法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2024-12-22

温度一定の分子動力学法によるアルゴンの融 解曲線

片岡, 洋右 / KATAOKA, Yosuke

(出版者 / Publisher)
法政大学情報メディア教育研究センター
(雑誌名 / Journal or Publication Title)
法政大学情報メディア教育研究センター研究報告
(巻 / Volume)
32
(開始ページ / Start Page)
7
(終了ページ / End Page)
10
(発行年 / Year)
2018-06-01
(URL)
https://doi.org/10.15002/00014877

温度一定の分子動力学法によるアルゴンの融解曲線

Melting Curve of Argon by

Constant Temperature Molecular Dynamics Simulations

片岡 洋右

Yosuke Kataoka

法政大学生命科学部環境応用化学科 Department of Chemical Science and Technology, Hosei University

Melting curve of argon was calculated by constant temperature molecular dynamics simulations. Lennard-Jones potential function was assumed. The initial configuration was consisted with solid part and liquid part. The melting point was obtained as solid-liquid co-existent state. The surface tension was also calculated.

Keywords : Melting Curve, Argon, Molecular Dynamics, Surface Tension, Lennard-Jones Potential

1. はじめに

温度一定の分子動力学シミュレーション (NTV-MD)[1][2][3]によってアルゴンの融解曲線を 計算できることを示す。温度と基本セル全体での平 均密度を与えた上で、初期分子配置として、固体部 分と液体部分からなる配置から出発して、z 軸方向 に長いセルで熱平衡状態までシミュレーションを続 ける。固体と液体の共存する状態が得られたら、そ のときの温度が融解温度であり、この平衡状態での 圧力テンソルのz成分が融解点における圧力となる。 平均圧力pではなく圧力テンソルPz成分が融点での 圧力となるのは、他の Px, Py 成分は界面がある場合、 表面張力の影響を受けるからである。

圧力テンソルの x, y 軸成分と z 軸成分の差から表 面張力を計算できる[4]。基本セルを z 軸方向に長い 直方体とし、周期境界条件を課すと界面が z 軸に垂 直にできやすい。このため、圧力テンソル Px と Py は表面張力の影響を受けるのに対し、Pz はその影響 を受けにくい。このため、系の圧力は Pz で知ること ができる。

2. 分子動力学法

アルゴン分子間にはレナード-ジョーンズ相互作 用を仮定した。その関数形は次の式で与えられる。

$$u(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right]$$
(1)

ここで*ε*はポテンシャルの谷の深さをしめすエネ ルギーパラメータであり、*σ*は分子直径に相当する 長さのパラメータである。使用したパラメータの値 を表1に示す。計算結果はエネルギーについては*ε* を、長さは*σ*を単位として示す。また時間の単位は 次の式で定義される*τ*である。

$$\tau = \sqrt{\frac{m\sigma^2}{\varepsilon}}$$
(2)

分子動力学シミュレーションの条件は表2にまと めた。

原稿受付 2018 年 3 月 13 日 発行 2018 年 6 月 1 日 Copyright © 2018 Hosei University

表 1 相互作用パラメータ等の値 Table 1 Parameters.

ε/J	σ∕m	τ/s
1.7258E-21	3.4282E-10	1.6422E-12

表面張力γは圧力テンソルとセル長 L から次の 式で計算できる[4]。

$$\gamma = \frac{L_z}{2} \left(Pz - \frac{1}{2} \left(Px + Py \right) \right)$$
(3)

表 2 MD シミュレーションの条件

Table 2 MD conditions.

quantities	notation	value
numberof molecules in basic cell	N	2592
totalnumberof MD steps		1.00E+06
time increment	<i>dt/</i> s	1.00E-15
ensemble		NVT
in itia l configuration		FCC+Liquid+FCC
boundary condition		periodic
cutoffdistance		half of short ce ll length
so ftw are		SCLGRESS-ME[5]

初期分子配置は図1のように FCC 格子の間に液 体構造を挿入したものを使用した。このように固体 と液体構造をあらかじめ初期分子配置に用意してお くのは、比較的短いシミュレーションステップで固 体あるいは液体さらには固液共存状態を得るためで ある。

今回は、密度 1.8 g/cm³において一定体積の条件の 下で温度を上げて、高温で液体状態を作り、この分 子配置を液体の分子配置とした。系の密度を 1.4 g/cm³から 2.2 g/cm³までの範囲でシミュレーション を繰り返した。

図.1 初期分子配置 Fig.1 Initial configuration.

