
PDF issue: 2025-07-07

Fine-grained Dynamic Searchable
Symmetric Encryption for Conjunction
Query

宮野, 資基 / Miyano, Motoki

(出版者 / Publisher)
法政大学大学院情報科学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 情報科学研究科編

(巻 / Volume)
15

(開始ページ / Start Page)
1

(終了ページ / End Page)
6

(発行年 / Year)
2020-03-24

(URL)
https://doi.org/10.15002/00022733

　積集合検索が可能な柔軟な動的検索可能暗号
Fine-grained Dynamic Searchable Symmetric Encryption for Conjunction Query

宮野　資基 ∗

Motoki Miyano
法政大学大学院　情報科学研究科　情報科学専攻

Email: 18t0015@cis.k.hosei.ac.jp

Abstract—Searchable Symmetric Encryption (SSE) has been
researched from three perspectives: security, performance,
and functionality, and various SSEs have been proposed.
Some SSEs are constructed with a data structure called
Bloom Filter (BF). However, while BF has a good storage
cost, it cannot efficiently perform data update operating and
has a problem in functionality. With the spread of the cloud
in recent years, it is desirable to have many functions. In
this research, we propose two SSEs that have update function
employing Counting Bloom Filter (CBF). The first, proposes
a single keyword search SSE called D-IDX that can be
updated flexibly. The second, improves D-IDX and proposes
SSE called Dynamic Cross-Tags（DXT） that can efficiently
perform conjunction keyword searches in addition to update
operating. Both SSEs use CBF to enable efficient updating of
keywords without significantly changing the data stored on
the server. Although both SSEs have the same security, DXT
can construct a more secure SSE by employing homomorphic
encryption. We have implemented proposed SSEs. It shows
that it is efficient and practical in update operation and
multiple keywords search.

1. introduction

With the recent development of cloud computing, it
has become common to outsource data. However, outsour-
ing data often causes privacy issue, in particular when the
data is stored in a server that is not necessarily trusted. A
simple solution of such a privacy issue is to encrypt the
data before storing it in the server. However, availability of
the data is unacceptably reduced when we simply encrypt
all the data stored in the server since we cannot perform
any operation over encrypted data. For example, the user
cannot even search for emails containing certain keyword
when emails are encrypted.

Searchable Symmetric Encryption (SSE) is a technol-
ogy aiming at solving these problems. SSE is a cryp-
tographic primitive that makes it possible to securely
retrieve encrypted data associated with certain keyword
without decrypting the encrypted data. SSE maintains the
data structure called an index where index records the cor-
respondence between documents and keywords included
therein. When we want to search documents containing
certain keyword, we compute encrypted keyword called
a trapdoor and send the trapdoor to the server, which
enables the server to search over encrypted documents
with the help of index. All SSEs possesses a trade-off
between security, performance, and functionality. If SSE

∗ Supervisor: Prof.Satoshi Obana

is designed in a way that it leaks no information at
all, performance and functionality will be reduced, and
if SSE is designed to be computationally efficient and
rich functionality comparable to an unencrypted database,
information leaked via search operation cannot be small.

Since SSE was first proposed[10], computationally ef-
ficient schemes with respect to the size of data[13][15][6],
and schemes that support document update as well as
search have been proposed[11][16] so far. Some of these
SSEs [6][1] have been designed with a data structure
called Bloom Filter (BF)[7]. However, since BF is not
designed to support delete operation, it is not possible to
construct BF based SSE that can efficiently update. To
resoleve the problem, SSE supporting update operation
based on the Counting Bloom Filter (CBF)[8] has been
presented where CBF is a variant of BF, to efficiently
update the data[12]. However, [12] does not perform the
update operating on the server, and does not fully utilize
the advantages of cloud computing.

