

leader of each group communicate with the global best particle and the teammates gain the

information from their leaders. This is essentially different from the BBPSO. The BBPSO has

only one search center, the global best particle. But the HO has numbers of searching centers,

a global best particle and plenty of leaders. This gives the swarm more chance to escape from a

local optimum. Since the selection of teammates is random, it is possible that all members of a

team gathered at a narrow region. For instance, in Fig 5.1, the local search is done by the group

in the red circle. Also, like the group in the blue circle of the Fig 5.1, there is an opportunity

that particles in a group are dispersed and will process a global search.

5.2.2 The local structure with mutation

It is easy to recognize that there is another structure for a 3-particle group. In this section, a

mutated hierarchical operator (MHO) is used in the mutated triple bare bones particle swarm

optimization (MTBBPSO).

In a specific group of HO, two teammates will learn from the same leader. This form likes
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a miniature version of BBPSO. Hence there is a probability that both the HO and the BBPSO

were caught in the same local optimum. So we change the structure of HO to avoid this situation.

The structure of MHO is shown in 5.2. We considered that is maybe too general to make all

teammates in a group to learn from their leader. So a simple level system is used in the MHO

to make the algorithm more meticulous. Two particles are not treated equally in the group.

The teammate with a worse position is ordered to learn from the better teammate. And the

better teammate is ordered to learn from the leader. By organizing the structure like this, the

deployment of a information exchange chain is completed. The passing down of the information

from the global best particle gives the MHO more chance to jump out from a local optimum.

In addition, the iteration pattern of the MHO is similar with the HO. The only different is

about the next position of the worst teammate. In particular, the worst teammate will iterate

by Equation 5.3:

ξ =
(pbest(teammate1) + pbest(teammate2))

2

ω = |pbest(teammate1)− pbest(teammate2)|

x(worst) = N(ξ, ω)

(5.3)

where the pbest(teammate1) and the pbest(teammate2) are the personal best position of the

two teammates. By setting the teammates to two levels, particles gain more chance to explore

the search space and more chance to escape from the local minimum. Also, the local search and

the global search can be done by the simple strategy.

5.2.3 The process of the proposed algorithms

To explain the proposed algorithms more clearly, the pseudo code of the TBBPSO and MTBBPSO

is given in Algorithm 3.
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Global best particle 

Leader of each group 

Teammates of each group

Figure 5.2: The local structure of the MTBBPSO

Algorithm 3 TBBPSO & MTBBPSO

Require: Max iteration time, T
Require: Fitness function, F
Require: Search Space, R
Require: Dimension of the function. D
Require: Particle swarm X = x1, x2, ...xn
Require: Personal best position Pbest = p1, p2, ...pn
Require: Global best position Gbest
Ensure: All particles are in R
1: t = 1
2: while t <= T do
3: while X 6= ∅ do
4: Select 3 particles from X
5: Sort them by personal best position
6: For instance: Pbesti < Pbestj < Pbestk
7: Choose a new position for xi with Equation 5.1
8: Choose a new position for xj with Equation 5.2
9: if The algorithm is TBBPSO then

10: Choose a new position for xk with Equation 5.2
11: end if
12: if The algorithm is MTBBPSO then
13: Choose a new position for xk with Equation 5.3
14: end if
15: end while
16: Update Pbest
17: Update Gbest
18: t = t+ 1
19: end while
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5.3 Experiments

5.3.1 Experimental method

To verify the ability of TBBPSO and MTBBPSO, an experiment is proposed in this section. A

set of comprehensive benchmark functions are used in the experiment. They are selected from

the CEC 2005 test functions [31] and more details are shown in Table 5.1. All of the 6 functions

are minimum value problem and have been shifted or rotated. They are divided into two groups

according to their features:

(1) Group 1, high dimension, unimodal functions with only one global optimum in the search

region, f1 − f3;

(2) Group 2, high dimension, complex multimodal functions with several local minimum in

the search region , f4 − f6;

In order to reduce the error caused by the accident , the empirical error is calculated from 30

independent runs while each algorithm has 300,000 iteration times. The empirical error is defined

as | result−TOS |, where the result is the global best value given by an algorithm after its final

iteration, the TOS is the theoretical optimal solution (TOS) of the function. The dimension

of all functions is 30. For all the test functions, the TOS are shifted to a new value different

from the zero point. Moreover, the adaptive PSO (APSO) [32], the comprehensive learning PSO

(CLPSO) [16] and the orthogonal learning PSO (OLPSO) [33] are used in the control group.

According to the original references, the size of population is set to 20 for APSO, 40 for CLPSO

and OLPSO, 30 for the rest 2 algorithms. More details about the algorithms can be found in

[34]. Experimental results keep three significant digits.
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Table 5.1: Benchmark Functions

Function

f1 = Shifted Sphere Function

f1(x) =
D∑
i=1

zi
2 + shifted , z = x− o

x ∈ (−100, 100), shifted = −450, o is the shifted global optimum, global minimum=−450

f2 = Shifted Schwefel’s Problem 1.2

f2 =
D∑
i=1

(
i∑

j=1

zi)

2

+ shifted , z = x− o

x ∈ (−100, 100), shifted = −450, o is the shifted global optimum, global minimum=−450

f3 = Shifted Rotated High Conditioned Elliptic Function

f3(x) =
d∑

i=1

(106)
i−1
d−1 z2i + shifted , z = (x− o) ∗M , M : orthogonal matrix

x ∈ (−100, 100), shifted = −450, o is the shifted global optimum, global minimum=−450

f4 = Shifted Rotated Griewank’s Function without Bounds

f4(x) =
d∑

i=1

z2
i

4000 −
d∏
i

cos( zi√
i
) + 1 + shifted , z = (x− optimum) ∗M

x ∈ (0, 600), shifted = −180, o is the shifted global optimum, global minimum=−180

M’: linear transformation matrix, condition number=3, M=M’(1+0.3 |N(0, 1)| )

f5 = Shifted Rotated Rastrigin’s Function

f5(x) =
D∑
i=1

( zi
2

4000 )−
D∏
i=1

cos( zi√
i
) + 1 + shifted , z = (x− o) ∗M

x ∈ (−5, 5), shifted = −330, o is the shifted global optimum

M: linear transformation matrix, condition number=2, global minimum= −330

f6 = Shifted Rotated Weierstrass Function

f6(x) =
D∑
i=1

(
20∑
k=0

[akcos(2πbk(zi + 0.5))])−D
20∑
k=0

[akcos(2πbk ∗ 0.5)] + shifted

x ∈ (−0.5, 0.5), a = 0.5, b = 3, z = (x− o) ∗M,o is the shifted global optimum

M: linear transformation matrix, condition number=5, shifted=90, global minimum= 90
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Table 5.2: Comparisons of empirical error between BBPSO, FIPS, BBPSOwj, TBBPSO and
MTBBPSO

Function Mean/SD f1 f2 f3

APSO [32][34]
Mean 7.01E−14 9.97E−13 3.96E+05

SD 2.45E−14 1.79E−12 1.59E+05

CLPSO [16][34]
Mean 5.68E−14 8.79E+02 1.67E+07

SD 0E+00 1.79E+02 4.66E+06

OLPSO [33][34]
Mean 0E+00 1.50E+01 1.46E+07

SD 0E+00 1.23E+01 5.33E+06

TBBPSO
Mean 0E+00 0E+00 1.19E+05

SD 0E+00 0E+00 9.11E+04

MTBBPSO
Mean 0E+00 0E+00 1.35E+05

SD 0E+00 0E+00 2.81E+05

5.3.2 Experimental results and discussion

The experimental results are shown in the Table 5.2 and 5.3. In the Table 5.2 and 5.3, the “mean”

stands for the mean empirical error of 30 independent runs; the “SD” stands for the standard

deviation of the 30 results. Moreover, the best results of each team are shown in boldface. For

easy and accurate discussing, we define that if two results have a gap more than ten times, we

will describe as “significant” or “outstanding”. If the difference between two results is smaller

than 20%, we will consider that they are “similar”. Also, if one algorithm reaches the TOS while

others not, we will consider the algorithm has a significant advantage.

On the f1, the OLPSO, the TBBPSO and the MTBBPSO find the exact global best point in
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Table 5.3: Comparisons of empirical error between BBPSO, FIPS, BBPSOwj, TBBPSO and
MTBBPSO

Function Mean/SD f4 f5 f6

APSO [32][34]
Mean 4.70E+03 1.50E+02 2.78E+01

SD 2.34E−04 6.25E+01 3.16E+00

CLPSO [16][34]
Mean 4.70E+03 1.14E+02 2.70E+01

SD 6.78E−12 1.50E+01 1.71E+00

OLPSO [33][34]
Mean 4.70E+03 1.10E+02 2.55E+01

SD 1.61E−12 3.12E+01 2.95E+00

TBBPSO
Mean 1.77E−02 7.50E+01 3.17E+01

SD 1.71E−02 4.26E+01 4.17E+00

MTBBPSO
Mean 2.29E−02 9.38E+01 2.83E+01

SD 3.19E−02 3.36E+01 5.51E+01
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all of the 30 independent runs. The APSO gives an empirical error of 7.01E−14 while CLPSO

gives 5.68E−14. On the f2, both of the proposed algorithms re The swarm converge at the

theoretical optimal solution in all 30 independent runs. On the other hand, the APSO gives

7.01E−14 on f1 and 9.97E−13 on f2. The result is very close to the theoretical optimal solution

but we still can say that the TBBPSO and the MTBBPSO have a significant advantage over the

other 3 algorithms on f1 and f2. On the f3, the TBBPSO offers the best result among all the

test functions while the MTBBPSO takes the second place. The results of the TBBPSO and the

MTBBPSO are similar but the TBBPSO has an advantage of 11.85%. In addition, the results

of the TBBPSO has an advantage of 28.74% over the results of the CLPSO.

On the f4, the results of the TBBPSO and the MTBBPSO have a significant advantage over

the results of other 3 algorithms. The TBBPSO takes the first place among all the algorithms. It

has an advantage of 13.97% over the MTBBPSO. On the f5, the TBBPSO gives the best result

among all the algorithms. Compared with the OLPSO, the result of TBBPSO has an advantage

of 31.82%. The MTBBPSO gets the second position in the competition. On the f6, all of the

algorithms perform similarly. The result of CLPSO has an advantage of 4.59% over the result

of the MTBBPSO. The results indicate that the swarm of the TBBPSO failed to escape some

local optimum. So is reasonable to consider that the hierarchical construct works not well on

this function.

Generally speaking, the performance of the TBBPSO and the MTBBPSO is better than the

other algorithms. In the unimodal group, the TBBPSO and the MTBBPSO beat all the other

algorithms. It is reasonable to conjecture that the constructs of the proposed algorithms can

effectively explore the searching space. On the other hand, the proposed algorithms keep leading

in the multimodal group but the advantage is not as obvious as in the unimodal group. Also,

the results of all algorithms on f6 are similar. We can consider that constructs of the TBBPSO

and the MTBBPSO are lack at accurate on this kind functions. More importantly, the time
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complexity of the two proposed algorithms is o(n). So improving the accuracy of the algorithms

and exploiting their applying area should be an important and possible future work.

