
PDF issue: 2024-12-26

A New Mutant Generation Algorithm based
on Path Coverage for Mutant Reduction

Xu, Qin

(出版者 / Publisher)
法政大学大学院情報科学研究科

(雑誌名 / Journal or Publication Title)
法政大学大学院紀要. 情報科学研究科編

(巻 / Volume)
15

(開始ページ / Start Page)
1

(終了ページ / End Page)
6

(発行年 / Year)
2020-03-24

(URL)
https://doi.org/10.15002/00022719

A New Mutant Generation Algorithm based on Path
Coverage for Mutant Reduction

Xu Qin
Graduate School of Computer and Information Sciences

Hosei university
Tokyo, Japan

qin.xu.6d@stu.hosei.ac.jp

Abstract—Mutation testing is a fault-based white-box testing
technique that can be applied to evaluate the adequacy of a
given test suite, but its application is very time-consuming due
to the necessity of generating and executing a great number of
mutants. How to reduce the cost still remains a challenge for
research. In our research, we present a new mutant generation
algorithm based on the basic path coverage to reduce mutants.
The algorithm is characterized by implementing a basic path
segment identification criterion for determining appropriate pro-
gram points at which faults are inserted and a mutant generation
priority criterion for selecting proper mutant operators to make
a fault for insertion. We discuss the algorithm by analyzing how
the two criteria are realized based on analyzing the control flow
graph (CFG) of the program under test and applying effective
mutation operators on the appropriate statements in the relevant
path segments. We also present an automated mutation testing
tool that supports the proposed approach, and a small experiment
to evaluate our tool by comparing it with a traditional mutation
testing method on six programs. The result of the experiment
suggests that using the method of this paper, the high mutation
score can be maintained while reducing the number of mutants.

Keywords—Mutation Testing, Path Coverage, Mutant Reduc-
tion, Control Flow Graph

I. INTRODUCTION

Mutation testing [1] is a effectively white-box testing tech-
nique which can be used to evaluate and improve test suite’s
adequacy, and predict the possible faults present in our system.
As a testing technique, mutation testing can truly reveal
various flaws of software. But in industry the mutation testing
technique has not been widely applied [2][3]. The main reason
is that mutation testing is so time-consuming (a large number
of mutants and long execution time).

In recent years, many researches have been carried out
in order to apply mutation testing in practical application,
including mutant random selection [10], high-order mutant
[12], mutant clustering methods [13], selective mutation oper-
ators [11], mutant detection optimization, mutant compilation
optimization , and parallel execution of mutants.

Although the above mutant reduction methods have been
used, there is little work on combining the mutation testing
with the conventional path coverage testing. In our research,
an algorithm for generating mutants based on the basic path
coverage is proposed. We first introduce the criteria for iden-
tifying the path segments where faults need to be inserted and
the mutant generation priority criteria for producing mutants.
We then present a mutant generation algorithm under the

∗ Supervisor: Prof. Shaoying Liu

constraint of these criteria. The main idea is to insert simple
syntactic changes on each basic path of the given program
to produce mutants. Combining the traditional path testing
coverage with the mutation testing can not only assess the
efficiency of the ability of test suite for detecting some
possible faults, but also achieve basic path coverage which
can effectively improve the effectiveness of given test case
set.

It is difficult to do mutation testing without a software
tool. So we present an a mutation testing tool that supports
the proposed approach, which can generates and executes the
mutants automatically. We design three components for our
tool: the mutant generator, the mutant viewer, and the test
executor. The mutant generator component generates mutants
automatically by using the effective mutation operators. It
takes Java files as input and a set of mutants as output. The
mutant viewer lists the information of our generated mutants.
And it also show the original code and the code of each
mutant, which can help us to know which part was changed.
The test executor run the test case set on generated mutants and
shows the test result by analyzing the mutation score of our
test case set. All this three components provide GUI for testers
to use. We have carried out an experiment on the tool for
validating the effectiveness of our proposed approach. From
the result we can see that our method can significantly improve
the efficiency of mutation testing by reducing mutants but also
with high mutation score.