In recent years, high-performance SSE has been at-
tracting attention while maintaining security in order to
construct a practical one. Oblivious Cross-Tags (OXT)[2]
and Hidden Cross-Tags (HXT)[1] are such state-of-the-art
SSEs. OXT is not only a single keyword search but also
a protocol that can efficiently conjunction search a prod-
uct set using multiple keywords. HXT, like OXT, allows
multiple keywords, and uses Bloom Filter and lightweight
cryptography to create a protocol with small information
leakage than OXT. However, these SSEs can only search
keywords and cannot efficiently perform update operation.

In this paper, we propose two SSEs called D-IDX and
Dynamic Cross-Tags(DXT) that realize efficient update by
employing CBF as an index. By generating an index for
each document, D-IDX can flexibly update not only the
entire document but also words contained in the document.
Also, compared to SSE employing CBF[12], proposed
SSEs are more suitable for cloud computing since the
update process is performed on the server. DXT improves
the index of D-IDX by adding a new index which make
it possible to efficiently search the conjunction result of
multiple keywords. DXT also support efficient update, and
possesses richer functionality such as ‘updating + multiple
keywords search’. Both SSEs achieved the simulation-
based, Non-adaptive security defined by Curtmola[4]. In
addition, DXT can be improved to SSE which achieves
adaptive security by encrypting the value of CBF using ho-
momorphic encryption. Finally, we implement both SSEs
and show the results. In this abstract, DXT is mainly ex-
plained, and D-IDX and detailed explanation are described
in full paper or [5].

2. Preliminaries

2.1. Definition of SSE(Update.ver)

SSE considers a model that consists of a ”user” who
is a data holder and a searcher, and a ”server” that holds
data and outputs search results based on the search data, so
that the data and the search data do not leak to the server
suppose that. The user sends the trapdoor T to the server
as a query, and generates an index I that is encrypted
data so that the search can be performed. When the server
receives the trapdoor, it searches the encrypted data and
returns the corresponding data.

If the data to be handled is expressed as n documents
as DB = (db1, ..., dbn), and each dbi is composed of
words(w1, ..., wm). Let iddbi be the document identifier.
DB(w) = (iddbj , ..., iddbk) is a set of identifiers of
documents including the keyword w.

Since trapdoors are deterministic in symmetric key
based searchable encryption, the same trapdoor is gen-
erated for the same keyword. Therefore, basically, infor-
mation on the search pattern of the user is leaked. Further,
by performing a search a plurality of times, information
of a result pattern indicating the relationship between the
results of each query is also leaked. In addition, when
building an SSE such as the size of a DB or trapdoor,
information that cannot be suppressed from leaking is
defined as ”unavoidable information leakage”.

In dynamic SSE, consider adding or deleting docu-
ments or keywords. In both operations, processing is per-
formed by generating a trapdoor according to the update.
When adding the document db or the keyword w, given
the additional trapdoor T+ and the index I , outputs the
updated I ′. Similarly, when deleting the document db or
the keyword w, given the additional trapdoor T− and the
index I , outputs the updated I ′.

Definition 1. Dynamic SSE is a protocol consisting of
the following algorithm SSE = (KeyGen, BuildIndex,
SearchTrapdoor, AddTrapdoor, DelTrapdoor, Search,
Add, Del) :

1) K ← KeyGen(1s)
Algorism for generate the secret key. Given a
security parameter s, outputs the secret key K

2) I ← BuildIndex(D,K)
Algorism for construct the index. Given a docu-
ment D and the secret key K, outputs the index
I .

3) T (w)← SearchTrapdoor(w,K)
Algorithm for calculate search data (trap door).
Given the secret key K and word w, outputs the
trapdoor T (w) for w.

4) T+ ← AddTrapdoor({db, w},K)
Algorithm for calculate add data (trap door).
Given the secret key K and word w, outputs the
trapdoor T+ for w.

5) T− ← DelTrapdoor({db, w},K)
Algorithm for calculate delete data (trap door).
Given the secret key K and word w, outputs the
trapdoor T− for w.