5.4 Summary

A triple bare bones particle swarm optimization (TBBPSO) algorithm and a mutated triple

bare bones particle swarm optimization (MTBBPSO) algorithm are proposed in this chapter.

Particles are separated into different groups to increase the diversity of the swarm. Specifically,

particles in a group play different roles. The leader of a group is responsible for exchanging

information with the global best particle while the teammates are focus on learning from their

leaders. Moreover, the structure is not frozen. A teammate can be a leader in the next iteration

if it can get a better position than the original leader. On the other side, the mutated version

has one leader, one senior teammate and one normal teammate in one group.

To verify the performance of the TBBPSO and the MTBBPSO, both unimodal and multi-

modal benchmark functions are used in the experiments. To make the experiments more per-

suasive, several evolutionary algorithms are also applied to the same function. The experimental

results confirm the abilities of proposed algorithm on the nonlinear functions.

Since the iteration time and the population number are the important parameters in the

proposed algorithms, one of the interesting future work is trying to eliminate these human setting

numbers. Also, we are interested in introducing the TBBPSO to real-world functions.
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Chapter 6

A Bare Bones Particle Swarm

Optimization Algorithm with

Dynamic Local Search

In previous chapters, proposed algorithms are working with static local structures. The number

of particles in each local group is changeless. This makes the algorithms unable to solve different

types of problems. To solve this problem, a bare bones particle swarm optimization algorithm

with dynamic local search (DLS-BBPSO), a complete parameter-free method is proposed in this

chapter. Particles are divided into several local groups while the number of local groups and the

number of particle in each local group are dynamic.
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6.1 Overview and Preliminaries

Swarm intelligence algorithms are wildly used in different areas. The bare bones particle swarm

optimization (BBPSO) is one of them. In the BBPSO, the next position of a particle is chosen

from the Gaussian distribution. However, all particles learning from the only global best particle

may cause the premature convergence and rapid diversity-losing. Thus, a BBPSO with dynamic

local search (DLS-BBPSO) is proposed to solve these problems. Also, because the blind setting

of local groups may cause an unpredictable increase in the time complexity, a dynamic strategy

is used in the process of local group creation to avoid this situation.

6.2 Proposal of the bare bones particle swarm optimiza-

tion with dynamic local search

In this section, the bare bones particle swarm optimization algorithm with dynamic local search

(DLS-BBPSO) will be presented. As it is introduced, the DLS-BBPSO is a parameter free

algorithm for single objective problems. It means that the proposed algorithm can adapt different

functions without human intervention and adjustment. Unlike other variations of BBPSO, no

additional calculations are introduced during the iteration process in the DLS-BBPSO. In the

following subsections, each step of the DLS-BBPSO will be presented.

6.2.1 Initialization

Initialization is the first step of the DLS-BBPSO. As a parameter-free algorithm, only the data

connected to test functions are needed before an experiment. In particular, necessary messages

are: the number of particles N ; the dimension of the problem D; the fitness function F ; the

exploring area, R; the max iteration times T .
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After all information is inputted, all particles will be randomly spread in R. Then the

first version of personal best positions, pbest, can be calculated by F . Meanwhile, the global

best position, gbest, can be obtained. It can be found that no additional parameter is needed

during the initialization process, which means the DLS-BBPSO can be easily applied to different

problems. This is a great advantage when compared with parameter-needed algorithm in the

real-world problems.

6.2.2 Dynamic local search system

In order to increase the diversity of the swarm during the iteration process, a dynamic local

search (DLS) system is introduced to the standard BBPSO. In the DLS, particles are classified

into different groups. Each group has only one leader and several teammates. Since all of the

test functions are minimum problems, a particle with smaller fitness value is set to have a better

position. At the beginning, the DLS will select a random particle to be the first “ current leader”,

then it will select another random particle to compare with the “current leader”. If the position

of the selected particle is better than the “current leader”, the selected particle will be a new

“current leader”. Otherwise, it will be a teammate of the “current leader”. The DLS system will

keep doing this until all particles are selected. It can be seen that the number of groups and the

number of teammates of each group is not static. The process of the grouping is all random and

no parameter is needed. This is the reason that the method named as “dynamic local search”.

6.2.3 Evaluation

As a variation of standard bare bones particle swarm algorithm, DLS-BBPSO inheres the Gaus-

sian distribution from BBPSO. The selecting mode is used both in and out groups. In par-

ticular, the next position of each leader will be selected by Gaussian distribution with a mean

(leader + gbest)/2 and a standard deviation |leader − gbest|. More details are in the Equation
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6.1:

u =
(pbest(leader) + gbest)

2

l = |pbest(leader)− gbest|

xt(i) = N(u, l)

(6.1)

where pbest(leader) is the personal best position best position of each leader; gbest is the best

position that all element has ever reached; N(u, l) is a Gaussian distribution with a mean u and

a standard deviation l. This equation is inherited from standard BBPSO.

Conversely, teammates in groups will not move to the global best position like the BBPSO.

The next position of each teammate will be selected by the Gaussian distribution with a mean

(leader + teammate)/2 and a standard deviation |leader − teammate|. More details are in the

Equation 6.2:

u =
(p(leader) + p(teammate))

2

l = |p(leader)− p(teammate)|

xt(i) = N(u, l)

(6.2)

where p(teammate) is the personal best position of a teammate particle and p(leader) is the

personal best position of the teammate’s corresponding leader.

Specifically, the comparison of the evolution pattern between the DLS-BBPSO and the stan-

dard BBPSO is shown in Figure 6.1. It can be observed that all particles learn from the only

global best particle in BBPSO while only the leader of each group will learn from the global

best in DLS-BBPSO. With the teammates’ learning from their leaders, the swarm gains more

diversity and more chance to escape from the local minimum. To explain the DLS-BBPSO more

clearly, the pseudo code is given in Algorithm 4.
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Global best position

Personal best position 
of leaders
Personal best position 
of teammates

 

Global best position

Personal best position 
of each particle

BBPSO DLS-BBPSO

Figure 6.1: The comparison between BBPSO and DLS-BBPSO

Algorithm 4 DLS-BBPSO

Require: Fitness function, F
Require: Search Space, R
Require: Max iteration time, T
Require: Dimension of the function, D
Require: Particle swarm, X = (x1, x2, ...xn)
Require: Personal best position, Pbest = (p1, p2, ..., pn)
Require: Global best position, Gbest
1: t = 1
2: while t <= T do
3: From X, select and remove a random particle xk as the first “current leader”
4: while X 6= ∅ do
5: From X, select and remove a random particle xi from X
6: if p(xi) < p(current leader)) then
7: Choose a new position for “current leader” with Equation 6.1
8: Make p(xi) to be a new “current leader”
9: else

10: Make p(xi) to be a teammate of the “current leader”
11: Choose a new position for xi with Equation 6.2
12: end if
13: end while
14: Update Pbest
15: Update Gbest
16: Destroy the construction of local groups
17: Put all particles into X
18: t = t+ 1
19: end while
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Table 6.1: Benchmark Functions

Function Search Range Referance

f1 = SPHERE FUNCTION (100, 100) [24][16]

f2 = ROSENBROCK FUNCTION (−2.048, 2.048) [24][16]

f3 = RASTRIGIN FUNCTION (−5.12, 5.12) [24][16]

f4 = ACKLEY FUNCTION (−32.768, 32.768) [24][16]

f5 = GRIEWANK FUNCTION (−600, 600) [24][16]

f6 = WEIERSTRASS FUNCTION (−0.5, 0.5) [24][16]

6.3 Experiments

6.3.1 Experimental method

To verify the search ability of DLS-BBPSO, a set of comprehensive benchmark functions are

chosen for the experiment. They are divided into two groups according to their properties:

(1) f1 − f2, unimodal functions with only one global optimum in the search area;

(2) f3 − f6, complex multimodal functions with several local minimum in the search area.

All of the 6 functions are minimum value problem. Also, the summarize of all functions

are shown in Table 6.1. Meanwhile, a control group is set to increase the persuasive of the

experiment. The setting of the group is considered in an earlier research [24]. The population of

each function is 30. Experimental results keep three significant digits.

6.3.2 Experimental results and discussion

In order to minimize accidental errors, the empirical error is calculated from 30 independent

runs while each algorithm has 1500 iteration times. The empirical error is defined as | gbest −

Optimum |, where the gbest is the global best value given by an algorithm after its last iteration,
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Table 6.2: Comparisons of empirical error between PSO, BBPSO and FIPS

PSO[30] BBPSO[17] FIPS[14][15]

Function Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

f1 1.13E−10 7.94E−11 1.58E−06 1.75E−06 1.03E−04 6.95E−05

f2 5.26E+01 4.20E+01 9.47E+01 8.55E+01 4.29E+01 4.01E+01

f3 8.36E+01 1.98E+01 8.28E+01 1.83E+01 7.78E+01 1.63E+01

f4 1.90E+01 3.59E+00 5.08E−01 8.70E−01 6.86E−01 1.04E+00

f5 2.10E−03 4.16E−03 5.23E−03 7.96E−03 5.53E−02 8.15E−02

f6 3.19E−03 4.95E−04 5.23E−03 3.18E−03 8.01E−02 7.05E−02

and the Optimum is the theoretical optimal solution of the function. Experimental results are

shown in Table 6.2 and 6.3. In Table 6.2 and 6.3, the experimental results are displayed, where

“mean” stands for the mean empirical error of 30 independent runs; “Std. Dev.” stands for the

standard deviation of the 30 results. And the best results of each team are shown in boldface.

The experimental results show that DLS-BBPSO has significant performance on the chosen

functions. In the unimodal function group, the DLS-BBPSO wins a first rank and a second rank.

Specifically speaking, the DLS-BBPSO gives a mean empirical error 2.14E−41 on f1. Meanwhile,

the champion on f1, SMA-BBPSO gives a mean empirical error 2.71E−154 and the third rank

algorithm PSO gives 4.34E−03. It is reasonable to believe that although the DLS-BBPSO is

better than other algorithms in the test, it is still behind the SMA-BBPSO so far. Otherwise,

on the f2, the result of SMA-BBPSO is 2.78% larger than DLS-BBPSO’s while the 3rd rank

function FIPS gives a 53.76% larger result. Hence it can be conjectured that the search ability

of DLS-BBPSO on unimodal functions needs to be improved.

On the other hand, in the multimodal group, the DLS-BBPSO gives excellent results. It wins

on all of the four functions in the group and finds the exactly right position on three. Specifically
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Table 6.3: Comparisons of empirical error between BBPSOwj, SMA-BBPSO and DLS-BBPSO

BBPSOwj[20] SMA-BBPSO[24] DLS-BBPSO

Function Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

f1 4.34E−03 2.37E−02 2.42E−154 2.71E−154 2.14E−41 1.17E−40

f2 6.50E+01 4.22E+01 2.87E+01 1.37E−02 2.79E+01 8.08E−01

f3 1.11E+01 3.45E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f4 1.54E−01 3.55E−01 2.22E−15 1.81E−15 1.72E−15 1.53E−15

f5 3.05E−02 2.84E−02 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f6 5.21E−01 1.22E−01 4.80E−12 2.39E−12 0.00E+00 0.00E+00

speaking, the DLS-BBPSO gives a final result 0 on the f3, while SMA-BBPSO gives the same

answer. But the 3rd rank algorithm, BBPSOwj only gives 1.11E+01. It can be assumed that

the DLS-BBPSO and the SMA-BBPSO successfully escape from the local minimum while others

do not. On the f4, the result SMA-BBPSO gives is 29.07% larger than DLS-BBPSO gives,

while the BBPSOwj gives a 106.40% larger empirical error. The results of this team prove the

DLS-BBPSO has better performance than other chosen algorithms but still has much room to

improve. Moreover, DLS-BBPSO finds the right point on both the f5 and the f6 while the SMA-

BBPSO only succeeds in f5. It is a good evidence to prove that the dynamic local search system

has a very strong ability to escape from the local minimum. The random selecting and dynamic

grouping strategy give the swarm a powerful weapon to escape from the local minimum.