Here lists our contributions:

• Proposing a new mutant generation algorithm by combing
the mutation testing and basic path coverage testing for
reducing generated mutants.

• Designing and implementing a mutation testing tool to
validate our proposed method.

The rest of the paper has the following organization. Sec-
tion 2 introduces the related work on reducing the mutation
testing cost. Section 3 gives some definitions and discuses
the implementation process of our proposed mutant generation
algorithm based on basic path coverage. Section 4 designs and
implements a mutation testing tool to support the proposed
approach. Section 5 presents an empirical research to evaluate
the efficiency of our proposed method. The conclusion of this
paper and the future direction of our research are shown in
Section 6.

II. RELATED WORK

In recent years, many research have been carried out in
order to reduce the cost and improve the efficiency of mutation
testing,. In this section, we briefly introduce the research
progress of test optimization techniques to reduce the number
of mutants.

Acree [10] proposed a method called Mutant Sampling,
which randomly select a certain proportion of mutants from
all mutants generated for mutation testing. This method can
effectively reduce the number of mutant but with lower mu-
tation score.

Hussian [13] proposed a method called the method of
Mutant Clustering which classify mutants with similar char-
acteristics, and then randomly select a part of variants from
each class for mutation testing. Experiment shows that the
clustering method can achieve a good reduction of the number
of mutants without affecting the validity of the mutation
testing.

Mathur [11] proposed a method which select partial mu-
tation operators applied for mutation testing. This method of
generating fewer mutants using a small number of mutation
operators is called constraint mutation. Offut et al. further
proposed a method of ”selective mutation”.

Jia and Harman [12] introduced a Higher Order Mutation
method. That is, a high-order mutation consists of multiple
single-order mutations, and the use of higher-order mutants
instead of single-order mutants can effectively reduce the
number of mutants.

Although the above mutant reduction technology can reduce
the number of mutants, it can not guarantee the path coverage
of the program, which affects the sufficiency evaluation ability
of the test case set. In this paper, a mutant generation algorithm
based on basic path coverage and control flow analysis is used
to select the appropriate sentence segment to be inserted into
error of the basic path, which reduce the number of mutants
and realize the basic path coverage. It not only assess whether
the test case set can kill the mutants, but also assess whether
the test case set can achieve basic path coverage.

III. OUR PROPOSED MUTANT GENERATION
ALGORITHM

A. PRELIMINARY

In order to facilitate the description of the algorithm, we
first give the following definitions:

Definition 1 (Immediate predecessor node and successor
node).

A immediate predecessor node nh of a node ni in is a node
that satisfy PG(ni) = nh|(nh, ni) ∈ E. (PG(ni) means the
immediate predecessor node of node ni; E is a set of directed
edges in G.)

A immediate successor node nj of a node ni in is a node
that satisfy SG(ni) = nj |(ni, nj) ∈ E.(SG(ni) means the
immediate successor node of node ni.)

Definition 2 (Leaf node, sequence node and selection node).

A leaf node ni is a node that satisfy SG(ni) = Ø and
∃!PG(ni). It means a leaf node only have one input edge and
no output edge.

A sequence node ni is a node that satisfy ∃!PG(ni) and
∃!SG(ni). It means a sequence node only has one input edge
and one output edge.

A selection node ni is a node containing a condition. It
means a selection node have more than one output edge.
Note that compound Boolean expressions generate at least two
predicate node in control flow graph.

Definition 3 (Sequence path-segment, Unique path-
segment).

A sequence path-segment sp = (n1, n2, ...nn)is a path
segment that the first node is a selection node and the other
nodes ni of sp is either a sequence node or a leaf node.

A unique path-segment is a path-segment that satisfy upsi =
(Ni, Ei)|Ei 6∈ ∀upsj . It means that any edges of a ups is
unique from other unique path-segments.