6) S(w)← Search(T (w), I)
Algorism for search word. Given the trapdoor

T (w) for word w and the index I for document
D, outputs search result S(w)

7) I ′ ← Add(I, T+)Algorithm for add data (trap
door). Given the index I and the trapdoor T+,
outputs the updated index I ′

8) I ′ ← Del(I, T−)Algorithm for delete data (trap
door). Given the index I and the trapdoor T−,
outputs the updated index I ′

2.2. Counting Bloom Filter

A Bloom filter is a probabilistic data structure[7],
conceived by Burton Howard Bloom in 1970, that is used
to test whether an element is a member of a set. As
described later, A Bloom filter has a possibility of false
positive, but since the set is represented by a bit string,
it is a space efficient data structure. This data structure is
defined by a bit array of m bits, k different hash functions
and n elements. An empty Bloom filter is a bit array of
m bits, all set to 0. To add an element, input it to each
of the k hash functions to get k array positions. Set the
bits at all these positions to 1. To test whether it is in
the set, input it to each of the k hash functions to get k
array positions. If any of the bits at these positions is 0,
the element is not in the set. In contrast if all are 1, the
element is in the set.

However, there is possibility that all of the bit at there
position are 1 during the addition of other elements, even
though the test element is definitely not in the set, it is
judged that it is in the set. This is false positive. On the
other hand, if any of the bits at these positions is 0, the
element is not in the set. Since the Bloom filter consists
of a bit array, elements can not be deleted. Since each
element is inserted in an array with k bits, can be deleted
if any bit set to 0. But the bit set to 0 can be represented
as 1 in other elements, resulting in a other elements are
deleted, so false negatives will occur.

Therefore, CBF was proposed in which no false neg-
atives occurred. Counting Bloom filter [8] is a type of
Bloom filter and is a data structure that has ability of
deleting elements. It differs greatly from Bloom filter is
the structure of the array. In the Bloom filter, each element
of the array is only 1 bit, but in the counting Bloom
filter, each element of the array is expanded to n bits. The
insert operation is extended to increment the value of the
array positions. The delete operation is also extended to
decrement the value of the array positions. the search(test
whether it is in the set) operation checks that each of the
array positions is non-zero. If all are more than 1, the
element is in the set.

3. Construction

We now give the main construction of DXT protocol
and then prove its performance and analyze its security

3.1. Protocol

DXT uses (for security parameter λ) (i) a cyclic group
G with prime order p and generator g, for which the DDH
assumption holds(ii) a symmetric key encryption scheme
Sym with key space {0, 1}λ(iii) a Counting Bloom filter

CBF with length m and k hash functions (iv) PRFs F
with range {0, 1}λ and Fp with range Z∗

p
In DXT, two data sets are used, one is an improved

version of the OXT[3] data set, and the other gener-
ates a data set employing CBF. DXT can be divided
into three parts: setup, search, and update. In this paper,
explanation of Keygen algorithm in the definition of
SSE is omitted. In the SSE definition, the setup part
corresponds to BuildIndex, the search part corresponds
to SearchTrapdoor, Search, and the update part corre-
sponds to AddTrapdoor, DelTrapdoor, Add, Del.

Algorithm 1 Setup
Input: mks, param.DB
Output: EDB

1: function Setup(mks, param.DB)
2: mks : (Ks for PRF F and KI ,KZ ,KX for Fp)
3: param : (H for hash function)
4: Initialize T
5: Initialize CBF ← 0m

6: for w ∈W do
7: Kp||Ke ← F (Ks, w)
8: set counter c← 1
9: for id ∈ DB(w) do

10: xid← Fp(KI , id), zw ← Fp(KZ , w||c)
11: yc ← xid · z−w1
12: l← F (Kp, c)
13: ec ← Sym.Enc(Ke, id)
14: add (l, ec, yc) to T
15: c++
16: end for
17: end for
18: DTIDX ← create(T)
19: for w ∈W do
20: for id ∈ DB(w) do
21: xid← Fp(KI , id)
22: for j = 1 : k do // k is a number of H
23: hj ← Hj(g