6.4 Summary

A bare bones particle swarm optimization with dynamic local search (DLS-BBPSO) is proposed

in this chapter. The DLS-BBPSO algorithm inherits the Gaussian distribution from the BBPSO.
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Apart from this, a dynamic local grouping system is used to increase the diversity of the swarm.

Furthermore, no parameter is needed in DLS-BBPSO. Hence it can be fast applied to different

functions.

To verify the performance of the DLS-BBPSO, both unimodal and multimodal benchmark

functions are used in the experiment. Meanwhile, the standard PSO and several variants of

the BBPSO are running on the same functions to contrast. Finally, the results confirmed the

searching ability of the DLS-BBPSO.
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Chapter 7

A Bare Bones Particle Swarm

Optimization Algorithm with

Co-evaluation

In Chapter 6, the DLS-BBPSO divides particles into several local groups to explore the search

area. Each local group will focus on its corresponding area. However, since the division will

be implemented in every iteration, the connection between different local groups are cut off.

The DLS-BBPSO is troubled by this defect when dealing with shifted and rotated functions.

To solve this problem, a bare bones particle swarm optimization algorithm with co-evaluation

(BBPSO-C) algorithm is proposed. A shadow particle swarm and an original particle swarm

work together for the global optimum.
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7.1 Overview and Preliminaries

A novel bare bones particle swarm optimization algorithm with co-evaluation (BBPSO-C) is

proposed in this chapter. A shadow particle swarm is used to enhance the global search ability

of the proposed algorithm. A dynamic grouping method is used to disperse both the shadow

particle swarm and the original particle swarm. After the dispersion, an exchanging process

will be held between the two swarms. The original swarm will be more concentrated and the

shadow swarm will be more scattered. In addition, particles in different swarms are not static.

The grouping and exchanging process will be implemented every iteration. With the moving of

particles between the two particle swarms, the BBPSO-C gains the ability on both the global

search and the local search. To verify the search ability of the proposed method, a set of

comperhensive benchmark functions are used in the experiments. Finally, the experimental

results confirmed the optimization ability of the BBPSO-C.

7.2 The bare bones particle swarm optimization algorithm

with co-evaluation

The bare bones particle swarm optimization algorithm with co-evaluation (BBPSO-C) is pro-

posed in this section. A shadow swarm is used in the BBPSO-C to enhance the search ability. The

shadow swarm will assist the original swarm during iterations. Particles are flowing between the

two swarms. Generalized speaking, particles which are more dispersed will move to the shadow

swarm and the particles which are more central will move to the original swarm. The BBPSO-C

is consisted of two major steps: the dynamic classification and the particle exchanging. They

will be introduced in the following subsection.
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7.2.1 Dynamic classification

A dynamic classification method is used to classify both the original particle swarm and the

shadow particle swarm. The classification is implemented inside a particle swarm to keep it

individual. Each time two random particles are selected from the swarm. A comparison will

hold between the two particles. The particle with better personal best position will be assigned

to the main group (MG) while the other one will be assigned to the assistant group (AG). The

next position of the particle in the AG will be selection from the Equation 7.1:

α =
(pbest(MG) + pbest(AG))

2

β = |pbest(MG)− pbest(AG)|

x(AG) = N(α, β)

(7.1)

where the Pbest = (pbest(1), pbest(2), pbest(n)) is the personal best position of each particle;

the N(α, β) is a Gaussian distribution; the x(i) is the next position of the particle. On the other

hand, the next position of a particle in the MG is selected from the Equation 7.2:

γ =
(pbest(MG) + gbest)

2

δ = |pbest(MG)− gbest|

x(MG) = N(γ, δ)

(7.2)

where the Pbest = (pbest(1), pbest(2), pbest(n)) is the personal best position of each particle;

the N(γ, δ) is a Gaussian distribution; the x(i) is the next position of the particle; the gbest is

the global best position of the swarm. The pseudo code of this process in the original swarm is

shown in Algorithm 5. The same method will be used in the shadow swarm.

Since the selection of the two particles is random, it is uncertain that whether the two particles

are very near or very far. If the two particles are close enough, the iterative pattern between the
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Algorithm 5 BBPSO-C: grouping, original swarm

Require: Max iteration time, T
Require: Particle swarm X = x1, x2, ...xn
Require: Personal best position Pbest = p1, p2, ...pn
Require: Global best position Gbest
1: t = 1
2: while t <= T do
3: while X 6= ∅ do
4: Randomly select two particles, xi and xj , from X
5: if f(xi) < f(xj) then
6: Update xi with Equation 7.2
7: Put xi into the MG
8: Update xj with Equation 7.1
9: Put xj into the AG

10: else
11: Update xi with Equation 7.1
12: Put xi into the AG
13: Update xj with Equation 7.2
14: Put xj into the MG
15: end if
16: end while
17: Update Pbest, Gbest
18: t = t+ 1
19: end while

two particles should be a local search. Otherwise, if the two particles are wide apart, the iterative

pattern should be a global search. The possible iterative pattern of the dynamic classification is

shown in Fig. 7.1.

global search

Global best particle

Main group particle
Assistant group particle

local search

Figure 7.1: The possible iterative pattern of the dynamic classification
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7.2.2 Particle exchanging

After the dynamic classification, each swarm has one MG and one AG. The AG of the original

swarm and the MG of the shadow swarm will change their positions in the next iteration. The

exchanging pattern is shown in Fig. 7.2.

After the exchanging, the original swarm gains stronger ability on locating the local minimum

with the two MGs. Meanwhile, the shadow swarm gains stronger ability on escaping from a local

minimum with the two AGs.

Also, the dynamic classification will be implemented in the next iteration. The construction

of current AG and MG will be destroyed and reconstructed every iteration. The exchange of the

particles between the two swarms increases both the local search and the global search ability of

the proposed algorithm.

Original 
swarm

Main group particle

Assistant group particle

exchanging

Shadow
 swarm

Figure 7.2: The exchanging pattern
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7.3 Experiments and discussion

7.3.1 Experimental methods

To verify the performance of the BBPSO-C, both unimodal and multimodal benchmark functions

are used in the experiment. The details of the benchmark functions are shown in Table 7.1. All

the test functions are in two major groups, the unimodal group (f1 − f4) and the multimodal

group (f5 − f8). In the unimodal group, the f1 is a simple unimodal function. The f2 to f4

are collected by Suganthan [29]. The f2 is a shifted unimodal function; the f3 is a shifted and

rotated unimodal function; the f4 is a scalable and noise in fitness unimodal function. In the

multimodal group, the f5 is a widely used test function, the f6 to f8 are collected by Suganthan

[29]. The f6 is a shifted separable function; the f7 is a shifted and rotated scalable function; the

f8 is a shifted, rotated function which continuous but differentiable on a set of points.

Also, the BBPSO [5], the PBBPSO [35] and the DLS-BBPSO [36] are used as the control

group. The dimension of all functions is 30. The population of each algorithm is 30. The

iteration time of each test is 1500. Also, to reduce the accidental error, all results are the average

value from 30 independent runs. Experimental results keep three significant digits.

7.3.2 Experimental results and discussion

The experimental results are shown in Table 7.2. The empirical error is defined as |result−TOS|,

where the result is the global best value given by an algorithm after its final iteration, the TOS

is the theoretical optimal solution (TOS) of the function. To make a clear competition, we rank

the result form the best to the worst. The best result gets one point and the worst one get 4.

The average rank result is shown at the bottom of Table 7.2.

In the unimodal group, the BBPSO-C gets two first and two second rank. On f1, the result

of the BBPSO is more than 1.00E+3 times larger than the BBPSO. On f2, the BBPSO-C gets
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Table 7.1: Benchmark Functions

f1 = Sphere Function

f1(x) =
D∑
i=1

zi
2,

z ∈ (−100, 100), global minimum=0

f2 = Shifted Schwefel’s Problem 1.2

f2(x) =
D∑
i=1

(
i∑

j=1

zi)

2

+ shifted , z = x− o

x ∈ (−100, 100), shifted = −450, global minimum= −450, o is the shifted global optimum

f3 = Shifted Rotated High Conditioned Elliptic Function

f3(x) =
d∑

i=1

(106)
i−1
d−1 z2i + shifted , z = (x− o) ∗M , M is the orthogonal matrix

x ∈ (−100, 100), shifted = −450, global minimum=−450, o is the shifted global optimum

f4 = Shifted Schwefel’s Problem 1.2 with Noise in Fitness

f4(x) =
D∑
i=1

(
i∑

j=1

zi)

2

∗ (1 + 0.4 |N(0, 1)|) + shifted , z = x− o

x ∈ (−100, 100), shifted = −450, global minimum= −450, o is the shifted global optimum

f5 = Ackley Function

f5(x) = −20 exp

(
−0.2

√
1
D

D∑
i=1

xi2

)
− exp

(
1
D

D∑
i=1

cos(2πxi)

)
+ 20 + e

x ∈ (−32.768, 32.768), global minimum= 0

f6 = Shifted Rastrigin’s Function

f6(x) =
D∑
i=1

(zi
2 − 10 cos(2πzi) + 10) + shifted , z = (x− o)

z ∈ (−5, 5), shifted = −330, global minimum= −330, o is the shifted global optimum,

f7 = Shifted Rotated Rastrigin’s Function

f7(x) =
D∑
i=1

( zi
2

4000 )−
D∏
i=1

cos( zi√
i
) + 1 + shifted , z = (x− o) ∗M

x ∈ (−5, 5), shifted = −330, o is the shifted global optimum

M: linear transformation matrix, condition number= 2, global minimum= −330

f8 = Shifted Rotated Weierstrass Function

f8(x) =
D∑
i=1

(
20∑
k=0

[akcos(2πbk(zi + 0.5))])−D
20∑
k=0

[akcos(2πbk ∗ 0.5)] + shifted

x ∈ (−0.5, 0.5), a = 0.5, b = 3, z = (x− o) ∗M, o is the shifted global optimum

M: linear transformation matrix, condition number= 5, shifted= 90, global minimum= 90
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Table 7.2: Comparisons of empirical error between BBPSO, PBBPSO, DLS-BBPSO and
BBPSO-C

BBPSO[17] PBBPSO[35] DLS-BBPSO[36] BBPSO-C

Function
Mean Mean Mean Mean

Std. Dev. Std. Dev. Std. Dev. Std. Dev.

