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Abstract—In this research, we consider a strong ramp se-
cret sharing scheme that can detect cheating. A cheating-
detectable (k, L, n) ramp secret sharing scheme has been
studied so far, and a strong ramp secret sharing scheme
which achieves lower bounds on the size of shares and
random number used in encoding (i. e., share generation),
and the success probability of impersonation attack has been
presented. Now a challenging task is to achieve the lower
bound on the success probability of substitution attack.

In this paper, we present a strong (2, 2, n) ramp secret
sharing scheme that almost achieves the lower bound on
the success probability of substitution attack. The proposed
scheme is the first to almost achieve the lower bound.
Moreover the proposed scheme also achieves other lower
bounds such as those on the size of shares and random
number used in encoding, and the success probability of
impersonation attack. We take a unique strategy to construct
the scheme. Most existing works present generic type veri-
fication functions which can detect cheating for any linear
and strong (k, L, n) ramp scheme. On the other hand, our
proposed verification function (one of those which we call
limited type verification functions) can detect cheating when
used with a linear and strong (2, 2, n) ramp scheme satisfying
a certain property.

1. Introduction

In secret sharing schemes (SSSs for short), a secret is
divided into multiple shares in a way that only qualified
sets of shares can recover the secret. Therefore, secret
sharing plays an important role for preventing information
leakage. In addition, the risk of information loss can
be reduced because the secret can be recovered from
remaining shares in case some shares are lost. Further,
secret sharing draws a lot of attention as a building block
for secure multiparty computation. In (k, n) SSSs [1],[2],
a secret is divided into n shares in a way that any k shares
uniquely determine the secret, while less than k shares
obtain no information concerning the secret. An important
variant of (k, n) SSSs is a (k, L, n) ramp SSS [3] which
gradually reveals information concerning a secret from
k − t (1 ≤ t ≤ L − 1) shares. The merit of (k, L, n)
ramp SSSs is in its small share size. The size of each
share is 1

L of the size of a secret while the size of each
share is the same as that of the secret in (k, n) SSSs.

In SSSs, when some shares are forged, a secret recov-
ered from them becomes an incorrect value. Such attacks
can be classified into two types, impersonation attacks that
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generate a forged share without knowing a correct share
and substitution attacks that generate a forged share using
a correct share. SSSs that can detect these attacks have
been studied extensively so far.

In (k, n) SSSs, Cabello et al. [4] have proposed meth-
ods which modify any linear SSS to cheating-detectable
schemes. Ogata et al. [5] have derived the lower bound on
the size of shares for a given success probability of sub-
stitution attack and have proposed a cheating-detectable
(k, n) SSS which achieves the lower bound on the size
of shares. Also, Cramer et al. [6] have introduced alge-
braic manipulation detection (AMD) codes. By applying
AMD codes to an arbitrary linear SSS, it is converted
to a cheating-detectable scheme. Their construction flexi-
bly accommodates arbitrary choices of security level and
the cardinality of space of a secret. In (k, L, n) ramp
SSSs, Nakamura et al. [7], [8] have proposed a cheating-
detectable strong (k, L, n) ramp SSS. Their proposed
scheme achieves lower bounds on the size of shares and
random number used in encoding, and the success proba-
bility of impersonation attack. However, when the number
of forged shares is less than k, the success probability
of substitution attack is nearly L times the lower bound,
therefore, there is room to improve the scheme.

In this paper, we present a cheating-detectable strong
(2, 2, n) ramp SSS which achieves lower bounds on the
size of shares, the size of random number used in encod-
ing, and the success probability of impersonation attack,
and almost achieves the lower bound on the success
probability of substitution attack. Our scheme can be
applied to a secret S2∈GF (pm)2, where p is a prime
number. We suppose that an attacker can forge up to k−1
shares, computation power of an attacker is unbounded,
and an attacker does not know a secret S2 (OKS model).
A well-known technique to achieve cheating detection
is to introduce a verification function with which the
correctness of a recovered secret is verified. The most
unique part of our research is that we introduce a notion
of “limited type” verification functions. A limited type
verification function is a function which can detect attack
when a generator matrix of a ramp SSS satisfying certain
conditions is used. In our scheme, S1·S2 is used as a
verification function and a generator matrix of a strong
(2, 2, n) ramp SSS satisfying a certain condition (shown
in Section 3) is used. We also show that such generator
matrices exist, and that most generator matrices satisfy
the condition, when pm ≫ 2n − 1 holds. To the best of
our knowledge, our scheme is the first to almost achieve
the lower bound on the success probability of substitution
attack and also the first to introduce a notion of limited
type verification functions.



