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Abstract 

i 

 

Abstract 

 

Turbomachinery is machinery device in which energy is delivered either to or from 

fluid that is continuously moving due to action of moving blades. Performance and flow 

noise are two major indices for evaluation of turbomachinery. In terms of energy 

transfer, researches on performance of turbomachinery have been conducted since long 

time ago; and these researches for performance improvement are still ongoing currently. 

In addition, flow noise produced by turbomachinery came to the fore as turbomachinery 

has been used in various fields and everyday life closely and frequently. Especially, 

consumers’ demand on improvement in affective quality has been increased and 

regulation on noise has been being reinforced due to damages and adverse effects 

caused by noise. Therefore, development of high performance and low noise 

turbomachinery is highly required. 

Meanwhile, experimental methods have been used to develop low noise 

turbomachinery; however, the experimental methods solely are not sufficient to achieve 

such aim since measuring in small turbomachinery is challenging. Hence, prediction 

technique, to which the numerical analysis method that yields complementary effects in 

combination with the experimental methods is applied, is required. 

This study was conducted with the aim of applying numerical analysis method for 

noise reduction in turbomachinery. Therefore, three-dimensional unsteady Navier-

Stokes equations were solved to simulate the flow field. Turbulence models used to 

predict the flow field were SST k–ω model that provides outstanding simulation of 

separation and adverse pressure gradient in boundary layer and LES model that presents 

excellence in turbulence intensity modeling, respectively. Computational Aeroacoustics 

(CAA) used to predict the flow noise in this study was acoustic analogy that is one of 

the hybrid methods; and the acoustic analogy is the method analyzing unsteady flow 

field by using Computational Fluid Dynamics (CFD) and then predicting noise by using 

the information of unsteady flow field obtained from the results of CFD simulation. To 

conduct acoustic analogy, Lowson equation, which can be used to predict sound 

pressure for point force that is moving in a free field, was calculated. Despite of 

disadvantage that influence of an object including scattering, diffraction, and reflection 
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within acoustic field is difficult to be considered, this method that directly reduces noise 

sources was able to be drawn since the locations of the noise source can be seen by 

numerical approach. Because predicting the location of the noise source is able to figure 

out the unsteady flow which causes the noise. As a result, the reduction method of flow-

induced noise in this study is to find the way to reduce or remove the unsteady flow 

generating the noise, based on CAA and CFD. 

In order to indicate the location of the noise source, “Aeroacoustic source strength, Ast” 

was defined and compared with the location of the noise source measured by the 

acoustic camera to which beamforming technology is applied; and they were agreed 

qualitatively well each other. 

Due to miniaturization of electronics and maintenance of fan performance, whereas 

size of fan is getting smaller, the rotational speed of it getting higher. In this study 

following the current trend, three fans with each other different type were used for 

adopting numerical method to noise reduction; ⅰ) a small axial fan of rotor’s diameter D 

= 0.166 m and a rotation speed 2860 rpm with circular shroud, ⅱ) a small axial fan of 

rotor’s diameter D = 0.076 m and a rotation speed 7000 rpm with square-type shroud 

used in a rack mount server computer, ⅲ) a small centrifugal fan with rotor’s diameter 

D = 0.032 m and a rotation speed 10460 rpm used as a cooling fan in portable home 

electronics such as a small laptop computer. The noise of each type fan was predicted 

and compared with the measured noise. The predicted noise and measured noise 

presented agreement in tonal noise of the blade passing frequency (BPF) and its 

harmonic frequencies and in the broadband noise at low frequency. Although the 

broadband noise at high frequency was somewhat different due to random broadband 

noise, the shapes for noise reduction were able to be drawn effectively by predicting the 

location of the noise sources. Low noise models suggested for noise reduction provided 

the result of noise reduction from the prediction and specific noise level was used to 

evaluate the noise reduction considering the changes in fan performance. 

In case of the axial flow fan with circular shroud, the interaction between the rotating 

rotor blades and the flow separated from the inlet of the shroud was found to be the 

major cause of the noise through the analysis on the location of the noise sources and 

unsteady flow field. Consequently, reduction of the flow noise was predicted by 

correcting the shape of the shroud inlet. 
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In the small axial flow fan installed in the rack mount server computer, the tonal noise 

occurring by irregular clearance between the blade tip and the shroud due to the square-

shaped shroud was well predicted. In addition, coherence analysis was conducted to 

identify the relationship between the surface pressure fluctuation due to the flow and the 

sound pressure predicted from the microphone. As a result, the correlation for each 

frequency was well presented. 

For a centrifugal fan that is used as a cooling fan in home electronics such as a 

portable small laptop computer, the flow structure of the centrifugal fan was simulated 

by setting the condition to be analogous to the operating condition within the actual 

product. And then the reduction of the flow noise was predicted by correcting the tip of 

the impeller blades based on the location of the noise sources. 

This study aimed to apply the method of numerical analysis to the noise reduction in 

turbomachinery. For this, the unsteady flow field was analyzed, the result of noise 

prediction obtained from the flow filed information was compared and validated, and 

the location of the noise sources and the structure of the flow field causing the noise 

were understood; hence, the low noise design was able to be drawn effectively and 

properly. In this study, the reduction of the flow noise was successfully achieved by 

adopting the method of numerical analysis and the flow noise of the fan that were 

improved for noise reduction was predicted to be reduced by 0.8 and 3.7 dB, 

respectively. 
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Nomenclature 

 

Ast  : aeroacoustic source strength 

a0  : speed of sound 

Cs  : Smagorinsky model constant 

D  : diameter of the rotor 

dB  : decibel 

F  : force, blending function 

G  : Green’s function, filter function 

H  : head of the impeller 

Hn  : helicity 

Ksa  : specific noise level 

L  : length 

M  : Mach number 

n  : unit normal vector 

p  : pressure, acoustic pressure 

Q  : strength of point source, flow rate 

r  : vector from source to observer 

Re   : Reynolds number 

S  : source term 

T  : torque, Lighthill stress tensor 

t  : time 

V  : angular velocity vector 

 

Greek letters 

  : delta function 

  : dependant variable 

  : density 

  : diffusion coefficient 

μ  : viscosity coefficient 

τ  : shear stress, time 
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Subscript 

fluid  : caused by the fluid flow 

ref  : reference 

ret  : quantity evaluated at the retarded time 

SGS  : Sub-Grid Scale 

 

Symbol 

  : partial derivative 

∆  : filter size 
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Chapter 1. General introduction and literature review 

 

1.1 Background 

Turbomachines are defined as all those devices which exchange energy either to, or 

from, a continuously flowing fluid through the dynamic motion of one or more moving 

blade rows. The word “turbo” or “turbinis” is from Latin origin and implies that which 

spins or whirls around [1]. Especially, the rotating blade row changes the pressure of the 

fluid by either doing work on the fluid (as a pump) or having work done on the blade 

row by the fluid (as a turbine), depending upon the purpose required of the machine [2]. 

The fan with the purpose of air conditioning was invented by Ding Huan who was a 

master artisan and engineer of Han Chinese in around the second century. The fan was 

in diameter of 3 m and manually rotated. Since then, Chinese in dynasty era used fan 

more frequently and they sometimes used water power to rotate fans [3]. The first 

rotating fan used in Europe was used to ventilate the inside of a mine during the 16th 

century as described by Georg Agricola (1494-1555) [3]. In 1727, Dr. John Théophile 

Desaguliers who was a British engineer designed the fan system for ventilation of mine 

in Westmorland by using the theory of chimney; and installed further improved device 

in Houses of Parliament in 1745. However, it was not utilized much due to difficulties 

in finding power source for operation of the fan. Afterwards, power-operated fans were 

begun to be used and the use was rapidly increased since the electric powered fan was 

invented at the end of 1800s. Now, fans are the most frequently used turbomachinery in 

everyday life as the one cannot find the field including the field of electric/electronic, 

automobile, and aviation where fans are not used. Examining the classification of fluid 

machinery, these can be divided by depending on the purpose of use such as 

displacement, kind of fluid, direction of energy or flow and so on. Figure 1-1 shows the 

classification of fluid machinery in detail. The turbomachines are classified by direction 

of energy as a pump and a turbine, can be divided again by direction of flow as axial 

flow type, radial flow type and mixed flow type, respectively. For instance, axial flow 

fans present uniform direction of the flow in general and are used where with high flow 

rate and small pressure difference. However, many axial flow fans were stacked in 

multi-layer for cases where large pressure difference and high flow rate are required 



Chapter 1. General introduction and literature review 

2 

 

such as the engine of the air planes (Figure 1-2). Meanwhile, centrifugal fans have been 

used in vacuum cleaners, automobile HVAC and ventilation system for buildings where 

pressure difference rather than flow rate needs to be increased in small space. With the 

increased use of fans, issues of the fan noise that had not been considered before came 

to the fore. In particular, the sound source of the fan noise is in the space where people 

works in; hence, the radiation within the closed building and inside a room causes major 

noise issues. Predicting the noise source and the radiation patterns of the noise is 

essential since such noise has various influences including sleep interruption and the 

decrease in work efficiency. 

In terms of energy, fans are the devices that transform the momentum energy to flow 

energy by delivering energy to flow through rotation of fan blades. In other words, the 

aim of a fan is to deliver energy to flow; hence, the primary interest is still in its 

performance. Various researches through experiments or numerical analysis have been 

conducted to improve fan performance up to date. Owing to the rapid development of 

calculation capacity of computers in the late 1990s, researches of numerical analysis on 

flow field of a fan have been being conducted particularly.  

Interest in the noise caused by a fan is growing due to the increase in the use of fans as 

these are used in wide range of industrial field. For axial flow fans, the noise caused by 

airplanes was drawn attention relatively earlier as axial flow fans were used in the jet 

engines of airplanes. Consequently, a good number of results have been communicated 

by numerous researchers studied on the cause of noise and prediction methods in the 

1960s and 1970s [4-7]. As a result, the fan noise mechanisms which explain the noise 

type generated by each source were summarized by Neise [8] in 1992 as following 

figure 1-3. Blade thickness noise or monopole noise is known, as giving a significant 

influence to fan noise only when the blade tip speed is over Mach number 0.5. The 

source of monopole noise is due to the volume displacement effect which generates 

repeatedly the disturbance in the flow field when the moving fan blade displaces fluid 

mass. The dipole noise is called loading noise and generates discrete and broadband 

noise. It can be explained as the noise generated by forces acting on the fluid. The 

quadrupole is related to Lighthill’s term and represents the sound radiation by 

fluctuating Reynolds stresses within fluid layers. According to Morfey [4], it becomes 

dominant issue only when the blade tip of rotational speed is greater than the Mach 
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number 0.8. It’s well-known to be generated typically by shear stresses.  

Fans that are used in field of home appliances and automobiles are operated in 

subsonic domain; hence, the cause of the noise is different from the cause of the 

airplane’s noise and the size of the noise is relatively smaller than that caused by 

airplanes. Therefore, the practical noise reduction method through experiment has been 

studied. Since then, fans have been being widely used in closed area or near life space 

and thereby, consumers’ demand on affective quality has also been increased according 

to overall improvement in quality of products in the late 1990s. As a result, numerous 

researches adopting experiment or numerical analysis have been conducted. In addition, 

researches measuring and visualizing noise sources by utilizing beamforming are being 

conducted recently. Beamforming is one of microphone array locating technology. It 

can be considered as one of the usual acoustics visualizing method and is frequently 

used in industrial field to detect noise sources owing to its advantage of high speed, 

contactless, and high resolution. Researchers have been trying to find continuously the 

sound source, because it’s very important to find the place at where the source is located, 

in order to reduce the noise. However, only experimental methods are not enough to 

find and understand the unsteady flow field generating the noise. The numerical 

analysis is necessary to find and figure out the location of the sound source and the 

unsteady flow field generating the noise. Therefore, prior to adopting numerical analysis 

method for reduction of the flow noise, the locations of noise sources predicted by the 

numerical analysis in this study was compared with that measured by a equipment like a 

sound camera which has been developed based on a beamforming technology. 

In summary so far, the noise of fans used in the industrial part except the aviation field 

was taken late relatively the customer’s attention and the main focus of the flow-

induced noise in this study became the dipole noise. The application of the numerical 

analysis based on the main focus can provide the high feasibility for noise reduction in 

the turbomachines. 

 

Meanwhile, the acoustics at dictionary is the branch of physics that deals with sound 

and sound waves in gases, liquids, and solids. Sound waves are classified by infrasound 

(f < 20 Hz), audible sound (20 Hz < f < 20 kHz) and ultrasound (20 kHz < f < 5 MHz) 

depending on frequency range. In audible sound, the classification of noise or music is 
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divided by whether giving people displeasure or not, when people listen to the sound. 

Though the noise is divided as structure borne noise and airborne noise depending on 

the transmission medium of the sound waves, aeroacoustics was covered in this study. 

The aeroacoustics is a branch that studies the noise generated by the turbulent flow, the 

periodically varying flow, the aerodynamic force interacting with a surface and so on. 

Ffowcs Williams [9] defined that flow noise is the term used to describe the pressure 

fluctuations associated with unsteady flow, particularly turbulent flow. Therefore, the 

numerical method, which is called as Computational Aeroacoustics (CAA), as well as 

Computational Fluid Dynamics (CFD) to predict the unsteady flow field were required 

to understand or predict the flow noise in detail. CAA is a part of aeroacoustics to 

analyze the flow-induced noise generated in the flow field through numerical methods. 

The numerical method predicting noise caused by flow is majorly classified into two 

kinds: direct method in which flow field and acoustic field that may be the noise source 

are analyzed simultaneously and hybrid method in which flow field that is the region of 

the noise source and acoustic field where the noise propagates are analyzed separately 

under the assumption that the influence of the acoustic field on the flow field is 

ignorable (Figure 1-4). 

The direct method of the noise prediction is the method in which the sound pressure 

that causes noise is directly calculated by using the numerical method. However, the 

researches on this method were started to be conducted in the 1990s for the first time 

and have not been utilized wieldy even nowadays due to two reasons. The first reason is 

the physical causes including the differences in scale of the length between the flow 

field and the acoustic field and the difference in perturbation size between the flow field 

and the acoustic field. The second reason is caused by the demand of the numerical 

techniques requiring the high-order accuracy in the frequency-wavenumber domain as 

well as in the time-space domain. 

The hybrid method of noise prediction analyzes the unsteady flow field, as the noise 

source region, by using Computational Fluid Dynamics (CFD) and then predicts noise 

propagation by utilizing acoustic analogy, boundary element method, and 

linear/nonlinear acoustic propagation equation. In this study, the hybrid method that has 

been known to be more efficient than the direct method was used. After obtaining 

unsteady flow field by utilizing CFD, the noise was predicted by using acoustic analogy 
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which is the one of hybrid methods. In general, it has been known that the appropriate 

model among numerous acoustic analogies should be applied by taking account of the 

environment where the flow noise of interest occurs because noise prediction based on 

acoustic analogy proposes a kind of approximate solution through the modeling of 

major noise sources. This study utilized the acoustic analogy derived from the Lighthill 

equation [10, 11]. The method using acoustic analogy allows obtaining accurate solution 

up to farther distance; however, the influence of scattering or reflection is difficult to be 

considered in case of having scattering or reflection due to an object when the object is 

inside the acoustic field. Notwithstanding this problem, the acoustic analogy can 

sufficiently propose the efficient and direct method for flow noise reduction by 

predicting the location of noise sources. The method of flow noise reduction with the 

numerical analysis is composed of the following procedures; first is the validation of the 

noise prediction value obtained from the aeroacoustic noise analysis utilizing acoustic 

analogy, second is the analysis on the locations of the predicted noise sources, third is 

the analysis and identification of unsteady flow causing the noise sources, and fourth is 

the prediction of the noise reduction by taking account of the shape that can reduce the 

unsteady flow related to the noise sources. 