Fp(KX ,w)·xid)
24: CBF [hj] + +
25: end for
26: end for
27: end for
28: CFIDX ← CBF
29: EDB = (DTIDX,CFIDX)
30: return EDB
31: end function

The setup is a process of outputting an encrypted
data set (EDB = {DTIDX,CFIDX}) with a secret
key,hash function and stored(DB) as inputs. DTIDX
is a data set that can identify document IDs accord-
ing to keywords by storing values y = Fp(KI , id) ·
Fp(KZ , w||c)−1 and l = F (Kp, c) depending on docu-
ment IDs and keywords. Similarly, CFIDX stores values
gFp(KX ,w)·Fp(KI ,id) depending on the document ID and
the keyword, but stores values depending on the input to
the hash function Hj(1≤j≤k)(g

Fp(KX ,w)·Fp(KI ,id)) and +1
of the mapped CBF.

The search part receives multiple keywords and out-
puts a document ID including all the keywords. Let search
query be q = (ws;w2, ..., wm). ws is set to a keyword
having the lowest appearance frequency than other key-
words. First, ws is subjected to a single keyword using

Algorithm 2 Search
Input: mks, param,W = (w1, ..., wn)
Output: Result R

1: function Search(mks, param,W)
2: mks : (Ks for PRF F and KZ ,KX for Fp)
3: param : (H for hash function)
4: Kp ← F (Ks, w1)
5: send Kp to the server
6: Initialize t← {}
7: for c = 1 until Get returns ⊥ do
8: l← F (Kp, c)
9: yc ← Get(DTIDX, l)

10: Add yc to t
11: end for
12: return t to user
13: for c = 1 : |t| do
14: Initialize CBFc ← 0m

15: recovers yc from t
16: nw1

← Fp(KZ , w1||c)
17: for l = 2 : n do
18: xtoken← gnw1

·Fp(KX ,wl)

19: xtag = xtokenyc

20: for j = 1 : k do
21: uj ← Hj(xtag)
22: CBFc[uj] + +
23: end for
24: end for
25: end for
26: send (CBF1, ..., CBFt) to the server
27: Initialize R← {}
28: for c = 1 : |t| do
29: recovers ec from DTIDX ′s result
30: for i = 0 : m do
31: Vc = CFIDX[m]− CBFc[m]
32: end for
33: if Vc has no negative value then
34: add ec to R
35: end if
36: end for
37: return R
38: end function

DTIDX . The value of l = F (Kp, c) stored in DTIDX
is searched as a trapdoor, and the value of y and the
number of search result are returned to the user. The user
generates a CBF corresponding to q = (ws;w2, ..., wm)
based on the received data, and performs a search us-
ing CFIDX . Hj(1≤j≤k)(g

Fp(KZ ,w1||c)·Fp(KX ,wl)·y)(l :
2, ...,m) is stored in CBF. The value stored in
CFIDX is Hj(1≤j≤k)(g

Fp(KX ,w)·Fp(KI ,id)). Therefore,
if the value of y is Fp(KI , id) · Fp(KZ , w||c)−1, it
is gFp(KZ ,w1||c)·Fp(KX ,wl)·y = gFp(KX ,w)·Fp(KI ,id) and
matches the value of CFIDX , otherwise it becomes a
random value. Since y indicates an ID including ws, if
the values of CBF and CFIDX match, it can be said that
the ID is included in the entire q.This makes it possible
to search for conjunction.

In the update part, the keyword to be updated is input,
and update operation is performed on the stored EDB. In
order to avoid new information leakage, using a new key
without the key which used in the first generated data set.