With the notion, functions that could not be used as
verification functions in a conventional notion of verifica-
tion functions can be used as verification functions if there
are conditions which functions can guarantee security
against attack. However, applying our strategy to more
generalized parameters is probably difficult. We discuss it
in the full version of this paper.

2. Preliminaries

In this paper, for a subset J = {i1, ..., ij}⊆{1, ..., n},
XJ denotes (Xi1 , ..., Xij ). Hp(·) denotes entropy with
base p in logarithm (the base p of Hp(·) is omitted
for simplicity). Also, Ip(·; ·) denotes mutual information
with base p in logarithm. Furthermore, iℓ ̸=iℓ̂, for ℓ̸=ℓ̂ in
{i1, . . ., ik} is assumed.

2.1. (k, L, n) Ramp SSSs

We describe (k, L, n) ramp SSSs. Let SL = S1S2...SL

be a secret, and all of them (Sj , 1≤j≤L) are mutually
independent. Further, these have the same probability dis-
tribution PS over a finite set S. We introduce the encoder
and the decoder. The encoder ϕ which generates shares
is defined as a function ϕ : SL×R→V1×V2×· · ·×Vn,
namely, (V1, ..., Vn) = ϕ(SL, R). Here, Vi is the range
of the share Vi and R is a uniform random number
over a finite set R. The decoder ψK is defined as a
function ψK : Vi1×· · ·×Vik→SL∪{⊥} for each K =
{i1, ..., ik} ⊆ {1, ..., n} (in this paper, we consider the
case that a secret is recovered from just k shares, and to
treat a cheating-detectable scheme, we introduce a symbol
⊥ that means “detect forgery”). K of ψK is omitted for
simplicity. If (ϕ, ψ) satisfies the following conditions (i)
and (ii), it is called a (k, L, n) ramp SSS. When L = 1,
(ϕ, ψ) is a (k, n) SSS. On the other hand, (ϕ, ψ) satisfies
all of following conditions, it is called a strong (k, L, n)
ramp SSS (if (ϕ, ψ) satisfies (i) and (ii) but does not satisfy
(iii), it is called a weak (k, L, n) ramp SSS).

(i) For any {i1, ..., ik}⊆{1, ..., n}, the following
holds.

ψ(Vi1 , ..., Vik) = SL

(ii) For any t∈{1, ..., L} and any I⊆{1, ..., n}
(|I| = k − t), the following holds.

H(SL|VI) =
t

L
H(SL)

(iii) For any t∈{1, ..., L}, any I⊆{1, ..., n} (|I| =
k − t), and any J⊆{1, ..., L} (|J | = t), the
following holds.

H(SJ |VI) = H(SJ )

In particular, from [3], shares are obtained as follows for a
secret SL∈GF (pm)L, where pm satisfies (k < pm, n ≤
pm − L+ 1) or (n = k ≥ pm, L = 1).

[V1· · ·Vn] = [S1· · ·SL R1· · ·Rk−L]A

A∈GF (pm)k×n is called a generator matrix of a (k, L, n)
ramp SSS. If A is a generator matrix of a strong
(k, L, n) ramp SSS, any k columns {c1· · ·ck} cho-
sen from {e1· · ·eL a1· · ·an}, where a1, . . .,an are n
columns of A and e1· · ·ek are k columns of k×k identity
matrix, satisfy rank[c1· · ·ck] = k.