f1

2.04E−21 1.67E−15 8.64E−15 3.14E−18

3.70E−21 3.67E−15 1.98E−14 5.26E−18

f2

1.97E+04 1.10E+03 5.45E+03 5.09E+02

1.29E+04 7.08E+02 4.69E+03 2.25E+02

f3

2.94E+08 1.07E+07 4.47E+07 7.32E+06

1.13E+08 8.91E+06 3.66E+07 3.48E+06

f4

2.13E+06 1.11E+04 1.54E+04 1.32E+04

9.25E+05 4.12E+03 5.96E+03 7.47E+03

f5

3.27E−02 1.54E−02 8.86E−02 2.91E−10

7.89E−02 4.74E−02 3.40E−02 3.47E−10

f6

7.12E+01 5.29E+01 3.89E+01 4.57E+01

2.21E+01 1.61E+01 7.56E+00 1.21E+01

f7

2.07E+02 1.70E+02 2.15E+02 1.40E+02

1.90E+02 6.21E+01 5.40E+01 6.69E+01

f8

3.85E+01 4.06E+01 4.11E+01 4.04E+01

4.89E+00 2.06E+00 1.32E+00 1.20E+00

Average Rank 3 2.25 3.25 1.5
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the first rank. The result is 53.73% smaller than the result of the PBBPSO. On f3, the result

of the BBPSO-C is 83.62% smaller than the result of the DLS-BBPSO. Om f4, the result of the

BBPSO-C is 18.92% times larger than the first rank, the PBBPSO. In the multimodal group, the

BBPSO-C gets two first and two second rank. On f5, the result of the BBPSO-C is 2.91E−10

while other results are around 2.00E−02. It means the BBPSO-S performances much better than

other algorithms. On f6, the BBPSO-C is the second rank. The result is 17.48% larger than the

result of the DLS-BBPSO. On f7, the BBPSO-C gets the first. The result is 17.65% smaller than

the result of the PBBPSO. On f8, the result of the BBPSO-C is 4.93% larger than the result

of the BBPSO. To sum up, the performance of the BBPSO-C is best among all the algorithms.

The average rank is 1.5. It means that the proposed co-evolution method can improve the search

ability of the original BBPSO on both unimodal and multimodal functions.

7.4 Summary

A bare bones particle swarm optimization algorithm with co-evaluation (BBPSO-C) is proposed

in this section. A shadow particle swarm is used in the BBPSO-C to keep the diversity of the

original swarm. Particles in each swarm are divided into two groups: the main group and the

assistant group. Particles in the main group are more concentrated and particles in the assistant

group are more scattered. After that, the assistant group of the original swam and the main

group of the shadow swarm will change their positions. The original swarm with two main

groups will have a stronger ability in locating the local optimum. The shadow swarm will have

a stronger ability on escaping from a local optimum. In the next iteration, the particle grouping

and exchanging process will be implemented again.The two swarms work together to find the

global optimal position in the search area. To verify the performance of the proposed method, a

set of comprehensive benchmark functions are used in the experiments. Finally, the experimental
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results confirmed the optimizing ability of the BBPSO-C.
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Chapter 8

A Dynamic Reconstruction Bare

Bones Particle Swarm

Optimization Algorithm

As the advancement of the hardware, its reasonable to increase the iteration time for better

optimization results. However, in previous chapters, proposed algorithms are difficult to work

with long iterations. Particles will converge in advance and field to find better results. In order to

solve this problem, a dynamic reconstruction bare bones particle swarm optimization algorithm

(DRBBPSO) is proposed in this chapter. A swarm reconstruction strategy is used to keep the

diversity of the swarm. In each iteration, several particles will be selected from the original

swarm as the elite particles. After a few times of generation, the original swarm will be replaced

by the elite particles.
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8.1 Overview and Preliminaries

The bare bones particle swarm optimization algorithm is a useful method for the optimization

problems. Each individual particle has been given memories to recorded its personal best posi-

tion. The best of all personal best positions is recorded as the global best position by the particle

swarm. A Gaussian distribution is used to control the behavior of the particles according to the

personal and the global best position. However, this iterative pattern weak at multimodal prob-

lems. Particles are easy to be trapped in the local minimums. To cross this shortcoming, the

dynamic reconstruction bare bones particle swarm optimization algorithm (DRBBPSO) is pro-

posed in this section. The dynamic reconstruction strategy is used to enhance the global search

ability of the particle swarm. Numbers of elite particles are selected to reconstruct the particle

swarm. To verify the performance of the proposed algorithm, a set of comprehensive bench-

mark functions are used in the experiments. Also, several swarm-based algorithms including the

standard bare bone particle swarm optimization algorithm are used in the control group. The

experimental results confirmed the searching ability of the DRBBPSO.

8.2 Proposal of the dynamic reconstruction Method for

BBPSO

The performance of the original BBPSO is limited by its iterative pattern. All particle moving

to the same global best particle makes the swarm very easy to be trapped by the local minimum.

To cross the shortcomings, the dynamic reconstruction bare bones particle swarm optimization

algorithm (DRBBPSO) is proposed in this section. The core concept of the DRBBPSO is

selecting elite particles from each iteration. After the number of selected particle equals the

number of the original particle swam, the former swam will be replaced by the elite particle
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swarm. Hence, the DRBBPSO is combined by the two major steps: the elite selection and the

swarm reconstruction. The introduction of each step is in the subsection.

8.2.1 The elite selection

A dynamic elite particle selection (DEPS) method is used in the DRBBPSO. The DEPS works

by observing the iterative process of the particle swarm and copying the elite particles to an

additional container. Different with some regular selecting method, no ranking is needed during

the selecting process. Each time two random particles are selected from the swarm. We consider

the two particles formed a local group. A comparison will be hold between the two particles.

The one with better personal best position will be selected as an elite particle. The other one

will be assigned as a retinue of the elite. The elite and its retinue have different iterative rules in

further iteration. Specifically, the elite particles will keep learning from the global best particle.

The next position of an elite particle is selected by the Equation 8.1:

α =
(pbest(elite) + gbest)

2

β = |pbest(elite)− gbest)|

elitenew = N(α, β)

(8.1)

where pbest = (pbest(1), pbest(2), ..., pbest(n)) is a matrix used for recording the best position

each particle has ever reached; gbest is the best position that all particles have ever reached;

N(α, β) is a Gaussian distribution with a mean value α and standard deviation β.

Conversely, the retinue particles aim at searching around their corresponding elites. The next

position of a retinue particle is randomly selected from Equation 8.2:

retinue(new) = N(
p(r) + p(e)

2
, |p(r)− p(e)|) (8.2)
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where p(r) is the personal best position of a retinue particle, p(e) is the personal best position

of the corresponding elite of the retinue particle.

In this iterative pattern, the elite particles exchange information with the global best particle

and try to get over it. On the other hand, the retinue particles explore the area around their elite.

This strategy remains the diversity of the swarm. A low rank particle still has the chance to be

an elite and vice versa. Moreover, the composition of each local group is dynamic. It is possible

that the selected particles are very close and this search should be a local search. Also the two

selected particles maybe very far and the search should be a global search. Since the selection

is random, the construction of each local group is dynamic. One particle may be selected with

different particles in different iteration. This feature increases the diversity of the particle swarm

and gives the swarm a strong ability to anti the local minimum. The construction of particle

swarm are shown in Fig 8.1.

Global best particle 

Elite Particle 

Retinue particle

Local search

Global search

Figure 8.1: Swarm construction of the elite selection

After one round of iteration, the copy of elite particles will be saved to the container and

the iteration will keep going. This selection pattern remains the original features of the particle

swarm without interference. The selection will continue until the container is full. So if a retinue
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wins the comparison in the next round, it will be selected as an elite by the DEPS.

8.2.2 The swarm reconstruction

The container is set to have a same size with the original particle swarm of the DRBBPSO.

After two round of the elite selection, the container is full of elite particles. Then we will replace

the original particle swarm by the elite particle swarm. It can be seen that one particle with

an unsatisfactory personal best position also has an opportunity to be chosen as an elite. This

situation helps keeping the diversity of the swarm. Moreover, since some particles have the

opportunity to be selected as the elite twice, the second round of elite particles will multiple a

distortion coefficient d. The d is a random number between 0.9 and 1.1.

After the reconstruction of the particle swarm, we will empty the container. The swarm will

iterative with the same rule and the DEPS will keep selecting container gets full again. To show

the working flow of the DRBBPSO, the pseudo code is given by Algorithm 6:
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Algorithm 6 DRBBPSO

Require: Max iteration time, T
Require: Dimension of the problem, D
Require: Fitness function, f
Require: Searching Range, R
Require: Particle swarm, X = x1, x2, ...xn
Require: The particle number of the particle swarm, N
Require: Personal best position, Pbest = p1, p2, ...pn
Require: Global best position, Gbest
Require: The elite particle swarm, ES
Require: The particle number of the elite particle swarm, EN
Require: Distortion coefficient d
Ensure: all particles are in R
1: t = 0, EN = 0
2: while t < T do
3: while EN < N do
4: while X 6= ∅ do
5: From X, randomly select and remove two particles, xi and xj
6: if p(xi) < p(xj) then
7: Update xi with Equation 8.1
8: Update xj with Equation 8.2
9: Copy xi to the ES

10: EN=EN + 1
11: else
12: Update xi with Equation 8.2
13: Update xj with Equation 8.1
14: Copy xj to the ES
15: EN=EN + 1
16: end if
17: end while
18: while X 6= ∅ do
19: From X, randomly select and remove two particles, xi and xj
20: if p(xi) < p(xj) then
21: Update xi with Equation 8.1
22: Update xj with Equation 8.2
23: Copy d ∗ xi to the ES
24: EN=EN + 1
25: else
26: Update xi with Equation 8.2
27: Update xj with Equation 8.1
28: Copy d ∗ xj to the ES
29: EN=EN + 1
30: end if
31: end while
32: end while
33: X = ES, ES = empty, EN = 0
34: Update Pbest
35: Update Gbest
36: t = t+ 1
37: end while
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8.3 Experiments

8.3.1 Benchmark functions

To verify the performance of the DRBBPSO, a set of comprehensive benchmark functions are

selected in the experiments [16][24]. Both unimodal and multimodal functions are chosen. All of

the 5 functions are minimum value problem; the details of all functions are shown in the Table

8.1.

To minimize the impact of accidental factors, the empirical error is calculated from 30 inde-

pendent runs. The empirical error is defined as | gbest −Minimun |. Where gbest is the final

global best value given by an algorithm, and Minimun is the theoretical optimal solution of the

test function. Also, the dimension of each function is set as 30. Moreover, the comprehensive

learning PSO (CLPSO) [16], the orthogonal learning PSO (OLPSO) [33], the BBPSO [17] and

the DLS-BBPSO [36] are used in the control group. According to Li [34], the size of population

is set to 40 for CLPSO and OLPSO, 30 for the rest bare bones PSO algorithms. Experimental

results keep three significant digits.

8.3.2 Results of the experiments with different iteration times

To verify the convergence speed of the DRBBPSO, the standard BBPSO is used in the compare

to the proposed algorithm. The two algorithms run with the five benchmark functions, the results

of 100 times iteration, 200 times iteration and 500 times iteration are recoded in the Table 8.3.2

and 8.3. The results are the mean values of 30 independent runs. The dimension of the problem

is 30, population of this test is 30. The best result of each comparison is shown in Bold.