The fundamentals of aeroacoustic analogy was established by the sound wave 

equation in free space proposed by Lighthill in 1952 and 1954 and Curle [12] revised 

the equation so that it can be valid even in case of having object surface. In 1965, 

Lowson [13] induced the equation predicting sound pressure caused by moving point 

force and Ffowcs Williams and Hawkings [14] defined the flow noise sources occurring 

from moving objects with arbitrary velocity within the flow by expanding the acoustic 

analogy proposed by Lighthill and Curle. 

 

In this study, acoustic field caused by the turbomachinery in a free space was predicted 

through the numerical analysis by using Lowson equation based on the information of 

unsteady flow field due to the turbomachinery. In addition, application of the numerical 

analysis to reduce the flow noise of the turbomachinery used practically was focused by 

describing the distribution of the noise sources through defining “Aeroacoustic source 

strength” from the result of the aeroacoustic noise analysis. 
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1.2 Literature review 

In case of considering the operating fluid as gas, fans can be defined as the 

machineries with an impeller or a rotor that exerts mechanical work letting the gas to 

flow with arbitrary energy and is the turbomachinery that is the most frequently used in 

everyday life. The rotation velocity of a fan can be increased to maintain the 

performance depending on its operating condition, size, and shape. This complicates the 

flow field, increases the flow noise, and thereby causes serious problems in products. 

Therefore, researches on fans were reviewed after classified into the flow analysis and 

the flow noise. 

The flow analysis of a fan can be distinguished into the simple way analyzing the 

performance only and the method analyzing the flow field. Initially, only the 

performance of the impeller that supplies energy was studied in order to predict fan 

performance. Since then, the method that predicts the head of turbomachinery in a 

simple manner by using a velocity triangle with infinity blade theory was developed in 

the early 20
th

 century. Afterwards, the method that predicts performance based on finite 

blade theory where the slip factor was introduced was developed and numerous 

equations with regard to the slip factor have been studied. As shown in figure 1-5, 

Wiesner [15] provided the information for determination of slip factors within limitation 

of the mean radius ratio of the impeller in centrifugal impeller applications. Exceeding 

the limitation, an empirical correction was proposed. 

Weissgerber and Carter [16], Takagi et al. [17] and Rathod and Donovan [18] 

proposed a prediction method for centrifugal pumps in different types and with specific 

rotation speeds. Such method used a simple velocity triangle combined with several 

experimental equations and could predict somewhat accurate values for impellers in 

simple shape only in a narrow range near the best efficiency point, due to the causes of 

the inadequate flow modeling and without the consideration of all possible losses. 

Nevertheless, they have been still used by many business entities. 

Aforementioned method predicts the performance only; therefore, it does not offer 

information about the flow field including velocity or pressure on the blade surface. The 

origin of such method for the flow field analysis can be recognized as shown in figure 

1-6 that Wu [19] divided the three-dimensional passage flow into S1 and S2 surface and 

calculated for each case in 1954. The method was further developed by Katsanis [20] in 
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1964 and numerous studies have been done based on Katsanis’s method. However, such 

methods were useful only when analyzing impellers at steady state and had the 

disadvantage that it was not able to be used when analyzing impellers at unsteady state 

or considering fans with the fixed parts including the casing and diffuser. 

With the development of computers since the 1980s, studies on transient 

characteristics of two-dimensional inviscid unsteady state impeller had been conducted 

with the use of vortex panel by Tsukamoto and Ohashi [21], Imaichi, et al. [22], 

Tsukamoto, et al. [23], and Shoji and Ohashi [24]. Figure 1-7 shows the characteristics 

for the stopping transients through comparison of the calculated and measured data by 

Tsukamoto, et al. Afterwards, Kiya and Kusaka [25] conducted a numerical research on 

characteristics of the unsteady flow that was separated from the leading edge of the 

blade of the centrifugal impeller in the flow field of the two-dimensional inviscid 

incompressible fluid by using discrete vortex method in 1989. Owing to the rapid 

development of computer performance since the late 1990s, the three-dimensional flow 

field caused by the turbomachinery was simulated with the numerical analysis method 

and a good number of researches aiming for the improvement in fan performance have 

been conducted [26-28]. Panigrahi and Mishra [26] simulated the flow field near the 

airfoil produced by the angle of attack by using k–ε turbulence model in order to 

improve the efficiency of the axial fan for mine ventilation. In order to identify the 

effect of the vortex design and blade lean of the nozzle guide vane at turbine inlet, 

Zhang et al. [27] conducted the numerical analysis with SST k–ω turbulence model, 

analyzed the loss occurring in the guide vane according to the cause, and showed the 

distribution of each loss component based on the direction of the axis in figure 1-8. 

Pogorelov et al. [28] conducted a large scale numerical analysis on the influence of the 

clearance in the tip leakage flow generated at an axial flow fan and analyzed the tip 

leakage vortex by using LES model. Figure 1-9 shows the unsteady flow field 

depending on time about each clearance. 

Looking at a turbulence model used to simulate the flow field for fan performance 

prediction of the previous studies in recent years, Reynolds-Averaged Navier-Stokes 

(RANS) turbulence model established with the approach in terms of time-average is still 

being used. Because the reason presents excellent stability of convergence even though 

the number of grids used is small. Recently, the frequency of using LES model that 
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allows identification of turbulence eddy in various sizes by conducting direct analysis 

without physical modeling about turbulence eddy which is larger than a mesh size has 

been being increased. 

 

The below is a brief review on acoustic analogy that is the fundamentals of the 

aeroacoustic noise. From the study reported by Lynam and Webb [29] in 1919, the 

acoustic noise by turbomachinery has been concentrated to predict the acoustic noise 

caused by rotor sand propellers of helicopters. Thereafter, his study by Gutin [30] 

shown in figure 1-10 made a significant progress in the field of acoustic noise 

prediction. However, Gutin noise caused by the steady loading generating on propellers 

was not useful for fan noise prediction. In 1952, Lighthill [10] established aeroacoustics 

theory through conducting the dimensional analysis on the acoustic noise generation by 

using flow velocity and shape variables. Tyler and Sofrin [31] analyzed the noise 

radiation of rotating sources in a duct by simplifying the rotating fan as the acoustic 

source arranged to circumferential direction on the disk plane with using mode theories 

They reported that each blade number of rotor and stator is the most dominant factors in 

noise occurred by the interaction between the rotor and the stator. In 1965, Lowson 

induced the formula calculating the acoustic pressure produced by a moving point force 

[13]. Ffowcs Williams and Hawkings (FW-H) [14] drew an equation for a moving 

acoustic source by expanding the Curle’s study [12] which could not consider a moving 

acoustic source. 

Meanwhile, the initial studies on the flow noise produced by the interaction between a 

rotating object such as a fan and the surrounding structures focused on the development 

of the method for noise reduction and noise prediction based on the experiments rather 

than the numerical analysis. The researches [32-37] related to the noise of centrifugal 

fans were more focused on the noise reduction by adjusting the increase of cut-off 

intervals, the lean of the impeller blades and cut-off edges, the mesh installation on 

leading and tailing edges of the impeller blades, and the placement of impeller blades 

asymmetrically. Figure 1-11 shows the effect of impeller with sloping blades in the 

noise reduction. 

With the improvement of computational performance in 1990s, direct calculation 

based on Lighthill equation was enabled to predict the aeroacoustic noise. However, it is 
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still challenging to conduct the direct method of the noise field analysis due to the 

numerical methods requiring the high capacity grids and the accuracy of higher order. 

Researches for noise prediction are still being conducted by utilizing CFD or taking the 

hybrid method yet [38-44]. 

In figure 1-12, Chen and Wu [38] showed that tonal noise of the blade passing 

frequency (BPF) and its harmonic frequencies is occurred by the interaction between a 

rotating rotor and a stationary structure through a vortex method based on Lagrangian 

frame. As shown in figure 1-13, Jang et al. [39-42] studied experimentally and 

numerically the influence of the tip leakage vortex generated by the tip clearance in an 

axial flow fan. They showed that reverse flow region was occurred repeatedly by 

periodic movement of the tip leakage vortex and the tip clearance near the reverse flow 

region caused the discrete frequency noise. Carlous et al. [43] studied on the noise 

prediction method for broadband noise of the low-pressure axial flow fan based on 

Semi-empirical noise prediction model (SEM) and LES models. The authors especially 

focused on the prediction of the interaction noise by ingested turbulence. As shown in 

figure 1-14, the method using SEM was easy to apply to the noise prediction; however, 

it was confirmed that it was not able to describe details in fan shapes and flow 

phenomenon such as separation. The method of the numerical analysis using LES 

model was good at predicting the noise influenced by the shape, the effect of the 

ingested turbulence on the sound sources, and fan noise; however, differences was 

found in broadband noise. Ballesteros-Tajadura et al. [44] conducted a numerical 

analysis for the unsteady flow to predict the noise from a radial flow fan and then 

predicted an acoustic field around the fan by using the FW-H equation and the surface 

pressure fluctuations on rotor and volute tongue obtained from the flow field. Finally, 

they measured sound pressure level (SPL) in experiment and compared it with the 

results obtained from the simulation in figure 1-15. They presented differences in 

prediction of the broadband noise and tonal noise, respectively. Scheita et al. [45] 

showed in figure 1-16 that wrap angle in a small radial fan was clearly related to 

aerodynamics and flow noise. They also reported that an isolated impeller could 

improve the aerodynamic efficiency but did not generate the flow-induced noise 

radiation.  

For more accurate noise prediction, consideration on the interaction between the sound 
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and the structures including scattering and diffraction was known to be required. To do 

this, the wave equation in which the structures are considered with the aid of FED and 

BEM should be solved. However, the two analysis methods require additional 

preprocess including appropriate surface grids and space grids for aeroacoustic noise 

analysis. Getting more accurate result for the noise field is important; however, 

predicting noise in a free field by utilizing the hybrid method was determined to be 

sufficient for application of the numerical method to the noise reduction in the 

turbomachinery. Hence, the noise field was predicted by using the hybrid method rather 

than the direct method with high load for aeroacoustic noise prediction and aeroacoustic 

analogy in a free field was used. 

The aeroacoustic analogy analyzes the acoustic field by using the analytical solution 

for all of monopole, dipole, and quadrupole noise sources. However, most fans 

excluding the fans used in field of aviation are operated in supersonic domain with 

small Mach number (M). Neise reported the dipole noise source as the major noise 

source of the turbomachinery that are operated in supersonic domain and described the 

understanding on the noise source of a fan as shown in figure 1-3 [8]. And it was not 

easy to apply the FW-H equation to practical problems; hence, an easier calculation 

method using Lowson equation was proposed by Jeon and Lee [46]. The static wall 

pressure fluctuations of a body obtained after simulating the unsteady flow field are 

used for CAA calculation by this method [47-54]. Jeon [48], Jeon and Lee [49], and 

Jeon et al. [50] predicted the noise of centrifugal fan by using the two-dimensional 

discrete vortex method. In those studies, BPF tone noise was well agreed whereas there 

was somewhat large difference found in broadband noise. As shown in figure 1-17, the 

disagreement in broadband noise was determined to be caused by the difference 

between the complicated actual flow in three-dimensional shape and the two-

dimensional flow analysis. Lim et al. [51, 52] predicted the noise of the turbomachinery 

by taking account of the three-dimensional shape and compared the prediction with the 

experimental value. In addition, the authors described the flow characteristics related on 

noise sources by analysing the locations of the noise sources. Lim et al. [53, 54] adopted 

the numerical analysis method for noise reduction in the turbomachinery by analysing 

the locations of the noise sources. 
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1.3 Methodology 

This study was conducted with the focus on the application of the numerical analysis 

on the acoustic field for noise reduction in the turbomachinery. With this purpose, the 

acoustic field produced by the turbomachinery was predicted in a free space by using 

Lowson equation that predicts the acoustic field occurring by the moving point force 

based on the research result that the dipole is dominant in the acoustic field. The process 

of the numerical analysis on the unsteady flow field for application of Lowson equation 

was conducted in following sequence: steady state fluid analysis that minimizes the 

calculation time by creating the sketchy flow field that is produced by the 

turbomachinery in the semi-anechoic room, the unsteady state flow analysis for full 

development of the unsteadiness caused by the turbomachinery, and the unsteady flow 

field analysis to obtain the surface pressure fluctuation in the rotating part and fixed part 

by time during several rotations of the rotor. At the moment, the fluid properties were 

checked at arbitrary locations in order to fully develop the unsteadiness of the flow field. 

For three-dimensional simulation of the flow field, the turbulence models used in steady 

state and unsteady state were SST k–ω that can predict the adverse pressure gradient on 

the surface of the blade and LES model that is excellent in modeling of the turbulence 

intensity, respectively. 

The surface pressure fluctuations by time obtained from the flow field analysis and the 

noise spectrum predicted by aeroacoustic analogy were verified after comparing with 

the noise spectrum measured in the semi-anechoic room for each model. Through the 

comparison between the noise spectrums, good agreement in the tonal noise of the 1st 

BPF and its harmonic frequencies and in the broadband noise was shown at a low 

frequency range; however, difference was found from the broadband noise at high 

frequency. Such disagreement was determined to be caused by the random broadband 

noise. In general, random broadband noise is caused by various phenomena such as 

turbulent boundary layer, vortex shedding, flow separation, and tip vortex. However, the 

scattering influence by the turbulent boundary layer which was occurred from the 

trailing edge of blades was not considered in this study. As a result, such disagreement 

of prediction at high frequency range was caused by consideration of only the dipole. 

Meanwhile, the location of the noise sources was described in validated result of the 

noise prediction by defining Aeroacoustic source strength (Ast) that can predict the 
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location of the noise source and the unsteady state flow producing the noise based on 

the location of the noise source was confirmed. Prior to this study, the feasibility of the 

prediction of the noise source location was verified through the comparison between the 

location measured by using an acoustic camera with beamforming technology and the 

location predicted by the numerical analysis. 

In addition, the correlation between the sound pressure predicted from the microphone 

located 1 m apart from the turbomachinery and the surface pressure fluctuation by time 

obtained from each of the two points (bell mouth and strut) in the unsteady flow field 

were confirmed by conducting coherence analysis. It was able to confirm the difference 

in the flow field between the two points from the coherence analysis on the frequency. 

The numerical analysis method was applied for the comparison of the numerically 

predicted value and the measured value of the flow noise in the turbomachinery, for 

understanding and analysis of unsteady state flow producing the noise based on the 

location of the noise source, for identification of the shape reducing the unsteady state 

flow causing the noise, and for the reduction of the flow noise in the turbomachinery. 

 

1.4 Objectives of this study and outline 

In Chapter 1, the motive, background, and purpose of the research were stated and 

literature review and method and range of the research were described. 

