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Abstract: The rack-moving mobile robot (RMMR) system is a special parts-to-picker automated 

warehousing system that uses hundreds of rack-moving machines to accomplish the repetitive tasks of 

storing and retrieving parts by lifting and transporting unit racks autonomously. This paper investigates 

the operation cycle of the rack-moving machine for storage and retrieval from the perspective of the lane 

depth, especially exploring the particularity of the RMMR system in multi-deep lanes, and proposes 

expected travel time models of the rack-moving machine for single- and multi-deep layouts of the RMMR 

system. To validate the effectiveness of the proposed models, an experimental simulation was conducted 

with a 1–4-deep layout under six scenarios of different numbers of aisles and layers, and results were 

compared with results obtained using proposed models. The paper presents useful guidelines for the 

configuration of the RMMR system layout including the determination of the optimal lane depth. 

 

Keywords: rack-moving mobile robot system; travel time model; lane depth; simulation; warehousing 

 

1 Introduction 

The picking pattern adopted in warehouses has gone through three stages with the 

continuous development of new technologies. Picker-to-parts was the pattern adopted in 

the first stage and was widely applied in warehouses. According to this pattern, human 

pickers move to shelves to pick orders with or without forklifts. In the second stage, multi-

layer shelves were introduced to improve space utilization for effective storage, and block-

stacking storage racks were widely applied (Berry 1968; Marsh 1979; Goetschalckx 1987) 

and automated storage and retrieval systems (AS/RSs) were introduced in the 1950s and 

first installed in the 1960s to improve picking efficiency and space utilization. The picking 

pattern adopted in the second stage is parts-to-picker, whereby pickers are located at fixed 

picking positions and a combination of a stack crane and conveyors is used to transport 

goods to the pickers. Many types of AS/RSs have been widely researched; e.g., unit-load, 

miniload, autonomous vehicle or shuttle-based, flow-rack, three-dimensional (3D) compact, 

and vertical lift module AS/RSs. The application of an automated guide vehicle and the 
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rack-moving mobile robot (RMMR) system marked the arrival of the third stage (Boysen 

et al. 2017).  

The RMMR system is a specific parts-to-picker system, in which a mobile robot, called 

the rack-moving (RM) machine, lifts a rack and transports it to a stationary picker, as 

shown in Figure 1. In this picking pattern, the drive unit machine picks up not only goods 

but also racks, which implies the racks are transportable in the warehouse. 

 

SKU

Lifting Module

RM Machine
(Drive Unit)

Rack (Inventory Pod)

     
(a) Movable rack and                         (b) Kiva system (Kirks et al. 2012) 

RM machine 

Fig. 1. RMMR system  

A well-known RMMR system is the Kiva system, which was first installed and deployed 

in 2006. The Kiva system has several advantages over the AS/RS, such as greater 

accountability, no downstream dependency, no batch processing, location-free 

replenishment, adaptive slotting, no single point of failure, rapid deployment, spatial 

flexibility, and expandability (Wurman et al. 2008). The function of the RM machine is 

similar to that of cranes and shuttles in the AS/RS. The RM machine moves from the dwell 

point to the target rack in any lane position of the storage area and then lifts the target 

rack and transports it to the pickup and delivery (P/D) station (called the workstation in 

this paper). This differs from the function of cranes in an AS/RS, The basic function of 

the RM machine is thus the lifting and transportation of a rack. 

 
Aisle Aisle Aisle

          

Aisle Aisle

 
(a) Single-deep layout                    (b) Double-deep layout 

Fig. 2. Rack layout in the RMMR system 
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Figure 2 shows two typical rack layouts for the RMMR system. The flexibility of the 

racks and RM machine (Wurman et al. 2008; Boysen et al. 2017) means that there are 

several differences from the lane depth problem of the AS/RS; e.g., (1) hundreds of RM 

machines work at the same time, in contrast to the combined operations of cranes and 

shuttles, (2) the RM machine can move in any horizontal or vertical direction, even below 

the racks, in contrast to the aisle-captive or shuttle-based AS/RS, (3) the rack layout has 

a certain flexibility with lower setup costs and can have multiple deep lanes for rack 

placement, (4) the dwell point of the RM machine is an arbitrary position, depending on 

the previous operation order, in contrast to the fixed position for stacker cranes, and (5) 

the utilization of the racks and storage area is higher and the probability of multiple 

movements of racks is higher because of the shared storage policy. Therefore, the operation 

cycle of the RM machine differing from that of stacker cranes needs to be considered in 

depth for new travel characteristics. 

This paper considers a special parts-to-picker system, which is called the rack-moving 

mobile robot system and well known as the Kiva system. The aim of the paper is to 

illustrate the operation cycle of the RM machine for storage and retrieval from the 

perspective of lane depth, and especially to explore the particularity of the RMMR system 

having a multi-deep layout and to propose expected travel time models of the RM machine 

for single- and multiple-deep layouts in the RMMR system. 

The remainder of the paper is organized as follows. Section 2 presents a literature 

review of RMMR systems and discusses related work on AS/RSs. Section 3 illustrates the 

generic layout of the RMMR system and the operational command cycle for different lane 

depths. Section 4 presents an analytical travel model for the single-deep layout, while 

Section 5 does the same for the multi-deep layout. Section 6 presents a simulation 

implementation and compares the results obtained by simulation with those obtained using 

proposed models. Finally, Section 7 presents conclusions and directions of further research. 