2.2. Successful Cheating Probabilities and Lower
Bounds

We show the definition of successful cheating proba-
bilities of cheating-detectable schemes. Let a (1 ≤ a ≤
k − 1) be the number of forged shares, let V̄O and
VO,O = {i1, ..., ia} be forged shares and corresponding
correct shares, respectively, and let VI , I = {ia+1, ..., ik}
be remaining shares satisfying |I| = k−a and O∩I = ∅.
An impersonation attack is an attack that an attacker
generates V̄O without knowing VO, namely, V̄O is in-
dependent of (VO, VI). A substitution attack is an at-
tack that an attacker generates V̄O using VO, that is,
VI , VO and V̄O make a Markov chain in this order. In
impersonation attacks, there are two definitions of the
success of attack. One is ψ(V̄O, VI )̸=⊥, and the other is
ψ(V̄O, VI)/∈{SL,⊥}. On the other hand, in substitution
attacks, ψ(V̄O, VI)/∈{SL,⊥} is the only meaningful def-
inition. The success probabilities of impersonation attack(
Pimp∗(a), Pimp(a)

)
and substitution attack

(
Psub(a)

)
are

as follows.
Definition 1. The successful cheating probabilities

Pimp∗(a) = max
O,I⊆{1,...,n}:
|O|=a,|I|=k−a,

O∩I=∅

max
PV̄O

Pr{ψ(V̄O, VI )̸=⊥}

Pimp(a) = max
O,I⊆{1,...,n}:
|O|=a,|I|=k−a,

O∩I=∅

max
PV̄O

Pr{ψ(V̄O, VI)/∈{SL,⊥}}

Psub(a) = max
O,I⊆{1,...,n}:
|O|=a,|I|=k−a,

O∩I=∅

max
vO∈VO

max
PV̄O|VO

Pr{ψ(V̄O, VI)/∈{SL,⊥}|VO = vO}

Next, we describe the definition of correlation level.
Definition 2. Correlation level

The correlation level of (V1, ..., Vn) is defined
as (l1, ..., lk−1)p if for any j∈{2, ..., k} and any
{i1, ..., ij}⊆{1, ..., n}, it holds that

Ip(Vi1 ;Vi2 |Vi3 , ..., Vij ) = lj−1.

For j = 2, Ip(Vi1 ;Vi2) = l1.

Nakamura et al. [8] have derived lower bounds of (k, L, n)
ramp SSSs.
Proposition 1. For any (k, L, n) ramp SSS with correla-

tion level (l1, ..., lk−1),

log |Vi|≥
1

L
H(SL) +

k−1∑
j=1

lj , i = 1, ..., n,

log |R|≥k − L

L
H(SL) +

k−1∑
j=1

jlj ,

logPimp∗(a)≥−
a∑

j=1

k−a∑
j′=1

lj+j′−1, a = 1, ..., k − 1,

logPimp(a)≥−
a∑

j=1

k−a∑
j′=1

lj+j′−1 + log (1−Qmax,L),

a = L, ..., k − 1, (Qmax,L := max
SL∈SL

PSL(sL)).



In addition, in a strong (k, L, n) ramp SSS,

logPimp(a)≥−
a∑

j=1

k−a∑
j′=1

lj+j′−1 + log (1− (Qmax)
a),

a = 1, ..., L− 1, (Qmax := max
S∈S

PS(s)).

Furthermore, when Sj is uniformly distributed over S,
the following holds in a strong (k, L, n) ramp SSS.

Psub(a)≥
|S| − 1

|Vi|
, a = 1, ..., k−1, for any i∈{1, . . ., n}

(1)

However, we note that the bound (1) is not tight. Propo-
sition 1 holds for any base p > 1 of logarithm.

Next, we show a cheating-detectable strong (k, L, n)
ramp SSS proposed by Nakamura et al. [8].

2.3. Cheating-Detectable Strong (k, L, n) Ramp
SSS

Their scheme can be applied to a secret SL and can
detect substitution attacks of up to k − 1 shares. Also,
OKS model is supposed. Their verification function is
h(S1, S2, . . . , SL) =

∑L
j=1(Sj)

j+1.
Suppose that each Sj is uniformly distributed over

S = GF (pm). Here, m is a positive integer and p is
a prime number that satisfies p≥L+ 2. Let l∈{1, ...,m}.
Then, assume that the followings hold.

(k < pm, n ≤ pm − L+ 1) or (n = k ≥ pm, L = 1)

(k < pl, n ≤ pl) or (n = k ≥ pl)

Let f be a surjective linear mapping (f :
GF (pm)→GF (pl)). It satisfies following two properties.

