法政大学学術機関リポジトリ HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-01-14

マルチコイルモータによる回転軸振動の低減 方法

小林, 智和 / KOBAYASHI, Tomokazu

(出版者 / Publisher)
法政大学大学院理工学研究科
(雑誌名 / Journal or Publication Title)
法政大学大学院紀要.理工学・工学研究科編
(巻 / Volume)
60
(開始ページ / Start Page)
1
(終了ページ / End Page)
5
(発行年 / Year)
2019-03-31
(URL)
https://doi.org/10.15002/00022016

マルチコイルモータによる回転軸振動の低減方法

AXIAL VIBRATION REDUCING METHOD USING MULTI-COIL MOTOR

小林智和

Tomokazu KOBAYASHI 指導教員 安田彰

法政大学大学院理工学研究科電気電子工学専攻修士課程

Axial vibration occurs when an unbalanced motor rotates and the centrifugal force acts on it. That is the main cause of the noise and the performance degradation. A multi-coil motor system has been proposed as a motor realizing high precision driving. This paper proposes axial vibration reducing method controlling not only rotary torque but also magnetic attractive force against the axis of rotation by using multi-coil motor. Using MATLAB/Simulink simulation, the axial vibration reduction is shown.

Key Words : multi coil motor, axial vibration

1. はじめに

近年,モータは様々な用途で利用され,家庭の電化製品 から工場で使用される加工機などに用いられている.モ ータには高精度な回転が求められ,低振動,低騒音が望ま れている.

振動や騒音は回転軸振動が主な要因となっている.回 転軸振動はモータの製造誤差や経年劣化により生じるア ンバランス(軸の中心と重心がずれた状態)のまま回転し, 遠心力が働くことにより軸受が振動することで発生する. この回転軸振動を改善するために従来よりバランシング マシンが用いられている.バランシングマシンによりロ ータのアンバランスの位置を検出し,アンバランスを修 正する位置に重りを取り付けることでこの問題を解決し ている.しかし,この方法では一度製品を分解し,重りを 取り付けなくてはならない.

デジタル直接駆動技術を適応させたマルチコイルモー タ[1]を使用することでトルクや合成磁界を精密に制御で きるため,回転軸の振動を検出し,振動を打ち消すように コイルの駆動法を変化させることで回転軸振動を低減す ることができると考えられる.

本論文ではデジタル直接駆動技術を適応させたマルチ コイルモータシステムを使用することで回転軸振動の低 減法を提案する.そして MATLAB/Simulink のシミュレ ーションにより回転軸振動の低減性を示す.

2. 従来手法

(1) マルチコイルモータ

高精度な回転を実現するモータの実現のためマルチコ イルモータが提案されている.マルチコイルモータはブ ラシレス DC モータのステータコイルを複数に分割し, 各コイルを独立して駆動させるためフルブリッジ回路に 接続されている.本論文では3コイルを一つの鉄心に重 ねて巻いた集中巻きの構造(図1)で考えるものとする.

図 2 にマルチコイルモータシステムの構成図を示す. マルチコイルモータシステムの入力はマルチレベルの PDM を生成するΔΣ変調器と,素子バラつきの影響を低 減する信号処理法の NSDEM[2]により構成されている.

図1 マルチコイルモータ

図2 マルチコイルモータシステム

(2) 回転軸振動

(a) 回転軸振動の発生原因

回転軸振動はモータがアンバランスのまま回転し,遠 心力が働くことにより軸受が振動してしまうことが主な 発生原因である. (図 3)

ロータに働く遠心力を(1)式に示す.

$$F = m\varepsilon\omega^2 \tag{1}$$

- F:遠心力
- *m*:質量
- *ε*:偏心距離
- ω:回転速度

(b) 回転軸振動の対象法

回転軸振動の対処法としてバランシングマシンによる 修正が挙げられる.図3のように振動センサを取り付け, 重りを取り付けることで振動が小さくなる位置を探し出 すことでアンバランスの修正を行っている.

(3) ハニカム構造型ベクトル量子化器

図5にハニカム構造型ベクトル量子化器を示す.

3 相 3 コイル 3 値駆動のマルチコイルモータにおいて 2 次元平面座標系 α, β 軸上に表現できる合成磁界の組み 合わせは 127 通り存在する.

ハニカム構造型ベクトル量子化器は 127 通りの合成磁 界のベクトルが指し示す終点を中心にボロノイ分割して できた正六角形の領域を量子化間隔としている.[3]

3. 提案手法

(1) マルチコイルモータによる回転軸振動の低減方法

図 6 に提案モータを示す. 従来のマルチコイルモータ は図 1 のように 3 コイルで駆動させていたが対称の位置 にさらに 3 コイル用意し, 6 コイルの駆動させる.

図 7 に磁界とコイルの吸引力の関係を示す. 従来のマ ルチコイルモータでは回転軸に対して働く力を制御する ことはできなかった.しかし,提案するマルチコイルモー タを用いることで同様の合成磁界を作りながらも一方向 に力を加えたり,力を打ち消したりするように使用する ことができる.