 

2 Literature review 

Since a patent of a material handling system went to Mountz in 2005 and a method 

employing mobile autonomous inventory trays and peer-to-peer communications was 

proposed, a series of rack-moving mobile robot systems has been installed and operated; 

e.g., Kiva, KARIS, and ADAM (Kirks et al. 2012). Guizzo (2008) and Wurman et al. (2008) 

introduced the configuration, operation procedure, and technology of the Kiva system. 

Boysen et al. (2017) focused on order processing in an RMMR system and proposed a 

dynamic algorithm to solve the tradeoff problem considering the sequencing of picking 

orders and the sequencing of arrival racks. Other scholars focused on coordinating hundreds 

of autonomous vehicles. Herrero-Pérez and Martínez-Barberá (2011) presented the 

development of a distributed transportation system composed of a team of flexible 

automated guide vehicles. Yu (2016) analyzed the intractability of optimal multirobot path 
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planning on planar graphs. To the best of our knowledge, the study of Lamballais (2017) 

was unique in focusing on the travel time of the RM machine. Lamballais developed 

queueing network models for single-line and multi-line orders to analytically estimate the 

maximum order throughput, average order cycle time, and robot utilization.  

Although there has been no previous travel time analysis from the perspective of the 

lane depth for RMMR systems, relevant historical studies on lane depth have been 

conducted for the block stacking storage system, unit-load AS/RS, and AVS/RS. 

Concerning the lane depth of a block stacking storage system, Kind (1965) proposed 

a formula for the best unique lane depth for a single product with respect to space 

utilization. Mastson and White (1981) estimated the lane depth and proposed an 

approximate formula with small relative error. Kooy (1975) analyzed the tradeoff between 

inbound and outbound flows and between required and available lanes, and Kooy (1981) 

then obtained optimal multiple lane depths for a product through complete enumeration 

over all feasible combinations of lane depths. Matson and White (1981, 1984) presented a 

formula for the optimal continuous single-lane depth with the objective of space utilization. 

Considering the dynamic characteristics of a deep lane, Goetschalckx (1987) presented an 

algorithm to compute the optimal number of lanes and optimal lane depths for a single 

product, when the lanes are allowed to have different depths. Meanwhile, he analyzed the 

lane depths for multiple products and shared storage policies. Larson et al. (1997) proposed 

a heuristic approach to obtain the optimal layout of a block stacking warehouse with the 

double objective of maximizing space utilization and minimizing transportation costs. 

Derhami et al. (2017) proposed mathematical models to obtain the optimal lane depth for 

single and multiple stock keeping units under the constraint of a finite production rate and 

used a simulation model to evaluate the performance of the proposed models. In a book on 

warehouse and distribution science, Bartholdi and Hackman (2017) developed Matson’s 

model to optimize volume utilization instead of floor utilization and computed the optimal 

lane depth for the rack layout configuration with four pallets of the stock keeping unit. 

AS/RSs have been widely applied over decades for intelligent manufacturing and e-

commerce retail. Various reviews on warehouse design and control, especially on the AS/RS, 

have been presented in recent years. De Koster et al. (2007) and Gu et al. (2010) focused 

on the design and performance of different types of warehouse while Roodbergen and Vis 

(2009), Gagliardi et al. (2012), Vasili et al. (2012), and Boysen and Stephan (2016) focused 

on the design and planning models of the AS/RS. Most research has focused on the travel 

time of the stacker crane, which is a pickup and delivery machine, for different influencing 

factors and environments; e.g., different types of AS/RS, speed profiles of the crane, storage 

assignment policies, command cycles, rack depths, and sequencing of requests of the crane. 

For the generic unit-load AS/RS, most studies have considered single-deep or double-

deep lanes, with the main objective being the travel time of the stacker crane. Although 

various studies have focused on the background of the single-deep system, the double-deep 
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system is also gaining attention. The advantage of the double-deep storage rack is that 

fewer aisles are needed, resulting in a more efficient use of floor space. Many scholars have 

focused on the double-deep system. Oser and Ritonja (2004) proposed travel time models 

for two scenarios of single- and double-deep systems in the case of a class-based storage 

policy. Lerher (2010) proposed new analytical travel time models that can be used to 

calculate the mean cycle time for single- and dual-command cycles in a double-deep AS/RS. 

Another typical automated storage and retrieval system is the AVS/RS, which is also 

called shuttle-based storage and retrieval system (SBS/RS). Since the SBS/RS was 

developed by Carlo and Vis in 2012, the performance of the AVS/RS has been investigated 

through simulation (Smew et al. 2013), experimental validation (Sari et al. 2014), and 

computational analysis (Lerher et al. 2015). However, all previous research was based on a 

single-deep system until Lerher (2016) firstly developed a travel time model for the double-

deep SBS/RS. Lerher proposed a travel time model considering the real operating 

characteristics of the elevator lifting table and the shuttle carrier under the condition that 

blocking totes are repositioned to the nearest free storage location during the retrieval of 

the shuttle carrier. Furthermore, on the basis of the research of Fukunari and Malmorg 

(2008), Manzini (2016) proposed a set of original analytic models to determine the number 

and depth of lanes of the AVS/RS using lane-depth storage. 