∀x1, x2∈GF (pm), f(x1 + x2) = f(x1) + f(x2) (2)

∀y∈GF (pl), |{x∈GF (pm) : f(x) = y}| = pm−l (3)

Encoding is performed as follows. Shares are defined as
Vi := (Wi, Ui) (1≤i≤n) where Wi∈GF (pm) is a share
of SL obtained by a linear strong (k, L, n) ramp SSS, and
Ui∈GF (pl) is a share of f(

∑L
j=1(Sj)

j+1) obtained by a
linear (k, n) SSS. In particular, shares are given by[
W1 · · · Wn

]
=
[
S1 · · · SL R1 · · · Rk−L

]
A,[

U1 · · · Un

]
=
[
f(
∑L

j=1(Sj)
j+1) R′

1 · · · R′
k−1

]
B.

Here, (R1, ..., Rk−L, R
′
1, ..., R

′
k−1) is a uniform random

number over GF (pm)k−L×GF (pl)k−1, A∈GF (pm)k×n

is a generator matrix of a strong (k, L, n) ramp SSS, and
B∈GF (pl)k×n is a generator matrix of a (k, n) SSS.

Decoding is performed as follows. Let V̂i1 =
(Ŵi1 , Ûi1), ..., V̂ik = (Ŵik , Ûik) be the input of the de-
coder, let a1, ...,an be columns of A, and let b1, ..., bn
be columns of B. Then, define C∈GF (pm)k×k and
D∈GF (pl)k×k as

C = (cij) :=
[
ai1 · · · aik

]−1
,

D = (dij) :=
[
bi1 · · · bik

]−1
.

From the encoding procedure, the followings hold for
correct shares (Wi1 , Ui1), . . ., (Wik , Uik).[
S1 · · · SL R1 · · · Rk−L

]
=
[
Wi1 · · · Wik

]
C

[
f(
∑L

j=1(Sj)
j+1) R′

1 · · · R′
k−1

]
=
[
Ui1 · · · Uik

]
D

Thus, the decoder checks whether

f

(∑L

j=1

(∑k

ℓ=1
cℓjŴiℓ

)j+1
)

=
∑k

ℓ=1
dℓ1Ûiℓ

holds or not. If it holds, the decoder outputs ŜL where

Ŝj =
∑k

ℓ=1
cℓjŴiℓ , j = 1, ..., L.

If it is not satisfied, the decoder outputs ⊥.

Proposition 2. Their proposed scheme is a strong (k, L, n)
ramp SSS with correlation level (0, ..., 0, l)p, and the
size of shares, the size of random number used in
encoding, and successful cheating probabilities are as
follows.

logp |Vi| = m+ l, i = 1, ..., n,

logp |R| = (k − L)m+ (k − 1)l,

Pimp∗(a) = p−l, a = 1, ..., k − 1,

Pimp(a) = p−l(1− p−m·min{a,L}), a = 1, ..., k − 1,

Psub(a)≤Lp−l, a = 1, ..., k − 1.

For any correlation level (0, ..., 0, l)p, their scheme
achieves the lower bounds of (k, L, n) ramp SSSs (or
strong (k, L, n) ramp SSSs) on the size of shares, the
size of random number used in encoding, Pimp∗(a), and
Pimp(a). In addition, Psub(a) is nearly L times the lower
bound of strong (k, L, n) ramp SSSs.

3. Proposed Scheme

We propose a cheating-detectable strong (2, 2, n) ramp
SSS which almost achieves the lower bound on Psub(a).
We employ S1·S2 as a verification function, which is a
limited type. We define a limited type verification function
as a function which can guarantee security against attack,
when using a generator matrix of a (k, L, n) ramp SSS
satisfying certain conditions. On the other hand, we define
a generic type verification function as a function which
can guarantee security against attack for arbitrary gen-
erator matrices of (k, L, n) ramp SSSs. The verification
function used in [8] is the generic type in our definition.
Limited types are the same as generic types, except that
applicable generator matrices are “limited”.

First, we show the condition of a generator matrix
of a strong (2, 2, n) ramp SSS with which our verification
function detects substitution attacks. Second, we show that
there are generator matrices satisfying the condition and
show the number of such generator matrices. Finally, we
show our scheme.