In Chapter 2, the numerical analysis method for simulation of the flow field and that 

for prediction of the noise produced by the turbomachinery in a free space was 

described. The noise of the turbomachinery in a free space was calculated by using 

Lowson equation under the assumption that it is produced from the rotating parts 

(impeller and rotor) and fixed parts (shroud). However, the numerical analysis on 

surface pressure fluctuation acting on the rotating parts should be done first in order to 

calculate aeroacoustic noise. Therefore, the unsteady flow field was numerically 

analyzed as a preceding study for noise analysis and the method to obtain the 

information on the flow field was described. For prediction of the location of the noise 

source, the possibility of the prediction was confirmed in advance by comparing with 

the location of the noise source measured by the acoustic camera. 

In Chapter 3, the experimental setup measuring the flow noise and the numerical setup 

for prediction of the flow noise were introduced. Details including the size of semi-
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anechoic room for measuring the noise of the turbomachinery, the rotating speed, the 

location of the microphone, the conditions of the computational domain and boundary, 

the grid information, the convergence condition, and the time step were described. 

In Chapter 4, the flow noise predicted was compared with that measured from the 

axial flow fan with cylindrical shroud and the unsteady state flow causing the noise was 

confirmed. In order to reduce the unsteady state flow causing the noise, the flow noise 

was reduced by correcting the shape of the shroud inlet. Degree of the noise reduction 

was compared by using specific noise level among all other indexes representing the 

changes in fan performance owing to the changes in the shape of the shroud inlet in this 

study. 

Chapter 5 handles the prediction of the characteristics of the noise produced by a small 

axial flow fan for cooling. In particular, the tonal noise due to the shape of the square-

type shroud and the locations of the related noise sources were predicted. In addition, 

the correlation between the flow field and the noise was confirmed by conducting 

coherence analysis on the surface static pressure fluctuation obtained from each of bell 

mouth and strut, the two points on the shroud, and sound pressure fluctuation that was 

predicted from the microphone location. 

In Chapter 6, the flow characteristics and noise of the centrifugal fan that has been 

used for cooling in portable home electronics including small laptops and ultrabooks 

were predicted. For this, the centrifugal fan that is installed between the two thin square 

flat boards was studied in order to give the condition that is analogous to the fan 

operated inside a product. Based on the result of the numerical analysis, the blade tip of 

the impeller was corrected to reduce the unsteady flow related to the flow noise and the 

aeroacoustic noise in corrected impeller shape was predicted. In addition, the specific 

noise level was used to compare the noise reduction of the centrifugal fan considering 

the fan performance. 

Chapter 7 described the summary of the results obtained in this study. 

 

1.5 Summary 

The sound is divided as unpleasant noise and pleasant one. Though the noise is also 

classified by structure borne and airborne depending on the transmission medium of the 

sound waves, aeroacoustics was only considered in this study. The flow-induced noise is 
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generated by the turbulent flow, aerodynamic force interacting between surfaces, the 

periodically vary flow, and so on. Especially, the flow noise defined by Ffowcs 

Williams [9] is known as the term used to describe the pressure fluctuations associated 

with unsteady flow, particularly turbulent flow. Therefore, understanding and analyzing 

the unsteady flow field in detail have been being required obligatorily to predict and 

reduce the flow noise. In other words, the flow noise is related closely to the fluid 

dynamics and the acoustics. 

Meanwhile, as fans have been used in wide range of the industrial field, the fan 

performance and the noise generated from fans have been taken attention. Looking at 

the study by Neise [8] and fan noise mechanism to explain the noise type, the noise of 

fans used in the industrial field except the aviation part is known that dipole is the 

dominant noise source. Numerous studies using experimental methods have been 

conducted to reduce the noise. But due to miniaturization of a product, the numerical 

analysis has been asked to figure out the unsteady flow field in the inside of the product 

in detail and to predict the sound source. It means that finding the relationship between 

the unsteady flow field and the sound source is important. Therefore, the objective in 

this study is to apply and use the numerical method in order to find the relationship 

between unsteady flow field and the sound source and conduct the noise reduction. 

The detailed contents for accomplishing the purpose of this study are as follows. In 

this chapter, the background, literature reviews about the flow-induce noise, 

methodology, objectives and outlines of this study were reviewed for introduction of 

turbomachines. Chapter 2 mentioned the numerical method for simulation, and Chapter 

3 described the setup about experiment and simulation, respectively. By considering 

fans installed in the electronic products, three different type fans were used for applying 

the numerical analysis to noise reduction. Chapter 4, 5 and 6 showed validation of 

predicted results obtained from CAA, and then low noise models about an axial flow 

fan and a centrifugal fan were suggested and provided the noise reduction through 

numerical analysis. In Chapter 7, the results obtained in this study were summarized. 
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Fig. 1-1 Classification of fluid machinery and examples of turbomachines [1] 
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Fig. 1-2 Turbine module of a modern turbofan jet engine [1] 
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Fig. 1-3 Various noise sources generated from fan 
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Fig. 1-4 Computational Aeroacoustics(CAA) methodology 
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Fig. 1-5 Comparison of slip factors with some test results for radial bladed impellers [15] 
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(a) Relative stream surface S1 and S2 

 

(b) Intersecting S1 and S2 in a blade row 

Fig. 1-6 Relative stream surfaces and intersecting S1 and S2 surfaces in a blade row [19] 
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(a) Control surface for considering pressure rise through cascade 

 

(b) Deviation of dynamic characteristics from quasi-steady ones during stopping period 

Fig. 1-7 Control surface and deviation of dynamic characteristics [23] 
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Fig. 1-8 Axial distributions of mass-flow-averaged entropy and entropy generation 

rate for datum nozzle guide vane (NGV) design [27] 
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Fig. 1-9 Temporal variation of the flow field for s/D0 = 0.01 and s/D0 = 0.005 at three 

time steps [28] 
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(a) R = 0.7 R0 

 

(b) R = 0.75 R0 

Fig. 1-10 Calculated directional characteristic for the fundamental tone [30] 
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         (a) Standard impeller               (b) Modified impeller (blades sloping : 20°) 

 

(c) Experimental results 

Fig. 1-11 Effect of impeller with sloping blades [32] 
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Fig. 1-12 Disturbance vorticity contours at different instants in one period [38] 
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Fig. 1-13 Unsteady behavior of vortex core structures colored with normalized helicity 

[40] 

 



Chapter 1. General introduction and literature review 

28 

 

 

 

 

 

 

 

 

 

 

Fig. 1-14 Fan sound power spectra; measured (——), SEM (‐‐‐‐‐‐) and LES(───) [43] 
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(a) At Point P06 

 

(b) At Point P10 

Fig. 1-15 Power spectra of volute pressure fluctuations in pascals (experiment, upper 

side; 3D-numerical simulation, bottom side) [44] 
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(a) Prototypes with wrap angle θ = 150° and θ = 228° 

 

 (b) Simulated SPL with different wrap angle         (c) Overall SPL vs. mass flow rate 

Fig. 1-16 Schematic diagram of wrap angle, simulated SPL, and comparison of the 

simulated and measured overall SPLs [45] 
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(a) Rotation speed : 26760 rpm 

 

(b) Rotation speed : 29930 rpm 

Fig. 1-17 Comparison of the predicted and measured sound pressure levels [50] 
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Chapter 2. Numerical analysis 

 

2.1 Computational Fluid Dynamics (CFD) 

2.1.1 Fundamental equations 

When dealing with thermal flow phenomenon of the fluid, equilibrium equations of 

the flow properties are used and these equations are usually presented as the differential 

equations. The differential equations can be expressed in general transport equation as 

below when setting the dependent variable as ф and using a tensor [55]. 

 

 

  
     

 

   
       

 

   
  

  

   
       (2-1) 

 

Equation (2-1) is composed of an unsteady term, a convection term, a diffusion term, 

and a source term. Here, ρ is the fluid density. Γ, the diffusion coefficient, and Sф, a 

source term, do not always have actual physical meaning. These can be interpreted as 

dependent variables including pressure, temperature, and velocity. Therefore, continuity 

equation can be obtained by assuming the dependent variable ф as 1, and Γ and Sф as 0 

in equation (2-1), the general transport equation. Meanwhile, a momentum equation in 

Cartesian coordinate system in which the gravity is not considered is obtained by 

substituting ui that is the velocity component and uSj that is the velocity of the volume 

with moving boundary into ф, the dependent variable, and τ that is the shear stress and -

∂p/∂x that is the pressure gradient into Γ, the diffusion coefficient, and Sф, the source 

term, respectively, in general transport equation [56, 57]. 

 

 

  
      

 

   
             

    

   
 

  

   
     (2-2) 

 

In order to analyze the continuity equation and the flow around the moving object used 

in this study, Navier-Strokes equations can be presented into a simple tensor notation 

shown in below. 
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  (2-4) 

 

The i(i = 1, 2, 3), the subscripts in above equation, corresponds to the (x, y, z); hence, 

(u1, u2, u3) indicates (u, v, w) that is the notation according to three-dimensional 

Cartesian coordinate system of velocity and (x1, x2, x3) indicates (x, y, z). 

 

2.1.2 Discretization method 

After choosing the mathematical model predicting the flow field, discretization of the 

differentials equation should be performed as matching the grid point and the algebraic 

equations for ф, the dependent variable, in the chosen grid point are called discretized 

equations. The discretization method for differential equation is classified into Finite 

Difference Method (FDM), Finite Element Method (FEM), and Finite Volume Method 

(FVM). In FDM, the derivative term in the differential equation is expressed by using 

Taylor-series expansion. On structured grids, FDM is a very simple and effective 

method. In particular, it is easy to obtain a higher-order scheme in regular grids with the 

method. The disadvantages of FDM are the difficulties in maintaining the conservation 

and applying to complicate flow. FEM expresses the unknown as an approximation 

function of the required accuracy and determines the size of the coefficient for each 

small region by using weighted residual method. Finite element methods are relatively 

easy to analyze mathematically and can provide optimality properties for equations of 

certain types. The principal disadvantage, which is occurred by methods to uses 

unstructured grids, is that the matrices of the linearized equations are not as well 

structured as those for structured grids. As a result, it makes more difficult to find 

efficient solution methods [55, 56]. FVM is the discretizing method of differentiating 

the properties that are coming in and out across the surfaces composing the volume of 

the polyhedron after assuming that the physical quantity including velocity and pressure 

can be predicted at the center of the polyhedron. The FVM can accommodate any type 

of grid, so it is suitable for complex geometries. The grid defines only the control 

volume boundaries and need not be related to a coordinate system. The method is 

conservative by construction, so long as surface integrals, which represent convective 

and diffusive fluxes, are the same for the control volumes sharing the boundary. The 
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FVM approach is perhaps the simplest to understand and to program. All terms that 

need be approximated have physical meaning. The disadvantage of FVMs compared to 

FDMs is that methods of order higher than second are more difficult to develop in 3D 

[55, 56].  

The fundamental discretizing method for the space in the solver used for numerical 

analysis of thermal flow in this study is the vertex-based FVM. Therefore, the 

discretization in this study is limited to that by FVM. 

Figure 2-1 shows the vertex-based scheme used in this study and the cell-based 

scheme, respectively [58]. The vertex-based FVM used in CFD solver is the discretizing 

method by re-dividing the space with the vertex as the center rather than discretizing the 

properties by using the center of the space; hence, the method can differ by the way of 

composition of the control volume. In general, the median method in which the control 

volume is composited by connecting the center of the cell, the center of the surface, and 

the center of the edge is widely used [57]. In particular, a cell-centered scheme can be 

expected to result in a much larger number of unknowns while generating relatively 

simple stencils of fixed size. The vertex-based scheme, on the other hand, will result in 

a smaller number of unknowns with larger variable-size stencils. Because of the larger 

number of unknowns, cell-centered schemes generally incur larger overheads than 

vertex-based schemes on equivalent grids [59]. However, vertex-based scheme has been 

known that the convergency of the solution can be influenced when the quality of the 

imaginary plane created between the two nodes is not fair [60]. 

 

2.1.3 Pressure-correction method 

Solution of the Navier-Stokes equations is complicated by the lack of an independent 

equation for the pressure, whose gradient contributes to each of the three momentum 

equations. Furthermore, the continuity equation does not have a dominant variable in 

incompressible flows. Mass conservation is a kinematic constraint on the velocity field 

rather than a dynamic equation. One way out of this difficulty is to construct the 

pressure field so as to guarantee satisfaction of the continuity equation [56]. In other 

words, the velocity that is composed of three vectors in the momentum equation 

occupies three unknowns while the pressure term that is a scalar occupies one unknown, 

resulting four unknowns in total. In order to obtain solutions for the four unknowns, 
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discretization is conducted once after matching the number of unknowns and the 

equations by combining the three momentum equations and continuity equations for 

each vector component. However, the pressure is discretized by estimating and 

adjusting the pressure since continuity equations do not contain relationship with the 

pressure. 

The two problems related to the non-linearity of the equation and pressure-velocity 

linkage can be resolved by adopting repetitive analysis method such as SIMPLE (Semi-

Implicit Method for Pressure-Linked Equations) algorithm that was originally proposed 

by Patankar and Spalding [61]. In this algorithm, F, the convection flux per unit mass 

passing through the grid surface, is calculated from the velocity components that were 

guessed. Furthermore, momentum equations are calculated by using the estimated 

pressure field. Then the pressure-correction equation that was induced from the 

continuity equations is solved. Then, the velocity field and pressure field are updated by 

using the corrected pressure field. The method is to result convergence of the velocity 

field and pressure field through such procedure of repetitive correction. Figure 2-2 is the 

schematization of SIMPLE algorithm on two-dimensional viscous flow equation [62]. 

SIMPLE algorithm is relatively simple and clear, and has been successfully used in 

CFD method. However, the pressure correction p′ was satisfied for velocity correction 

whereas it was not good enough for pressure correction. Therefore, a similar algorithm 

with improvement has been used. 

In this study, SIMPLEC (SIMPLE-Consistent) method with further reinforced 

connectivity in between space and better convergency of solution compared to SIMPLE 

method was used [60]. SIMPLEC algorithm proposed by Van Doormal and Raithby [63] 

has same steps with SIMPLE algorithm; however, the difference is that the term that 

was omitted in SIMPLE is taken into account in velocity-correction equation of 

SIMPLEC. Namely, it is different that di,J = Ai,J/(ai,J − ∑anb) and dI,j = AI,j/(aI,j − ∑anb) 

are considered instead of di,J = Ai,J/ai,J and dI,j = AI,j/aI, that are used in STEP 3 of figure 

2-2, respectively [62]. 

 

2.1.4 Convective term discretized method 

Equation 2-1 is a transport equation in which continuity equation and momentum 

equation are expressed in dependent variable ф. In other words, the left-hand side is 
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composed of the rate of change term and convection term whereas the right-hand side is 

composed of the diffusion term (Γ = diffusion coefficient) and source term Sф. The 

challenge in discretization of the convection term which is the second term on the left-

hand side is to calculate the physical property ф that is the subject of transport on the 

surface of the control volume and the convection flux passing through the boundary 

surface. Theoretically, the analysis result is difficult to be distinguished from the exact 

solution of the transport equation when infinitely many grids exist, regardless of the 

kind of the scheme used. However, the analysis result and convergence speed are 

greatly dependent on the discretizing method for convection term, and the convection 

term is greatly influenced by the flow velocity since finite number of grids are used.  