Other AS/RSs, such as the flow-rack AS/RS with gravity racks (Sari et al. 2005; Chen 

et al. 2015) and 3D compact AS/RS with a conveyor in the depth direction (De Koster et 

al. 2006; Yu and De Koster 2009a, 2009b; Yang et al. 2017), are considered as multiple-

deep AS/RSs. However, the configuration of racks and operation procedure of the P/D 

machine are different from those of the generic block-stacking system and AVS/RS. 

According to the above review of the literature, space utilization is usually regarded 

as an important objective of performance from the perspective of the lane depth of block 

stacking storage systems; nevertheless, travel time models have been developed for various 

types of AS/RS with a certain lane depth, most being single or double deep. In studies of 

the RMMR system, there has been little investigation of the travel time of the RM machine, 

especially from the perspective of the lane depth. In contrast to existing studies, we focus 

on the operation cycle of the RM machine in single- and multiple-deep systems and explore 

travel time models to estimate the performance of the RMMR system. 

 

3 RMMR system 

This section illustrates observed system configurations, including the layout of the RMMR 

system and the operation sequence of the RM machine in a cycle. 

3.1 RMMR system layout 

In proposing a travel time model, the following basic assumptions describing the RMMR 

system are considered for characteristics of the layout. 
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H1.  A shared assignment policy is considered, which means that any position of 

racks is equally likely to be selected for storage, and each rack holds unfixed types of items 

and goods.  

H2.  RM machines are allowed to travel in horizontal and vertical directions 

independently even under racks with no load. 

H3.  There are sufficient RM machines to support all required operations of 

retrieval and refilling simultaneously. 

H4.  The dwell point of the RM machine is located where the previous one 

operation cycle was completed. 

H5.  The assignment of  the RM machine followed a randomized policy, which 

means RM machines can serve arbitrary racks across aisles and depth. 

The following notations and symbols (see Figure 3) are used in the paper. 

n  number of vertical aisles in the storage area 

p  number of layers 

d  lane depth in the storage area 

v   velocity of the RM machine 

Ll  length of a rack position 

Wl  width of a rack position 

Wa  width of an aisle 

 

Aisle

RM Machine

Lane

1st 2nd 3rd

Rack position

# of layer
(p)

Tier

deep

Lane

3rd 2nd 1st

Wa

Wl

Ll

Workstation

(picking and refilling)  
Fig. 3. Generic layout of the RMMR system 

In Figure 3, a three-deep RMMR system is constructed to illustrate a multiple-deep 

RMMR system. In each layer, there are three rack positions on each side of a picking aisle, 

and racks are located at one position, which is defined by an ordinal number as the first, 

second, or third rack position. The picking and refilling operations are conducted at the 

same location of the workstation. 

3.2 Operation cycle of the RM machine in the RMMR system 

On the basis of Figure 3 and the general assumptions described above, the operation cycle 
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of the RM machine in the single-deep RMMR system can be divided into three generic 

parts, namely moving from the dwell point to the target rack directly, lifting and 

transporting the target rack to the workstation along aisles to pick and refill, and 

transporting the rack back to the primary position after refilling. There is an additional 

operation of rack arrangement in the multiple-deep RMMR system for moving a deeper 

rack to the aisle. 

3.2.1 Operation cycle of the RM machine in a single-deep RMMR system 

According to assumption H4, we suppose that the RM machine stays at the initial dwell 

point (denoted Or). The sequence of operations (see the orange dashed lines in Fig. 4) is as 

follows. 

(1) The RM machine moves to the target rack position (denoted Lt1) along horizontal 

and vertical lines when the order-retrieval command is given.  

(2) The RM machine lifts the target rack and transports it to the workstation along 

aisles in horizontal and vertical directions. The operations of picking and refilling are carried 

out at the workstation (denoted by R1). 

(3) The RM machine with the refilled rack returns to the primary position Lt1, which 

is the dwell point for the next operation cycle (see the green dashed lines in Fig. 4). 

 
Aisle

Workstation

(picking and refilling)

RM Machine

Move Direction

DP0

DP1 Lt1

R1

 

 

 

Or

Lt2DP2

 
Fig. 4. Command cycle of an RM machine in a single-deep RMMR system 

When developing the proposed analytical travel time models for the RMMR system, 

the following basic simplifications and assumptions are made. 

H6.  The time required by the RM machine to lift and put down of racks and the 

time spent waiting to pick and refill are ignored. 

H7.  The congestion and avoidance of RM machines is not considered. 

H8.  The travel time between two arbitrary positions in the RMMR system is 

symmetrical and does not change over time. 

H9.  The acceleration and deceleration of the RM machine are assumed 

instantaneous and ignored. 

Additional notations are used in proposing the travel time model for the single-deep 
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RMMR system: 

O1  position of the workstation in the RMMR system, 

Or  position of the dwell point of the RM machine in one cycle, 

Lt  position of the target rack, 
(1)

s
T  expected travel time of the RM machine between two arbitrary positions in 

the single-deep system, and 
(1)

RMM
T   expected travel time of the RM machine in one cycle of the single-deep system. 