3. 計算結果

MD シミュレーションによる分子配置の変化の例 を図2に示す。これは密度1.6 g/cm³で温度 T = 121 K(=0.968*ɛ/k*)の場合である。

図.2 初分子配置の時間経過。密度 1.6 g/cm³、 温度 T = 121 K (=0.968 ε/k) Fig.2 Time dependent configuration. Density = 1.6 g/cm³, T = 121 K (=0.968 ε/k)

図2の例では平衡状態での構造は固体であること が分かる。設定温度が *T* = 122 K (0.976 *ε/k*) と *T* = 148 K (1.184 *ε/k*)の場合とあわせて、系のポテンシャ ルエネルギーの時間経過を図3に示した。

Fig.3 Potential energy vs time. T = $1.184 \ \epsilon/k$, 0.976 ϵ/k , and 0.968 ϵ/k . Density = 1.6 g/cm^3

図.4 圧力テンソル Pz の時間経過 T = 1.184 ɛ/k, 0.976 ɛ/k, and 0.968 ɛ/k. Density = 1.6 g/cm³ Fig.4 Pressure tensor Pz vs time. T = 1.184 ɛ/k, 0.976

 ε/k , and 0.968 ε/k . Density = 1.6 g/cm³

図3と図4から、図の中に示したようにそれぞれ 液体、固体と液体の共存、固体状態の平衡状態が得 られた。この方法で圧力テンソル Pz の平均値を温度 に対してプロットしたのが図5である。

図.5 圧力テンソル Pz の温度変化、Barroso らの結 果[6]と比較した。

Fig.5 Pressure tensor Pz vs T, compared with Barroso et al's results [6].

図5において Barroso らの LJ 系の自由エネルギー計算から得られた融解曲線と比較した[6]。良い一致を示している。

図6には低温部分の拡大図を示した。

図.6 圧力テンソル Pz の温度変化(低温部分) Fig.6 Pressure tensor Pz vs T (Low temperature part).

図6から低温部分では Barroso らの計算結果とは 少し食い違いがあることが分かる。また Barroso ら の最も低温の点が3重点であるから、これよりも低 温領域に、固体と液体の共存する領域が得られたこ とが分かる。こうした状態が得られた理由は以下の ように考えられる。基本セルの平均の密度を固定し た計算では、密度が低いと液体と固体では負の圧力 の状態がシミュレーションでは実現するためである。 現実の系でも、系を引き伸ばすことにより実現可能 な状態である。

今回の計算は十分密度が低くかつ広範囲に広がっ た気体状態と凝縮相の共存を許すような計算にはな っていないので、3重点は得られていない。

図7に計算で得られた表面張力の値を示した。値 がばらついているのは式(3)のように圧力テンソル の差から計算しているため、精度が落ちていると見 られる。Pz は図5のように十分な精度でも、表面張 力を得るには計算で得られた圧力テンソルの値は精 度が不十分であると考えられる。

低温での表面張力の大きさは通常の固体の表面張 力の大きさ[7]とあっているので、全体的に大きさの 程度は得られていると判断できる。

表面張力が精度良く得られる計算方法は今後の研 究課題の一つである。

動画1に固液界面の時間経過の例を示した。界面 自体が動く様子が分かる。界面の面積をより大きく とることが望ましい。

図.7 圧力テンソル Pz の温度変化 Fig.7 Pressure tensor Pz vs T.

動画 1 固液界面の時間経過の例[7] T=160 K(=1.28 ɛ/k), 密度 = 1.6 g/cm³

Animation 1 Example of solid-liquid coexistence structure [7], T = 160 K (=1.28 ε/k), density = 1.6 g/cm³

計算の一部は法政大学情報メディア教育研究セン ターの資源を用いて行われた。

参考文献

- [1] 田中實,山本良一,"計算物理学と計算化学", 海文堂,1988年.
- [2] 上田顕, "コンピュータシミュレーション", 朝 倉書店, 1990年.
- [3] Y. Kataoka and Y. Yamada, J. Comput. Chem. Jpn., 13, 115(2014).
- [4] J. Alejandre and R. M. Lynde, *Mol. Phys.*, 105, 3029, 2007
- [5] 計算化学ソリューション FUJITSU Technical Computing Solution SCIGRESS <u>http://www.fujitsu.com/jp/solutions/business-techno</u> <u>logy/tc/sol/scigress/</u>
- [6] M. A. Barroso and A. L. Ferreira, J. Chem. Phys., 116, 7145-7150 (2002).
- [7] <u>http://www.media.hosei.ac.jp/bulletin_archives/vol3</u> 2_02/T=160K.avi