法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2025-01-14

寄生ループ板を使用したチルトビーム形成

亀田, 悠平 / KAMETA, Yuhei

(出版者 / Publisher) 法政大学大学院理工学研究科 (雑誌名 / Journal or Publication Title) 法政大学大学院紀要.理工学・工学研究科編 (巻 / Volume) 59 (開始ページ / Start Page) 1 (終了ページ / End Page) 3 (発行年 / Year) 2018-03-31 (URL) https://doi.org/10.15002/00021554

寄生ループ板を使用したチルトビーム形成

FORMATION OF A TILTED BEAM USING PARASITIC LOOP-BASED PLATES

亀田悠平

Yuhei KAMETA 指導教員 山内潤治

法政大学大学院理工学研究科電気電子工学専攻修士課程

This paper investigates an antenna system composed of a fed antenna and N parasitic plates (N=1, 2, 3). The system is designated as the N-plate system. The analysis reveals how the scattering parameters for the unit cell constituting the N-plate system change with the loop strip width. The tilt angle of the beam radiated from the N-plate system is estimated from the scattering parameters. It is found that this estimation is in good agreement with the tilt angle of the radiation pattern obtained using full wave analysis.

Key Words : Tilted-beam formation, Periodic structure, Strip loop, Transmission line

1. はじめに

寄生ループ板を用いたチルトビームアンテナを検討し てきた[1][2].寄生ループ板が3枚の場合,寄生ループ板1 枚の場合に比ベチルト角が増加する[3].本稿では,この現 象を寄生ループ板のループユニットセルの解析から検討 する.さらに参考として,ループ上にのる電流の位相を明 示する.なお,本内容は著者の修士論文の一部を構成して いる.

2. 寄生ループ素子のユニットセル解析

(1) 解析構造

使用周波数を 8 GHz (波長 λ_8 = 37.5 mm) とする. 図 1(a) に寄生ループ板を示す. ここでは 3 枚の例を示している. 寄生ループ板の誘電体の厚さを B,比誘電率を ϵ_r とする. 図 1(b)に寄生ループ板の上面図を示す.

図2にループユニットセル構造を示す.以下においては, ループ外周長 sout を固定し,ストリップループ幅 w を変 化させて放射現象を解析する.なお寄生ループ板の1枚目 (最下位寄生板)と2枚目の距離を d₂₃,2枚目と3枚目の距 離を d₃₄ としている.詳細な構造値は修士論文の中に示し ている.

(a)3枚構造

(2) Sパラメータ

図3に使用周波数における寄生ループ板のユニットセ ルのSパラメータを示す. このとき, 全てのループは同相 の平面波で励振されている.

(3) Sパラメータの位相補正

実際の励振においては、Fabry-Perot 伝播経路による位 相の変化が起きている. そこで平面波励振から中央素子励 振にした場合のSパラメータの補正を実行する. つまり, 励振素子に最も近い最下位寄生板における反射位相と地 板における反射位相(180%)を考慮して実行する.その結果 を図4に示す.図3に示す補正前のSパラメータに比べ, 位相の勾配が急になっていることがわかる.

3. チルト角推定

図 4 に示されている補正された S パラメータカーブの 勾配からチルト角が計算できる[3]. チルト角は寄生ループ 板1枚のとき27°,2枚のとき43°,3枚のとき62°と算出 される.これらは図5に示されている実際上の放射パター ンのチルト角とよく一致する. ただし図5はFDTD 法によ って解析された結果である.

図5 放射パターン

次に参考としてループをリアクタンス素子とみなし、こ の素子に流れる電流を伝送回路モデルで求め,電流の位相 を明示する.本稿では明示していないが、この電流位相を 使用するとチルト角が推定できる.

4. 伝送線路モデル[4]

(1)寄生ループ板1枚の場合

図5で使用した構造値を基に、寄生ループ板1枚のとき の伝送線路モデルを図6に示す.給電部から最下位寄生板 までの距離を 0.5λ8, ループ素子部をリアクタンス X, 自由 空間特性インピーダンスを Zo としている. 但し入a は使用 周波数8GHzにおける波長.

図6寄生ループ板1枚の伝送線路モデル

このとき回路方程式は

$$\binom{V}{I} = \binom{-1}{0} \binom{V_1}{I_1}$$

これより

$$V = -V_1, \ I = -I_1 \tag{1}$$

リアクタンス素子(ループ)に流れる電流 I'i, つまり1枚 目(最下位寄生板)の寄生ループに流れる電流は

$$I'_1 = j \frac{V}{X}$$

したがって電流の位相∠I'1は電源電圧 V に対して,

$$\angle I'_1 = 90^{\circ} \tag{2}$$

と表せる.

(2)寄生ループ板2枚の場合

図7に寄生板2枚の場合の伝送線路モデルを示す.この ときの回路方程式は以下のようになる.

図7 寄生ループ板2枚の伝送線路モデル

$$\binom{V}{I} = \begin{pmatrix} 0 & -jZ_0 \\ -\frac{j}{Z_0} & -\frac{Z_0}{X} \end{pmatrix} \binom{V_2}{I_2}$$
(3)

これを基にして、リアクタンス素子に流れる電流 I2を求めると、最終的に以下のようになる.

$$I'_{2} = \frac{X + jZ_{0}}{X^{2} + Z_{0}^{2}} V \tag{4}$$

したがって電流の位相∠I2は以下のようになる.

$$\angle I'_2 = \tan^{-1} \frac{Z_0}{X} \tag{5}$$

(3)寄生ループ板3枚の場合

寄生ループ板3枚のときのモデルを図8に示す.4章1 節,2節と同様にして,電流1/3を求めると以下のようになる.

$$\angle I'_3 = \tan^{-1} \frac{(Z_0 - X)}{XZ_0} \tag{6}$$

以上の電流位相を利用して、チルト角が推定できる. これについては筆者の修士論文の中で述べている.

5. まとめ

寄生ループ板のユニットセル解析から,寄生板の枚数増 加に伴うビームチルト角の増加を議論した.

参考文献

- H. Nakano, S. Mitsui, and J. Yamauchi, "Tilted-beam high gain antenna system composed of a fed patch antenna and periodically arrayed loops," IEEE Transactions on Antennas and Propagation, Volume 62, Issue 6, pp. 2917-2925, June 2014.
- 2) H. Nakano, M. Toida, S. Okabe, and J. Yamauchi, "Tilted beam formation using parasitic loop-based plates," IEEE Antennas and Wireless Propagation Letters, Volume 15, pp. 1475-1478, December 2015.
- 3) H. Nakano, Y. Kameta, and J. Yamauchi, "Increased beam tilt angle from a patch antenna with three inhomogeneous loopbased plates," IET Electronics Letters, Volume 53, Issue 24, pp. 1562-1564, November 2017.
- 4) F. Qin, S. Gao, G. Wei, Q. Luo, C. Mao, C. Gu, J. Xu, and J. Li, "Wideband circularly polarized Fabry-Perot antenna," IEEE Antennas and Propagation Magazine, Volume 57, Issue 5, pp.127-135, October 2015.