B. THE FAULT INSERTION PATH SEGMENTS IDENTIFI-
CATION CRITERION AND MUTANT GENERATION PRIOR-
ITY CRITERION

In order to generate mutants, we need to find the ba-
sic path segments in which faults are to be inserted and
then use appropriate operators to generate mutants for the
basic path segments we marked above. Here, we introduce
a fault insertion basic path segments identification criterion
for determining appropriate program segments and a mutant
generation priority criterion for selecting proper statements for
fault insertion. Also for each rule, a simple example will be
given.

Fault insertion path segments identification rule 1 (R1).
If there exists a leaf node ni in the control flow graph, then

trace back to it’s immediate predecessor node nh, if nh is a
sequence node, then continue to trace back to it’s immediate
predecessor node until we meet a non sequence node na, and
mark this sequence-path segment sp = (na, ..., nh, ni) as a
path segment to be inserted into fault.(a fault is a simple
syntactic change).

The following figure Fig 1 illustrates the application of
R1: node 5 is a leaf node and trace back to it’s immediate
predecessor node 4 and continue to trace back to the non
sequence node 2. Then marks the sequence-path segment
sp = (n2, n4, n5) as a path segment for fault insertion.

Fault insertion path segments identification rule 2 (R2).
Find all the unique path-segment ups upsi =

(Ni, Ei)|Ei 6∈ ∀upsj in each basic paths in the control
flow graph CFG and mark this ups as a path segment. If
there is a loop structure in the program, the basic path only
includes no loop and one loop.

The following figure Fig 2 illustrates the application of the
rule R2: we can find all the basic paths, path1:1-7; path2:1-
2-3-6-7; path3:1-2-4-6-7; path4:1-2-4-5-6-7 ,and then find the
unique path-segment ups1:1-7; ups2:2-3-6; ups3:4-6; ups4:-4-
5-6. These unique path-segments are path segments suitable
for fault insertion.

Fig. 1. A example for identification rule1

Fig. 2. A example for identification rule2

Mutant generation priority criterion 1 (P1).
For each path-segment of path-segments set ps =

(ps1, ps2, ..., psn), if there is a sequence node ni at the psi,
we insert the fault at the statement of ni. And if ni =
(s1, s2, ..., sn) (s means statement), we insert a fault at the
first statement.

As shown in Fig.2: For the path segment ps1:2-3-6, using
P1 we find a single node 3, and use the appropriate mutation
operator AOM to generate the mutant ,the statement ’y=y+x’
of the node3 will be mutated to ’y=y-x’ .

Mutant generation priority criterion 2 (P2).
For each path-segment of path-segments set ps =

(ps1, ps2, ..., psn), if there is no sequence node and there is
a selection node (predicate operation) ni at the psi, use the
appropriate mutation operator to insert the simple syntactic
change (fault) at the selection node ni.

As shown above, for the path segment ps2:4-6, using P2 we
find a selection node 4, and generate the mutant ’if(y ≤ 4)’
for the node 4 statement ’if(y < 4)’ using the appropriate
mutation operator CBM.

Mutant generation priority criterion 3 (P3).
If there is no sequence node and no selection node in the

psi, inserted fault in the first statement of remaining nodes
which are suitable to be inserted fault.

C. THE MUTANT GENERATION ALGORITHM

Applying the fault insertion basic path segments identifica-
tion criterion for determining appropriate program segments
at which faults are inserted and a mutant generation priority
criterion for selecting proper statements to make a fault for
insertion above, we propose an algorithm whose input is a
program and the output is a mutant set.