In this study, pressure fluctuations on the surfaces of the object in unsteady flow field 

were required to conduct numerical analysis of aeroacoustic noise. In order to reduce 

calculation time consumed for analysis of unsteady state, analysis process composed of 

three steps was conducted. The entire flow field was constructed roughly by analyzing 

steady state flow. Afterwards, unsteady state flow was analyzed to fully develop the 

unsteadiness of the flow due to the rotation of the rotor in the fluid machinery. In 

addition, the flow properties were reviewed based on the number of each rotation of the 

rotor to determine the level of unsteadiness development. Finally, fully-developed 

unsteadiness of the flow was confirmed and data required for numerical analysis of 

aeroacoustic noise were obtained by simulating the unsteady state flow during several 

numbers of rotation. 

Meanwhile, QUICK (Quadratic Upstream Interpolation for Convective Kinetics) 

scheme was used as the second order upwind differencing scheme that is a higher order 

differencing scheme for discretization of convection term in steady state flow analysis at 

the first step among those three steps of analysis process mentioned above. Although the 

error due to the false diffusion can be minimized; however, it may reduce the stability in 

terms of calculation. The risk of undershooting and overshooting that may occur when 

the gradient of dependent variable ф is large was minimized through the use of limiter. 

The differencing scheme for discretization of the convection term used while analyzing 

unsteady state flow in the second and third step was the second order central 

differencing scheme. The large number of grids with small size was used to get rid of 

the vibration solution such as wiggles [62]. 
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2.1.5 Turbulence model 

In turbulent flow, complicated vortex motion occurs and the size of such vortex 

motion varies from a large scale to a very small scale. Despite of the rapid improvement 

of computer performance, it is still challenging to secure the number of grids that is 

sufficient for resolution of a small-scale vortex motion composing the turbulent flow. 

Hence, turbulence model is required to be introduced for numerical analysis of turbulent 

flow using Navier-Stokes equations. Prior to the introduction of the turbulence model, 

physical characteristics of the turbulence presented by the two-dimensional turbulent 

shear flow that is parallel to x-axis and has the gradient of average velocity toward y-

direction within the control volume should be understood as shown in figure 2-3 [62]. 

The random flow due to the eddy near the control volume transports the fluid across the 

boundary of the control volume. This is the momentum exchange owing to the 

convective transport by the eddy and is called Reynolds stress. In other words, 

observation on the influence of the turbulence fluctuation on the mean flow by applying 

the Reynolds decomposition to velocity components (u, v, w) and taking time average to 

them results in additional production of three normal stresses and three shear stresses. 

Here, the Reynolds decomposition defines that the velocity (u(t)) of the turbulent flow 

is divided into the steady mean value (U) and its fluctuating components (u'(t)). The six 

additional turbulence stresses in consequence of the multiplication of fluctuation 

velocities due to convective momentum transport by the turbulence eddy are called 

Reynolds stress and these are as follows. 

 

                                             (2-5a) 

                                                               (2-5b) 

 

Hence, a turbulence model that predicts additional Reynolds stress is required in order 

to calculate the turbulence by using Reynolds-Averaged Navier-Stokes (RANS) 

equations. On this occasion, RANS turbulence model is classified by the number of 

additional equation. 

Meanwhile, Boussinesq model (1877) in which the size of the Reynolds stress is 
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assumed to be proportional to the rate of change (velocity slope) of the average velocity 

in the same context of the shear stress occurring by the molecular viscosity has been 

widely used. The turbulence mode adopting such assumption is called turbulent 

viscosity model; and the Reynolds stress with the assumption is as below. 

 

        
   

           
   

   
 

   

   
  

 

 
       (2-6a) 

  
                            

 
    (2-6b) 

 

Here, k is turbulence energy per unit mass, μt is turbulent viscosity coefficient, and δij is 

Kronecker delta. 

On the other hand, a model type in which Reynolds stress equation is established 

without making the assumption about the turbulence viscosity is called Reynolds stress 

equation model. In this study, numerical analysis on the flow field was done by using 

the turbulence viscosity model. 

In order to obtain the information on the pressure fluctuations on the surfaces of the 

object for analysis of aeroacoustic noise as mentioned above, the numerical analysis 

was conducted for steady state and unsteady state. For steady state analysis, SST(Shear-

Stress Transport) k−ω model that was proposed by Menter [64, 65] and Menter et al. 

[66] was used as the turbulence model. This turbulence model is the combination of 

k−ω model proposed by Wilcox [67-69] in 1988 and k−ε model proposed by Launder et 

al. [70] in 1974, carrying the advantages of the two models. Namely, this is the model in 

which k−ω is applied to the region near the wall surface whereas k−ε model is applied 

to the region of fully developed free flow distant to the wall surface. In this model, the 

model equations on turbulence momentum energy k and the turbulence frequency ω are 

in flowing forms, respectively [57]. In other words, the formula for Reynolds stress and 

k−equation are the same as the original k−ω model proposed by Wilcox; however, 

ε−equation is converted into ω−equation through substitution of ε = Cμkω. For 

numerical analysis of the flow due to a moving object such as a fan, ALE (Arbitrary 

Lagrangian Eulerian) method proposed by Donea et al. [71] in 2004 was used. Transport 

equations of SST k−ω in fixed coordinates are as follows [58, 64, and 70]. 
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  (2-8) 

 

where, 
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          (2-9e) 

              
 

 

  

   

  

   
          (2-9f) 

            
       (2-9g) 

          
  

    
 
    

   
      (2-9h) 

 

Numerical instabilities may be caused by differences in the computed values of the 

eddy viscosity with the standard k−ε model in the far field and the transformed k−ε 

model near the wall. Blending functions are used to achieve a smooth transition 

between the two models. Blending functions are introduced in the equation to modify 

the cross-diffusion term and are also used for model constants that take value C1 for the 

original k−ω model and value C2 in Menter’s transformed k−ε model [62]: 

 

                  (2-10) 

 

Typically, a blending function F1 = F1(lt/y, Rey) is a function of the ratio of turbulence 

lt = k
0.5

/ω and distance y to the wall and of a turbulence Reynolds number Rey = y
2
ω/ν. 

The functional form of F1 is chosen so that it (ⅰ) is zero at the wall, (ⅱ) tends to unity in 
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the far field and (ⅲ) produces a smooth transition around a distance half way between 

the wall and the edge of the boundary layer. This way the method now combines the 

good near-wall behavior of the k−ω model with the robustness of the k−ε model in the 

far field in a numerically stable way. The eddy viscosity is limited to give improved 

performance in flows with adverse pressure gradients and wake regions, and the 

turbulent kinetic energy production is limited to prevent the build-up of turbulence in 

stagnation regions. The limiters are as follows [62]: 

 

   
    

            
    (2-11) 

 

where, S = (2SijSij)
0.5

, a1 = 0.31 and F2 is a blending function. The subscripts 1 and 2 

indicate the SST-inner and the SST-outer, respectively [64]. 

 

                      
 

  
 

  

     
            (2-12a) 

                                      (2-12b) 

                                      (2-12b) 

 

In this study, LES model was used to simulate the unsteady flow field. The larger 

eddies, which interact with and extract energy from the mean flow, are more anisotropic 

and their behavior is dictated by the geometry of the computational domain, the 

boundary conditions and body forces. On the other hand, the smaller eddies are nearly 

isotropic and have a universal behavior, for turbulent flows at sufficiently high 

Reynolds numbers at least. With considering the characteristics of turbulent flows, the 

larger eddies need to be computed with a time-dependent simulation and the universal 

behavior of the smaller eddies, on the other hand, should hopefully be easier to capture 

with a compact model like Sub-Grid Scale(SGS) model. This is the key point of the 

LES approach to the numerical treatment of turbulence [62]. 

LES model uses a spatial filtering operation to separate the larger and smaller eddies 

for the time-dependent flow equations. The operation of filtering is performed along 

with the following definition [58, 72]: 
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                 (2-13) 

                    (2-14a) 

      

  
 

   

  
     (2-14b) 

          (2-14c) 

 

where a filter function G denotes the convolution kernel characterizing the filter used 

and the overbar of u indicates the resolved part filtered by G. If the Navier-Stokes 

equations are filtered by equation (2-13) and by the following conditions equation (2-

14), we can easily obtain the following equation [58]: 

 

 

  
       

 

   
                     

  
   

   
 

 

   
   

    

   
 

    

   
   

 

   
                     (2-15) 

 

Equation (2-15) above presents LES momentum equation. The terms except the last 

term on the right-hand side mean the properties after filtering. The last terms are caused 

by the filtering operation, just like the Reynolds stresses in the RANS momentum 

equations that arose as a consequence of time averaging. They can be considered as a 

divergence of a set of stresses(τij) [62]. In recognition of the fact that a substantial 

portion of τij is attributable to convective momentum transport due to interactions 

between the unresolved or SGS eddies, these stresses are commonly termed the sub-

grid-scale stresses [62]. Based on the relationship mentioned by Leonard decomposition 

[73], SGS stresses can be calculated as below. 

 

                                                    
          

             
   

         (2-16) 

 

where Leonard stresses Lij, cross-stresses Cij and LES Reynolds stresses Rij is contained 

in equation (2-16), respectively. 

 

                              (2-17a) 
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               (2-17b) 

       
   

            (2-17c) 

 

If the filter is a Reynolds operator, then the tensors Cij and Lij are identically zero and 

the two decompositions are then equivalent [72]. The LES Reynolds stresses Rij are 

caused by convective momentum transfer due to interactions of SGS eddies. Therefore, 

only Reynolds stress Rij in the last term is modeled with the SGS turbulence model. 

Various types of SGS model have been proposed by numerous researchers. 

Smagorinsky model [72, 74] that is the simplest and widely used among SGS models 

was used in this study. In his studies, since the smallest turbulent eddies are almost 

isotropic, the Boussinesq hypothesis can provide a good description of the effects of the 

unresolved eddies on the resolved flow [62]. The SGS model of Smagorinsky is defined 

as follows: 

 

                                   
         

    

   
 

    

   
   (2-18) 

                            
    

      (2-19) 

 

where Cs and Δ denote a Smagorinsky model constant and filter size, respectively. The 

Smagorinsky constant Cs = 0.15 is recommended for the external flows around bluff 

bodies and flows in turbomachines [58]. 

 

In summary, the fundamental equation used in LES is as follows: 

 

 

  
       

 

   
                     

   

   
 

 

   
          

    

   
 

    

   
   (2-20) 

 

Since unsteady Navier-Stokes equations are to be solved, appropriate boundary 

condition is required. For the regions where the thickness of the first boundary layer as 

y
+ 

≤ 1, in particular, minute grids are required [75]. However, practical utilization is 

challenging yet since calculation time is delayed exponentially in case of considering 
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grids that satisfies the condition of y
+ 

≤ 1 in all wall surface for complicated and rotating 

shapes adopted in this study. Therefore, the condition was adjusted not to go beyond y
+ 

≤ 10 in maximum for the thickness of the first boundary layer and y
+ 

≤ 5 in maximum 

for most regions. And sub-iteration for each iteration with double precision of solver 

was performed, in order to obtain accurate solutions. In addition, a convergence 

condition, that each residual for velocity and pressure was set to 0.000001 or below and 

0.00001 or below, was used for each iteration, thus the next iteration was conducted 

after achieving convergence. 

 

2.2 Computational Aeroacoustics (CAA) 

2.2.1 Fundamental theory of aeroacoustic noise 

The noise produced by aerodynamic fluctuation occurring while flow induced by 

rotation of the fluid machinery flows brushing past the blade or the casing is called 

aeroacoustic noise. Since the characteristics of such noise get differ not only by the 

blade shape of the fluid machinery but also by the operation condition and the state of 

the flow brushing past the blade, it is known that the prediction and/or handling of such 

noise is difficult. Meanwhile, understanding on the occurrence of aerodynamic noise 

including fan noise is based on acoustic analogy that was developed by Lighthill [10], 

Curle [11], and Ffowcs Williams and Hawkings [13]. Despite that the noise occurring 

device in fluid machinery such as axial flow fan and centrifugal fan is similar, various 

and detailed researches have been conducted as an axial flow fan was used in field of 

aircraft. The following is a brief review on acoustic analogy. 

 

(a) Lighthill analogy 

The theory that enables mathematical and physical understanding on how sound is 

produced by the flow is firstly introduced by Lighthill in 1952. He induced acoustic 

wave propagation equation (Lighthill equation) having sound source term g(y) in free 

flow field without boundary from the governing equation of the flow. 

 

    

      
     

   
  

     

      
        (2-21) 
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where a0 is the speed of sound, Tij is Lighthill’s stress tensor and is defined as follows. 

 

                
         (2-22) 

 

In equation (2-21), the left-hand side is in forms of wave equation and the rest terms 

are all transpositioned to the right-hand side with Lighthill's stress tensor; and this was 

defined as acoustic source. However, the density that is the dependent variable in this 

equation is also on the right-hand side; hence, the solution is not able to be calculated. 

Through dimensional analysis on general jet flow under the assumption of compact, 

characteristics and trend of monopole, dipole, and quadrupole were studied. Lighthill’s 

similarity theory tells governing equation on flow noise in free flow field and allows 

initial mathematical understanding on flow noise. 

 

(b) Curle’s solution 

Lighthill equation has limitation since it is applicable only for the cases without solid 

boundaries. Afterwards, Curle applied generalized theory to Lighthill equation and 

proposed general solution for cases with objects as follows. 

 

           
 

    
 

  

      
  

   

 
   

 
   : quadrupole 

     
 

    
 

 

   
    

         

 
   

 
  : dipole       (2-23) 

     
 

    
 

 

  
  

     

 
   

 
   : monopole 

 

Here, square brackets mean the amount at acoustic source time t. 

The acoustic source in above formula is independently acting and forms acoustic field 

by superposition; hence, each acoustic source can be studied individually. However, the 

method using the solution above requires both information on the surface obtained from 

the analysis on flow field and disturbed velocity value due to turbulent flow field. 

Acoustic analysis using Curle solution is also not an easy method as well since accurate 

analysis on the flow field must be possible. Because turbulent flow must be accurately 

simulated in order to predict acoustic field based on this equation. 



Chapter 2. Numerical analysis 

45 

 

 

(c) Ffowcs Williams and Hawkings equation 

Although Curle’s result can be applied to the cases with boundaries, it cannot be 

applied to the cases with moving objects that is moving acoustic source in other words. 

Ffowcs Williams and Hawkings expanded the equation so that it enables application to 

the cases with moving acoustic sources. 

 

           
 

    
 

  

      
  

   

       
       

 
   : quadrupole 

     
 

    
 

 

   
  

     

       
       

 
  : dipole       (2-24) 

     
 

    
 

 

  
  

     

       
   

 
       : monopole 

 

The first term contributes as same as the distribution of the moving point quadrupole 

and the noise due to turbulent shear stress is called quadrupole noise. Such acoustic 

source was well described by Morfey [4] in literatures studied on noise occurring 

through the interaction between the disturbance of the inflow and the flow around the 

blades; and the term was revealed to be significant only when the Mach number at the 

tip is 0.8 or greater. The second term presents the noise radiation due to unsteady force 

and can be considered to be the distribution of the moving point force. Here, pijnj 

denotes the force per unit area acting from the surface onto the fluid. The last term 

means the noise radiation caused by the volume displacement effect due to a moving 

object. Such noise is often called thickness noise. 

Monopole and quadrupole sources are sometimes important; however, Neise [8] 

insisted the dipole that is the disturbance of unsteady force occurring in blades and vane 

as the major cause of the fan noise. Hence, fan noise was predicted by using the method 

predicting acoustic field due to dipole under the assumption that dipole is dominant 

cause of fan noise in this study. 

