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Abstract—Training a deep neural network (DNN) with a
single machine consumes much time. To accelerate the training,
a popular method is distributed deep learning (DDL), that is to
splits and distributes DNN training tasks on multiple machines.
One of the common designs of the DDL is a centralized
architecture, that contains one parameter server and several
workers. In this architecture, several workers need
communicate with the parameter server to get the latest
parameter at every iteration. The network resource of the
parameter server will be exhausted frequently, which further
lead to the limitation of the total training performance. In this
paper, we introduce a decentralized approach for distributed
deep learning. Our proposed decentralized DDL removes the
parameter server and all worker nodes are designed to
communicate with each other directly to exchange the
intermediate results of their own model. For good
generalization, we built a customized optimizer class to
compress the every iteration’s gradient that only update the
gradient larger than threshold value. Compared with
centralized distributed approach, our proposed model gains
better accuracy during a whole test. When we limit the
parameter server’s bandwidth to 300Mbps in order to simulate
the network bottleneck problem, the performance of our
proposed decentralized DDL improved several times faster
than the existing centralized approach on the worst case
execution time.

Keywords—Deep Learning, Distributed Computing, RPC,
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I. INTRODUCTION

Deep learning methods have shown amazing accuracy in
areas such as conversation recognition, image recognition,
object detection, and drug discovery and genomics, and so
deep learning is also used in more and more practical
businesses. Training the model using the newly generated
data is important to improve the accuracy of the application.
Therefore, it is important to increase the training speed of the
model. In most cases, it may take several weeks or even
months if the model is trained on a single machine.
Distributed deep learning, which uses multiple devices to
train the model in parallel, will accelerate the process of the
training convergence.

Early distributed deep learning training was performed
using a distributed machine learning framework such as
PyTorch, Caffe, Petuum. Many following series of
distributed platforms dedicated to deep learning tasks have
emerged, such as DistBelief, Tensorflow, MXNet, Adam,
and others. These mainstream distributed deep learning
architecture requires one or more parameter servers(PS) as
the central node [1], and the computing nodes continuously
communicate with the central node for parameter transfer
and update. Therefore, network communication will become
a serious bottleneck to limit the cluster’s performance. This

means that when we use tens or hundreds of nodes to train
the model, most of the time in the cluster is wasted on node
communication.

In this paper, we design and implement a decentralized
distributed deep learning architecture based on TensorFlow
and Remote Procedure Call(RPC). Each computer of the
cluster in the same level. There are only peer nodes in the
cluster and there are no parameter servers and workers. Each
node will select a peer node to communicate and deliver the
model parameters. After each node receives the parameter
data from the model sent by the neighbor node, it will fuse
with the model parameters of the local node and take the
merged parameter as the next iteration’s training parameters.

II. RELATED WORK

A. Distributed Deep Learning with Parameter Server

Distributed parallel iterations can be divided into
synchronous and asynchronous distributed deep learning
according to the model update mode. The similarities
between these two distributed methods are that there are one
or more parameter servers and one or more workers on the
node allocation. The main function of the parameter server
is to collect gradients and update parameters from the worker
node. The task of the worker node is to calculate the gradient
and obtain the updated model parameters from the parameter
server, and then perform the next round of iterative training
[12]. The difference between these two distributed methods
is the update strategy:

Synchronous approach: At each iteration of synchronous
distributed deep learning, the parameter server waits until all
worker nodes in the cluster complete the current iteration and
collects all parameters[2]. Then the parameter server updates
the local model. After the worker node get the latest model
from the parameter server, the next training iteration will be
executed. If a worker node in the cluster is faulty or the
calculation is slow, a fallout occurs. All nodes in the cluster,
including the parameter server and the worker node, wait for
the dropout to complete the task before continuing. Therefore,
when the network is unstable or abnormal conditions such as
unstable nodes in the cluster occur, all the nodes in the
cluster must wait for the node to complete the task [5].
Moreover, since the parameter server needs to collect the
calculation results of multiple worker nodes, the network
resources of the parameter server also become limited task
iterations, which makes the clusters often idle, resulting in
waste of computing resources [6].

Asynchronous approach: The asynchronous distributed deep
learning is when each worker node communicates with the
parameter server immediately after completing the current
iteration, submits the calculation result, the parameter server
updates the model according to the submitted calculation



result, and then the worker node immediately executes the
updated model. The next iteration. This avoids the situation
where the nodes in the cluster wait for the stragglers.
However, the disadvantage of asynchronous distributed
learning is the presence of staleness [2][4][7]. As shown in
the Fig. 1, when both nodes are near point A, worker1 and
worker2 calculate the gradient δ at the same time so that the
model can reach the minimum point O. But while worker1
has updated the model which stores on the parameter server,
worker2 don’t know the model has updated. Then the
worker2 will update the model once again so that the model
reaches point B, so the convergence speed of asynchronous
distributed learning will be slower, and the accuracy
sometimes has a little loss, but as the number of iterations
increases, the model will eventually converge to a
satisfactory result, and the asynchronous distributed learning
approach has lower requirements on the stability of the
cluster. Even if individual nodes fail, it will not affect the
training of the model.