Algorithm 1 Basic Path Coverage based on Mutant Generation
Algorithm
Input:

Original program, P ;
Output:

Mutant set, M ;
1: Function mutant-generation(program p) {
2: Draw CFG for each functions in original program p;
3: Set FPS=Ø;
4: for each CFGi ∈ CFG do
5: initialize FPSi = Ø ;
6: if ∃SPinCFGi then
7: add sp into FPSi, FPSi → FPSi + sp;
8: end if
9: for each CFGiinCFG do

10: find all the unique path-segment ups;
11: add ups into FPSi, FPSi → FPSi + ups;
12: end for
13: end for
14: add FPSi into FPS, FPS =

(FPS1, FPS2, ..., FPSn);
15: for each ps in EPS do
16: Set M=Ø;
17: if ∃sequencenode then
18: generate mutant mi from the sequence node state-

ment si for fault insertion;
19: add mi into M , M →M + mi;
20: else if ∃selectionnode then
21: generate mutant mj from the selection node state-

ment sj for fault insertion;
22: add mj into M , M →M + mj ;
23: else
24: generate mutant mk from the selection node state-

ment sk for fault insertion;
25: add mk into M , M →M + mk;
26: end if
27: end for
28: Return M;
29: }

The algorithm is shown above. First, draw the control flow
graph CFG of the original program. Then, using the basic
path segments identification criterion to determine appropriate
program points at which faults are inserted by analyzing the
program control flow graph(CFG) and find the appropriate
fault insertion path segments in the CFG. Finally, using the
mutant generation priority criterion to generate mutants, it

means selecting the appropriate mutation operator to generate
mutant at the appropriate statement of the path segments
we marked above. The steps of this algorithm are shown as
follows:

Step 1. For the original program p, we divide it into
some program modules or functions p = (f1, f2, ..., fn)
and draw a CFG for each module or function CFG =
(CFG1, CFG2, ..., CFGn).

Step 2. Do analysis for CFGi, find the appropriate fault
insertion basic path-segments FPSi in the CFG.

• First Initialize FPSi to empty, if the CFG have leaf node,
apply the fault insertion basic path segments identification
rule 1 (R1) to find a sequence path-segment sp, add sp
into FPSi;

• Then apply the rule2 to find unique path-segments ups
on the CFG, add each ups into FPSi;

• Then we can get a fault insertion path-segment set
FPSi = (sp1, ups1, ups2, ..., upsn).

Step 3. Repeat step 2 for each CFGi to get the total fault
insertion path-segment set FPS = (FPS1, FPS2, ..., FPSn)
for the original program.

Step 4. Do analysis for each path-segment psi in the fault
insertion path-segment set FPS using the mutant generation
priority criterion above and get a mutants set Mi.

• apply P1, generate mutant for a sequence node statement
using appropriate mutation operator. For example, MAO,
IO, VMC;

• apply P2, generate mutant for a predicate node statement;
• apply P3, generate mutant for the first statement of

remaining node that can be inserted into fault.
Step 5. For each path-segment psi in the fault insertion

path-segments set FPS, Repeat the above step 4) to get the
mutants setM = M1,M2, ...,Mn of the original program P.

IV. TOOL IMPLEMENTATION

Our proposed algorithm is aiming at reducing the cost of
mutation testing by generating less but effectively mutants.In
order to validate the efficiency and effectiveness (accuracy of
mutation score), we implement an automated mutation testing
tool to support our algorithm. It takes the program and test
case set as input, does the mutation testing automatically, and
finally produces a analysis report to show the test result.

The main functions of this automated mutation testing tool
are using effective mutation operators to generate mutants
(mutant generation), executing the given test case set on the
mutants (mutant execution), showing the result and report of
mutation testing (result analysis). Figure 4 shows the overall
structure of our mutation testing tool. It is composed of 3
components.

The mutant generator generates mutants by using the ef-
fective mutation operators. It generate mutants for selected
java files. The GUI for the mutant generator can help us
to choose which project and which files under test. The
mutant viewer component lists the detailed information for
each generated mutant including operatorType, lineNumber,

description and so on. And it also shows the code of original
program and mutant which help us to know which statement of
program under test is mutated and design test cases to kill the
generated mutants. The test executor runs the test case set on
generated mutants and reports the testing result by computing
the mutation score of given test case set.

Fig. 3. The overall structure of the automated mutation testing tool.