 

Let (1) ,
s r t
T O L  be the expected travel time from initial dwell point r

O  to lane 

position t
L  of the target rack. Let (1)

1
,

s t
T O L , which is equal to (1)

1
,

s t
T L O , be the 

expected travel time from workstation 1
O  to lane position t

L  of the target rack. 

Therefore, according to assumptions H6–H10, the expected travel time of the RM 

machine in a cycle of the single-deep RMMR system can be represented as 

 (1) (1) (1)

1
, 2 ,

RMM s r t s t
T T O L T O L .  (1) 

 

3.2.2 Operation cycle of an RM machine in a multi-deep RMMR system 

The operation cycle of a single-deep RMMR system also applies to the multi-deep system. 

In contrast to the case of the single-deep RMMR system, however, two new characteristics 

need to be considered.  

(1) An additional rack arrangement needs to be considered because the target rack 

cannot be transported outside when it is located in a deep lane, which implies that the 

rearrangement strategy and procedure need to be set and the rearrangement time (denoted 

Tf) needs to be calculated.  

(2) Because the aim of the arrangement is to move the target rack to the outside, when 

the RM machine turns back from the workstation, only the outside lane position is free. 

Therefore, the dwell point of the RM machine is always located in the first lane position of 

any layer in the multi-deep RMMR system (see Fig. 5). 

Aisle

lW

lL

Workstation

RM Machine

Move Direction

Rearrangement

R1

DP0Or

Lt1DP1

 

 

 

 

Lt2DP2
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Fig. 5. Command cycle of the RM machine in the multi-deep RMMR system 

Additional notations used in proposing the travel time model in the multi-deep RMMR 

system are 

o
L   outmost position of the lane where the target rack is located, 
( )d

s
T  expected travel time of the RM machine between two arbitrary positions in 

the multiple-deep system, 
( )d

RMM
T   expected travel time of the RM machine in one cycle of the multiple-deep 

system, and 

f
T   expected rearrangement time for the rack in the deep lane. 

In the multi-deep RMMR system, let ( ) ,d

s r t
T O L  be the expected travel time from 

initial dwell point r
O  to lane position t

L  of the target rack; let ( )

1
,d

s o
T O L , which is equal 

to ( )

1
,d

s o
T L O  , be the expected travel time from the workstation 1

O  to outmost lane o
L  

of the target rack location. 

The expected travel time of the RM machine in a cycle of the multi-deep RMMR 

system is therefore 

 ( ) ( ) ( )

1
, 2 ,d d d

RMM s r t s o f
T T O L T O L T .  (2) 

4 Expected travel time model for the single-deep RMMR system 

The analytical travel time model for the single-deep RMMR system is first presented in 

detail. According to equation (1), the terms (1)

1
,

s t
T O L  and (1) ,

s r t
T O L  need to be 

derived firstly, and the expected travel time for the single-deep RMMR system can then be 

calculated by summing (1)

1
,

s t
T O L  and (1) ,

s r t
T O L . 

4.1 Derivation of Ts(O1,Lt) 

Let (1)

x
T  be the expected horizontal travel time between any two lanes and (1)

y
T  be the 

expected vertical travel time between any two lanes. The expected travel time from 

workstation 1
O  to lane position t

L  of the target rack, denoted (1)

1
,

s t
T O L , is the sum of 

travel times in the horizontal and vertical directions, respectively denoted (1)

1
,

x t
T O L  and 

(1)

1
,

y t
T O L .  

According to the randomized storage policy, there is equal probability of the target 

rack position being located in each tier. Let 
ij
x  be horizontal coordinate of the lane for the 

ith tier and jth layer. (1)

1
,

x t
T O L  can then be derived as 
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2
(1)

1
1

1 1
,

2

1 3 5 7
2

2 2 2 21

4 3 4 12
1

2 2

n

x t ij l a
i

l l a l a l a

l a l a l a

T O L x n W W
v n

W W W W W W W

n nnv
W n W W nW n W W

2 1 1

2 2l a

n n
W W

v v

.  (3) 

Likewise, let 
ij
y  be the vertical coordinate of the ith tier and jth layer. (1)

1
,

y t
T O L  

can then be derived as 

 

(1)

1
1

1 1
,

1 1 1 3 5 2 1

2 2 2 2

1

2

p

y t ij
j

a l a l a l a l

a l

T O L y
v p

p
W L W L W L W L

v p

p
W L
v v

.  (4) 

Then,  

 (1) (1) (1)

1 1 1

1
, , , 3 2 1

2s t x t y t a l l
T O L T O L T O L n W n W pL

v
.  (5) 

4.2 Derivation of Ts(Or,Lt) 

The term (1) ,
s r t
T O L  is the sum of (1) ,

x r t
T O L  and (1) ,

y r t
T O L , which are the horizontal 

and vertical expected travel times respectively:  

 (1) (1) (1), , ,
s r t x r t y r t
T O L T O L T O L .  (6) 

First, according to assumption H8, there is equal probability of the dwell point Or 

being located in any lane position. For the target position, the expected travel time of the 

RM machine depends on which tier the dwell point is located. Let Or
i  denote the index of 

racks on the tier, starting from the coordinate origin and increasing in the positive direction, 

and let (1)

,
,

orx i r t
T O L  denote the value of (1) ,

x r t
T O L  when the dwell point of the RM 

machine is located in the Or
i th column. 