(2) コイルの吸引力

コイルに電流を流した時に回転軸に働く吸引力を(2)式 に示す.

$$F = \frac{\mu_0 S}{2} \left(\frac{NI}{l}\right)^2 \tag{2}$$

F:コイルの吸引力[N]
µ₀:真空の透磁率[H/m]
S:吸引面の面積[m²]
N:コイルの巻き数[回]
I:電流[A]
l:ギャップ距離[m]

ハニカム構造型ベクトル量子化器の座標を利用するこ とで回転する偏心位置を特定し、コイルの吸引力を発生 させる方向を決定する.所望の合成磁界を作り出す回転 軸振動を低減させるのに最適なコイルを選ぶ. (図 8)

図8 回転時の偏心位置に対する吸引力発生方向

(3) 回転軸振動低減モデルの回路方程式

自己インダクタンスと相互インダクタンスを考慮した 回転軸低減マルチコイルモータの回路方程式は(3)式にな る. [4] [5]

$$V_{u1} = R_{u1}i_{u1} + L_{u1}\frac{di_{u1}}{dt} + M_{u12}\frac{di_{u2}}{dt} + M_{u13}\frac{di_{u3}}{dt} + M_{u14}\frac{di_{u4}}{dt} + M_{u15}\frac{di_{u5}}{dt} + M_{u16}\frac{di_{u6}}{dt} - \omega\varphi_f\sin\theta$$
(3)

V_{u1}: コイル U1 にかかる電圧
 R_{u1}: コイル U1 の巻き線抵抗
 L_{u1}: コイル U1 の自己インダクタンス
 M_{u12}, M_{u13}, M_{u14}, M_{u15}, M_{u16}: U1 と U2, U3, U4,
 U5, U6 との相互インダクタンス
 ω: 電気角速度
 φ_f: 永久磁石の鎖交磁束

同様に U2, U3, U4, U5, U6 の回路方程式を求め, 行列式で表す.

	$\omega \varphi_f \sin \theta$		
_	$\omega \varphi_f \sin \theta$		
	$\omega \varphi_f \sin \theta$	()	
	$\omega \varphi_f \sin(\theta - \pi)$	(4)
	$\omega \varphi_f \sin(\theta - \pi)$		
	$\omega \varphi_f \sin(\theta - \pi)$		

(4) MATLAB/Simulink によるモデル

(4)式をもとに状態方程式を導出する.状態方程式を(5) 式に示す.

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{5}$$

x(t): 状態ベクト/u(t): 入力

4. シミュレーション

MATLAB/Simulink を用いて表の条件でシミュレーションを行った.シミュレーションの条件を表1に示す.

driver voltage	6[V]		
speed command	500[rpm]		
air gap	0.005[m]		
cross-sectional area	0.0000785[m ²]		
turns	15[回]		
initial unblance position(vector number)	6		

表1 シミュレーション条件

図 9 に U 相の駆動電圧を示す.従来のマルチコイルモ ータでは U 相の U1, U2, U3 に駆動信号が入力されて いたが提案したモータではさらに U4, U5, U6 が追加さ れている.図 10 にアンバランスの位置と U1, U2, U3 のコイルを Us, U4, U5, U6 のコイルを Ut とした時の 駆動電圧の合成値を示す.Us と Ut を足し合わせると図 9 の駆動電圧となる.

アンバランスの位置は回転速度に合わせて回る.図10 から回転時のアンバランスの位置に応じてUsとUtが切り替わり駆動していることが分かる.

図 10 Us と Ut の駆動電圧

従来のモータと提案の回転軸振動低減モータの振動の 値を2軸平面座標α,β軸において比較を行った.(図 11) 青色の線が従来のモータによる回転軸振動,赤色の線 が回転軸振動低減モータの回転軸振動の軌跡である.

提案モータの方が青い線の内側に生成されているため 回転軸振動の影響が減少していることが確認できる.

5. まとめ

本論文ではマルチコイルモータを用いることで回転軸 振動の低減法を提案した.

従来のモータでは回転軸に対してコイルによる吸引力 を制御することができなかった.そこで3コイルだった マルチコイルを回転軸に対して対称の位置に3コイル追 加することで同様の合成磁界を得ながらもコイルの吸引 力の方向を変えることを可能にした.

回転軸振動低減モータのモデルを作成し、シミュレー ションから回転軸振動低減モータと従来モータにおける 回転軸振動の比較を行い、提案モータを用いることで回 転軸振動が減少していることを確認した.

この結果から本提案手法を適応することで回転軸振動 を低減することが可能であると考えられる.

謝辞

本研究を行うにあたり,ご指導頂いた安田彰教授, 様々な研究のアドバイスをしてくださった西勝聡様,同 研究室の皆様に心より御礼申し上げます.

参考文献

[1]塩澤純,秋山和博,倉持大悟,原島昇,吉野理貴,安 田彰:マルチビットデジタル直接駆動技術を用いた三相 モータシステム", IEICE General Conference, 2013

[2]Yasuda, A. Tanimoto, H. Iida, T. A Third-order Modulator using second-order nose-shaping dynamic element matching, IEEE Journal of Solid-State Circuits, vol. 33, pp. 1879-1886, 1998

[3]松尾遥:量子化雑音と製造誤差による素子バラツキの 影響を低減させた高精度マルチコイルモータ,法政大学 大学院理工学・工学研究科紀要,vol. 58, 2017

[4]松尾遥,安田彰,西勝聡,本山佳樹, 曽我美 泰隆: マルチコイルモータのモデルに関する一提案, 電気学会 電子・情報・システム部門大会講演論文集, 2015

[5]新中新二: 永久磁石同期モータのベクトル制御技術, 電波新聞社, 2008, p.32