Algorithm 3 Update
Input: mks,w,DTIDX,CFIDX,S,OP
Output: DTIDX ′, CFIDX ′, S′

1: function Update(mks,w,DTIDX ′, CFIDX ′, S)
2: mks : (K+

s ,K−
s for F and K+

I ,K+
Z ,K+

X for Fp)
3: recovers (DTIDX,CFIDX) from EDB
4: S ← {}
5: if OP = Add then
6: K+

p ||K+
e ← F (K+

s , w)
7: K−

p ← F (K−
s , w))

8: c← Get(Dcount, w)
9: if c = ⊥ then

10: c← 0
11: end if
12: xid← Fp(K

+
I , id), zw ← Fp(K

+
Z , w||c)

13: y ← xid · z−w1
14: l← F (K+

p , c)
15: e← Sym.Enc(K+

e , id)
16: rm← F (K−

p , id)
17: send (l, e, y, rm) to server
18: if rm ∈ S then
19: remove rm from S
20: end if
21: add (l, e, y) to DTIDX
22: else if OP = Delete then
23: K−

p ← F (K−
s , w)

24: rm← F (K−
p , id)

25: send rm to the server
26: add rm to S
27: end if
28: DTIDX ′, S′ ← DTIDX,S
29: xid← Fp(K

+
I , id)

30: up← gFp(K
+
X ,w)·xid

31: send up to the server
32: for j = 1 : k do
33: uj ← Hj(up)
34: if OP = Add then
35: CFIDX[uj] + +
36: end if
37: if OP = Delete then
38: CFIDX[uj]−−
39: end if
40: end for
41: CFIDX ′ ← CFIDX
42: return DTIDX ′, CFIDX ′, S′

43: end function

When adding keywords, create a trapdoor for each and
add it to the EDB. In the case of deletion, a data set S
for deletion is newly generated, and a keyword is stored
in S. The deletion function is realized by checking S and
determining whether or not to search when searching. It is
necessary to change the search parts by adding this update
function, but the detailed algorithms is described in full
paper.

4. Security

In this section, we proof DXT security based on
the simulation-based, Non-adaptive security defined by
Curtmola[4]. Show the attacker the actual protocol Real

and the protocol Idel built by Simulator S. S is con-
structed based on ”unavoidable information leakage” by
Real protocol. Currently, if the attacker cannot identify
Real or Idel, it is determined that the actual protocol does
not leak more information than ”unavoidable information
leakage”, and is defined as secure.

In DXT (Real), the value is calculated based on the
key known only to the user, but the index and trapdoor are
actually stored based on the pseudo random function and
the DDH assumption. Therefore, if S generates a random
value without the key and generates an index or trapdoor
according to the ID or keyword using random value,
it cannot be distinguished from Real under a pseudo-
random function or DDH assumption. Therefore, DXT
achieves Non-adaptive security.

This simulation base has Adaptive security in addi-
tion to Non-adaptive security, and assumes a stronger
attacker. DXT can achieve adaptive security by employing
homomorphic encryption. In Adaptive security, it cannot
be achieved if the value of CBF is disclosed to the
server. Therefore, by encrypting CBF with homomorphic
encryption, achieving security without impairing the con-
ventional search and update functions. Detailed security
proofs and construction algorithms using homomorphic
encryption are described in full paper.

5. Performance

In this section, we consider computational cost, stor-
age cost, and information leakage while comparing with
other protocols.

5.1. Computational cost

In this section, since there are two data sets, we
consider time cost of DTIDX and CFIDX separately.
DTIDX increases search time when the amount of data
stored is large. The stored data increases in the order of
the keywords and the number of documents including the
keywords DB(w) as can be seen from the 6 and 9 lines
of the Setup algorithm. Since keywords increase basically
with the number of DBs, it can be said that they increase
with the order of DBs. In addition, the search increases
with the order O(DB(w)) of the number of DBs including
the search keywords. For example, keywords included in
many DBs such as“ THE” take a long time to search,
and rare keywords such as“Homomorphic”do not take
a long time to search. Since [6],[12] wants to search all
documents for one keyword, it is DB’s order O(DB).
Obviously DB(w) does not exceed the number of DBs,
so DXT can be said to be more efficient than [6],[12] in
DTIDX single keyword search.