When 1
Or
i , according to assumption H6, (1)

1
,

x r t
T O L  can be derived as 

 

2
(1)

1 1
1

2 2

1 1
,

2

0 2 3 21 1

2 2 1 2 12

1
2

2

n

x r t ij j
i

l a l a l a

l a l a

l a

T O L x x
v n

W W W W W W

n W n W n W nWv n

n n W nW
vn

.  (7) 

Likewise, (1)

,
,

orx i r t
T O L  for different values of Or

i  can be expressed as 

 (1) 2 2

2

1
, 2 3 2 2 2

2x r t l a
T O L n n W n n W

vn
,  (8) 
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 (1) 2 2

3

1
, 2 5 6 2 2

2x r t l a
T O L n n W n n W

vn
,  (9) 

 (1) 2 2

4

1
, 2 7 12 4 8

2x r t l a
T O L n n W n n W

vn
,  (10) 

 
2

(1) 2 2

,2

1 2
, 2 4 1 2 2 1 2 2

2 2x n r t l a

n
T O L n n n n n W n n n W

vn
.  (11) 

(1) ,
x r t
T O L  is therefore the mean of (1)

,
,

orx i r t
T O L  for all values of Or

i . The expression 

is 

 

(1) (1)

,

3

2 2

32
2

2

2 2

1
, ,

2

2 2
2 2 4

3
1

4 2 44
2

2 6

1
4 1 2 1

6

or

Or

x r t x i r t
i

l

a

l a

T O L T O L
n

n n
n n n n W

vn n nn
n n n W

n W n W
nv

.  (12) 

Second, for the expected travel time in the vertical direction, let (1)

,
,

ory i r t
T O L  denote 

the value of (1) ,
y r t
T O L  when the dwell point of the RM machine is located in the 

Or
j th 

row. Similarly, (1)

,
,

ory i r t
T O L  can be derived through the analysis of different values of 

Or
j : 

 
2

(1)

1 1
1

11 1 1 1
, 0

2 2

p

y r t ij i l l
j

p p p p
T O L y y L L

v p pv pv
,  (13) 

 
3

(1)

2

1 3
, 2

2y r t l

p p
T O L L

pv
,  (14) 

 

2

(1)
2 11

, 1
2yp r t l

p p p
T O L p p L

pv
.  (15) 

(1) ,
y r t
T O L  is therefore the mean of (1)

,
,

ory i r t
T O L  for all values of Or

i . The expression 

is 

 

3 2 2 2
(1) (1)

,

1 1 1 1
, ,

3 2 2 3or

Or

y r t y i r t l l
j

p p p p p
T O L T O L p p L L

p p pv vp
.  (16) 

So far, according to equations (6), (12), and (16), the expected travel time from dwell 

point r
O  to lane position t

L  of the target rack can be expressed as 

 
2

(1) 2 21 1
, 4 1 2 1

6 3s r t l a l

p
T O L n W n W L

nv vp
.  (17) 

4.3 Equation of the expected travel time in a single deep environment 
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We aggregate equations (5) and (17) to calculate (1)

RMM
T . The expected travel time of the 

RM machine for complete operation in a single-deep environment can then be expressed as 

 
2 2 2

(1) 1 8 18 1 16 6 1 4 1

3 2 2RMM a l l

n n n n p
T W W L

v n n p
.  (18) 

 

5 Expected travel time model for a multiple-deep RMMR system 

On the basis of the expected travel time model in the single-deep environment of the 

RMMR system, we turn the discussion to the expected travel time model in the multiple-

deep environment. According to equation (2), the terms ( )

1
,d

s o
T O L , ( ) ,d

s r t
T O L , and 

f
T  

need to be derived firstly, and the expected travel time for the multi-deep RMMR system 

can then be calculated as the sum of ( )

1
,d

s o
T O L , ( ) ,d

s r t
T O L , and 

f
T . 

5.1 Derivation of Ts(Or,Lt) 

Similar to the analysis of the derivation in section 4.2, the expected travel time 
( ) ,d

s r t
T O L  can be presented as the sum of the horizontal travel time (denoted ( ) ,d

x r t
T O L ) 

and vertical travel time (denoted ( ) ,d

y r t
T O L ): 

 ( ) ( ) ( ), , ,d d d

s r t x r t y r t
T O L T O L T O L .  (19) 

First, the expected travel time in the vertical direction is similar to that in the scenario 

of the single-deep system, and the equation is the same as equation (16): 

 
2

( ) 1
,

3
d

y r t l

p
T O L L

vp
.  (20) 

Second, the expected travel time in the horizontal direction is similar to that in the 

scenario of the single-deep system but there is a new factor of the lane depth influencing 

the travel time. Or
i  is the index of racks in the column, starting from the coordinate origin 

and increasing in the positive direction. Let ( )

,
,

or

d

x i r t
T O L  denote the value of ( ) ,d

x r t
T O L  

when the dwell point of the RM machine is located in the Or
i th column. 

Let 
ijk
x  be the horizontal coordinate of the kth position in column i and row j. 