 

(d) Lowson equation 

In Ffowcs-Williams and Hawkings equation, the differential for observer’s location or 

time has to be done after performing the integral for acoustic source time; hence, its 
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practical application is very difficult. Therefore, this study adopted Lowson equation 

that is easy for numerical application. In 1967, Lowson induced the equation predicting 

acoustic field generated by moving point force. In this study, acoustic field of rotating 

fluid machinery was able to be predicted by considering the moving distributed point 

forces by using this equation. To induce the equation, mass conservation and 

momentum conservation can be rewritten in terms of tensor as follows. 

 

  

  
 

 

   
             (2-25) 

 

  
      

 

   
        

    

   
      (2-26) 

 

Here, F means external force acting on fluid. 

Equation (2-26) can be rewritten as follows. 

 

 

  
        

   

   
  

      

   
      (2-27) 

                
         (2-22) 

 

When ρui is eliminated in equation (2-25) and (2-27) above, 

 

   

      
    

   
  

     

      
 

   

   
 

  

  
   (2-28) 

 

The terms on the left-hand side in equation (2-28) is the acoustic wave transport 

equation in stationary medium and the terms on the right-hand side means numerous 

acoustic sources in fluid. The first term on the right presents the influence of quadrupole, 

the second term presents that of dipole, and the last term presents that of monopole. In 

cases with the dominance of dipole like what in this study, the influence of monopole 

and quadrupole can be ignored. Therefore, only the terms of the most dominant force 

among the noise sources of the general fan are considered. 

If the acoustic source term of equation (2-28) is g(y), then, the solution is as follows. 
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   (2-29) 

 

The square bracket [ ] in above equation means τ = t − r/a0, the value in retarded time, 

and, t and r = | xi – yi | present observation time and the distance from the acoustic 

source to the observation location, respectively. By using the equation above, not only 

the acoustic field when the point force is moving but also the acoustic field due to 

distributed forces can be expressed as follows by defining the acoustic source term g(y) 

in terms of force change in equation (2-29). 

 

      
   

   
     (2-30) 

 

Therefore, the acoustic field can be expressed as follows. 

 

            
 

    
   

 

 

   

   
 

 
        (2-31) 

 

To express the point force changing by time in random space, three-dimensional Dirac 

delta function δ, is used. In other words, Fi is considered as a function of time only by 

changing Fi to Fiδ; and Dirac delta function δ, is regarded as a function for space (yi) 

and time (y0i(τ)). It is as follows when Dirac delta function is substituted into equation 

(2-31). 

 

      
 

    
   

 

 

                    

   
 

 
        (2-32a) 

           , F : function of time only   (2-32a) 

 

When chain rule is applied to an arbitrary function f(y, τ(y)), it is as follows, and the 

variables related to this equation are presented in figure 2-4. r is the vector from a 

source to an observer, V is the angular velocity vector of a rotating force and M = V × y / 

a0, x and y are the position vectors of an observer and a source, respectively.  
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  (2-33) 

 

In above equation, ∂τ/∂yi is induced as follows.  

 

 
  

   
     

   
 
          

 
 

   
   

          

  
   

   
 

   
 

                           

  
   

 

   
 

                           

  
   

 

   
 

                           

  
     

   
 

  

         

                            
  

 

  

         

                            
  

 

  

         

                            
     

 

 
  

   
   

     

         
   

     

   
         (2-34) 

 

Finally, if the chain rule is applied, it is as follows. 

 

    

   
  

  

   
 

     

   

  

  
     (2-35) 

 

The differential for an arbitrary function f(y, τ(y)) in acoustic source time can be 

written as follows by fixing other variables and performing partial differential for τ. 

 

            

  
   

  
       

          

  
 

  
            (2-36) 

 

Therefore, the differential equation for acoustic source time (τ) of an arbitrary function 

f(y, τ(y)) is as follows. 

 

    

  
  

  

  
     (2-37) 
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Meanwhile, the differential for acoustic source time (τ) of an arbitrary function δ(yi - 

y0i (τ)) can be expanded as follows when induced by substituting q = yi − y0i(τ). 

 

     

  
 

  

  

  

  
  

    

  

  

  
  

    

  

  

   

   

  
  (2-38) 

 

Here, ∂yi/∂q = 1; hence, the differential for time of the delta function is the equation 

below. 

 

 

  
              

    

  

  

   
   (2-39) 

 

In order to identify the relationship between the differential for acoustic source time 

and the differential for space in delta function, substitute the delta function into f in 

Equation (2-35), then it is as follow.  

 

    

   
  

  

   
 

     

   

  

  
     (2-40) 

 

Substitute equation (2-39) into the differential term for time of the delta function, it is 

as follow. 

 

    

   
  

  

   
   

       

   

    

  

  

   
     (2-41) 

 

The differential of time for y0i is the velocity of moving acoustic source; hence, the 

relationship is as follows.  

    

  
      

 

Therefore, it can be rewritten as 

 

    

   
  

  

   
   

       

 
  

  

   
         

  

   
    (2-42) 
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and Mr has following relationship. 

 

   
       

 
      (2-43) 

 

To express equation (2-39) as the equation in retarded time, it is as follows when 

equation (2-39) is put into the square bracket 

 

 
  

  
    

    

  

  

   
        

  

   
    (2-44) 

 

By eliminating [∂δ/∂yi] with using equation (2-42) and (2-44), the value of the time 

differential for the delta function in acoustic source can be expressed with the value of 

the differential for space as follows. 

 

 
  

  
    

    

    
 

    

   
    (2-45) 

 

To make equation (2-32) easier for the integral using the equations obtained above, the 

equation can be expanded as follows. The space differential value for Fiδ in equation (2-

32) is modified by using chain rule in equation (2-35) as follows. 

 

 
      

   
  

 

   
       

       

   

      

  
   

                  
 

   
       

       

   

   

  
      

       

   
  

  

  
        (2-46) 

 

The following is that equation (2-46) is rewritten by substituting equation (2-45) that 

is the differential equation for time of the delta function. 

 

 
      

   
  

 

   
       

       

   

   

  
      

       

 

    

    
 

    

   
       (2-47) 

 

 Equation below is obtained by substituting equation (2-47) into equation (2-31) that is 

the equation for general solution of acoustic field. 
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    (2-48) 

 

In the meantime, surface integral is not able to contain acoustic source that is a 

singular in Green’s identity that is expressed with equation (2-49); hence, it becomes “0” 

by the delta function and the term is transposed to the left-hand side as below. 
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     (2-50) 

 

The obtained equation (2-48) can be rewritten by applying Green’s identity to the first 

and the third term as follows. 

 

     
 

    
       

 

   
 
 

 
   

       

    

   

  
  

 

   
 
       

  

    

    
  

 
       (2-51) 

 

Here, the delta function with square bracket is [δ] = δ{yi – y0i(t − r/a)}. For the integral, 

the variable y is substituted by η and Jacobian for the integral is calculated as below. 

 

         
 

  
  

                     (2-52) 

 

In order to eliminate time component for sound source coordinate system by using the 

characteristic of the delta function and equation (2-52), equation (2-51) is integrated for 

the points satisfying y0i(τ) = yi as follows. 

 

     
 

    
       

     
 

   
 
 

 
   

       

    

   

  
  

 

   
 
       

  

    

    
    (2-53) 

 

By expanding the equation (2-53) from the first term, r can be regarded as the function 
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for space in partial differential of the first term; hence, the differential can be done in 

such a simple way as follows. 

 

    
 

   
 
 

 
      

 

  

  

   
     (2-54) 

 

Here, the differential for r can be obtained by equation (2-34); and the first term is as 

follows. 

 

    
 

   
 
 

 
     

 

  

     

 
     

 

  
      

  

  
    (2-55) 

 

The second term of equation (2-53) can be briefly expressed as follows. 

 

 
       

    

   

  
   

 

   

   

  
      (2-56) 

 

The third term of equation (2-53) is expanded by using equation (2-35) as following. 

 

 

   
 
       

  

    

    
   

 

   
 
       

  

    

    
  

       

   

 

  
 
       

  

    

    
    (2-57) 

 

Let’s take a look on the differential for space first; then Fi and Mj can be considered to 

be the function for time only. They can be simplified as follows. 

 

 

   
 
       

  

    

      
      

 

   
 

       

        
    (2-58) 

 

Equation (2-58) is differentiated for space as follows. 

 

    
 

   
 

       

        
       

        
        

   
        

           

   

            (2-59) 

 

If Kronecker delta, δij is introduced, then it is expressed as ∂(xi − yi)/∂yi = − δij. 
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         (2-60) 

 

The equation above can be rewritten follows. 

 

    
 

   
 

       

        
   

       
   

        
 

       

                
         

 
      

   
     (2-61) 

 

Here, the differential of space for Mr can be obtained by expanding the equation as 

follows. 

 

   

   
  

 

   
 

       

 
      

 

   
 

     

 
   

     

             
  

   

       
   

 
 

    

             (2-62) 

 

The result obtained from above calculation was substituted into equation (2-61), which 

is expanded for the space differential-related part of the third term in equation (2-53); 

then it is simplified as follows. 

 

    
 

   
 

       

        
   

    

        
 

     

        
 

    

         
 

    
 

         
 (2-63) 

 

The part for the time differential in the third term of equation (2-53) becomes the 

function for space only, since the term for time was eliminated from the coordinate 

system (yi, r) of moving sound source in the integral of function δ; and it can be written 
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as follows. 

 

       

   

 

  
 
       

  

    

    
   

 
              

    

 

  
 

    

    
   

 
              

    

 

                
   

  
         

   

  
     

   

  
   (2-64) 

 

It can be simplified as follows. 
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The equation can be rewritten as follows by combining all of equation (2-55), (2-56), 

(2-63), and (2-65) that were derived. 
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Exact solution as below is obtained when equation (2-66) is simplified through 

reduction to common denominator.  

 

   
 

    
       

 
       

          
 
   

  
 

  

    

   

  
  

 

        
   

      

      
         (2-67) 

 

In this equation, the first term inside the square bracket on the right-hand side is the 

value of the time differential for force and the second term is the acceleration term. 

Although the force is steady on time, noise is produced since the value of the second 

term exists if it is rotating. Also, it can be written as follows by using the relationship 
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between density and aeroacoustic pressure ( p′ = a
2
ρ′ ). 

 

   
 

        
 

 

         
 
   

  
 

  

    

   

  
  

 

        
   

      

      
         (2-68) 

 

Equation (2-68) above is recognized to be composed of the far field term that is 

decreased by the multiple of 1/r and the near field term that is decreased by the multiple 

of 1/r
2
, depending on the distance. The pressure above is calculated from the time 

region and fast Fourier transform should be done to identify the characteristics of the 

frequency. In addition, log scale is convenient for expressing pressure; hence, the 

equation is rewritten in decibel scale based on formula below. 

 

          
 

    
 

 

, where pref = 2 × 10
-5

 (N / m
2
)   (2-69) 

 

 

2.2.2 Sound source analysis 

Equation (2-67) is aeroacoustic field in cases of one-point source that is moving. In 

this study, the region of interest in fluid machinery was divided into small elements and 

the force in each element was calculated as a point force. Therefore, aeroacoustic filed 

due to rotation of the fluid machinery can be calculated by merging equation (2-67) for 

overall impeller elements. The grid system used to predict aeroacoustic field in this 

study was the surface grid as is that was used in CFD shown in figure 2-5. Hence, all of 

the moving point force for three-dimensional shapes can be considered and more 

accurate result can be achieved for flow noise. However, only the radiation of the noise 

source in free space was considered in this equation; and reflection, diffraction, 

refraction, and scattering were not considered. 

Methods predicting flow noise are classified into two primary types. 

First is the method in which unsteady flow analysis and noise analysis are conducted 

simultaneously; and this method yields the most accurate noise analysis since it 

considers radiated noise and quadrupole. But this method requires high order schemes 

in order to capture the broad range of time and length scales associated with the physics 



Chapter 2. Numerical analysis 

56 

 

of aerodynamically-generated sound, and specific boundary treatment in order to deal 

with the radiation of sound waves [76]. Resultingly, the disadvantage is excessive 

retardation of time for analysis.  

Another is the method predicting flow noise by linking CFD and CAA together. In the 

method, a flow property by time is calculated through unsteady flow field analysis and 

flow noise is predicted by setting the calculated value of a flow property as the input 

value for noise analysis. This method has advantage of saving time required for analysis 

since higher order terms are not considered; however, it also has disadvantage that the 

result of noise analysis may be influenced by the result of flow field. In case of analysis 

region with complicated shape and large number of grids, the latter severely limits the 

choice of turbulence model with great influence of hardware (H/W) due to calculation 

time, data capacity for flow field analysis, memory for data handling; and previous 

studies mostly adopted URANS (Unsteady Reynolds Averaged Navier-Stokes) 

turbulence model. However, rapid development of hardware with high performance and 

development of CFD software have enabled the use of LES model that replicates vortex 

in detail even in Sub-Grid Scale (SGS); hence, the disadvantage is gradually offset. The 

flow noise prediction method used in this study is the hybrid method in which CFD and 

CAA are linked, and figure 2-6 is presenting the process. During the process, surface 

pressure fluctuation for time in surface grids used for unsteady state flow analysis and 

surface grid points in region of interest is obtained. Noise spectrum and the location of 

the noise source are predicted by performing FFT (fast Fourier transform) on surface 

pressure fluctuation for each grid point. 

Meanwhile, the numerical algorithms are concerned with the numerical process and 

the needed approximations to offer a discrete result from the formulation. Numerical 

algorithms can be varied significantly by different formulation types, even though 

obtaining ultimately the same physical and mathematical solution. 

After the change of variables to integrate the Dirac delta functions δ(f) and δ(g), 

integral representation of the solution by using the free-space Green’s function for the 

surface source term in the FW-H equation can be expressed as the retarded-time 

formulation [77]. 
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     (2-70) 

 

In above formulation, Q is the known source strength which is a function of the source 

position and time (y, τ), subscript “ret” means that quantity is evaluated at the retarded 

time, τ
*
 = t – r/a0. In acoustic predictions, ф is described normally as the acoustic 

pressure p
′
 = p – p0. Brentner [77] noted that the formulation requires that the observer 

location x and the observer time t are fixed during the evaluation of the integral. As a 

result, he mentioned that numerical implementations of this formula have proven to be 

very robust and efficient; hence, most acoustic-analogy-based rotor noise predictions 

from other studies utilize retarded-time formulations. 

In this study, source-time-dominant algorithm was used as one of the retarded-time 

algorithms. This is the method determining the time point when the signal reaches 

observer by selecting source time rather than selecting observer time in advance if the 

source time is regarded to be dominant. Time history interpolation is required in order to 

provide the contribution from all noise sources at time of the desired observer. So, time 

interpolation is necessary to add together the contribution from all source elements at 

the same observer times and at observer location that is apart certain distance. This 

algorithm can be expressed with symbols as follows. 

 

                    
   

        (2-71) 

 

where I(Ki(t), t
*
) is an interpolation operator and t

*
 is the time of desired observer. The 

approximation of the integral over the element K is defined as follows. 

 

      
       

         
        (2-72) 

 

The t
*
 value is determined by the choice of yi and τ from above equation. In other 

words, regardless of that the source time is regular, rearrangement with the new 

observer time t
*
 is required since time delay that takes for the signal arisen in each 

element to reach observer location occurs. This algorithm has been known for its 

advantage that it does not require calculation of retarded time and interpolation of 
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discrete time-dependent input data. Such characteristic is considered to be useful for the 

use of CFD result as input data [77]. 