A. MUTANTS GENERATOR

According to the above design, we implement the tool using
Java Swing and the user interface are shown as follows. Figure
5 shows how the Mutants Generator works. We can select the
project and a set of Java files under test to create mutants,
view the description of applied mutation operators, and press
the “Generate” button to prompt the tool to generate mutants.
The Mutants Viewer panel will show the information for each
mutant after generation.

Fig. 4. The Mutants Generator GUI.

B. MUTANTS VIEWER

The Mutants Viewer panel in Figure 6 lists all the generated
mutants and shows some detailed description of each mutant.

It help us to analyze mutants by displaying the information
of each mutant and which statement of given program is
changed by the mutant. It is divided into two parts. The upper
part is a mutants list which shows a brief descriptions of the
each mutant including a operatorType, className, description
and lineNumber. The lower part shows the original code and
the mutant. By choosing a mutant in the mutants list of the
upper part, the lower part will show the original java file and
the mutant, which helps testers to know which statement is
mutated, design test cases to kill mutants which are difficult
to kill.

Fig. 5. The Mutants Viewer GUI.

C. TEST EXECUTOR

Figure 7 shows the GUI of the Test Executor panel. Lower
left part shows the number () of mutants generated by different
operator type. The lower right part shows the results of
mutation testing and the number of live mutants and dead
mutants. Also, the tester can export the result into a HTML
file, which shows test results more clearly and can be saved as
important test document. The testing report is shown in Figure
8.

V. EXPERIMENT FOR OUR METHOD

In order to assess the effectiveness of our proposed method,
6 benchmark programs were selected as the tested programs,
all of which were written in JAVA language. Feasibility and
effectiveness were assessed using empirical and comparative
studies.

A. RESEARCH QUESTIONS

Our experiment described here mainly focuses on the fol-
lowing Research Questions (RQs):

RQ 1. Can our algorithm proposed in this paper effectively
reduce the mutant’s number? (by calculating the reduction
rate of mutants)

Fig. 6. The Test Executor GUI.

Fig. 7. The testing report in a HTML file.

We proposed a mutant reduction rate to assess the ability
of the mutant reduction. The mutant reduction rate is:

MRR =
Mt −Mp

Mt
(1)

Mt: mutant’s number generated in traditional method, Mp:
mutant’s number generated by the proposed method. The MRR
shows that the higher the reduction rate is, the better outcomes
the effectiveness of this method in reducing mutants.

RQ 2. Can a test case set that kills mutants generated by
the proposed algorithm be able to kill mutants of traditional
methods ?

Here,we use the mutation score as evaluation index:

MS =
MK

Ma −Me
∗ 100 (2)

Mk: the number () of killed mutants, Ma: the number () of
all generated mutants, Me: the number of () all equivalent
mutants.

The test case set used in this paper’s experimental evaluation
is constructed using traditional test case generation algorithms,

such as boundary value analysis, statement coverage, and
branch coverage.

B. EXPERIMENT RESULT ANALYSIS

As shown below, we clearly see that mutant’s number in
this method is much smaller than traditional methods.

Fig. 8. The comparison of generated mutants.

As shown in Table 1, J2 obtained the largest reduction rate
of 65.9% in 6 programs, J1 obtained the minimum reduction
rate of 48.9%, all programs reached a high reduction rate,
and we can see the average reduction rate of six programs is
55.3%, which suggests that our proposed method has a high
efficiency in reducing generated mutant’s number.

TABLE I
THE REDUCTION RATE OF EACH EXPERIMENTAL SUBJECT.

ID Number of mutants
in traditional
method

Number of mutants
in proposed method

Reduction
Rate

J1 47 24 48.9%
J2 44 15 65.9%
J3 22 11 50%
J4 21 9 57.1%
J5 25 10 60%
J6 38 19 50%

TABLE II
THE MUTATION SCORE OF EACH EXPERIMENTAL SUBJECTS.