CFIDX clearly becomes the order O(w) of the
number of keywords to be searched. The search time also
changes depending on the number of results output by
DTIDX . When the output result of DTIDX is S(w),
the exact order of CFIDX is O(S(ws) × m − 1) for
q = (ws;w2, ..., wm). Therefore, ws can be efficiently
searched by selecting the query with the lowest appear-
ance frequency among the queries. However, since the
CBF of CFIDX stores all data as one array, it does not
depend on the number of DBs. Since [6],[12] depends on
the number of search keywords and the number of DBs,

it can be said that DXT is more efficient than [6],[12] in
conjunction search.

5.2. Storage cost

For DTIDX , Storage cost is basically the order
O(DB) of the number of DBs. CFIDX is similarly
O(DB), but the amount of data for one keyword is very
small. In OXT, since values depending on the document
ID and keyword as corresponding to CFIDX , the data
amount depends on the prime number p. Considering
practicality, p is preferably 1024 bits or more, and there-
fore requires a data amount of 1024 bits per keyword.
However, in CFIDX , the amount of data per keyword
can be suppressed to the number of hash functions bit
by inputting values depending on the document ID or
keywords. It is said that the number of hash functions
used to generate CFIDX is about 7∼12, so it is greatly
reduced from OXT. Compared with BF, according to
section 2.2, increased from 1bit to nbit, but since n is
at most 2 ∼ 4 from [14], it is not a large increase as a
whole.

5.3. Information leakage

Since a search is performed using multiple keywords,
not only the information of the search result but also
the information expressed in the relationship between the
keywords is leaked. Consider the following document
group:

id keywords id keywords
1 w2, w3, w4, 4 w4, w5

2 w1, w2 5 w3, w5

3 w1, w2, w3 6 w1, w3

TABLE 1. LEAKAGE COMPARISON FOR QUERY w1 ∧ w2 ∧ w3

BETWEEN Z-IDX, OXT, AND DXT

Protocol Leaked elements
Z-IDX[6] {(id1, w2), (id2, w2), (id3, w2)

(id1, w3), (id3, w3), (id5, w3), (id6, w3)}
OXT[2] {(id2, w2), (id3, w2), (id3, w3), (id6, w3)}

DXT {(id3, w2), (id3, w3)}

Consider searching for the conjunction of w1∧w2∧w3.
Let w1 be less frequently searched than other search
keywords. The document ID’s containing each of the
queried words are DB(w1) = {id2, id3, id6}, DB(w2) =
{id1, id2, id3}, DB(w3) = {id1, id3, id5, id6}.

If the search is simply performed in the order of w1 to
w3, the leaked IDs are ∪3j=1(DB(wj)) = {id2, id3, id6}∪
{id1, id2, id3} ∪ {id1, id3, id5, id6}, and the information
of all the searched keywords is leaked as a result pattern.
Therefore, OXT searches for w1 first and keeps taking the
intersection with the result, thereby reducing information
leakage. In the case of w1 ∧w2 ∧w3, information will be
leaked only for ∪3j=2(DB(w1)∩DB(wj)) = {id2, id3}∪
{id3, id6}. However, even with this protocol, information
of IDs other than id3 that is the result of w1 ∧ w2 ∧ w3

is also leaked.

In DXT, similarly to OXT, w1 is searched first, but
w2 and w3 are combined into one of the data, and the
intersection with the result of w1 is obtained. Therefore,
the leaked IDs are ∩3j=2DB(wj) = {id3} and the leaked
information is smaller than OXT. Table 1 shows that for
Z-IDX and OXT where the number of information leaks is
7 and 4 elements, DXT can be reduced to only 2 elements
of information leaks.