It can be seen that the result of the DRBBPSO is 13.17% larger than the result of the BBPSO

after 100 times iteration in f1. But the DRBBPSO gives better result at 200 iterations and keep

leading when the iteration time reaches 500. On f2, the results of the DRBBPSO is better than
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Table 8.1: Benchmark Functions

Function

f1 = Shifted Sphere Function

f1(x) =
D∑
i=1

zi
2 + shifted , z = x− o

x ∈ (−100, 100), o is the shifted global optimum, shifted= −450, global optimum= −450

f2 =Shifted Schwefel’s Function 1.2

f2(x) =
d∑

i=1

(
i∑

j=1

z2i )2 + shifted , z = x− o

x ∈ (−100, 100), o is the shifted global optimum, shifted= −450, global minimum= −450

f3 = Shifted Rotated High Conditioned Elliptic Function

f3(x) =
d∑

i=1

(106)
i−1
d−1 z2i + shifted , z = (x− o) ∗M

x ∈ (−100, 100), o is the shifted global optimum, shifted= −450, global minimum= −450

M : orthogonal matrix

f4 = Shifted Rotated Griewank’s Function without Bounds

f4(x) =
d∑

i=1

z2
i

4000 −
d∏
i

cos( zi√
i
) + 1 + shifted , z = (x− o) ∗M

x ∈ (0, 600), o is the shifted global optimum, shifted = −180, global minimum= −180

M ’: linear transformation matrix, condition number=3, M = M ′(1 + 0.3 |N(0, 1)|)

f5 = Shifted Rotated Ackley’s Function with Global Optimum on Bounds

f5(x) = −20 exp(−0.2

√
1
d

d∑
i=1

z2i − exp( 1
d

d∑
i=1

cos(2πzi)) + 20 + e+ shifted ,

x ∈ (−32, 32), z = (x− o) ∗M, o is the shifted global optimum, shifted= −140 , global minimum= −140

M : linear transformation matrix, condition number= 100
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the result of the BBPSO after 100 iterations, 200 iterations and 500 iterations. On f3, the result

of the BBPSO is more than 4 time larger than the result of the DRBBPSO after 100 iterations,

more than two time after 200 iterations and 80.84% larger when the iteration time reaches 500.

We can consider that the DRBBPSO has better performance on the f2 and the f3 than the

BBPSO.

On f4, the empirical error of the BPPSO is more than 5 times larger than the DRBBPSO

after 100 iterations.However, the disadvantage is reduced when the iteration time reaches 200.

Finally the BBPSO gives better result than the DRBBPSO when the iteration time reaches 500.

The advantage is 3.18%. It can be speculated that at the beginning, the DRBBPSO has stronger

search ability than the BBPSO at the first 100 iterations. Then the searching of the DRBBPSO

is slow down. Finally it was exceeded by the BBPSO.

On f5, the empirical error of the BPPSO is 0.47% larger than the DRBBPSO after 100 iter-

ations. After that the two algorithms give the same results on 200 iterations and 500 iterations.

Hence we consider that the DRBBPSO and the BBPSO are trapped in some local minimum

after 100 iteration. Since the two algorithms give the same results, it is reasonable that the bare

bones strategy can not get over of this problem.

Since the DRBBPSO gives better results than the BBPSO on 3 functions, we can say that

the DRBBPSO has stronger ability on fast search than the BBPSO. However, we can also find

out that on f5, the DRBBPSO may losing diversity too fast and unable to escape from the local

minimum.
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Table 8.2: Comparisons of empirical error between the BBPSO and the DRBBPSO, on different
iteration times

BBPSO

Function 100 Iterations 200 Iterations 500 Iterations

f1 2.43E+03 5.56E+01 4.97E−04

f2 4.79E+04 3.42E+04 9.67E+03

f3 2.09E+08 8.42E+07 3.02E+07

f4 5.59E+02 7.08E+01 1.52E+00

f5 2.12E+01 2.11E+01 2.11E+01

Table 8.3: Comparisons of empirical error between the BBPSO and the DRBBPSO, on different
iteration times

DRBBPSO

Function 100 Iterations 200 Iterations 500 Iterations

f1 2.75E+01 4.33E+00 6.20E−03

f2 1.78E+04 8.36E+03 2.54E+03

f3 4.55E+07 3.95E+07 1.61E+07

f4 1.07E+02 1.92E+01 1.57E+00

f5 2.11E+01 2.11E+01 2.11E+01
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Table 8.4: Comparisons of empirical error between the OLPSO and the CLPSO on 30 dimensional
test

OLPSO CLPSO

Function Mean Std. Dev. Mean Std. Dev.

f1 0.00E+00 0.00E+00 5.68E−14 0.00E+00

f2 1.50E+01 1.23E+01 8.79E+02 1.79E+02

f3 1.46E+07 5.33E+06 1.67E+07 4.66E+06

f4 4.70E+03 1.61E−12 4.70E+03 6.78E−12

f5 2.09E+01 6.90E−02 2.09E+01 5.46E−02

8.3.3 Results of the 30 dimensional test

To make a comprehensive assessment of the search ability of the DRBBPSO, the OLPSO, the

CLPSO and the DLS-BBPSO are running on the five benchmark functions as the control group.

The iteration time of all the functions is 300,000 in this round. The results are shown in the Table

8.4 and 8.5. In the Table 8.4 and 8.5, the mean means the mean value of the 30 independent

empirical errors, the Std.Dev. means the standard deviation of the 30 results. Experimental

results keep three significant digits. The best result are shown in Bold.

On f1, every algorithm reaches the global optimum except the CLPSO. On f2, the OLPSO

gives the best result. The result of the DRBBPSO is about 39 times larger than the best one.

On f3, the DRBBPSO gives the best result. The result of the OLPSO is 57.67% larger than the

best one. On f4, the DRBBPSO gives the best result. The empirical error is small than the 1%

compared with the OLPSO and the CLPSO. On f5 the results of all algorithms nearly have no

difference. The OLPSO and the CLPSO have the same results and the DLS-BBPSO and the

DRBBPSO have the same result. The PSO algorithms have a 0.4% advantage.

To sum up, the DRBBPSO gets 3 first rang and 2 second rank in the experiment. It is
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Table 8.5: Comparisons of empirical error between the DLS-BBPSO and the DRBBPSO on 30
dimensional test

DLS-BBPSO DRBBPSO

Function Mean Std. Dev. Mean Std. Dev.

f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00

f2 5.22E+03 3.41E+03 5.88E+02 8.07E+02

f3 6.34E+07 6.89E+07 9.26E+06 6.78E+06

f4 6.54E+01 3.97E+01 4.73E−01 2.68E−01

f5 2.10E+01 5.06E−02 2.10E+01 4.91E−02

reasonable to believe that the proposed method have better performance than the algorithms in

the control group. However, the result of the DRBBPSO on f5 is unsatisfactory. The particle

swarm is trapped since 100 iterations. And the result moves from 2.11E+01 to 2.10E+01 after

300,000 iterations. In addition, the BBPSO and the DLS-BBPSO are also trapped by the f5,

it is reasonable to conjecture that the bare bones strategy makes the swarm very easy to be

trapped. Hence, trying to break the limit of the bare bones strategy, improving the global search

ability for the multimodal functions and balancing the local search and the global search should

be a main area of the future work.

8.4 Summary

A dynamic reconstruction bare bones particle swarm optimization (DRBBPSO) algorithm, which

can solve both unimodal and multimodal problems, is proposed in this paper. A dynamic elite

particle selection (DEPS) method is used in the DRBBPSO. The DEPS is used for elite particle

selecting during the iterative process. It just copy the elite particles and do no interference until

the number of the elite particles equals the number of particles in the original particle swarm.
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Then the algorithm will replace the original particle swarm by the elite particle swarm. This

strategy enhance the local search ability by the reconstruction of the particle swarm. Also, the

DEPS ensures that the particles with unsatisfactory personal best position also has a chance to be

selected as an elite. It keeps the diversity of the elite particle swarm. To verify the search ability

of the DRBBPSO, several well-known benchmark functions are used in the experiments. Also,

to enhance the persuasion of the experiments, several swarm-based evolutionarily algorithms are

also evaluated on the same functions as the control group. Finally, the experimental results and

the statistical analysis confirmed the search ability of DRBBPSO in the selected functions.
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Chapter 9

A Fission-Fusion Hybrid Bare

Bones Particle Swarm

Optimization Algorithm

As the society progresses, optimization problems become more complex and diverse. It is nec-

essary for optimization algorithms to obtain the ability to solve different types of optimization

problems. Also, in some extreme cases, the algorithms may not have a chance to do the training

or parameter adjustment. In response to these needs, a fission-fusion hybrid bare bones parti-

cle swarm optimization (FHBBPSO) algorithm is proposed in this chapter. The FHBBPSO is a

parameter-free algorithm which is able to solve multiple types of problems. A fission method and

a fusion method work together to find the global best solution of the single-objective optimization

problems.
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9.1 Overview and Preliminaries

The particle swarm optimization [5] algorithm is a powerful method for single-objective problems.

Particles simulate the team behavior of fish and birds. The concept of memory and velocity are

introduced to particles. A particle can record its personal best position and use it in the future

generation. Plenty of researchers engaged in this field since its introduction. The PSO has

become one of the most popular optimization techniques and has been successfully applied in

different areas like image processing [37], motion system [38], supply chains [39] and so on.

In the original PSO algorithm, particles are moving in the search space. The moving distance

and angle are controlled by a velocity item. The velocity is effected by the current position of this

particle, the historical best position of this particle, the current position of the global best particle

and the parameters. Under this pattern, previous works are needed to adjust the parameters.

Also, it is maybe necessary to chance the parameters when the PSO is dealing with complicated

problems. In 2003, the bare bones particle swarm (BBPSO) is proposed by Kennedy [17]. The

velocity item is canceled from the original PSO algorithm. The next position of a particle is

selected by a Gaussian distribution. Particles are moving to the global best particle in each

iteration. This evolutionary pattern insures the fast convergence and no parameters are needed

during the iteration. The BBPSO and its variants are widely used in different areas like path

planning [40], clustering [41] and so on.

Differential evolution (DE), proposed by Storn and Price [42], is another powerful population-

based evolutionary algorithm for global numerical optimization. It employs three main operators:

the mutation, the crossover and the selection. The mutation gives each individual a chance to

get a sudden change. The crossover ensures that information can be shared between different

individuals. The selection makes the better individuals have more chance to spread their infor-

mation in further generation. The DE and its variants are widely used in different areas like
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image processing [43] , clustering [44] and so on.

However, the population based algorithms are still troubled in balancing the exploration and

exploitation. The population may easily be trapped in a local minimum if it obtains a strong

local search ability. On the other hand, a population may be difficult to find a precise local

best point if it own a strong breadth search ability. Trying to solve this problem, the fission-

fusion hybrid bare bones particle swarm optimization algorithm is proposed in this section. The

rest of this section is organized as follows: in section 9.2, the processes and advantages of the

FHBBPSO are introduced; in section 9.3, the details of the verifiable experiments and discussion

are displayed; in section 9.4, the summary of this chapter is presented.