Fig.1. Staleness Problem. We want to optimize the function of loss from
point A to O. And we can use the gradient descent algorithm to find the
right weights vector which at point O corresponding position of axis weight.

B. Tree-AllReduce
This method is to choose a GPU as the root node and

other GPUs as children to build the communication structure
[9]. The root node is responsible for collecting the results of
child node calculations and collecting the collected data.
Each round of training iterations requires that all cards
complete the data once and then reduce it. If the number of
cards is relatively small, the effect is insignificant. However,
if there are many cards in parallel, it involves a situation in
which a fast calculation card needs to wait for a slow card to
be calculated, resulting in waste of computing resources.
Each iteration of all computing GPU cards needs to
communicate with the root card for all model parameters. If
the data volume of the parameters is large, the root card’s
communication overhead is also become very large, and the
linear growth overhead will limit the GPU cluster’s
performance.

C. Ring-AllReduce
This method builds the GPU cards as a ring. While the

GPU card communicates in a ring, each card has a left-
handed card and a right-handed card. Because the network
structure on each card is fixed, the parameters in the card are
the same. During each communication, just send the
parameter to the right-hand card, and then the card receives
data from the left-hand side. After repeated iterations,
synchronization of the entire parameter is achieved. However,
this method is effective under the GPU cluster. Under multi-
machine nodes, the instability of the network and the
transmission of the network are much smaller than the
throughput of the graphics card, which easily leads to the
waste of GPU resources.

III. DECENTRALIZED ALGORITHM

A. Algorithm Design

[3] has proposed the decentralized gradient optimization
algorithm. It use the averaged gradient to implement the
decentralized algorithm. Inspired by this approach, we
averaged the model instead of the gradient. The peer-to-peer
deep learning algorithm is described as follows , Algorithm 1
shows the complete algorithm. Every node has a local model,
the model will be trained on every node dependently, and
every node will repeat the following steps:

1. Sample dataset: Every node will randomly sample a
mini-batch dataset which dataset size is m from training
dataset denoted by i

t ,where i is the i-th node, t is the
iteration number.

2. Compute gradient: According to the sampled dataset i
t ,

compute the gradient i
t

i
txF  subject to i

tx where i

is the i-th node, t is the iteration number, i
tx means the

set of local model’s parameter tensor.

3. Compute the threshold of every layer’s gradient:
Compute every layer’s gradient mean value as the
threshold. And according to the threshold value make
masks.

4. Compress the gradient: The gradients which greater
than the mean value will be updated, and less than mean
value will be dropped out.

5. Update local model: Update the local model’s
parameters i

t
i
t

i
t

i
1t xF -xx  , where γ is the

step size.

6. Get peer node’s model: Use RPC client connect other
peer’s RPC server, and request their model’s parameters
denoted by j

tx .

7. Average model: If the client get the peer’s model
parameters, then the local node will average the local

loss

weight



model with the peer’s model j
1t

i
1t

i
1t xx

2
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and assign the averaged model as the next training
iteration’s parameter. If any exceptions occurred, the
local node will ignored this step, and use the updated
local model i

1tx  as the next training iteration’s parameter.

8. Assign averaged model to local model: Before we
assign the model, we need define the placeholder in the
computing graph. Then use the dictionary feed into the
graph and start the next training iteration.

Fig. 2. Mesh communication. Through the decentralized deep learning,
various of devices can communicate with each other devices locally,
without sending user data to the server.

According to the algorithm description, the distributed
deep learning architecture in this research is implemented as
displayed in Fig. 3. In this distributed training approach,
every node in the same level, without centralized node, and
only peer node in this cluster. Every node can communicate
with each node directly, just like human talking face to face.
This kind of architecture aim to make the smart device
learning with other devices through peer to peer
communication approach. This approach can protect user’s
private data because of only model parameter will be
transmitted between nodes and avoid the network resource
bottleneck on the centralized node. This peer to peer
communication approach make the nodes connected like a
mesh as shown in Fig 2.

B. Architecture Implemention

While implement this architecture like Fig. 3, I use the
multiprocessing to build the models because of the Python
language has the Global Interpreter Lock(GIL). When the
node launches the training job, it will start two processes.
One processing is the RPC server processing, it will listen
the fixed port continuously to response other peer node’s
request and return the local model’s parameters to the node
which send the request. The other processing is responsible
for the training job, it will be responsible for sample dataset,
compute the gradient, compress the gradient, get peer node’s
model, and update the local model.

