法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2024-12-27

補償電極を用いた人体通信環境雑音低減に関 する研究

豊島, 優太郎 / TOYOSHIMA, Yutaro

(出版者 / Publisher)
法政大学大学院理工学研究科
(雑誌名 / Journal or Publication Title)
法政大学大学院紀要.理工学・工学研究科編
(巻 / Volume)
61
(開始ページ / Start Page)
1
(終了ページ / End Page)
4
(発行年 / Year)
2020-03-24
(URL)
https://doi.org/10.15002/00022895

補償電極を用いた 人体通信環境雑音低減に関する研究

NOISE REDUCTION METHOD FOR INTRA-BODY COMMUNICATION BY USING COMPENSATION ELECTRODE

豊島優太郎 Yutaro TOYOSHIMA 指導教員 品川満

法政大学大学院理工学研究科応用情報工学専攻修士課程

This paper describes a noise reduction method using a compensation electrode and a capacitance in intra-body communication (IBC). The problem of IBC is an environmental noise influence on communication performance. It is hard to distinguish a radiated noise through a human body from communication signal. We propose a noise reduction method using a compensation electrode and capacitance. The radiated noise is canceled by the noise propagated to a floor cold electrode by changing capacitance. It was confirmed that the noise reduction method is effective for the IBC system by experiment, electro-magnetic field simulation and circuit simulation. *Key Words : intra-body communication, radiated noise, noise reduction, compensation electrode*

1. 序論

近年,ユビキタス[1]や IoT (Internet of Things)という考 え方が広がり,人体通信[2]-[3]という新しい通信技術が注 目されている.人体通信とは人体を伝送路として使用し, 歩く,踏む,握るといった人の自然な動作をきっかけとし て通信が開始される.人体通信は自然な動きをトリガーと するメリットがあるが,周囲の環境からの雑音の影響を受 けやすいという問題点がある.

人体通信における環境雑音ついての図を図1に示す.

図1に示したように、人体通信の環境雑音は大きく分けて3種類がある. コンセントなどに起因する電源雑音, 人体通信端末内の回路に起因する回路雑音,周辺の電子機 器等から発生する放射雑音の3種類である.このうち,放 射雑音は人体通信に使用する通信信号と同じ経路を通っ て伝搬するため,受信端末側で信号と雑音を区別すること は難しい.放射雑音と通信信号の伝搬経路の図を図2に 示す.

図2. 放射雑音と通信信号の伝搬経路

従来の研究で床電極に雑音を補償するための電極(補償 電極)を追加し設置位置を変更することで雑音が低減でき ることが確認されている[4].実利用を考慮した際に補償 電極を雑音の変化に応じて移動させるのは現実的ではな い.したがって本研究では、補償電極と床電極の間に可変 インピーダンスを使用して雑音を低減することを目的と する.

2. 雑音の低減方法

本研究での雑音低減の方法について図3に示す.

床電極は Hot 電極および Cold 電極の二枚から構成され ている.本研究では補償電極を Cold 電極に接続するとき に,可変インピーダンスを経由させることで,Cold 電極 に伝搬する雑音の量を調整し,受信端末の差動回路を利用 して雑音を低減する.可変インピーダンスを利用すること で,雑音の変化に応じて補償電極を移動させる必要はなく なる.本研究では可変インピーダンスとしてコンデンサを 使用する.

3. 実験およびシミュレーション

(1) 実験方法

本研究では実験,電磁界シミュレーション,回路シミュ レーションを使用して,提案した雑音低減法の効果を確認 していく.

図4に実験系の概要図,図5に実験風景を示す.

図 5. 実験風景

実験では、ファンクションジェネレータ(FG)を模擬雑音

源として使用し、ノイズ放射板から放射することで放射雑音を再現した. ノイズ放射板-補償電極間の距離 x を 200 mm および 1000 mm にしたときの雑音のノイズチャネルパワーと人体に所持させた携帯送信機からの信号パワースペクトラムアナライザ(SPA)で計測した. 床電極と SPA の間にはインピーダンス変換を行うための HiZ アンプを使用した.

(2) 電磁界シミュレーション

電磁界シミュレーションのシミュレーションモデルの 概要図を図6に示す.

図 6. 電磁界シミュレーションモデル

電磁界シミュレーションモデルは実験系を再現して作成した.人体は日本人の平均身長を参考に170 cm とし, 4 つの 3D オブジェクトから構成されている.実験のとき と同様に、ノイズ放射板-補償電極間の距離 x を 200 mm お よび 1000 mm にしたときのノイズ放射板から雑音に見立 てた 6.75 MHz の正弦波と携帯送信機からの信号の床電極 での受信電圧をシミュレーションした.

(3)回路シミュレーション

回路シミュレーションに使用した等価回路モデルを図 7に示す.