( )

,
,

or

d

x i r t
T O L  can be derived from the value of Or

i  in turn from 1 to 2n: 

 

2
( )

1 1 1 1
1

2 2

1 1
,

2

0 2 2 1 21

2 2 2 1 2 2 1

1
2 2

2

n
d

x r t ij j
i

l a l a l a

l a l a

l a

T O L x x
v n

W W dW W d W W

vn dn d W n W dn d W nW

n n d n W nW
vn

.  (21) 

Likewise, 
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 ( ) 2 2

2

1
, 2 2 2 2 2

2
d

x r t l a
T O L n n d n W n n W

vn
,  (22) 

 ( ) 2 2

3

1
, 2 6 8 2 2 2

2
d

x r t l a
T O L n n d n W n n W

vn
,  (23) 

 ( ) 2 2

4

1
, 2 6 8 4 4 8

2
d

x r t l a
T O L n n d n W n n W

vn
,  (24) 

…… 

 

2

2( )

,2 2

2 2 2 1 2 2 2 2
1

, 22 2 2
2

l

d

x n r t

a

n n n n n d n n W

T O L nvn n n n W
.  (25) 

The expected travel time ( ) ,d

x r t
T O L  is therefore the mean of ( )

,
,

or

d

x i r t
T O L  for all 

values of Or
i . The expression is  

 

( ) ( )

,

2 2

2 2

1
, ,

2

1 1
4 1 3 2 1

2 3
1
4 1 3 2 1

6

or

Or

d d

x r t x i r t
i

l a

l a

T O L T O L
n

n d W n W
n v

n d W n W
nv

.  (26) 

According to equations (19), (20), and (26), ( ) ,d

s r t
T O L  can be written as  

 

2 2 2
( )

4 1 31 2 1 1
,

3 2 2
d

s r t l a l

n d n p
T O L W W L

v n n p
.  (27) 

5.2 Derivation of Ts(O1,Lo) 

According to the operation procedure of the RM machine in the multi-deep RMMR system, 

the start position is the first outside lane for the picking operation of the RM machine. The 

travel time ( )

1
,d

s o
T O L  therefore represents the time cost on the route from the first 

outside lane to the workstation. 

In the same way, ( )

1
,d

s o
T O L  can be expressed as the sum of the horizontal travel time 

( denoted ( )

1
,d

x o
T O L ) and vertical travel time (denoted ( )

1
,d

y o
T O L ): 

 ( ) ( ) ( )

1 1 1
, , ,d d d

s o x o y o
T O L T O L T O L .  (28) 

First, because the vertical travel route is not affected by the lane depth, the vertical 

travel time is the same as that in the single-deep system: 

 ( )

1

1
,

2
d

y o a l

p
T O L W L

v v
.  (29) 

Second, the horizontal travel time is obviously connected with the lane depth, it is 

necessary to analyze the travel time from the target rack when the lane is in different 

columns, and the expectation of the horizontal travel time then needs to be calculated 

assuming that the probability of the lane being in different columns is the same. The 
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analysis procedure is similar to that for the single-deep system and the final expression is  

 ( )

1

2 1 1
, =

2 2
d

x o l a

dn n
T O L W W

v v
.  (30) 

According to equations (28), (29), and (30), the travel time of the RM machine from 

the workstation to the target lane is 

 ( )

1

2 1 3
,

2 2 2
d

x o l a l

dn n p
T O L W W L

v v v
.  (31) 

5.3 Rearrangement strategy and derivation of Tf 

Because the inventory can be retrieved in parallel in the Kiva environment (Wurman 2008), 

the number of RM machines in one aisle is at least one and multiple robots can work 

simultaneously. For the multi-deep AS/RS, a rearrangement operation is required when the 

picking position is located in a deeper lane and there are goods located in the front lane. 

Generally, the rearrangement strategy is that the stacker crane or shuttle is used as 

temporary storage, ensuring the goods in the deeper lane can be picked. However, the 

stacker crane or shuttle can only support the temporary storage of one transport unit load 

(TUL). Lerher (2010) proposed a rearrangement sequence of the TUL for the double-deep 

unit-load AS/RS. The procedure of rearrangement is that goods in the first lane are picked 

and placed at the nearest free storage location; the definition of the rearrangement distance 

is proposed to support rearrangement. This is a common method of rearrangement in 

double-deep AS/RSs. 

Unfortunately, the RMMR system has new characteristics differing from the AS/RS. 

On the one hand, the lane depth can exceed 2, which implies that two or more racks need 

to be rearranged at a time, especially for a layout that has a depth greater than 2. Because 

RM machines can work simultaneously, more robots can move in a certain aisle at the same 

time, and the routes of other machines can be disturbed if the traditional rearrangement 

procedure is adopted. On the other hand, considering the flexibility of the motion of the 

RM machine, rack layout, and space utilization, the proportion of rack utilization is 100% 

in the storage area, which implies that each storage position has a rack located in the lane.  

A new rearrangement strategy is therefore proposed for the RMMR system in this 

paper. Because the RM machine can move under the racks and each rack can be lifted and 

transported, the loop rearrangement route is constructed by combining the target lane, 

arbitrary adjacent lane, and vertical aisle. The procedure is that the racks are transported 

in the anticlockwise direction by the RM machine in turn beginning with the moving of the 

front rack, the RM machine then returns to the nearest lane in the clockwise direction, and 

the procedure is repeated until the target rack is moved to the outside. 