 

2.2.3 Aeroacoustic source strength and visualization (presented method) 

As noted early, the sound is generated by the unsteady flow fluctuation and is 

significantly associated with the fluid dynamics and the acoustics. Inferring from this 

definition, the simulation of the unsteady flow field is very closer related with 

prediction and validation of flow noise using hybrid method. If understanding the 

unsteady flow field based on positions of sound sources, low noise model can be 

suggested and designed to reduce the noise. Especially, because the dipole is dominant 

at the noise in cases considering only fans operated at the range of subsonic, the 

location of sound source can be predicted by using fluctuating static wall pressures 

depending on the time from CFD. As a result, a property to describe the locations of 

sound sources was needed and defined. 

Meanwhile, equation (2-68) is known to predict the acoustic field generated by 

moving point force. 

 

   
 

        
 

 

         
 
   

  
 

  

    

   

  
  

 

        
   

      

      
         (2-68) 

 

If the second term in a square bracket of the right-hand side is neglected by 

considering the acoustical compactness of region containing aeroacoustic sources, 

equation (2-68) is simplified as follows. 

 

   
     

             
 
   

  
 

  

    

   

  
     (2-73) 

 

Here, if considering that F is the aerodynamic force acting on the area of an element, F 

can be rewritten as the static wall pressure(pfluid) acting on an element and the integrated 

area of an element; and the below is the result of considering equation (2-73) as sound 

pressure for an element area. 
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  (2-74) 

 

In order to predict the location of noise source through aeroacoustic noise analysis, 

“Aeroacoustic source strength, Ast” was defined as below; and this was obtained by 

integrating pfluid inside square bracket for element area in equation (2-74).  

 

    
     

   
 

  
                  

               

    

   

  
    (2-75) 

 

In addition, it’s not easy to find other software to indicate the locations of sound 

source after predicting the sound field. Most of tools using hybrid method for CAA 

focus on the phenomenon of the noise radiation from around the sound source to the 

space. Recently, the locations of sound source are visualized through the measurement 

of equipments with adopting beamforming technology. So, prior to conducting this 

study, the noise source location that is predicted by numerical analysis and measured 

from the flow noise occurring in a ring blower were compared to identify the validity 

and feasibility of aeroacoustic noise analysis. The ring blower is a device that is widely 

used in industrial site and machineries requiring high pressure air and is also called a 

regenerative blower. In figure 2-7 [51], one model among air supercharging 

regenerative blowers offering low-flow/high-pressure is shown. For flow noise 

occurring while operating a blower, noise sources were measured by utilizing acoustic 

camera with a beamforming technology and compared with the location of noise 

sources obtained from aeroacoustic noise analysis. 

When comparing noise source location in figure 2-7(b) and (c), accurate location 

cannot be compared due to external shape of the blower casing; however, both are 

indicating the region near the outlet of the ring blower. Hence, the prediction of noise 

source by aeroacoustic noise analysis was determined to be utilized to predict unsteady 

flow field that causes flow noise. 

 

2.3 Summary 

The fundamentals of CFD and acoustic analogy, numerical analysis methods, and a 

definition to indicate the locations of sound source were described in this chapter, 
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because a hybrid method for CAA was used. In CFD, SST k-ω and LES turbulence 

model was used to simulate the flow field of steady state and unsteady state, 

respectively. In acoustic analogy, Lowson’s equation which can predict the sound field 

due to a moving point force was introduced to calculate the acoustic field due to dipole. 

The high accuracy of noise prediction in CAA was maintained by using the mesh used 

in CFD. 

Studies conducted so far have been contributing to the establishment of concept for 

fan noise reduction by predicting the flow-induced noise through the development of 

noise prediction model, but are not connected directly with the production of the low-

noise product. In addition, because it’s not easy to find software to indicate the locations 

of sound source after predicting the sound field, the objective of this study is to provide 

the numerical method which can reduce the noise in the fan development or 

improvement. Because the flow noise is caused to the pressure fluctuation of the 

unsteady flow field, a property was required to find the locations of sound source and 

was finally defined as Ast in this chapter. To find the locations of sound sources means 

that the unsteady flow field to generate the flow noise can be controlled. 
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        (a) Cell-based scheme                            (b) Vertex-base scheme 

Fig. 2-1 Comparison of control volume formulations used in the finite volume method 
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Fig. 2-2 SIMPLE algorithm 
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Fig. 2-3 Control volume within a two-dimensional turbulent shear flow [62] 
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Fig. 2-4 Definitions of the variables 
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(a) CFD and CAA surface mesh used in this study 

 

(b) CAA surface mesh used in other CAA software 

Fig. 2-5 Comparison of surface meshes used for CAA 
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Fig. 2-6 Schematic diagram of the simulation for prediction of the noise 
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(a) Ring blower and experimental setup [51] 

    

         (b) Sound source by acoustic camera             (c) Sound source by CAA [51] 

Fig. 2-7 Comparison of sound sources between experiment and CAA 
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Chapter 3. Experimental and numerical setup 

 

3.1 Experimental setup 

The measurement of the noise generated by all three-dimensional fans used in this 

study was conducted in a semi-anechoic room under a condition which fan operation 

was not affected from the external environment. All fans were fixed by wires or 

mounted on the plate, in order to prevent the structure noise. The airborne noise from a 

fan was collected using a microphone and then was measured by a sound level meter. 

The signal of the noise was analyzed and converted into the components of frequency 

domain by using an FFT analyzer. 

 

(a) Axial flow fan with a circular shroud 

In order to obtain the characteristics of the rotating noise source, the pressure 

fluctuations on the strut were measure by two microphones [77]. Two small 

microphones were installed one by one at the surface of two struts as shown in figure 3-

1. Figure 3-2 minutely shows the setup of a microphone, which is 4 mm in width, 6 mm 

in length and a pressure port of 1.02 mm in diameter. The frequency response range of 

the microphone is from 100 Hz to 10 kHz. The pressure port was sealed with a film to 

prevent that the flow from blades hits a microphone directly. 

An axial flow fan (Base model) driven by AC-motor was fastened with wires to avoid 

structure-borne noise at a semi-anechoic room and rotated with rotational speed 2850 

rpm under a condition without the influence of external environment. Figure 3-3 shows 

the dimensions of the axial flow fan. The diameter (D), height (H), hub’s diameter (Dhub) 

and shroud’s collar (Lcollar) of an axial flow fan are 0.165 m, 0.035 m, 0.088 m and 

0.0145 m, respectively. Figure 3-4 shows the experimental setup of the axial flow fan 

and microphone used for measuring aeroacoustic noise. And the microphone was 

installed to be 1.0 m apart from the rotation center of the rotor. Each position of a 

microphone for measuring the noise is shown in figure 3-5. The measuring positions 

were located at different longitude angle divided by 0° and 40°, but at the same height. 

The rotational speed in the noise measurement was at 2850 rpm and the 1st BPF was 

237.5 Hz. 
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(b) Small axial flow fan with a square-type shroud used at a rack mount server computer 

The axial flow cooling fan with square-type shroud mentioned in this study is 

equipped for discharging the heat generated inside a rack mount server. The reason is 

that the narrow space inside a server computer makes it difficult to discharge naturally 

the heat into the outside. Figure 3-6 shows an actual axial flow fan with square-type 

shroud used generally at the rear of the rack mount server and its dimensions. The 

dimensions of the axial flow fan are 0.076 m in diameter (D) and 0.0275 m in height (H), 

respectively. The axial flow fan consists of a rotor with 5 blades and a hub, and a casing 

with 8 struts. The casing has also a shape including partially four planes on the bell 

mouth, because a rack mount type fan cannot have the same clearance between a blade 

tip and a casing. It's caused to the shape and size of a rack mount server. Also, 8 struts 

connected to the casing are designed for converting the complicated flow into uniform 

flow. 

Figure 3-7 shows the experimental setup for measuring the noise generated from an 

axial flow fan in a semi-anechoic room. The steel wire was used for connecting to a 

circular jig with each hole of the casing corner in order to fasten an axial flow fan. The 

microphone was placed at a upstream position 1.0 m apart from the rotation center of 

the fan in order to measure the fan noise. The fan noise measurement was performed 

under a condition which the fan rotates 7000 rpm in the free space of a semi-anechoic 

room. In this condition, the 1
st
 BPF was 583 Hz. 

 

(c) Small centrifugal fan 

Figure 3-8 shows the centrifugal fan shape and its dimension. In detail, the size of the 

fan with 17 blades in the impeller was 0.040 m in length (L), 0.040 m in width (W) and 

0.003 m in height (H), respectively. Also, diameter (D) and thickness (T) of an impeller 

considering a hub was 0.032 m and 0.002 m, respectively. Figure 3-9 shows an 

experiment model including a centrifugal fan and a schematic diagram of a cross-

section of a model. The lower casing of the fan was mounted on a lower plate and the 

upper casing having an inlet of the centrifugal fan was apart from the upper plate with a 

distance of 0.001 m, in order to simulate the similar flow field to an actual product. The 

rotational axis of the centrifugal fan was z axis and rotational direction was toward -z 
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direction as a right-hand screw. The impeller of centrifugal fan rotated with rotational 

speed of 10460 rpm for noise measurement at the free space in a semi-anechoic room. 

Figure 3-10 shows a microphone location measured the fan's noise installed 0.1 m apart 

from the rotation center. In experiment measuring the noise, the 1st BPF was 2964 Hz. 

 

3.2 Numerical setup (CFD/CAA) 

A three-dimensional flow field by the turbomachines was obtained by applying the 

code used to simulate the thermal-fluid flow. This code solved three-dimensional 

Unsteady Reynolds-averaged Navier-Stokes (URANS) equations and continuity 

equation simultaneously. The whole flow field in steady state analysis generated by the 

rotation of turbomachines was simulated roughly by SST k−ω model as the RANS 

turbulence model. The steady state analysis was conducted to reduce the solving time 

for obtaining the whole flow field. Obtaining the information for noise prediction, the 

unsteady state analysis was performed by using LES turbulence model which has 

provided the more accuracy than the URANS turbulence model in the prediction for 

eddy viscosity. The Sub-Grid Scale (SGS) in the LES turbulence model utilized the 

Smagorinsky model for predicting the eddy viscosity generated among the smaller 

eddies than a filter. According to recommendation in a commercial thermal-fluid solver 

for prediction of the flow field occurred by the turbomachines, the value of 

Smagorinsky constant (Cs) was 0.15 [58].  

In the grid system of this study, the hybrid grid system to utilize tetrahedral, prism, 

pyramid and hexahedral was used. The all surfaces of the computational domain were 

considered as an adiabatic no-slip wall for boundary condition. The rotation effect of the 

rotor was simulated by using the boundary condition which was divided the rotating 

frame of reference containing a rotor and the stationary frame of reference except a rotor. 

And, the interfaces between the rotating frame and the stationary frame were considered 

as the surfaces of sliding mesh. 

In addition, the rotor surface and the inner surface of casing in all fan of this study 

were imposed as the acoustic source area for analysis of aeroacoustic noise. And then, 

the flow properties of unsteady flow field and data for acoustic noise prediction were 

obtained from the unsteady state analysis after unsteadiness of the flow field grows up 

fully. 
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In this study using LES turbulence model, the simulations of all cases were conducted 

with double precision because the value of y
+
 was not sufficiently smaller than the 

recommended value suggested from the previous studies. 

 

(a) Axial flow fan with a circular shroud 

For rough and quick simulation of the flow field occurring by the rotation of the axial 

flow fan, steady state analysis with SST k−ω model was used initially. For simulation of 

the unsteady flow field, LES turbulence model was selected. To develop sufficient 

unsteadiness, which can be generated at an axial fan with a circular shroud, the 

simulation of unsteady flow field was conducted continuously during 9 rotations of the 

rotor. The data for acoustic noise prediction were obtained from the analysis of unsteady 

flow field after the 9th rotation of the rotor. 

Figure 3-11 shows computational domain, fan location, boundary conditions for 

numerical analysis, and the rotating frame including the axial flow fan, respectively. 

Also, the shape and size of computational domain and the fan location were similar to 

those of the semi-anechoic room to measure the noise. In detail, the width (w), length (l) 

and height (h) of the computational domain was 2.80 m, 2.35 m and 3.10 m, respectively. 

The location of an axial flow fan was away 1.580 m from the left wall, 0.600 m from the 

rear side wall and 0.695 m, from the floor of the anechoic room, respectively. For 

rotation effect of an axial flow fan, a sliding mesh function was used. The rotational 

speed of fan was 2850 rpm. 

Figure 3-12 shows the computational grid system and the meshes near the surface 

piled up of 5 layers prism type elements. The y
+
 value of the first prism element from 

the rotor surface except some parts of the leading edge, blade tip, and hub’s edge was 

set as 5.5 or smaller for correct prediction of the velocity profile near the wall. The 

maximum value of y
+
 was nearly 9.6. In detail, the size of a rotor surface mesh and the 

thickness of the first prism layer neighboring to the surface near the blade tip were 

0.0007 m and 0.000031 m, respectively. The space except around the surface was filled 

up with tetrahedral and hexahedral meshes. The number of elements and nodes used in 

this grid system was about 17.8 million and about 6.7 million, respectively. 

 

(b) Small axial flow fan with a square-type shroud used at a rack mount server computer 
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The process for numerical analysis followed the procedure mentioned in Sec. 3.1. 

Figure 3-13 indicates the computational domain used in this simulation and the 

perspective views of the axial flow fan with square-type shroud used at a rack mount 

server computer. The computational domain was also similar to that of the semi-

anechoic room to measure the noise. The domain size was 2.0 m in width, length and 

height, respectively. 

The computational grid system used in this case was shown in figure 3-14. In order to 

obtain y
+
 < 10 at the first boundary layer and to predict the more accurate velocity 

profile near the surface, five boundary layers by prism element type were stacked up in 

a direction normal to the surface; and for the space excluding the boundary layers, 

tetrahedron, pyramid and hexahedron grids were used. The small surface meshes of 0.2 

mm the size were located near the blade tip, the leading edge and trailing edge. The first 

thickness of the prism piled up normal to the surface at those regions was 0.02 mm. The 

number of elements used was about 22.0 million, and the number of nodes was about 

6.3 million in this case. The rotational speed of this axial flow fan was 7000 rpm. 

 

(c) Small centrifugal fan 

The process for numerical analysis followed the procedure mentioned in Sec. 3.1. 

Figure 3-15 illustrates the dimensions of computational domain, the boundary 

conditions and the detailed centrifugal fan positioned in rotating frame used for 

numerical analysis, respectively. Below are the boundary conditions: (1) The pressure 

condition for all planes that compose the boundaries of the computational domain was 

imposed as the atmospheric pressure. (2) The rotational speed of the impeller was 10460 

rpm. 

A grid system used for this case is shown in figure 3-16. In order to obtain y
+
 < 3.6 at 

the first boundary layer and to predict the more accurate velocity profile near the surface, 

five layers of a flat triangular prism shape were piled up in the direction normal to the 

surface. The tetrahedral, pyramid and hexahedral grids were filled up in the major 

spaces excluding boundary layers. The surface mesh size of an impeller has 

approximately a length of 0.0001 m and the first boundary layer thickness neighboring 

to the surface of impeller was approximately 0.000017 m. The number of elements and 

nodes used for in this case was approximately 22.9 million and 7.7 million, respectively. 
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3.3 Summary 

Materials in this chapter were rewritten based on papers [52-54]. In experiment, the 

fan noise in this study was measured in a semi-anechoic room, under a condition which 

the external environment does not have influence on the internal environment of the 

semi-anechoic room during fan operation. All fans were fixed to prevent the structure 

noise. The fan noise was collected by a microphone and then was measured by using a 

sound level meter. The noise signal was analyzed and converted into the components of 

frequency domain by using an FFT analyzer. 