Fig.3. Peer-to-Peer Deep Learning Architecture. In this architecture, we
use multiprocessing to complete every node’s training job. One processing
for the training model, and the other one for listening. The training
processing can calculate the latest model, the listening processing can send
the latest model to peer node. Between the processes, there has a shared
variable, which can be accessed by two processes.

Because of the asynchronous will incur the staleness
problem we set a threshold to remove part of the small
gradient. Every iteration only update part of the important
gradient will reduce the probability of staleness problems. So
here I choose a mean value as the threshold, the less than the
threshold value will be dropped out, in this approach we can
reduce the impact of staleness, in the same time we can get a
suitable convergence rate.

When we contact with the multiprocessing problems, we
need to consider whether the deadlock will be occurred in
our system. It is a very common problem, because of
competing resources or communicating with each other. In
our system, we set the exception handling mechanism, while
the client request someone’s model parameters, but no
response from the server, after a certain time, the client will
give up this request, and go to the next iteration training.
Similarly, the exception during parameters transfer also
make the system go to the next iteration training without any
system crash risk.

Because of every node in the same level, so the
communication topology has many choices. The simple and
useful choice is Ring topology. It can exchange the
parameters between the peers easily and efficiently. And the
peer node also can randomly choose a peer to communicate,
but this randomly approach may lead many peer
communications with same peer, so a pre-designed and
reasonable communication rule can improve communication
efficiency and avoid the appearance of similar problems.

The final aspect is about the average strategies. While we
can simply use the mean approach to merge local model and
peer’s model. But when some node is seriously behind other
nodes, we also use the mean strategy will slow down the fast
nodes, so we use the contribution rate to judge which model
will account for a greater proportion. If two models has
similar loss, this strategy is same as the mean strategy, but



when some node has got a much lower loss, but another node
just start training job, the better model will much important
than the initial model. In this strategy, no matter we start the
training job at the same time or not, the node can
dynamically change the model’s proportion to get a better
convergence rate.

Fig.4. Customized Optimizer. In order to avoid adding extra calculations, I
have to overwrite the optimizer class of TensorFlow. I add some features to
process the gradient in the customized optimizer like the figure shows.

During implement the simulation demo, we use the
TensorFlow framework, because this framework has a lot of
resources about the source code. Cause of we need better
performance, so we cannot add additional computing task as
possible as we can, the only choice we can choose is use the
TensorFlow because of many basic functions we can easily
overwrite and invoke rather than the Keras which has
friendlier API.

When we program the gradient compression model, we
need compute every layer’s gradient and then we need
compute every layer’s threshold, because every layer has
different shape, and the values also on the different
magnitude, so the threshold should be calculated
independently. At first, we implement this part after the
gradient computing step, this approach will lead redundant
calculations so that every step will cost roughly 0.6 more
second. That is because the program need retraverse every
layer’s gradient to calculate the threshold.

To avoid the retraverse, we overwrite the optimizer’s
source code. We inherit the basic optimizer class and add the
threshold computing operation and the mask operation as
shown in Fig. 4. In this way, every training step will get the
masked gradient, and update the model directly. This
solution compares with the original training speed without
any extra time consuming.

Fig.5. Assignment Operation Definition. While we calculate the averaged
model’s parameters, we need to assign it to the local model. Also
considered the performance, we borrow the initial operation which is native
operation from framework to serve our assigned operation.

Fig. 5 shows another part is assign the averaged model to
the local neural network. While we use TensorFlow to build
our model, one of this framework’s character is graph
computing. If we want to assign the averaged model to local
model, we need define the computing operation in the graph
before we start the training job [8]. And we build the initial
operation according to the TensorFlow’s built-in features
which is add “/Assign” string after the variable names as the
initial operation name. And then we can use the initial values
placeholder as the averaged model parameters’ key to build
feed dictionary. Finally, we can easily and efficiently feed
the averaged model to the local model during we execute the
computing graph.

IV. EVALUATION

We performed experiment based on 5 machines. These
machines have the same configuration as follows: the CPU is
Intel® Xeon® Processor X3450, the memory size is 16GB, the
operating system is Ubuntu 14.04 LTS, the bandwidth is 300M/bps.
And we use Cifar10 as the evaluation dataset, the neural
network structure is VGG-19, the optimizer is Momentum
optimizer. In the cluster, there has 4 nodes as worker, and 1
nodes as parameter server. During experiment, we set the
parameter server’s bandwidth to 300Mbps, because of the 4
nodes cannot reach the parameter server’s network
bottleneck if the nodes communicate through the local
network. And while training the model through the
asynchronous approach, we statistic the training speed for
every training batch. As the histogram shows, about 10000
batches training speed cost less than 0.7 second every batch,
and about 3/4 training batch cost more than 0.7 second. The
distribution of the speed is showed on Fig. 6.