3.1. Condition of Strong (2, 2, n) Ramp SSSs

We show the condition of a generator matrix.
To achieve cheating detection, the verification function
h(S1, S2) = S1·S2 is used, and also b = S1·S2 is
divided into shares by using a (2, n) SSS. Furthermore, in
verification, the decoder checks whether Ŝ1·Ŝ2 = b̂ holds
or not, where Ŝi, i∈{1, 2} is a recovered secret and b̂ is
a recovered b. From the fact that S1·S2 = b holds, an
attacker needs to satisfy Ŝ1·Ŝ2 − S1·S2 = b̂ − b with a
forged value. In this research, an attacker can know and
forge one share. Since a (2, n) SSS is used to divide b,
an attacker can manipulate the value of b̂ − b. Thus, to
detect forgery, Ŝ1·Ŝ2 − S1·S2 must be a function of a
share (of a secret) which is unknown to an attacker (i.e.,
an attacker cannot manipulate the value of it). Now, we
consider a strong (2, 2, n) ramp SSS which can be applied
to a secret S2∈GF (pm)2 (p is a prime number and m is
a positive integer). Here, 2 < pmand n ≤ pm − 1 hold.
In particular, shares are given by

[W1 W2 · · · Wn] = [S1 S2]X (4)

where X∈GF (pm)2×n is a generator matrix of a strong
(2, 2, n) ramp SSS. From (4), the following holds

[S1 S2] = [Wi1 Wi2 ][xi1 xi2 ]
−1

for any two correct shares Wi1 and Wi2 (x1, . . .,xn are
columns of X).

Assume that an attacker forges Wi1 . Let W̄i1 =Wi1+
δ1 (δ1∈GF (pm)) and Wi2 be the input of the decoder.
Then,

S̄1 = x′11(Wi1 + δ1) + x′21Wi2

S̄2 = x′12(Wi1 + δ1) + x′22Wi2

hold, where X ′ = (x′ij) := [xi1 xi2 ]
−1. In addition, the

following is obtained.

S̄1·S̄2 − S1·S2

= (x′11x
′
22 + x′12x

′
21)δ1Wi2 + x′11x

′
12δ1(2Wi1 + δ1)

(5)

When (x′11x
′
22+x

′
12x

′
21) = 0 holds, (5) is not a function of

Wi2 , and an attacker can manipulate the value of (5). On
the other hand, if (x′11x

′
22+x

′
12x

′
21)̸=0 holds, (5) becomes

a linear polynomial in Wi2 . Thus, it is the condition of a
generator matrix of a strong (2, 2, n) ramp SSS with which
S1·S2 detects forgery (of course, in the case δ1 = 0, the
term (x′11x

′
22+x

′
12x

′
21)δ1Wi2 becomes 0 even if (x′11x

′
22+

x′12x
′
21)̸=0 holds, however there is no forgery). Naturally,

the condition is the same in the case Wi2 is forged. In
this paper, we call the generator matrices satisfying the
condition (x′11x

′
22 + x′12x

′
21 ̸=0) “generator matrices for

securing S1·S2”.

3.2. Number of Generator Matrices of Strong
(2, 2, n) Ramp SSSs for Securing S1·S2

We show the number of generator matrices of strong
(2, 2, n) ramp SSSs satisfying the condition (for securing
S1·S2) through the process of constructing such matrices.
From [3, Theorem 2, 3] and the condition, in order for
2×n matrix X∈GF (pm)2×n (where p is a prime number,

m is a positive integer, and n ≥ 2) to be a generator matrix
satisfying the condition, the following conditions must be
satisfied.

(c1) All elements of X are not 0.

(c2) An arbitrary 2×2 matrix M = (mij) which
is consisted of any two columns of X has
an inverse matrix. In other words, m11m22 −
m12m21 ̸=0 holds.

(c3) The inverse matrix of M (we denote it M ′ =
(m′

ij)) satisfies the condition for securing
S1·S2, namely, m′

11m
′
22 +m′

12m
′
21 ̸=0 holds.

Obviously, (c1)∧(c2) is the necessary and sufficient
condition for X to be a generator matrix of a strong
(2, 2, n) ramp SSS. Further, (c1)∧(c2)∧(c3) is the nec-
essary and sufficient condition for X to be a generator
matrix of a strong (2, 2, n) ramp SSS for securing S1·S2.