The examples of the 2-deep and 3-deep rearrangement procedures are respectively 

illustrated as Figures 6 and 7.  
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Fig. 6. Procedure of rearranging TULs for double-deep lanes 
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Fig. 7. Procedure of rearranging TULs for 3-deep lanes 

As the storage location of the target rack can differ, the number of rack movements in 

the rearrangement operation can differ, resulting in different rearrangement travel times. 

It is therefore necessary to analyze the arrangement travel time according to different 

storage locations of the rack. It is assumed that the probability of the storage location of 

the target rack is the same in each rack position, and the expected travel time is the mean 

of all arrangement travel times for the different rack positions. On the basis of the picking 

process of a multi-deep system, when the rack is located at the first position in a lane, it 

can be directly lifted and then transported to the workstation without rack arrangement. 

Letting 
fk
T  be the expected travel time of the rearrangement for the kth position in a 

multi-deep lane, the arrangement travel time can be expressed as 

 
2 3

1
0

f f f fd
T T T T

d
.  (32) 
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When the target rack is located at the second storage position of a lane, it takes five 

movements of the rack to turn the target rack to the outside. According to different 

coordinates and arrangement procedures, the arrangement travel time of the RM machine 

for the 2-deep lane is presented as 

2

1
2 2

f l l l l l l l l l l l l l l
T W W W W L L W L W W L W L L

v
. (33) 

When the target rack is located at the third storage position in a lane, according to 

the arrangement procedure, it needs to be moved from the third position to the second 

position in the lane. Let k
P  be the kth position for a multi-deep lane where k is the serial 

number of the rack position. Therefore, when the target rack is located at the third position 

of a lane, the rearrangement time of the RM machine, denoted 
3f

T , can be expressed as 

the sum of two parts, namely the rearrangement time of the RM machine for the second 

rack position (
2f

T ) and the travel time (
3 2
,

f
T P P ) from the third to the second rack 

position: 

 

3 2 3 2

2

2

,

2 21

2 2

1
16 6

1
26 12

f f f

l l l l l l l l

f
l l l l l l l l l l

f l l

l l

T T T P P

W W W W W W L L
T

W L W W W W L W L Lv

T W L
v

W L
v

.  (34) 

In the same way, when the target rack is located at the dth position in the d-deep 

system, the arrangement travel time of the RM machine can be presented as 

 21
3 4 6 6

fd l l
T d d W d L

v
.  (35) 

According to equations (32)–(35), the arrangement travel time of the RM machine can 

be derived as 

 

2 3

2

3 2 2

1

1 1
10 6 26 12 3 4 6 6

1 2 1 2 1
3 1 4 11 1

6 2

3 2 1 6 1

1 1
2 3 3 3

f f f fd

l l l l l l

l

l

l l

T T T T
d

W L W L d d W d L
d v

d d d d d
d W

d v
d d d L

d d d W d d L
d v

21
2 3 3 3

l l
d d W d L

v

 . (36) 

5.4 Equation of the expected travel time in the multi-deep environment 

According to equations (2), (27), (31), and (36), the expected travel time of the RM 

machine for an operation cycle in the multi-deep system is 
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2 2

( )

2 2

6 16 12 4 12 31

6 4 9 9 1 2 8 18 1

ld

RMM

l a

nd n n d n pW
T

vnp p pd p nL n n W
.  (37) 

6 Experimental validation and comparison of the analytical model and simulation results 

Proposed analytical models are implemented in this section to compare with results of 

simulation. Six scenarios are calculated and simulated as the background, and relative 

errors are presented in section 6.2 while the optimal lane depth of the partial experiment 

scenarios is presented in section 6.3. 

6.1 Simulation procedure 

The simulation procedure is presented in Fig. 8 according to the assumptions of analytical 

travel time models. 
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Fig. 8. Simulation flowchart for the command cycle of the RM machine   

AnyLogic software is used to simulate a command cycle of the RM machine in various 

scenarios of different layouts in RMMRs and to validate the accuracy of the analytical 

model. On the basis of the simulation flowchart of the command cycle of the RM machine, 

the simulation procedure using AnyLogic involves generation of the initial layout, creation 

of the picking order, and setting of parameters, variables, and functions. 

The simulation parameters are set to the number of vertical aisles (denoted n), the 

number of rows of racks (denoted p), and the lane depth (denoted d). With different values 

of simulation variables, six scenarios are constructed for n = 4 or 8 and p = 16, 32 or 64, 

with each scenario involving four sub-scenarios with different lane depths of 1, 2, 3, and 4, 

as shown in Table 1. 

Table. 1. Various scenarios with different values of n, p and, d 
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 n p d # of Total Racks 

Scenario 1 

4 16 1 64 

4 16 2 128 

4 16 3 192 

4 16 4 256 

Scenario 2 

8 16 1 128 

8 16 2 256 

8 16 3 384 

8 16 4 512 

Scenario 3 

4 32 1 128 

4 32 2 256 

4 32 3 384 

4 32 4 512 

Scenario 4 

8 32 1 256 

8 32 2 512 

8 32 3 768 

8 32 4 1024 

Scenario 5 

4 64 1 256 

4 64 2 512 

4 64 3 768 

4 64 4 1024 

Scenario 6 

8 64 1 512 

8 64 2 1024 

8 64 3 1536 

8 64 4 2048 

 

6.2 Comparison of the analytical model and simulation results 

Suppose that 

(1) the travel velocity of the RM machine is a constant 1.5v  m/s;  

(2) the width of each aisle is 3
a
W  meters; and 

(3) for a single rack position, the length 
l
L  is 1.35 meters and width l

W  is 1.15 meters. 