9.2 Proposal of the FHBBPSO

9.2.1 Motivation and definition

There plenty of existing evolutionary methods for single-objective problems. But most of them

improve their ability by adding supernumerary calculation like feather selection, stage control,

multi-method combination and so on. These methods usually need a lot of previous work to

determine their parameters. Also, additional methods may slow down the algorithms while

dealing with complex functions. To solve these problems, a fission-fusion bare bones particle

swarm optimizer (FHBBPSO) is proposed in this section. The FHBBPSO is designed to evolve

without parameters. Two different evolutionary methods are proposed to control the behavior

of the particles. During the iteration process, particle are divided into several local groups and

search their corresponding ares. A local group contains a leader and several teammates. The

details of how these methods work will be presented in later subsections.
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9.2.2 The structure of local groups

Before iteration, an initialization process will be done. As a parameter-free method, no previous

knowledge or human intervention is needed. All of the particles will be randomly spread in the

search space. Then, the personal best position of each particle and the global best position of

the particle swarm can be calculated. With the personal best and the global best position, the

proposed method is ready to work.

In the FHBBPSO, the basic arithmetic unit is the local group. The working process of

the FHBBPSO is controlled by the number of local groups. Every particle will only belong to

one local group. In a single local group, particles are playing two characters: the leader and

the teammate. A leader is the best particle in the local group. The leader is designed to get

information from the global best particle and do the global search. The next position of a leader

is selected from the Equation 9.1:

α =
(pbest(leader) + gbest)

2

β = |pbest(leader)− gbest)|

leadernew = N(α, β)

(9.1)

where the pbest(leader) is the personal best position of the leader, the gbest is the global best

position of the swarm, the N(α, β) is a Gaussian distribution with a mean value α and a standard

deviation β.

On the other side, the teammates are the rest particles in the local group except the leader.

The teammates are designed to do the local search inside the local group. Each teammate will

get information from its corresponding leader. The next position of a teammate is selected from
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the Equation 9.2:

γ =
(pbest(teammate) + pbest(leader))

2

δ = |pbest(teammate)− pbest(leader))|

teammatenew = N(γ, δ)

(9.2)

where the pbest(teammate) is the personal best position of the teammate, the pbest(leader) is

the personal best position of the corresponding leader of the teammate, the N(γ, δ) is a Gaussian

distribution with a mean value γ and a standard deviation δ.

In the FHBBPSO, the character of a single particle is not static. It is possible that a leader

particle becomes a teammate in the future iteration and vise versa.

9.2.3 The fission

An exhaustive unsupervised dynamic division strategy (DDS) is used in the fission process. After

the initialization, we consider that all of the particles are in a same local group and the leader

of this group is the global best particle. For convenience, we name this swarm as the original

swarm. The DDS aims at separating the original swarm to several local groups. It works by the

random selection. First, a random particle will be taken out from the original swarm as the first

“current” leader. Then, another random particle will be taken out to compare with the “current”

leader. If the selected particle is worse than the “current” leader, it will be a teammate of the

“current” leader. Otherwise, it will replace the previous one and become the new “current”

leader. After every particle is removed from the original particle swarm, we get a new swarm

composed by several local groups. It can be found that in the fission process each particle will

be only selected once. It means that the time complexity of the fission method is o(n). For a

better explanation, an example with 10 particles is shown in Fig. 9.1. Particles are marked from

the best to the worst using 1, 2, until 10. It can be seen that one selection order will create one
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4

2 1

795 8 10

3

Leader of a local group Teammate of a local group

1. The number in each particle stands for its rank.

2. In this example, the selection order is from the left to the right.

4. The first particle  6  is the first  current leader ;

5. The  3  is smaller than the  current leader , so make  3  to be a leader of a 
new local group and to be the new  current leader ;

6. The  5  is larger than the  current leader , so make  5  to be a teammate of 
the  current leader ;

7. Repeat this until the last particle.

6 3 5 9 8 2 7 10 1 4

Figure 9.1: An example for the fission process. A teammate particle uses an arrow to point to
its leader.

structure of the local groups. For more rigor, the pseudo code of the fission process is shown in

Algorithm 7.

The intention of the fission part is dividing the particle swarm into several local groups.

Each local group will only focus on its corresponding region to find the local best point. In

normal algorithms, the number of local groups should be a very important parameter. But in

the FBBPSO, the number of local groups is affected by the selection order. In theory, there are

n! different orders by the random selection, where n is the number of particles. In some extreme

case, for instance, if the global best particle was selected as the first “current” leader, all particles

will be placed in one local group. This situation is the same as the standard BBPSO. Hence,

we can claim that the results of the fission process contain multiple possibilities including the
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Algorithm 7 Fission: dynamic division

Require: Fitness function, F
Require: Search Space, R
Require: Dimension of the function, D
Require: Particle swarm, X = (x1, x2, ...xn)
Require: Personal best position, Pbest = (p1, p2, ..., pn)
Require: Global best position, Gbest
Require: Number of local groups, TN
Require: Matrix of local groups, Localgroup
Require: List of the leader of each local group, LeaderList
1: Randomly take out a particle xi from the X
2: TN=1
3: Make xi be a leader of the Localgroup(TN)
4: Select a new position for xi according Equation 9.1
5: LeaderList(TN) = xi
6: while X 6= ∅ do
7: Randomly take out a particle xj from the X
8: if Pbest(j) <= Pbest(LeaderList(TN)) then
9: TN=TN+1

10: Make xj be a leader of Localgroup(TN)
11: LeaderList(TN) = xj
12: Select a new position for xj according Equation 9.1
13: else
14: Make xj be a teammate of Localgroup(TN)
15: Select a new position for xj according Equation 9.2
16: end if
17: end while
18: Update Pbest
19: Update Gbest
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BBPSO. Also, the selection order could be from the worst particle to the best particle. In this

situation, the number of local groups will be n. So the number of local groups will be in the

range from 1 to n. These rich and varied forms of the local groups greatly increase the diversity

of the particle swarm. More importantly, no parameters and human intervention are needed in

the grouping process, which means the DDS can be easily applied to different problems.

On the mathematical side, the fission method contains every possibility of the partition of

local groups. The partition of local groups means the number of local groups and the number of

particles in each local group. To prove this, we need to use a string to represent the structure of

the local groups. Then, we will prove that each order of the string can convert to a kind of local

structure and each local structure can convert to a string.

For easy description, we need to rank all the particle and mark them from the best to the

worst using 1, 2, until n, n is the number of the particles. Then we need to sort all of the local

groups from the worst to the best. After that, we will record the leader of the worst group,

the teammates of the worst group, the leader of the second worst local group, the teammates

of the second worst local group, until the best local group. By doing this we can convert any

combination of local groups to an only array. One of a possible example is shown in Fig. 9.2.

Conversely, if we have an array that contains the combination of the numbers from 1 to n,

we can convert it to a combination of local groups. To do this, we need to set the first number

as the leader of the first local group. Then, we will use the second number to compare with the

previous leader. If it is larger than the previous leader, it will be a teammate of the previous

leader. Otherwise, it will be a leader of a new local group. After that, we will select the coming

numbers in the array to do the same thing until the last one. One of a possible example is

shown in Fig. 9.1. In that situation, the string “6, 3, 5, 9, 8, 2, 7, 10, 1, 4” is converted to

an only structure of local groups. By using this method, we can convert any arrays to an only

combination of local groups. So every combination of local groups can be converted to arrays
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6 3 5 9 8 2 7 10 1 4

6

4

2 1

795 8 10

3

Leader of a local group Teammate of a local group

1. Sort the local groups from the worst to the best;

2. Mark the leader of the first local group, the teammate of the first group;

3. Mark the leader of the second local group, the teammate of the second group;

4. Repeat this until the last local group.

5. We get a string.

Figure 9.2: Convert a local structure to a string. A teammate particle uses an arrow to point to
its leader.
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and every arrays can convert to the combination of local groups. Moreover, from the previous

introduction, it can be found that the selection in the fission process is all random. So any

selection order can occur, which means that fission method contains every possibility of the

partition of local groups.

9.2.4 The fusion

The fusion strategy is inspired by the competition and cooperation of chimpanzees in the forest.

The resource in the forest is limited and uneven. Different groups of chimpanzees have to compete

with each other. Strong groups will occupy the resource-rich areas and getting stronger while

the weak groups gradually become marginalized. From the perspective of biological evolution,

it is reasonable that stronger individuals get more resource. Applying this theory to the fusion

part, the best local group increase its search ability by devouring the worst local group in one

single iteration. The middle-rank local groups will keep their structure in the iteration and keep

searching their corresponding areas. They still have the chance to be the best if they can find a

new global best position. Using this method, the best group will keep engulfing the worst group

until there is only one local group left. Every particle in the worst group will be moved to the

best group while other groups will keep their structure. The pseudo code of the fusion process

is shown in Algorithm 8.

The propose of the fusion part is withdrawing the particle in the worst local group and

putting them into the best local group. It is obvious that in a population-based algorithm, the

population and search capabilities are equivalent. Hence in the fusion process, the best local

group increase its search ability by merging the worst local group. At the same time, other local

groups still have a chance to sample their corresponding areas. If one of the local groups find

a better point than the current global best position, it can be the best local group in the next

iteration. Then it gains the right to engulf the worst local group.
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Algorithm 8 Fusion: local team elimination

Require: Fitness function, F
Require: Search Space, R
Require: Dimension of the function, D
Require: Particle swarm X = x1, x2, ...xn
Require: Personal best position Pbest = p1, p2, ...pn
Require: Global best position Gbest
Require: The number of local teams TN
1: if TN == 1 then
2: do the Fission
3: end if
4: if TN > 1 then
5: Find the bestgroup and the worstgroup by ranking
6: Merge the bestgroup and the worstgroup
7: for Each particle in each local group do
8: if the particle xi is a leader then
9: Select a new position for xi according Equation 9.1

10: end if
11: if the particle xi is a teammate then
12: Select a new position for xi according Equation 9.2
13: end if
14: TN=TN -1
15: end for
16: end if
17: Update Pbest
18: Update Gbest
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On the mathematical side, the merging process will not increase the calculation time. The

next position of a particle is still selected by the Gaussian distribution. So the time complexity

of the fusion process is o(n).

9.2.5 Hybrid of the fission and the fusion

In this section, the complete process of the FHBBPSO is presented. After the initialization, the

number of the local group is one. Then the fission part is on working. One point has to be

mentioned here, it is possible that the number of local groups is still one after the fission if the

global best particle was selected as the leader of the first local group. So a judgment is set, if

the number of local groups equals one, the algorithm will do the fission. If the number of local

groups is more than one, the algorithm will do the fusion. The pseudo code of the FHBBPSO is

shown in Algorithm 9.