We show the following theorem about the number of
matrices (which are elements of GF (pm)2×n) satisfying
the above conditions.
Theorem 1. If 2n− 1 < pm (p is a prime number greater

than or equal to 3) holds, there are
n∏

t=1

{(pm − 1)2 − 2(t− 1)(pm − 1)}

2×n matrices satisfying conditions (c1) to (c3). Fur-
ther, in the case p = 2, if n < 2m holds, there are

n∏
t=1

{(2m − 1)2 − (t− 1)(2m − 1)}

2×n matrices satisfying conditions (c1) to (c3). On
the other hand, if these are not satisfied, there is no
2×n matrix satisfies conditions (c1) to (c3).
Moreover, if n < pm (p is a prime number) holds,
there are

n∏
t=1

{(pm − 1)2 − (t− 1)(pm − 1)}

2×n matrices satisfying conditions (c1) and (c2). On
the other hand, if it is not satisfied, there is no 2×n
matrix satisfies conditions (c1) and (c2).

We show the proof of Theorem 1 in the full version of
this paper. Now, we show a simple example of X which
satisfies (c1) to (c3).

A simple example. Such X can be easily obtained by
constructing the following matrix.[

1 1 · · · 1
x1 x2 · · · xn

]
∈GF (pm)2×n (6)

Here, (6) satisfies that x1 to xn are non-zero,
xi ̸=xj (for i̸=j), and any xi (i∈{1, ..., n}) is not additive
inverse of any xj (j∈{1, ..., n}\{i}) over GF (pm). When
p ≥ 3, if 2n − 1 < pm holds, such a matrix exists,
obviously. When p = 2, it exists if n < 2m holds.

From Theorem 1, when p ≥ 3, the ratio of the number
of generator matrices of strong (2, 2, n) ramp SSSs for



securing S1·S2 to the number of generator matrices of
strong (2, 2, n) ramp SSSs is∏n

t=1

pm − (2t− 1)

pm − t
=
∏n

t=1

(
1− t− 1

pm − t

)
.

If pm ≫ 2n−1 holds, the ratio is close to 1 and it shows
that the majority of generator matrices are generator ma-
trices for securing S1·S2. In the case p = 2, all generator
matrices are generator matrices for securing S1·S2.

3.3. Almost Optimal Cheating-Detectable Strong
(2, 2, n) Ramp SSS using S1·S2

We show our scheme. Our proposed scheme can be
applied to S2∈GF (pm)2. Here, m is a positive integer and
p is a prime number. We suppose that each Sj is uniformly
distributed over S = GF (pm). In our scheme, there is no
restriction on p (e.g., the scheme of [8] has the restriction
p≥L + 2) because of using S1·S2. Let l∈{1, ...,m}. We
assume that the following holds.

(k = 2 < pm, 2n− 1 < pm) and (k = 2 < pl, n ≤ pl)

When p = 2,

(k = 2 < 2m, n < 2m) and (k = 2 < 2l, n ≤ 2l).

Let f be a surjective linear mapping (f :
GF (pm)→GF (pl)). It satisfies (2) and (3). For example,
such a mapping is given by the mapping that extracts the
last l digits from x∈GF (pm) in vector representation.

The encoding procedure is as follows. Shares are
defined as Vi := (Wi, Ui) (1≤i≤n). In particular,
Wi∈GF (pm) and Ui∈GF (pl) are given by[

W1 · · · Wn

]
=
[
S1 S2

]
A,[

U1 · · · Un

]
=
[
f(S1·S2) R′

1

]
B.

Here, A∈GF (pm)2×n is a generator matrix of a lin-
ear strong (2, 2, n) ramp SSS for securing S1·S2,
B∈GF (pl)2×n is a generator matrix of a linear (2, n)
SSS, and R′

1 is a uniform random number over GF (pl).
The decoding procedure is as follows. Let V̂i1 =

(Ŵi1 , Ûi1) and V̂i2 = (Ŵi2 , Ûi2) be the input of the
decoder, let a1, ...,an be columns of A, and let b1, ..., bn
be columns of B. Then, define C∈GF (pm)2×2 and
D∈GF (pl)2×2 as

C = (cij) :=
[
ai1 ai2

]−1
,

D = (dij) :=
[
bi1 bi2

]−1
.

From the encoding procedure, the followings hold for
correct shares (Wi1 , Ui1) and (Wi2 , Ui2).[

S1 S2

]
=
[
Wi1 Wi2

]
C[

f(S1·S2) R′
1

]
=
[
Ui1 Ui2

]
D

The decoder checks whether

f((c11Ŵi1+c21Ŵi2)·(c12Ŵi1+c22Ŵi2)) =
∑2

ℓ=1
dℓ1Ûiℓ

(7)
holds or not. If it holds, the decoder outputs Ŝ2 where

Ŝj = c1jŴi1 + c2jŴi2 , j = 1, 2.