AnyLogic software is used to simulate 24 classes of scenarios, with 30,000 random 

experiments for each scenario, which implies the target picking positions are randomly 

generated 30,000 times. The mean of the simulation results for each sub-scenario is taken 

as the final results to be compared with the results of the analytical model. Table 2 gives 

the results of the analytical travel time model and simulations. 

Table. 2. Comparison of the results of the travel time model and simulation 

 d=1 d=2 d=3 d=4 

n=4, p=16 Model Result 33.13  45.46  59.13  74.13  

Simulation Result 33.12  45.52 59.01  74.13  

n=8. p=16 Model Result 47.33  66.83  87.67 109.83  

Simulation Result 47.38  66.87 87.41  109.81 

n=4, p=32 Model Result 47.35  59.69 73.35  88.35  

Simulation Result 47.30 59.68  73.43 88.19 

n=8, p=32 Model Result 61.56  81.06  101.90  124.06  

Simulation Result 61.56  81.02  101.95  124.29  
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n=4, p=64 Model Result 75.80  88.14 101.80  116.80  

Simulation Result 75.99 88.16  101.94  116.95  

n=8, p=64 Model Result 90.01  109.51  130.34  152.51  

Simulation Result 89.98 109.89  130.64 152.45  

 

The relative error (i.e., the difference between results obtained by simulation and those 

derived using analytical travel time models) can therefore be calculated as 

 
simulation value - analytical value

relative error=
analytical value

.  (38) 

Relative errors of all scenarios are shown in Fig. 9. All relative errors are between −0.35% 

and 0.3%, which implies that the proposed analytical travel time models are effective. 

 
Fig. 9. Relative error (i.e., difference between results obtained by simulation and using the analytical 

model) 

6.3 Optimal lane depth in the partial experiment scenario 

Furthermore, five types of layout with 512 racks are constructed according to the 

simulation scenarios; i.e., two 4-deep layouts of {n = 8, p = 16} and {n = 4, p = 32}, two 

2-deep layouts of {n = 8, p = 32} and {n = 4, p = 64}, and one single-deep layout of {n 

= 6, p = 64}. The results calculated using the analytical multi-deep travel model are shown 

as Fig. 10. The optimal lane depth selection for the layout of 512 racks is the 2-deep layout 

with eight vertical aisles and 32 layers, which is presented in Fig. 11(a). 

 

 
Fig. 10. Comparison of travel times for various depths of 512 racks in the RMMR system 
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(a) n = 8, p = 32, d = 2, 512 racks      (b) n = 4, p = 32, d = 2, 

256 racks 

Fig. 11. Optimal layouts of 512 racks and 256 racks in the RMMR system 

Similarly, there are five types of layout with 256 racks in the proposed simulation 

scenarios, namely one 4-deep layout of {n = 4, p = 16}, two 2-deep layouts of {n = 8, p = 

16} and {n = 4, p = 32}, and two single-deep layouts of {n = 8, p = 32} and {n = 4, p = 

64}. The results calculated using the analytical multi-deep travel model are shown as Fig. 

12. The optimal lane depth selection for the layout of 256 racks is the 2-deep layout with 4 

vertical aisles and 32 layers, which is presented in Fig. 11(b). 

 

 
Fig. 12. Comparison of the travel times for various depths of 256 racks in the RMMR system 

 

7 Conclusions 

This paper presented original and effective models for the determination of the travel time 

in single- and multi-deep RMMR systems having a vertical aisle, lane layout, RM machine, 

and workstation. On the basis of the analysis of the operation command cycle for the RM 

machine, expected travel time models for single- and multi-deep layouts were proposed and 

illustrated. Simulations were conducted to validate the proposed models for six scenarios 

having depth of 1–4 . The simulation results indicate that (1) the absolute difference 

between the proposed models and AnyLogic simulation (i.e., relative error) is less than 0.35% 
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and (2) a double-deep lane with a certain number of aisles and layers is optimal. The 

simulation shows the proposed models are a useful and effective tool with which to estimate 

the RMMR system performance in terms of the cycle time and provides practical guidelines 

for the design of a storage system in terms of the numbers of aisles and layers and lane 

depth.  

The present study has limitations despite the breakthrough it makes. Future work will 

focus on the following. (1) The optimal 2-deep lane was found using the proposed 

rearrangement strategy; we can therefore obtain a new optimal lane depth and layout if 

the rearrangement strategy is improved. (2) Space utilization is another factor used to 

analyze the performance of the warehousing system. It can thus be considered 

simultaneously, and a multi-objective optimization model can be developed to analyze the 

tradeoff between the space utilization and travel time. (3) If the horizontal aisle is 

considered, the layout is modular and compact, which implies a new dual-dimension lane 

depth (with horizontal and vertical directions). The optimal layout in various conditions 

and from various perspectives will therefore be central to further analysis and research. 
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