Algorithm 9 The Fission-Fusion Hybrid Bare Bones Particle Swarm Optimization Algorithm

Require: Max iteration time, T
Require: Fitness function, F
Require: Search Space, R
Require: Dimension of the function, D
Require: Particle swarm X = x1, x2, ...xn
Require: Personal best position Pbest = p1, p2, ...pn
Require: Global best position Gbest
Require: The number of local teams Teamnumber
1: t = 1
2: TN = 1
3: while t <= T do
4: if TN > 1 then
5: Do the Fusion
6: end if
7: if TN == 1 then
8: Do the Fission
9: end if

10: t = t+ 1
11: end while

Here, we discuss the complexity of the FHBBPSO. In the fission part, each particle will

calculate one time, so the time complexity is o(n). In the fusion part, the main action is merging
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the groups. No calculation is added while moving a particle from one local group to another. So

the time complexity of the fusion process is still o(n). In the hybrid part, only one of the fusion

process or the fission process will be held in one single iteration. So the time complexity of the

FHBBPSO is o(n). Also, it can be seen that during the iteration process, no parameter is used.

The construct of the local groups is depending on the test functions. This means the FHBBPSO

can be easily applied to different problems without previous knowledge. So it is reasonable to

believe that the FHBBPSO is a fast calculating and fast applying algorithm.

9.3 Experiments

9.3.1 Experimental methods

To verify the optimization ability of the FHBBPSO, The CEC 2014 benchmark functions [45]

are used in the experiments. The functions are divided into four groups:

1) unimodal functions( f01 − f03);

2) simple multimodal functions ( f4 − f16);

3) hybrid functions ( f17 − f22);

4) composition functions ( f23 − f30).

More details of the test functions can be found in Table 9.1 and 9.2.

9.3.2 Experimental results and discussion

The experimental results and discussion are displayed in this subsection. The ETI-DE [28],

DE [27] [28], DLS-BBPSO [36] are selected to compare with the FHBBPSO. The population

of the ETI-DE, the DE and the DLS-BBPSO is set to 100, 100, 30. To make a fair compe-

tition, the population size of the FHBBPSO is set to 100. More details can be found in the

original references. In this part, the maximum number of function evaluations (MAXFES) is
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Table 9.1: Experimental functions, the CEC 2014 benchmark functions, the search range for
each function is (-100,100).

Types Function Minimum

Unimodal

Functions

f1 = Rotaten High Conditioned Elliptic Function 100

f2 = Rotated Bent Cigar Function 200

f3 = Rotated Discus Function 300

Simple

Multimodal

Functions

f4 = Shifted and Rotated Rosenbrock’s Function 400

f5 = Shifted and Rotated ACKLEY’s Function 500

f6 = Shifted and Rotated Weierstrass’s Function 600

f7 = Shifted and Rotated Griewank’s Function 700

f8 = Shifted Rastrigin’s Function 800

f9 = Shifted and Rotated Rastrigin’s Function 900

f10 = Shifted Schwefel’s Function 1000

f11 = Shifted and Rotated Schwefel’s Function 1100

f12 = Shifted and Rotated Katsure Function 1200

f13 = Shifted and Rotated HappyCat Function 1300

f14 = Shifted and Rotated HGBat Function 1400

f15 = Shifted and Rotated Expanded
1500

Griewank’s plus Rosenbrock’s Function

f16 = Shifted and Rotated
1600

Expanded Scaffer’s F6 Function

91



Table 9.2: Experimental functions, the CEC 2014 benchmark functions, the search range for
each function is (-100,100).

Types Function Minimum

Hybrid

Functions

f17 = Hybrid Function 1 (N=3) 1700

f18 = Hybrid Function 2 (N=3) 1800

f19 = Hybrid Function 3 (N=4) 1900

f20 = Hybrid Function 4 (N=4) 2000

f21 = Hybrid Function 5 (N=5) 2100

f22 = Hybrid Function 6 (N=5) 2200

Composition

Functions

f23 = Composition Function 1 (N=5) 2300

f24 = Composition Function 2 (N=3) 2400

f25 = Composition Function 3 (N=3) 2500

f26 = Composition Function 4 (N=5) 2600

f27 = Composition Function 5 (N=5) 2700

f28 = Composition Function 6 (N=5) 2800

f29 = Composition Function 7 (N=3) 2900

f30 = Composition Function 8 (N=3) 3000
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Table 9.3: Experimental algorithms, including parameters and references, the dimension is 50,
the MAXFES equals dimension*1.00E+5.

Algorithm Population Parameters Citation

ETI-DE 100 ETI-DE/rand/1/bin [28]

DE/rand/1/bin 100 DE/rand/1/bin [27][28]

DLS-BBPSO 30 None [36]

FHBBPSO 100 None

set to dimension*10000. To reduce accidental errors, the final results are calculated from 51

independent runs. The mean value of the 51 results is recorded as f(final). The empirical error

is defined as |f(x∗) − f(final)|, where x∗ is the theoretical optimal position of each function.

The details of the test algorithm are shown in Table 9.3. The experimental results are shown

in Table 9.4, 9.5 and 9.6. To make a clear comparison, a rank competition also proposed in the

experiments. In each test function, the best result will get 1 point and the worst one will get 4

points. The rank results of each function are also shown in Table 9.4, 9.5 and 9.6. The statistics

results of each group are shown in Table 9.7. Experimental results keep four significant digits.

In the Group 1, the FHBBPSO gets 1 point at f1 and f3, 3 point at f2. In the f1, the result

of the proposed method is 45.21% larger than the result of the ETI-DE. In the f2, the result of

the FHBBPSO is more than ten times larger than the result of the DE. In the f3 the results of

the two BBPSO-based algorithm is about 10E−14 level while the results of the two DE-based

algorithms are around 10E−01.

In the Group 2, the FHBBPSO gets 1 point in f5, f10, f14, f16,2 points in f4,8,9, f11−13, f15,

3 points in f6,7. In the f4, the two BBPSO-based algorithms occupy the first and the second

rank. The result of the FHBBPSO is 173.70% larger than the result of the DLS-BBPSO. In

the f5 the FHBBPSO has a 8.81% lead of the ETI-DE. In the f6 and f7, the two DE-based

algorithms occupied the first and the second rank. In the f8, the ETI-DE gets one point while
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the FHBBPSO gets two. The result of the FHBBPSO is 59.64% larger than the result of the

ETI-DE. In the f9, the same situation of the f8 happens. The result of the FHBBPSO is 276.47%

times larger than the result of the ETI-DE. In the f10, the FHBBPSO gets the first rank and the

result is 41.63% smaller than the one of the ETI-DE. In the f11, f12, f13, f15, the ETI-DE gets

the first rank and the FHBBPSO gets the second. The lead of the ETI-DE is 2.73%, 31.85%,

7.60% and 54.89%. In the f14 and f16, the FHBBPSO gets the first rank and the ETI-DE gets

the second. The lead of the FHBBPSO is 40.87% and 3.17%.

In the Group 3, the FHBBPSO gets 1 point in f22, 2 points in f20, 3 points in f18,19,21, 4

points in f17. In the f17, the two DE-based algorithms leads, The result of the FHBBPSO is

2.26% larger than the result of the DLS-BBPSO. From the f18 to the f21, the ETI-DE gets the

first rank in this four functions. The results of the FHBBPSO is 869.45%, 149.21%, 141.76%,

1012.12% larger than the results of the ETI-DE. In the f22, the FHBBPSO gets the first rank

and the DE gets the second. The lead of the FHBBPSO is 64.33%.

In the Group 4, the FHBBPSO gets 1 point in f23−26, f29−30, 2 points in f28, 3 points in

f27. In the f23 and the f24, the FHBBPSO gets the first rank while the DLS-BBPSO gets the

second. The advantage of the FHBBPSO is 1.58% and 0.23%. In the f25, the FHBBPSO and

the DLS-BBPSO give the same results and occupy the first rank. In the f26, the FHBBPSO

and the ETI-DE get the first rank with a same result. In the f27, the FHBBPSO gets the third

rank. The result is 189.46% larger than the result of the DE. In the f28, the FHBBPSO gets

the second rank. The result is 2.58% larger than the result of the DLS-BBPSO. In the f29 and

the f30, the FHBBPSO gets the first rank while the DLS-BBPSO gets the second. The results

of the DLS-BBPSO is 3.35%, 57.53% larger than the results of the FHBBPSO.

In the Table 9.7, the rank results are displayed in groups. It can be seen that in the unimodal

functions group, the FHBBPSO gets 1.667 points while other 3 algorithms all get 2.667 points.

It is reasonable to consider that the FHBBPSO can reach the more accurate point in unimodal
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functions. In group 2, the FHBBPSO gets 1.846 and the ETI-DE gets 1.615. Both the DE and

the DLS-BBPSO get an average point above 3. We can reasonably believe that the searchability

of the FHBBPSO on multimodal functions is near but not as good as the ETI-DE. We believe

that the fusion process gives the swarm more chance to escape from a local minimum. In group 3,

the two DE-based algorithms lead but the FHBBPSO still perform better than the DLS-BBPSO.

In Group 4, the FHBBPSO performances best in the fours test algorithms. It is equitable to

claim that the cooperation of the fission and the fusion process works well on the composition

functions. From the global average point, there is no doubt that FHBBPSO gives the best results

in these experiments.

On the side of the FHBBPSO, the fission process gives a particle the chance to communicate

with both adjacent and distant particles. In the normal unimodal functions, the swarm may get

a fast convergence and the increase in precision if particles exchange information with adjacent

particles. The long-distance communication is a supplementary option. For instance, in the

3-dimension map for the 2-dimension f3 [45], it can be seen that the function has a smooth

but narrow ridge. A particle may cross the ridge if it communicates with a better and distant

particle. Also, the fusion process ensures that the swarm has an impartial convergence speed.

Particles in different local groups will keep searching around their leaders. The best local group

will enhance its search ability by merging the worst local group. This pattern gives the swarm an

ability to search in different environments. In the Group 4, composition functions have different

properties around different local optima. The fusion process ensures that different local groups

have the autonomy in their corresponding area. Hence the results of the FHBBPSO has a great

lead in the Group 4. Moreover, the proposed method is exhaustive parameter-free. No human

intervention is needed before and during the iteration. The number and the size of the local

groups will be only decided by the test functions. All of these features make the FHBBPSO a

widely used and powerful method for single-objective problems.
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Table 9.4: Comparisons of the empirical errors between the ETI-DE, the DE, the DLS-BBPSO
and the FHBBPSO. f1-f10.