If it is not satisfied, the decoder outputs ⊥.

Theorem 2. Our proposed scheme is a strong (2, 2, n)
ramp SSS with correlation level (l)p, and the size of
shares, the size of random number used in encoding,
and successful cheating probabilities are as follows.

logp |Vi| = m+ l, i = 1, ..., n, (8)
logp |R| = l, (9)

Pimp∗(a) = p−l, a = 1, (10)

Pimp(a) = p−l(1− p−m), a = 1, (11)

Psub(a) ≤ p−l, a = 1. (12)

Furthermore, for any correlation level (l)p, (8) to (11)
achieve the lower bounds of (k, L, n) ramp SSSs or the
lower bound of strong (k, L, n) ramp SSSs, and (12)
almost achieves the lower bound of strong (k, L, n)
ramp SSSs.

Before proving Theorem 2, we show the following lemma.
Lemma 1. For any {i1, i2}⊆{1, . . ., n}, 3-tuple

(Wi1 ,Wi2 , Ui1) is uniformly distributed over
GF (pm)2×GF (pl). In particular, these 3 random
variables are mutually independent.

Lemma 1 can be proven in the same way as [8, Lemma
2] (see the full version).

Proof of Theorem 2. We briefly show it as follows.

Proof that our scheme is a strong (2, 2, n) ramp SSS
with correlation level (l)p. It can be proven from the
fact that we use a strong (2, 2, n) ramp SSS to divide a
secret into shares and a (2, n) SSS to divide f(S1·S2) into
shares, and Lemma 1. □

Proofs of (8) and (9). These are clear from
Vi∈GF (pm)×GF (pl) and R′

1∈GF (pl). Moreover, these
achieve the lower bounds from Proposition 1. □

For showing the proofs of (10), (11), and (12), we
assume that, in decoding, one share Vi1 = (Wi1 , Ui1) is
forged into V̄i1 = (W̄i1 , Ūi1), and Vi2 = (Wi2 , Ui2) is
correct. Let

∆j(Wi1 , W̄i1) = S̄j−Sj (S̄j = c1jW̄i1+c2jWi2), j = 1, 2.

Define
g(W̄i1 ,Wi1 ,Wi2)

:= (c11W̄i1 + c21Wi2)·(c12W̄i1 + c22Wi2)

− (c11Wi1 + c21Wi2)·(c12Wi1 + c22Wi2).

From (7),

f((c11W̄i1+c21Wi2)·(c12W̄i1+c22Wi2)) = d11Ūi1+d21Ui2
(13)

needs to be satisfied, for attack to succeed. Then, we have

f(g(W̄i1 ,Wi1 ,Wi2)) = d11(Ūi1 − Ui1) (14)

from (13), the property of f , and the fact that correct
shares satisfy

f((c11Wi1+c21Wi2)·(c12Wi1+c22Wi2)) =
∑2

ℓ=1
dℓ1Uiℓ .

Thus, the definition of the success of attack
ψ(V̄i1 , Vi2) ̸=⊥ is given by (14), and ψ(V̄i1 , Vi2)/∈{S2,⊥}
is given by (14) and

∆1(Wi1 , W̄i1 )̸=0 and ∆2(Wi1 , W̄i1 )̸=0. (15)



Proofs of (10) and (11). These are proven from the
fact that (W̄i1 , Ūi1), Wi1 , Ui1 , and Wi2 are mutually
independent, and others (see the full version). In addition,
these achieve the lower bounds from Proposition 1. □

Proof of (12). We consider the case that the value of a
share to be forged is Vi1 = vi1(= (wi1 , ui1)). Define

V̄ ′
i1 := {(w̄i1 , ūi1)∈(GF (pm)×GF (pl)) :

Pr{(W̄i1 , Ūi1) = (w̄i1 , ūi1)|Vi1 = vi1} > 0,

∆1(wi1 , w̄i1) ̸=0, ∆2(wi1 , w̄i1) ̸=0}.