図 7. 等価回路モデル

図7に示したように,等価回路モデルはノイズ放射板, 人体, グラウンド,補償電極, Hot および Cold 電極の6つ のノードをそれぞれ結ぶ15個の容量結合から構成されて いる.各容量値は式1に示す,平行平板電極の容量値を求 める式に基づいて計算されている.

$$C = \varepsilon \frac{S}{d} \tag{1}$$

図 8 に携帯送信機からの信号をシミュレーションした 際の等価回路モデルを示す.

図 8. 等価回路モデル(信号)

信号をシミュレーションしたときの等価回路モデルは 図7に示したものに携帯送信機の Hot 電極および Cold 電 極を追加し,28 個の容量結合から構成されている.

回路シミュレーションでは FG および携帯送信機から 6.75 MHz の正弦波を出力し,ノイズ放射板-補償電極間の 距離 *x* を 200 mm および 1000 mm にしたときの Hot-Cold 電極間の電圧 *V*_{HC} をシミュレーションした.

また, 雑音が除去できた時の Hot・Cold 両電極に伝搬す る雑音の電圧と位相もシミュレーションした.

4. 実験およびシミュレーション結果

(1) 実験結果

実験結果は式2および式3に示す式によって正規化した. ここでNRR(E)は雑音低減率の実験結果,SRR(E)は信号低減 率の実験結果を表す.また,ChPwrwith,Pwithは補償電極を 使用したときのノイズチャネルパワーおよび信号強度, ChPwrwithout,Pwithout は補償電極を使用しなかったときのノ イズチャネルパワーおよび信号強度である.

$$NRR_{(E)} = ChPwr_{with} - ChPwr_{without}$$
(2)

$$SRR_{(E)} = 10\log_{10} \frac{P_{\text{with}}}{P_{\text{without}}}$$
(3)

実験結果を図9および図10に示す.

図 9 からわかるように、*NRR* は x = 200 mm のときのみ 最小値をとり、雑音が除去された.しかし、x = 1000 mmの時には雑音は除去できなかった.また、図 10 からわか るように信号は可変コンデンサの影響を受けなかった.こ のことから雑音のみを除去できることが示された.

(2) 電磁界シミュレーション結果

電磁界シミュレーションおよび回路シミュレーション の結果は式4に示す式によって正規化した.ここでNRR(s) は雑音低減率のシミュレーション結果,SRR(s)は信号低減 率のシミュレーション結果を表す.また,VHC_withは補償 電極を使用したときの受信電圧,VHC_without は補償電極を 使用しなかったときの受信電圧である.

$$NRR_{(S)} = SRR_{(S)} = 20\log_{10} \frac{V_{\text{HC_with}}}{V_{\text{HC}\ \text{without}}}$$
(4)

図 11 および図 12 に電磁界シミュレーション結果を示 す.

図 12. 電磁界シミュレーション結果(信号)

電磁界シミュレーションでも実験と同様の結果が得ら れた.この結果から今回作成した電磁界シミュレーション モデルは妥当である.

(3)回路シミュレーション結果 回路シミュレーションの結果を図 13 および図 14 に示す.

図 13 および図 14 に示したように,回路シミュレーションからも実験,電磁界シミュレーションと同じ結果が得られた.今回作成したシミュレーションモデルは妥当であることが示された.

次に雑音が除去されたとき, *C*_{EX} = 50 pF のときの Hot, Cold 電極の雑音の周波数特性を図 15 に示す.ここで *P*_{HG}, *P*_{CG} は Hot 電極および Cold 電極に伝搬する雑音の位相, *G*_{HG}, *G*_{CG} は雑音の利得を表す.

図 15. CEX = 50 pF のときの周波数特性

図 15 に示したように, 雑音が除去できるときは Hot 電極と Cold 電極に伝搬する雑音の大きさと位相が一致していることがわかる.

5. 結論

本研究では人体通信の環境雑音のうち,放射雑音を低 減する方法を提案し,その効果を確認することを目的とし た.実験および電磁界シミュレーション,回路シミュレー ションすべてで同じ傾向であることが確認でき,雑音が低 減できることが確認できた.

参考文献

- 1) Mark, W. : The Computer for the 21st Century, Scientific American, pp.94-104, 1991
- 2) Thomas, G, Z. : Personal area network, IBM System Journal, vol.35, issue 3&4, pp.609–617, 1996
- 3) Yuichi, K. et al. : RedTacton Near-body Electric-field Communications Technology and Its Applications, NTT Technical Review March 2010, Vol. 8, no. 3, 2010
- 4) Yuki, H. et al. : Radiated noise analysis via human body for intra-body communication, Measurement, vol.89, pp. 159– 165, 2016