Fig.6. Asynchronous Training with PS Speed Histogram

First, we compare the time consuming between
decentralized and centralized approach. As the Table I shows,
the centralized approach need about 1.06x to 5.81x time
compare with decentralized approach. Fig. 7 shows the result
without PS. Because of the network cannot transmit so many
data, many jobs will be put on the task queue. So, the
centralized speed has a large fluctuation. But the
decentralized approach training speed is stable since every
node only has one download and one upload task at every
moment.

TABLE I. TIME CONSUMING

Decentralized Centralized

0.58sec/batch~0.73sec/batch 0.62sec/batch~3.43sec/batch

Fig.7. Asynchronous Training without PS Speed Histogram

Then the following Fig. 8 shows the curve of loss while
training the model. The training iteration is 40000 totally.
The four nodes training model dependently without
parameter server, so every node has different model and the
curve shows the convergence process of loss. The final loss
of node1 is 0.3670, node2 is 0.2103, node3 is 0.1774, node4
is 0.1688. The Fig. 9 shows the centralized distributed
approach’s loss curve. After 40000 training iterations, we got
the loss is 0.4877. The Fig. 10 shows the model’s loss curve
which training on single machine, the final loss is 0.4192.

Fig.8. Every node’s result with Decentralized Approach

Fig.9. 4 Workers and 1 PS with Centralized Approach

Fig.10. Single-machine Approach

The following Table II shows the training accuracy. As
the table shows, the training accuracy of decentralized
approach are 86.7%, 92.2%, 95.3%, 94.5%. Through the
centralized distributed way, the final training accuracy is
96.7%. The training accuracy which trained on single
machine is 96.5%.

TABLE II. TRAINING ACCURACY

Decentralized
Node1 Node2 Node3 Node4

86.7% 92.2% 95.3% 94.5%

Centralized 96.7%

Single Machine 96.5%

loss

loss

loss

loss

loss

loss

steps

steps

steps

steps

steps

steps



Finally, Table III shows the test accuracy which is the
most useful evaluation indicator. As we can see, through
decentralized approach we got 4 models, while we test the
accuracy use the test dataset, they got the results are 79.9%,
79.6%, 79.8%, 79.8%. Through the centralized distributed
way, the final test accuracy is 79.5%. The model which
trained on single machine got 83.8% accuracy.

TABLE III. TESTING ACCURACY

Decentralized
Node1 Node2 Node3 Node4

79.9% 79.6% 79.8% 79.8%

Centralized 79.5%

Single Machine 83.8%

V. DISCUSSION

According to the evaluation’s results, we can see that the
decentralized distributed deep learning approach have
different training accuracy during training stage. And the
centralized approach’s training approach also has a better
accuracy than the decentralized result.

When we use the test dataset to evaluate the model, the
decentralized model can get a similar test accuracy after
40000 iterations without any fine tuning to the centralized
distributed results. Although every model has very different
training accuracy, but their test accuracy is all near 80%.
And we can get a good model although every model is
independently train 10000 iterations. So, this decentralized
approach to train the neural network can converge as fast as
the centralized approach and without the parameter server
the asynchronous distributed approach also can get a good
model which has similar accuracy.

Compared with the existing centralized approach, the
decentralized proposal is more complexity and scalability,
because of the network bottleneck on the parameter server
has been removed. Every node can join the cluster at any
time because we can dynamic adjust the percentage of the
local model and peer model according to the model’s
contribution of loss. Without parameter server, the cluster
can get the similar accuracy. But the weak point is that we
don’t has a mechanism which for maintaining the node’s
contacts. That means we should set the node’s IP before start
training if a new node adds into the cluster, others don’t
knows the node’s IP address. This will be a part of our future
job. In the same time, this decentralized distributed deep
learning architecture not only avoids the communication
bottleneck problem of the existing centralized architecture
parameter server, but also increases the privacy of personal
data because devices don’t need send the data to the server.
When smart devices come into our lives in a wide range, the
way in which smart devices exchange data directly between
them can greatly improve the flexibility and scalability of
distributed learning. Smart devices can also be based on
users’ own its customary to train more personalized models

to enhance the user's experience. In the future, many small
smart cluster can locally train their own model, the
decentralized approach will be much suitable for this
scenario.

VI. CONCLUSION

In this paper, we implement the neural network in
different ways: single-machine version, asynchronous with
parameter server, asynchronous without parameter server.
Then we compare the different approaches performance
without any fine-tuning work. The single-machine version
gets the best test accuracy is 83.8%, but the whole training
processing is time consuming. Centralized and decentralized
approach get similar test accuracy while every node training
10000 iterations. So, the decentralized deep learning can
make the node train model through peer to peer approach. In
this way, we can avoid the parameter server’s network
bottleneck without test accuracy loss.
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