F ETI-DE[28] DE[27][28] DLS-BBPSO [36] FHBBPSO

f1

Mean 8.417E+05 1.399E+06 1.021E+06 4.612E+05

SD (2.873E+05) (5.347E+05) (8.8979E+05) (2.698E+05)

Point 2 4 3 1

f2

Mean 3.045E+03 1.913E+02 3.310E+04 9.163E+03

SD (4.719E+03) (7.531E+02) (3.671E+04) (9.917E+03)

Point 2 1 4 3

f3

Mean 3.588E−01 2.863E−01 5.684e-14 5.684E−14

SD (7.479E−01) (1.144E+00) (8.159e-14 ) (4.177E−14)

Point 4 3 1 1

f4

Mean 8.793E+01 7.729E+01 4.030E+00 1.103E+01

SD (8.976E+00) (2.730E+01) (1.026E+01 ) (1.873E+01)

Point 4 3 1 2

f5

Mean 2.042E+01 2.113E+01 2.104E+01 2.024E+01

SD (1.022E−01 ) (3.349E−02) (3.860E−02) (7.150E−02)

Point 2 4 3 1

f6

Mean 1.786E+00 1.215E+00 4.089E+01 2.268E+01

SD ( 1.671E+00 ) (1.384E+00) ( 9.534E+00) (5.701E+00)

Point 2 1 4 3

f7

Mean 1.450E−04 1.450E−04 7.300E−03 6.700E−03

SD (1.036E−03) (1.036E−03) ( 9.00E−03) (8.900E−03)

Point 1 1 4 3

f8

Mean 4.596E+01 1.942E+02 1.555E+02 7.337E+01

SD (1.224E+01) (4.580E+01) (3.141E+01) (1.470E+01)

Point 1 4 3 2

f9

Mean 4.258E+01 3.517E+02 2.676E+02 1.603E+02

SD (1.185E+01) (1.609E+01) (7.002E+01) (4.063E+01)

Point 1 4 3 2

f10

Mean 1.007E+03 9.467E+03 3.298E+03 5.878E+02

SD (4.188E+02) (1.349E+03) (7.193E+02) (2.891E+02)

Point 2 4 3 1

96



Table 9.5: Comparisons of the empirical error between the ETI-DE, the DE, the DLS-BBPSO
and the FHBBPSO. f11-f20

F Mean ETI-DE[28] DE [27][28] DLS-BBPSO [36] FHBBPSO

f11

Mean 3.912E+03 1.299E+04 7.063E+03 4.022E+03

SD (1.003E+03 ) (3.968E+02) (2.360E+03) (6.077E+0q)

Point 1 4 3 2

f12

Mean 1.181E−01 3.243E+00 2.701E+00 1.733E−01

SD (4.673E−02 ) (2.661E−01) ( 2.085E−01) (9.240E−02)

Point 1 4 3 2

f13

Mean 2.078E−01 4.575E−01 3.181E−01 2.249E−01

SD (4.905E−02) (4.489E−02) ( 5.730E−024) (4.030E−02)

Point 1 4 3 2

f14

Mean 2.968E−01 3.369E−01 3.578E−01 1.755E−01

SD (8.065E−02) (1.081E−01) ( 1.840E−01) (5.230E−02)

Point 2 3 4 1

f15

Mean 6.090E+00 3.150E+01 1.407E+01 1.350E+01

SD (1.801E+00) (1.147E+00) ( 5.670E+00) (4.578E+00)

Point 1 4 3 2

f16

Mean 1.735E+01 2.211E+01 2.028E+01 1.680E+01

SD (1.212E+00) (3.114E−01) ( 6.822E−01 ) (8.683E−01)

Point 2 4 3 1

f17
Mean 1.726E+04 1.419E+04 4.754E+04 4.861E+04

SD (1.479E+04) (9.317E+03) (3.365E+04) (3.845E+04)

Point 2 1 3 4

f18
Mean 1.342E+02 1.342E+02 9.676E+03 1.301E+03

SD (2.020E+01) (1.028E+01) (1.155E+04) (1.546E+03)

Point 1 1 4 3

f19
Mean 5.682E+00 1.191E+01 3.443E+01 1.416E+01

SD (1.329E+00) (6.751E−0) (1.543E+01) (8.703E+00)

Point 1 2 4 3

f20
Mean 3.173E+01 9.887E+01 1.458E+02 7.671E+01

SD (2.098E+01) (1.069E+01) (5.199E+01) (2.681E+01)

Point 1 3 4 2
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Table 9.6: Comparisons of the empirical error between the ETI-DE, the DE, the DLS-BBPSO
and the FHBBPSO. f21-f30. The average rank of all the 30 test functions is shown at the bottom
of the table.

F Mean ETI-DE[28] DE [27][28] DLS-BBPSO [36] FHBBPSO

f21
Mean 1.980E+03 2.630E+03 2.606E+04 2.202E+04

SD (3.372E+03) (5.177E+02) (2.117E+04) (2.047E+04)

Point 1 2 4 3

f22
Mean 7.907E+02 7.133E+02 7.808E+02 5.087E+02

SD (3.243E+02) (4.126E+02) (2.613E+02) (2.016E+02)

Point 4 2 3 1

f23
Mean 3.440E+02 3.440E+02 3.424E+02 3.370E+02

SD (2.870E−13) (4.168E−13) (1.847E+01) (1.288E−12)

Point 3 3 2 1

f24
Mean 2.704E+02 2.704E+02 2.647E+02 2.641E+02

SD (2.061E+00) (2.504E+00) (5.717E−01) (6.723E+00)

Point 3 3 2 1

f25
Mean 2.055E+02 2.054E+02 2.004E+02 2.004E+02

SD (4.956E−01) (4.166E−01) (1.531E−01) (7.230E−02)

Point 4 3 1 1

f26
Mean 1.002E+02 1.005E+02 1.003E+02 1.002E+02

SD (5.262E−02) (5.418E−02) (5.080E−02) (3.4800E−02)

Point 1 4 3 1

f27
Mean 3.765E+02 3.662E+02 1.332E+03 1.060E+03

SD (3.819E+01) (3.538E+01) (1.090E+02) (1.358E+02)

Point 2 1 4 3

f28
Mean 1.086E+03 1.064E+03 3.910E+02 4.011E+02

SD (3.219E+01) (4.712E+01) (1.416E+01) (5.464E+00)

Point 4 3 1 2

f29
Mean 1.003E+03 9.907E+02 2.191E+02 2.120E+02

SD (2.532E+02) (2.505E+02) (1.888E+01) (2.433E+00)

Point 4 3 2 1

f30
Mean 8.355E+03 8.296E+03 1.083E+03 6.875E+02

SD (3.688E+02) (3.421E+02) (3.453E+02) (2.090E+02)

Point 4 3 2 1

Average
2.133 2.867 2.900 1.867

Point
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Table 9.7: Comparisons of the rank result between the ETI-DE, the PBBPSO, the DLS-BBPSO
and the FHBBPSO. The average point is calculate from the 30 results. Best ranks are shown in
bold.

ETI-DE[28] DE [27][28] DLS-BBPSO [36] FHBBPSO

Group 1 2.667 2.667 2.667 1.667

Group 2 1.615 3.385 3.077 1.846

Group 3 1.667 1.833 3.667 2.667

Group 4 3.625 2.875 2.125 1.375

Average Point 2.133 2.867 2.900 1.867

9.4 Summary

A fission-fusion hybrid bare bones particle swarm optimizer (FHBBPSO) is proposed in this

chapter. A fission strategy and a fusion strategy are combined in the FHBBPSO for solving

the single-objective problems. In the fission process, one complete particle swarm will split

to several local groups and occupy different areas of the search region. Each local group will

only focus on finding the local minimum of its corresponding region. The fission strategy is

a parameter-free method. No previous work or parameter is needed for the iteration. In the

fusion process, the best group will keep encroaching the worst group until all of the particles

are in one local group. Then the fission process is on working. The fusion method is inspired

by the team behavior of the chimpanzees. In the society of chimpanzees, stronger group can

hold more resources and will annex weaker groups. By merging the worse group, the best local

group increase its search ability by the increasing of its population. To verify the optimization

ability of the FHBBPSO, the proposed method runs over the CEC2014 benchmark functions.

The test functions are composed of four parts: the unimodal functions, the simple multimodal

functions, the hybrid functions, and the composition functions. Also, the DE, the ETI-DE,

and the DLS-BBPSO are used in the control group. The FHBBPSO gives best results in the
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unimodal group and the composition group. This can prove that the FHBBPSO has excellent

search capabilities in complex environments. Consider about the average rank among all 30 test

functions, the FHBBPSO still performances best. Hence we are reasonable to believe that the

proposed method has the best performance on the CEC2014 functions.
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Chapter 10

Conclusions and Future Work

10.1 Contribution of this study

In particle swarm optimization algorithms, parameters are used to control the behavior of par-

ticles. It is difficult either to find a set of parameter that able to solve all problems or to adjust

parameters for every single problem. In the bare bones particle swarm optimization algorithms,

no parameter is need but the accuracy is not low with complex problems. In this study, seven

BBPSO-based algorithms are proposed. These algorithms are designed for different purposes.

Four of the them are designed with the swarm division which are able to converge to the global

optimum fast. The other three algorithms are designed with the swarm reconstruction which are

able to slow down the convergence and solve complex problems. Moreover, the convergence speed

is not controlled by parameters but by revising the structures of local groups. Compared with

existing methods, no parameter is needed to control the behavior of the particles, and higher

accuracy can be presented in experiments. These advantages make proposed methods able to

apply to life and engineering applications.
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10.2 Conclusions

The single-objective optimization problem is the basic component of the optimization problems.

It is widely exist in researches and lives. The single-objective optimization problems are com-

posed by four major sub-problems: the control of convergence speed, the precision in unimodal

problems, the local minimal escape in multimodal problems, and wide adaptability for multiple

problems. In this thesis, seven different evolutionary swarm-based algorithms are proposed for

different aspects of the single-objective optimization problems.

In the PBBPSO, every two particles are binding as a computing unit. Different evolutionary

rules are applied to the particles in a computing unit to slow down the diversity losing. On the

other hand, the DABBPSO divides the swarm to two subgroups. Different evolutionary rules

are applied to different groups to get a meticulous search in their corresponding areas.

In the TBBPSO, the three-particle model improves the search ability of the computing units.

Two different structures are available for the shifted and rotated problems. In addition, the

DLS-BBPSO is a parameter-free algorithm. It can divide the swarm into different model without

human intervention. The structure of the particle swarm depends on the test problems which

make the swarm able to solve shifted and rotated prblems.

In the BBPSO-C, a shadow particle swarm is used to assist the original swarm. These two

swarms will change particles after each iteration. The original swarm will focus on local search

while the shadow swarm is aiming at global search. Moreover, to handle the high iteration time

problems, the elite selection strategy is used in the DRBBPSO. A dynamic number of particles

will be selected from each iteration. The swarm will be reconstructed when the number of elite

particles reaches the number of particles in the original swarm. The reconstruction will keep the

diversity of the swarm after a huge amount of iteration.

In the FHBBPSO, a fission strategy and a fusion strategy work together for the global opti-
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mum. The fission process split the swarm to several subgroups. Each subgroup will only focus

on its corresponding area. The fusion will keep the subgroups merging until they become one

group again. No parameters are needed during this process. Also, the dynamic structure of the

particle swarm makes the FHBBPSO able to solve various optimization problems.

To conclude, seven different evolutionary swarm-based algorithms are developed for single-

objective optimization problems. Each of them has shown good performances on one or more

aspects of optimization activities. In researches on particle swarm optimization, this thesis has

clarified one approach to achieve for realizing high search accuracy without parameter adjust-

ment.

10.3 Future work

First of all, compared with the best of the methods that require parameter adjustment, proposed

algorithms have not catch up with hybrid functions. In future work, I want propose new struc-

tures that able to present more precise results on hybrid functions. The proposed algorithms has

shown excellent performances on single-objective optimization problems. The convergence con-

trol and parameter-free strategies have the potential to be applied to multi-objective problems.

Hence, one of the future work is apply the proposed methods to multi-objective problems.

Also, in real-world problems, the dynamic problems grow complex and high dimensional.

Applying proposed methods to these problems is an important part of future work.
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