In order to simulate the thermal-fluid flow, the code solved three-dimensional 

Unsteady Reynolds-averaged Navier-Stokes (URANS) equations and continuity 

equation simultaneously. After fully developing the unsteadiness, the unsteady state 

analysis using LES turbulence model was conducted in order to obtain the information 

for noise prediction. And then, the flow properties of unsteady flow field and the data 

for acoustic noise prediction were obtained from the unsteady state analysis after 

developing full unsteadiness of the unsteady flow field. 
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Fig. 3-1 Measuring points for pressure fluctuations 
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Fig. 3-2 Schematic diagram of a microphone setup 
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(a) Dimension and shape of rotor 

 

(b) Perspective view of axial flow fan with circular shroud 

Fig. 3-3 Main dimensions of the axial flow fan 
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(a) Axial flow fan used in experiment 

 

(b) Experimental setup to measure noise in a semi-anechoic room 

Fig. 3-4 Experimental setup for noise measurement 
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Fig. 3-5 Location of the microphone for noise measurement 
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(a) Axial flow fan with rectangular shroud used at a rack mount server computer 

    

(b) Dimension of rotor 

 

(c) Perspective view of axial flow fan with rectangular shroud for CFD 

Fig. 3-6 Perspective view of fan and its shape 
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Fig. 3-7 Photo of experimental set-up to measure the noise 
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(a) Dimension of casing 

  

(b) CAD shape of a centrifugal fan and dimension of impeller 

Fig. 3-8 Main dimensions and shape of a small centrifugal fan 
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(a) Outside view  

 

(b) CAD model 

 

(c) Cross sectional view of flow channel 

Fig. 3-9 Experimental setup and schematic diagram of flow channel and a small 

centrifugal fan 
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Fig. 3-10 Microphone location for noise measurement 
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Fig. 3-11 Detailed description of computational domain, boundary conditions and 

rotating frame 
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(a) Axial flow fan 

 

(b) Near blade tip 

Fig. 3-12 Computational grids 
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(a) Computational domain 

 

(b) Rotating frame at an axial flow fan 

Fig. 3-13 Computational domain and detail view of rotating frame 
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(a) Fan and casing 

 

(b) Near a blade tip 

Fig. 3-14 Computational grids used to simulate the flow field 
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(a) Computational domain and boundary conditions 

      

(b) Rotating frame in the fan 

Fig. 3-15 Computational domain, boundary conditions and rotating frame in detail 
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(a) Centrifugal fan and casing 

 

(b) Near blade tip 

Fig. 3-16 Computational grids for simulation of a centrifugal fan 
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Chapter 4. Prediction of the flow-induced noise and noise reduction 

 

4.1 Introduction 

Cooling modules installed in automobile, electrical devices, and construction 

machinery heat up and need to be cooled down. For this, axial flow fans are commonly 

used. In order to enhance the cooling performance, an increase in the flow rate is 

essential because an axial flow fan supplies only low increase in pressure. High speed 

rotation is required for flow rate rise; and aerodynamic noise is produced. Such 

aerodynamic noise is the chief problem. Therefore, a fan with improved performance 

and reduced aeroacoustic noise was pursued; and experimental and numerical 

researches have been performed to develop the fan [78-82]. 

 

4.2 Characteristics of the unsteady flow field at an axial flow fan 

Pressure oscillation in unsteady flow field must be calculated in order to analyze the 

aeroacoustic noise. Since it takes long time to obtain the fully developed unsteady flow 

field, the result obtained from the steady state analysis was entered for unsteady flow 

analysis to save time required for the calculation. Despite of the fact that the 

characteristics of static wall pressure oscillation produced by the unsteady flow field 

were found after rotating the rotor twice, the first unsteady state analysis was continued 

until the eighth rotation in order to fully develop the unsteadiness by keeping the time 

step of 29.2398 µsec per iteration. The static pressure oscillation in the second unsteady 

state analysis was obtained while rotating the rotor five more times. For accurate FFT 

analysis requires the number of 2 to the exponent of n is required for sampling data, the 

time step per iteration was modified to 25.6990 µsec in the second step. Each sub-

iteration was done to get the accurate solution as well, the value 0.000001 was given for 

the residual for each velocity component and the value 0.00001 were given for the 

residual for pressure as the convergence condition for all iterations; then, proceeding to 

the next iteration was allowed after convergence. 

The oscillation of static pressure at two points on the strut surface (Base model) is 

shown in figure 4-1. The fully developed unsteadiness in the flow field was found 

during 5 rotations after the ninth rotation of the rotor because of the repetitive 
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distributions of static pressure presenting similar amplitude at two points. On each strut 

of the shroud, continuous change in the static pressure fluctuation was found with the 

rotation. In particular, sudden increase of the static pressure oscillation due to the 

interaction between the strut and PS of the blade was found as the blade passed through 

the point on each strut. 

 

4.3 Prediction of the flow-induced noise and validation 

Figure 4-2 is showing the axial flow fan’s sound spectra obtained by the numerical 

analysis and the experimental measurement on Base model. By solving the Ffowcs 

Williams and Hawkings equation, the aeroacoustic pressure was calculated.  The total 

noise level was measured at each point by using a microphone that was 1 m away from 

the axial flow fan. Up to 1300 Hz, the sound spectrum of tonal/broadband noise was 

consistent between the measurement and the prediction by the numerical analysis; 

however, discrepancy was found in the broadband noise at higher frequency over 1300 

Hz. Random broadband noise is known commonly due to numerous phenomena such as 

turbulent boundary layer, flow separation, vortex shedding, and tip vortex. However, the 

influence of the scattering of the turbulent boundary layer shed from the trailing edge of 

each blade was ignored in this study. Consequently, such discrepancy at higher 

frequency occurred since only the dipole was considered. The measured and predicted 

OASPL (overall sound pressure level) at H2 was 57.2 dB(A) and 60.1 dB(A), 

respectively. The tonal noise predicted by the numerical analysis was higher than the 

tonal noise measured in the experiment; hence, OASPL was presented. 

Aeroacoustic source strength (Ast) distributed in the axial flow fan is shown in figure 

4-3. Major noise sources in rotating rotor were found from the leading edge tip “a”, the 

blade tip “b”, and the blade surface “c”. Major noise sources in the shroud were 

presented from the region “d” of each strut, the region “e” near each strut, and the 

region “f” adjacent to rotation path of the leading edge tip. 

Figure 4-4 is showing the static pressure on the blade’s surface and pressure 

distribution upon radial direction (r/R) in the rotating axis at t = 0.288647 sec. In figure 

4-4(a), pressure change caused by the impingement between the flow and the leading 

edge tip is seen in the leading edge tip “Region A” of the blade. This is concerned with 

the noise source “a” presented in figure 4-3. In figure 4-4(b), change in pressure 
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difference between the PS and the SS depending on x/Cx is not big within the radius of 

r/R ≤ 0.90361. On the other hand, vigorous change was observed in the pressure 

difference between the two surfaces depending on the radius x/Cx of r/R ≥ 0.96386. In 

particular, a huge difference in static pressure between “1” at the SS and “2” at the PS 

was found in the range of x/Cx = 0.2 ~ 0.4 when the radius r/R = 0.96386; and this is 

predicted to be the source where the tip leakage vortex is produced. Subsequently, static 

pressure oscillation in “Region B” of the SS was influenced by the tip leakage vortex 

developing toward downstream direction and this is concerned with the noise source “b” 

presented in figure 4-3. Both the interaction between the strut and the blade and the tip 

leakage vortex that was produced by the preceding blade impinge against the PS surface 

of the approaching blade; thus, complicated distribution of static wall pressure along the 

rotating portion of the blade was found in “Region C” of the PS. This is associated with 

the noise source “c” shown in figure 4-3. 

The vorticity on the iso-surface with the helicity of -0.95 depending on time change is 

illustrated in figure 4-5(a). The helicity was applied to describe the tip leakage vortex 

produced by the pressure difference between the PS and the SS of the blade. Figure 4-

5(b) is presenting the static pressure distribution and streamlines on the cross-section A-

A′. The helicity is defined as follows. 

 

   
             

                
 

                 

   
    

    
    

    
    

 
    (4-1) 

 

Because of the interaction between the rotor rotating in z-axis and the flow, the fluid 

flowed downstream by the PS with time. In addition, the fluid in the upstream of the 

axial flow fan flowed into the SS. Here, the flow could not flow along the surface of the 

shroud wall because of the shroud inlet shape of the square-edged cross-section; thus, 

the separation of the flow occurred, and the separated flow produced vortex “B” shown 

in figure 4-5(a). The tip leakage vortex “C” was produced as described in figure 4-4(b). 

Figure 4-5(b) is showing the distribution of static pressure and streamlines by time on 

cross-section A-A′. Occurrence, movement, and dissipation of the vortices occurring due 

to tip leakage flow and the inlet shape of shroud depending on time were confirmed. 
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In figure 4-5(b), “Related B” that is the flow structure of the vortex is disappeared 

upon the impingement with the leading edge tip. By the impingement, a complicated 

flow field upon time was induced; this can be understood as caused by the rise in the 

stagnation pressure at the leading edge tip of the blade and the pressure that is relatively 

low and caused by the separated flow from the inlet. The tip leakage vortex caused by 

the preceding blade was in the downstream of the PS when t = 0.288133 sec. In addition, 

the impingement with the approaching blade’s PS resulted in the dissipation of the 

structure of the tip leakage vortex, which was produced by the preceding blade; and this 

produces “D” that is the complicated static pressure distribution when t = 0.289161 sec 

Consequently, the tip leakage vortex was formed in the anterior region of the chord, 

where x/Cx = 0.2 ~ 0.4, because of the static pressure distribution, which is increased by 

the interaction between the approaching blade and the vortex occurred previously. 

Based on the noise source location of the Base model, flow structure and flow field 

were investigated. It was determined that reduction of the vortex that was separated 

from the square edge by changing the shape of the shroud was more efficient in 

lowering the noise compared to changing the blade shape. Therefore, the fan 

performance and the flow noise reduction were to be predicted after changing the shape 

of the shroud inlet. 

 

4.4 Noise reduction by changing the shape of shroud 

In figure 4-6, the models with the shroud in modified shape for reduction of fan noise 

reduction are shown. While the Base model had a perpendicular shape of the shroud’s 

cross-section, that in Case 1 was rounded shape with the curvature in length of Lcollar. 

The same radius of curvature as Case 1 but half-length of arc was presented by that in 

Case 2; and Case 3 had semi-circle shape with the length of the diameter as Lcollar. 

Figure 4-7 is showing the predicted sound pressure spectra that represents the effect of 

the modification of the shroud inlet for noise reduction. Similar trend was observed in 

the noise spectrum of each model. No big difference was observed in tonal noises of 

BPF and its harmonic frequencies; on the other hand, the broadband noise of all models 

with modified shroud inlet shape was predicted to be lower than the Base model. The 

OASPL predicted for each of Base model, Case 1, Case 2, and Case 3 at noise 

measurement point H2 that is the noise measuring location was 60.1, 57.6, 58.5, and 
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57.4 dB(A), respectively. 

 

Table 4-1 Specific noise level at axial flow fans 

 OASPL Q/QBase Δpt/Δpt,Base Ksa 

Base, Ref. 60.1 1.0000 1.0000 60.1 

Case 1 57.6 1.0667 1.1222 56.4 

Case 2 58.5 1.0434 1.0607 57.8 

Case 3 57.4 1.0512 1.0814 56.5 

 

In figure 4-8, the distribution of static pressure on the cross-section with r/R = 0.78313 

~ 1.02400 and 10° interval and the distribution of vorticity on the cross-section of yz 

plane at x = 0 are described. When looking at the distribution of vorticity within the 

black rectangle in figure 4-8(a), interaction between the vortex that is separated from the 

inlet of each shroud and the blade’s leading edge tip causes difference in downstream 

flow field. Among the models other than Base model, the high OASPL in Case 2 was 

due to the complicated pressure distribution that was caused by the structure of the tip 

leakage vortices (β2) that were disrupted by the preceding blade as described in figure 

4-8(b). Such phenomenon is well-known as the vortex blade interaction (VBI) between 

the tip leakage vortex and the following blade. In Case 1, the tip leakage vortices (β1 

and β2) lasted in the flow field relatively longer in Case 1. This can be explained by that 

the large pressure difference (α region) between the SS and PS of the blade produced a 

strong tip leakage vortex (β3) in the blade tip. In contrast, the tip leakage vortex of Case 

1 occurs slowly and relatively in the posterior region of the tip blade compared to that 

of the other models.  

Meanwhile, the modification of shroud shape causes changes in the flow field of the 

low noise model. Compared to Base model, the flow rate was increased by 6.77%, 

4.34%, and 5.12%, respectively. Increase in total pressure rise was found by 12.22%, 

6.07%, and 8.14%, respectively; and the fan efficiency (η = ΔpQ/ωT) was enhanced by 

4.38%, 2.71 %, and 3.16%, respectively. Hence, noise reduction due to the shape of the 

shroud was compared by calculating specific noise level equation. This equation is used 

for prediction of the change in flow noise depending on the change in fan performance. 

Specific noise level equation is defined as follows. 
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     (4-2) 

 

According to equation (4-2), specific noise level was predicted to be 56.4 dB(A) for 

Case 1, 57.8 dB(A) for Case 2, and 56.5 dB(A) Case 3 (Table 4-1). For low noise 

models, OASPL were obtained by using specific noise level and were predicted to be 

lower than 60.1 dB(A), which is the OASPL of Base model. This indicated the reduced 

broadband noise due to stabilized flow field in the inlet; thus, the modification of the 

shape of the shroud inlet is confirmed to be the factor for noise reduction. 

Figure 4-9 is presenting the noise source location of the low noise models. In the low 

noise models, the main noise sources (a ~ f) that were presented in Base model shown 

in figure 4-3 were disappeared or weakened. The noise source was decreased the most 

in Case 1 that showed the most stable inlet flow; but strong noise source was found in 

the blade tip. Case 2 presented the noise source that is similar to what observed in Base 

model; however, the strong noise source in the blade tip was reduced. In Case 3, the 

noise was reduced the most as the strength of the noise source got weakened. Thus, the 

modification of shroud inlet was verified to be a major factor influencing on noise 

reduction. 

 

4.5 Summary 

Materials in this chapter were rewritten based on the paper [54]. In this study, the 

characteristics of the aeroacoustic noise and the reduction of such noise in a small axial 

flow cooling fan were predicted by using unsteady three-dimensional flow analysis and 

the Ffowcs Williams and Hawkings equation. LES model was applied for further 

accuracy in prediction of the unsteady flow field in axial flow fan. In addition, the static 

wall pressure distribution over time, which was the input data of CAA, was obtained 

after fully developing the unsteadiness of the unsteady flow. The predicted noise 

spectrum was compared with the experimental value. This study was conducted in 

following sequence: identification of the noise sources by analyzing aeroacoustic noise, 

analysis of unsteady flow that causes noise sources, and noise reduction simulation with 

the construction of low noise models. Here are the results of this study. 