However, if an attacker performs a malicious search
procedure, information similar to OXT may be leaked.
For example, after w1 ∧ w2 ∧ w3 are searched, w1 ∧ w2

are searched, and a difference between values that can
be obtained in the middle is obtained, so that the search
results of w1 ∧ w3 can be obtained, and the result
{id2, id3} ∪ {id3, id6} leaks. Therefore, this information
leakage is avoided by sending the query at random. This
is because even if a difference is obtained by generating a
query at random, it is not known what information it has.
The random send increases the cost on the user side, but
it is considered that the increase amount is small because
only the order of transmission is stored.

6. Evaluations

In this section, we compare and evaluate the imple-
mentation of DXT and other protocols.

6.1. Implementation

In this implementation, we compare search time with
[12]. There are multiple values to be changed for imple-
mentation, such as the number of documents, the number
of search keywords, and the number of single keyword
searches, but as described in the calculation amount, it
can be expected to change depending on the number of
documents and the number of search keywords. In this
implementation, the number of documents (Experiment
1) and the number of search keywords (Experiment 2) are
changed and compared. In Experiment 1, the number of
documents n is varied from 1 to 10000, and 100 words are
searched. At this time, the number of searches output by
DTIDX is set so that it does not exceed 50 (when n is
100 or less, it is set to n/2). In Experiment 2, the number
of search keywords is varied from 1 to 10000 and the
number of searches output by DTIDX is set to 50 (n/2).
The hash function is SHA-1[9], the number of hashes is 7,
and the prime number p and the generator g are each 1024
bits. The implementation environment is OS: Windows10,
CPU: Intel corei7-6700k, Memory:16GB, Python: 3.6

�����

����

���

�

��

���

� �� ��� ���� �����

�

�

�

�

�

�

�

�

�

��������	��
������
�

�������

	
�����

Figure 1. Search time for documents

�����

����

���

�

��

���

� �� ��� ���� �����

�

�

�

�

�

�

�

�

�

��������	�
����

�������

	
�����

Figure 2. Execute time of keywords

6.2. Evaluation result

Figure 1 shows the results of Experiment 1 and Figure
2 shows the results of Experiment 2. As can be seen from
Figure 1, the search time of [12] increases as the number
of documents increases, but DXT seems to be constant
even when the number of documents increases. Regarding
DTIDX , if the number of documents increases, the
amount of data increases and the search time increases.
However, since it is a single keyword to the last, the
specific gravity in the entire search time is small. On the
other hand, since CFIDX generates only one CBF even
if the number of documents increases, only one data set is
referred to during retrieval. In addition, since the number
of single keyword search results is set so as not to exceed
50, the total search time only calculates 100×50 at most.
On the other hand, [12] calculates 100×n because the
number of data to be referred to increases as the number
of documents increases. Therefore, it is considered that
the results shown in Figure 1 that do not depend on DB
were obtained.

As shown in Figure 2, the time increases as the number
of keywords of both methods increases. However, it can
be seen that DXT has about half the search time compared
to [12]. Since DTIDX is a single keyword, it is always
constant in Experiment 2. As for CFIDX , the time
increases depending on the number of search keywords.
However, since the number of single keyword searches is
constant at 50 as in Experiment 1, the calculation amount
is 50×w. On the other hand, since [12] refers to 100
documents for one keyword, the calculation amount is
100×w. Therefore, it is considered that the result shown
in Figure 2 was obtained.

Evaluate Figure 1 and Figure 2, [12] increased in
time according to the number of DBs and the number
of keywords, but in DXT, it was found that it depended
on the number of keywords but not on the number of DBs.
On the other hand, there is a big difference between 10
and 100 in Figure 1 regardless of the number of DBs. This
is thought to come from the difference in the number of
single keyword search results. When the number of DBs is
10, the number of search results is 5, and when it is 100, it
is 50. In search on CFIDX , considered to depend on the
result of DTIDX , not the number of DBs, because the
trapdoor is generated depending on the number of single
keyword search results as described in the construction.
Also, looking at the real time, searching for 100 words
for 10000 DBs is 0.28 seconds, so it is practical.