ID Mutants # Killed
Mutants#

Mutation
Score%

J1 47 43 91.4%
J2 44 39 88.6%
J3 22 20 90.9%
J4 21 19 90.5%
J5 25 24 96%
J6 38 35 92.1%

The table 2 shows the detection results of the test case set
that can detect the mutants generated by the proposed method
on the traditional mutants set. The mutation score is used as the
evaluation index. It can be seen that for all the tested programs,
the average mutation scores exceed 91.5% and only a small
number of mutants(55.3%) are used. So using the method of
this paper, the high mutation score can be maintained while
generating less mutants.

VI. CONCLUSION

In this paper, a mutant generation method based on basic
path coverage is proposed for reducing generated mutant’s
number in mutation testing. Different from the previous meth-
ods, by analyzing the control flow structure and basic path of
the source program, an identification of path segments suitable
for fault insertion and a priority criteria for generating mutants
are proposed. By using these criteria to select some appropriate
statements for mutation operation, the mutants needed to kill is
reduced and the coverage of the basic path is achieved, which
improves the effectiveness of the mutation testing. In order to
evaluate the efficiency (mutant’s number) and effectiveness
(accuracy of mutation score) of our proposed method, we
implement an automated mutation testing tool to support our
algorithm. Our method was applied to 6 tested programs, and
the results showed that using the method of this paper, the high
mutation score can be maintained while reducing the number
of mutants.

This work has opened up a research direction of mutation
test optimization technology. The next steps include using
more efficient mutation operators to generate mutants, using
a larger industrial application sample program to evaluate the
effectiveness of the method, and exploring other more efficient
mutant reduction techniques.

REFERENCES

[1] Jia, Y. & Harman, M. . (2011). An analysis and survey of the develop-
ment of mutation testing. IEEE Transactions on Software Engineering,
37(5), 649-678.

[2] Offutt, A. J. , & Untch, R. H. . (2001). Mutation 2000: Uniting the
Orthogonal. Mutation Testing for the New Century. Kluwer Academic
Publishers.

[3] Just, René, Ernst M D , Fraser G . Efficient mutation analysis by
propagating and partitioning infected execution states.[C]// 2014.

[4] Siami Namin A , Andrews J H , Murdoch D J . [ACM Press the 13th
international conference - Leipzig, Germany (2008.05.10-2008.05.18)]
Proceedings of the 13th international conference on Software engi-
neering, - ICSE 0̈8 - Sufficient mutation operators for measuring test
effectiveness[J]. 2008:351.

[5] Allen, F. E. . (1970). Control flow analysis. Acm Sigplan Notices, 5(7),
1-19.

[6] Zapata, F. , Akundi, A. , Pineda, R. , & Smith, E. . (2013). Basis
path analysis for testing complex system of systems. Procedia Computer
Science, 20(Complete), 256-261.

[7] Papadakis M , Malevris N . Automatically performing weak mutation
with the aid of symbolic execution, concolic testing and search-based
testing[J]. Software Quality Journal, 2011, 19(4):691-723.

[8] G. Eason, B. Noble, and I. N. Sneddon, “On certain integrals of
Lipschitz-Hankel type involving products of Bessel functions,” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.

[9] Fraser G , Zeller A . Mutation-Driven Generation of Unit Tests and Or-
acles[J]. IEEE Transactions on Software Engineering, 2012, 38(2):278-
292.

[10] A.T. Acree.On Mutation. PhD dissertation, Georgia Inst. of Technology,
1980.

[11] Mathur A P . Performance, effectiveness, and reliability issues in
software testing[C]// International Computer Software & Applications
Conference. IEEE, 1991.

[12] Jia Y , Harman M . Constructing Subtle Faults Using Higher Order
Mutation Testing[C]// Source Code Analysis and Manipulation, 2008
Eighth IEEE International Working Conference on. IEEE, 2008.

[13] Hussain S.Mutation Clustering[Ph.D. dissertation]. King’s College, lon-
don,UK,2008.