Now, to prove (12), we show the following lemma.
Lemma 2. Fix (w̄i1 , ūi1) ∈ V̄ ′

i1
arbitrarily. Then,

there are pm−l values of wi2∈GF (pm) which satisfy
f(g(w̄i1 , wi1 , wi2)) = d11(ūi1 − ui1).

Proof of Lemma 2. From the property of f , f(α) =
d11(ūi1 − ui1) is satisfied for just pm−l values of
α∈GF (pm). In addition, when (w̄i1 , ūi1) ∈ V̄ ′

i1
,

g(w̄i1 , wi1 , wi2) = (c21∆2(wi1 , w̄i1) + c22∆1(wi1 , w̄i1))wi2

+ (c11∆2(wi1 , w̄i1) + c12∆1(wi1 , w̄i1))wi1

+∆1(wi1 , w̄i1)·∆2(wi1 , w̄i1)

is obtained. The coefficient of wi2 is represented as
(c11c22+c12c21)δ1 (here, δ1 is defined as δ1 = w̄i1−wi1).
From (w̄i1 , ūi1) ∈ V̄ ′

i1
and using a generator matrix for

securing S1·S2, (c11c22 + c12c21)δ1 ̸=0 holds. Since the
coefficient of wi2 is non-zero, g(w̄i1 , wi1 , wi2) is a linear
polynomial in wi2 . Hence, there is one value of wi2 which
satisfies g(w̄i1 , wi1 , wi2) = α for each of α. Thus, there
are pm−l values of wi2 satisfying f(g(w̄i1 , wi1 , wi2)) =
d11(ūi1 − ui1). □

From the above, the success probability of substitution
attack is as follows.

Pr{ψ(V̄i1 , Vi2)/∈{SL,⊥}|Vi1 = vi1}
= Pr{(14), (15)|Vi1 = vi1}
=

∑
v̄i1∈V̄′

i1

Pr{(14), V̄i1 = v̄i1 |Vi1 = vi1}

=
∑

v̄i1∈V̄′
i1

Pr{V̄i1 = v̄i1 |Vi1 = vi1}

·Pr{(14)|Vi1 = vi1 , V̄i1 = v̄i1}
(a)
= p−l

∑
v̄i1

∈V̄′
i1

Pr{V̄i1 = v̄i1 |Vi1 = vi1}

≤p−l

(16)

Here, (a) holds because

Pr{(14)|Vi1 = vi1 , V̄i1 = v̄i1}
= Pr{f(g(w̄i1 , wi1 ,Wi2)) = d11(ūi1 − ui1)|Vi1 = vi1}
= p−m·pm−l = p−l.

(17)

(17) holds from the Markov chain V̄i1→Vi1→Wi2 ,
Pr{Wi2 = wi2 |Vi1 = vi1} = p−m for any wi2∈GF (pm)
(from Lemma 1), and Lemma 2.

(16) holds for any vi1 = (wi1 , vi1). Compared to
(1), the lower bound has not been achieved, to be exact
(Psub(a=1) is within 1

1−p−m times the lower bound with

|Vi| = pm+l). However, (1) is not tight. Thus, it (almost)
achieves the lower bound. □
From the above, Theorem 2 is proven. □

4. Difficulty of Applying Our Strategy to
More Generalized Parameters

Our verification function cannot apply to more gen-
eralized parameters, in particular, (k ≥ 3, 2, n). In the
parameters, an attacker can succeed in substitution attacks
with probability 1 and no condition of a generator matrix
prevents it. In addition, applying our strategy to more
generalized parameters (k, L, n) is probably difficult. This
is because, conditions of a generator matrix with which a
verification function detects substitution attacks are prob-
ably complicated in k, L ≥ 3. We discuss them in detail
in the full version of this paper.

5. Conclusion

In this research, we have proposed an (almost) opti-
mal cheating-detectable strong (2, 2, n) ramp SSS using
S1·S2. The proposed scheme achieves the lower bounds
on the size of shares, the size of random number used
in encoding, and the success probability of impersonation
attack, and almost achieves the lower bound on the success
probability of substitution attack for any correlation level
(l)p. Our scheme differs from existing research in that
it uses a limited type, and is the first to almost achieve
the lower bound on the success probability of substitution
attack.

The future task is to propose a cheating-detectable
strong (k, L, n) ramp SSS (not only (2, 2, n)) which
achieves the lower bounds on them.
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