7. Conclusion

In this paper, we proposed two SSEs that can update
and efficiently search for conjunction keywords by em-
ploying Counting Bloom Filter. The multiple keywords
search that we normally perform can be performed safely
and efficiently, and the update can be processed without
adding significant changes to the data, making it easy
to implement. Further, even if the number of documents
increases, a search can be performed at high speed de-
pending on conditions. From the implementation results,
it can be said that 100 words can be searched in 0.28
seconds.

This protocol can only search for intersections with
conjunction keywords. For this reason, future research will
focus on SSE proposals that can handle arbitrary logical
expressions using multiple keywords, and SSEs that cause
less information leakage.

References

[1] Shangqi Lai,Sikhar Patranabis,Amin Sakzad,Joseph K. Liu,Debdeep
Mukhopadhyay,Ron Steinfeld,Shi-Feng Sun,Dongxi Liu,Cong
Zuo.Result Pattern Hiding Searchable Encryption for Conjunctive
Queries.CCS ’18, October 1519, 2018,

[2] D. Cash, S. Jarecki, C.S. Jutla, H. Krawczyk, M-C. Rosu, and M.
Steiner. 2013. Highly-Scalable Searchable Symmetric Encryption
with Support for Boolean Queries. In CRYPTO ’13. 353373.

[3] D. Cash, J. Jaeger, S. Jarecki, C.S. Jutla, H. Krawczyk, M-C. Rosu,
and M. Steiner. 2014. Dynamic Searchable Encryption in Very-Large
Databases: Data Structures and Implementation. In NDSS ’14.

[4] R. Curtmola, J.A. Garay, S. Kamara, and R. Ostrovsky. 2006.
Searchable symmetric encryption: improved definitions and efficient
constructions. In ACM CCS ’06. 7988.

[5] Motoki Miyano, Satoshi Obana:Updatable Searchable Symmet-
ric Encryption with Fine-Grained Delete Functionality.CANDAR
Workshops 2018: 438-444

[6] E.-J. Goh. Secure Indexes. Cryptology ePrint Archive, Report
2003/216. http://eprint.iacr.org/2003/216, 2003.

[7] B. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422426, Jul 1970.

[8] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache: A
scalable wide-area Web cache sharing protocol. In Proceeding of
SIGCOMM ’98, 1998

[9] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for
message authentication. In N. Koblitz, editor, Proceedings of Crypto
1996, volume 1109 of Lecture Notes in Computer Science, pages
115. Springer-Verlag, Aug 1996.

[10] D.X. Song, D. Wagner, and A. Perrig. Practical techniques for
searches on encrypted data. IEEE Symposium on Security and
Privacy, pp.44-55, 2000.

[11] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable
symmetric encryption. ACM Conference on Computer and Commu-
nications Security, pp.965-976, 2012.

[12] Leyla Tekin, Serap Sahin. Implementation and Evaluation of Im-
proved Secure Index Scheme Using Standard and Counting Bloom
filters. INTERNATIONAL JOURNAL OF INFORMATION SECU-
RITY SCIENCE, Vol.6, No.4, pp46-56, 2017

[13] S. Bellovin and W. Cheswick. Privacy-enhanced searches using en-
crypted bloom filters. Cryp- tology ePrint Archive, Report 2004/022,
Feb 2004. http://eprint.iacr.org/2004/022/.

[14] S. Tarkoma, C.E. Rothenberg, E. Lagerspetz. Theory and practice
of bloom filters for distributed systems. IEEE Communications
Surveys and Tutorials, Vol.14, No.1, pp.131-155, 2012.

[15] Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword
searches on remote encrypted data. ACNS, Vol.5, pp.442- 455, 2005.

[16] Kamara, S., Papamanthou, C.: Parallel and Dynamic Searchable
Symmetric Encryption. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS,
vol. 7859, pp. 258274. Springer, Heidelberg 2013.