 (1) The noise spectrum predicted by numerical analysis was compared with that 
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measured by the microphone. The tonal noise in BPF and its harmonic frequencies, and 

the broadband noise presented the spectrum that was considerably consistent with the 

experimental value at less than 1300 Hz. On the other hand, discrepancy was presented 

at more than 1300 Hz. The reason of this was the neglected effect of the irregular 

broadband noise including turbulent boundary layer, vortex shedding, flow separation, 

and tip leakage vortex while considering the dipole only. 

 (2) The noise sources from Base model were showed at the blade’s leading edge tip, 

blade surface, region neighboring each strut, and region of the inner shroud that is close 

to the rotation trajectory of the blade’s leading edge tip. By unveiling the noise source 

location, the unsteady flow field produced by the interaction between the vortex and the 

blade was verified. 

 (3) By confirming the unsteady flow, the control of the vortex that is separated on the 

perpendicular cross-section of the shroud was revealed to be the efficient solution for 

acoustic noise reduction. Therefore, noise was reduced by modifying the inlet shape of 

the shroud of low noise models in order to produce stable inflow. 

 (4) The performance of the low noise models was also improved by the stable inflow; 

thus, noise reduction was reviewed by using specific noise level. Compared to OASPL 

of Base model, reduction of the noise approximately by 3.7 dB was resulted in the low 

noise models. In conclusion, the shroud shape modification was verified to be one of the 

major factors for noise reduction in axial flow fan. 
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Fig. 4-1 Fluctuation of static wall pressure on the strut of the shroud 
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(a) At H1 

Fig. 4-2 Comparison of aeroacoustic sound spectra obtained by the numerical 

simulation and the experimental measurement (continue) 
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(b) At H2 

Fig. 4-2 Comparison of aeroacoustic sound spectra obtained by the numerical 

simulation and the experimental measurement (continue) 
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(a) At SS of Base model          (b) At PS of Base model 

 

          (c) At perspective view of shroud 

Fig. 4-3 Distribution of the aeroacoustic source strength in Base model 
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(a) Static wall pressure contours on the rotor 

Fig. 4-4 Distribution of the static wall pressure on the rotor of Base model (continue) 
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(b) Distribution of the static wall pressure depending on r/R 

Fig. 4-4 Distribution of the static wall pressure on the rotor of Base model (continue) 
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(a) Magnitude of vorticity on the iso-surface of helicity(Hn) -0.95 

Fig. 4-5 Distribution of the vorticity at iso-surface of the helicity and the static pressure 

at cross-section depending on time (continue) 
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(b) Static pressure at cross section A-Aʹ 

Fig. 4-5 Distribution of the vorticity at iso-surface of the helicity and the static pressure 

at cross-section depending on time (continue) 
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Fig. 4-6 Comparison of the shroud shapes between models 
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Fig. 4-7 Comparison of the aerodynamic sound spectra between models 
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(a) Magnitude of the vorticity in yz plane at x = 0 m 

Fig. 4-8 Distribution of the vorticity and the static pressure at t = 0.288647 sec 

(continue) 

 

 

 

 

 

 

 

 

 

 



Chapter 4. Prediction of the flow-induced noise and noise reduction 

108 

 

 

 

 

 

 

 

(b) Magnitude of the vorticity on the iso-surface of Hn = -0.95 and static pressure 

distribution at cross-section 

Fig. 4-8 Distribution of the vorticity and the static pressure at t = 0.288647 sec 

(continue) 
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        (a) Case 1             (b) Case 2               (c) Case 3 

Fig. 4-9 Distribution of the aeroacoustic source strength in low noise models 
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Chapter 5. Prediction of the noise for a small axial flow fan 

 

5.1 Introduction 

Recently, the space density by the internal parts in the server computer has rapidly 

increased because of the competition among manufacturers for size and weight 

reduction. The increase in the space density by parts inside the product causes 

difficulties in release of the heat that is generated inside to outside; thus, small and high-

performance fans are needed to release the heat easily. However, the rpm of the fan 

must be increased to maintain the cooling performance of a small fan. Consequently, 

issues of increased aeroacoustic noise are arisen. As a result, the standardization of 

noise measurement for small fans was required recently as a part of researches. The 

results from small fans have been reported from studies related to standardization and 

validation about the results has also been conducted [83, 84]. 

 

5.2 Characteristics of the unsteady flow field and the noise 

To analyse the aeroacoustic noised of an axial flow fan, the static wall pressure 

fluctuations of unsteady flow field were used. For the unsteady state analysis, the 

steady-state results that were obtained by calculating Reynolds-averaged Navier-Stokes 

equations in a steady state were used as an input data. After rotating the axial flow fan 

twice, the characteristics of static pressure fluctuations in the unsteady flow field was 

observed. However, the fan was rotated twice more that is a total of four rotations in 

order to achieve more fully-developed unsteadiness in the flow field. Thereafter, the 

static pressure fluctuations were acquired while rotating the fan three more rounds. For 

each iteration, the time step was 23.8095 μsec. For accurate solution, sub-iteration was 

done for each iteration. The setting for the residual of each velocity component and 

pressure with regard to the convergence condition of each iteration was 0.000001. The 

next iteration was allowed only after the convergence was achieved. 

In figure 5-1, the distribution of relative velocity and vector velocity in the axial flow 

fan are shown. Figure 5-1(a) is the schematic diagram showing the cross-sectional 

location of the velocity vector. Figure 5-1(b) shows the relative velocity distribution 

presented on the cylindrical surface with the radius r/rfan = 0.9895 projected from the 
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rotation axis. Depending on the location of the leading edge of the blade and of the 

planes of the bell mouth, the velocity field close to the blade was varied. The velocity 

vector field shown on plane 3 is the upstream position near the leading edge passing the 

bell mouth’s plane. In that velocity field, in particular, decrease in the velocity at the 

fore of the leading edge was found. In addition, a backward flow that was heading back 

to the upstream of the casing because of the blade was observed from the velocity 

vector in the plane 3. The clearance between the bell mouth and the blade tip was 

reduced by approaching each blade to the plane of the bell mouth, occurring the 

counter-flow toward upstream. 

In figure 5-2, the vorticity distributed on the cylindrical surface at r/rfan = 1.0000 is 

shown. A vortex generated in the leading edge of each blade by the rotor rotation is seen. 

A vortex was developed over the leading edge while the leading edge passes each plane 

of bell mouth. The vortex generated by the counter-flow toward upstream affects and 

disturbs repeatedly the flow field adjacent to each plane of bell mouth. 

In figure 5-3, the static pressure distribution on the casing and the velocity distribution 

on the iso-surface of vorticity were shown with the same value ζ = 11,000 sec
-1

 

depending on time. The static pressure on the plane of bell mouth changed continuously 

with the blade tip passing the plane of bell mouth by time. This was owing to the 

decrease in clearance between the bell mouth and the blade. And it was thought to be a 

noise source because the sudden and periodic change in static wall pressure causes 

aeroacoustic noise. 

Figure 5-4 shows the velocity distribution on the cylindrical surface with the radius 

r/rfan = 1.00000 by time. The analysis time for each figure was 0.060262 sec, 0.060500 

sec, 0.060738 sec, 0.060976 sec, 0.061214 sec, 0.061452 sec, 0.061690 sec, and 

0.061929 sec, respectively. Velocity distribution in each plane (1~4) was changed with 

time variation as shown in the figure. It was also notable that the variation of velocity 

over time resulted in static pressure fluctuations. 

 

5.3 Prediction of the flow-induced noise and coherence analysis 

Figure 5-5 presents the axial flow fan’s sound spectra acquired from the numerical 

analysis and the experimental measurement. The aeroacoustic pressure was calculated 

by using the Ffowcs Williams and Hawkings equation. The total noise level was 
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measured by using a microphone that was installed 1 m ahead of the axial flow fan’s 

rotation center. The sound spectrum and tonal/broadband noise, which were predicted 

by the numerical analysis, presented distributions that are similar to those of the noise 

measured by the experiment. In particular, 4x tonal noise at 467 Hz that is smaller than 

583 Hz, which corresponds to the first BPF in the sound spectrum, was predicted and 

found to be consistent with the result obtained from the experiment. This noise was 

thought to be due to the planes that are located on the bell mouth of the casing. 

Likewise, the 2nd and 3rd 4x tonal noise as well as the 2nd and 3rd BPF were predicted 

in an appropriate manner. On the contrary, the predicted broadband noise beyond 1500 

Hz was smaller than the experiment data. This was because only dipole was considered. 

In general, random broadband noise is produced by phenomena including turbulent 

boundary layer, flow separation, tip vortex, vortex shedding, and so on. In this study, 

however, the influence of the scattering that is caused as the turbulent boundary layer 

passes each blade’s trailing edge was ignored, and the reflection of noise that is 

produced by the fan structure was not considered as well. Hence, the discrepancy in the 

noise prediction was presented at high frequency. However, the predicted OASPL was 

consistent with the measured OASPL within a margin of 1dB. In this study, the 

measured OASPL was 52 dB(A) whereas the predicted OASPL was 51 dB(A). 

In figure 5-6, the axial flow fan’s aeroacoustic source strength is shown. The 

aeroacoustic source strength is expressed with the aeroacoustic power that is generated 

per unit area and the unit is W/m
2
. The dominant noise sources were at the leading edge 

tip in the rotating blade, whereas those on the casing were on the planes of the bell 

mouth and the struts that were installed for uniform flow. 

In figure 5-7, the consistency between the acoustic pressure fluctuations obtained from 

the aeroacoustic noise analysis and the static wall pressure fluctuations of each point by 

the flow obtained from Point A on a plane of the bell mouth and from Point B on a strut 

were presented, respectively. Point A and Point B were ones of the dominant noise 

sources. Here, the coherence between the fluctuation of static wall pressure by fluid 

flow and the fluctuation of the acoustic pressure for the same time is defined as follows 

[85]. 
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      (5-1) 

 

where, Sxy(f) is the cross spectrum. Sxx(f) and Syy(f) are the auto spectra for the 

fluctuation of static wall pressure by fluid flow and those for the fluctuation of acoustic 

pressure, respectively. Normally, the value of coherence is the range of 0 ≤ γ
2

xy ≤ 1. In 

the case that the value of coherence is close to “1”, there is high coherence between two 

data. 

The coherence for 4x and 5x tonal frequencies was found to be high as shown in the 

figure. It was predicted that the coherence for the plane of bell mouth, which is located 

near the upstream of the blade, is distinguished to be each tonal noise of 4x and 5x; 

however, the reason why the coherence for the strut was overlapped and united was 

thought to be due to complicated flow field resulted from the mutual interaction with 

the rotating blade and the strut. The two location points were verified to be the major 

noise sources in the axial flow fan based on the coherence analysis. 

 

5.4 Summary 

Materials in this chapter were rewritten based on the paper [52]. By using three-

dimensional flow analysis and the Ffowcs Williams and Hawkings equation, this study 

predicted the characteristics of unsteady flow field and aeroacoustic noise produced in a 

small axial flow cooling fan that is installed in a rack mount server. Below are the 

results of this study. 

(1) According to the unsteady flow analysis, the interaction between the strut and the 

blade increased the static pressure on the pressure side; hence, a tip vortex was 

generated by the clearance between the blade and the casing. The strut of casing was 

found to be the one of dominant aeroacoustic sources based on the aeroacoustic source 

strength. 

(2) Fluctuation of the static pressure was induced on the casing whenever the leading 

edge tip passes the flat of the bell mouth. Repetitive velocity increase and decrease due 

to the interaction between the strut and the blade, and the interaction between the 

separated vortex and the leading edge was found to occur near the cylindrical surface of 

a shroud. 
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(3) The predicted sound spectrum revealed the 4x tonal component, which is smaller 

than the 1st BPF. This was considered to be due to the interaction between the shape of 

the casing and the rotation of the blade. Then, prediction of the 2nd and 3rd 4x tonal 

components and BPF components was performed in an appropriate manner; and the 

comparison of the overall sound pressure level between the prediction and the 

measurement presented an error as 1dB in approximation. In addition, the aeroacoustic 

sources that are dominant in the axial flow fan were presented on the planes at bell 

mouth and the struts based on the acoustic sound strength. The coherence analysis 

confirmed the validity of the locations of the aeroacoustic sources that are dominant in 

the axial flow fan. The noise produced at Point A of bell mouth was found to be 4x and 

5x tonal noise; however, that at Point B in downstream was found to be the tonal noise 

that is an overlap of both 4x and 5x. 
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(a) Schematic diagram of cross section views 

 

(b) Velocity distribution at the radius r/rfan = 0.9895 

 

(c) Velocity vector at each plane near the flat of bell mouth 

Fig. 5-1 Distribution of relative velocity and velocity vector 
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(a) Schematic diagram of cross section views 

 

(b) Vorticity distribution on the cylindrical surface at r/rfan = 1.0000 

Fig. 5-2 Vorticity distribution on the cylindrical surface at r/rfan = 1.0000 
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(a) Static wall pressure distribution on the casing 

Fig. 5-3 Static pressure and velocity magnitude distribution (continue) 

 

 



Chapter 5. Prediction of the noise for a small axial flow fan 

118 

 

 

 

 

(b) Velocity magnitude distribution on the iso-surface of vorticity ζ = 11,000 sec
-1 

Fig. 5-3 Static pressure and velocity magnitude distribution (continue) 
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Fig. 5-4 Velocity magnitude distribution depending on time at cylindrical surface r/rfan = 

1.0000 
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Fig. 5-5 Comparison of aeroacoustic sound spectra obtained by numerical simulation 

and experimental measurement 
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(a) Suction side and pressure side of a fan 

 

(b) Casing 

Fig. 5-6 Aeroacoustic source strength distribution 
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(a) Acoustic pressure distribution 

 

    (b) Static pressure at Point A                 (c) Static pressure at Point B 

 

        (d) Coherence between (a) and (b)            (e) Coherence between (a) and (c) 

Fig. 5-7 Coherence analysis between sound pressure and static pressure 
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Chapter 6. Application for the noise reduction of a small centrifugal fan 

 

6.1 Introduction 

To cool the main part that generates heat, a cooling module is used in most electronic 

devices. Since the heat flows within the device, a cooling module is comprised of three 

units. The three units are a heat collection unit absorbing the heat, which is generated by 

a heat-generating part, a heat transfer unit delivering the heat to a heat dissipation unit, 

and a heat dissipation unit cooling down the heat. Generally, a fan is the fluid machinery 

that has been used to cool a heat dissipation unit in the electronics. The centrifugal fan, 

in particular, has been used for size-restricted electronics including ultra laptops, tablet-

type personal computers (PC), and laptop computers due to users demand on 

miniaturization and lightweight to enhance mobility. 

The radiation of heat from the inside to the outside of the electronics is not easy since 

a small mobile device has the highly dense space by parts. Consequently, a fan with 

high performance that is small so as it can be installed in a narrow space is required to 

cool down the heating parts. When considering the fact that size of the fan is a crucial 

factor for fan performance and the size need to be small due to the limited space of 

small mobile devices, the fan’s rotation speed needs be increased in order to maintain or 

enhance the cooling performance in comparison with the existing fans. However, the 

performance improved in such manner can cause higher flow-induced noise and it is 

able to have significant influence on the quality of products. Therefore, many 

researched have been conducted to study how to maximize the fan performance while 

reducing flow noise in the restricted-sized fan. 

The previous study conducted with the aim for reduction in flow noise that is produced 

from a small fan was an experiment-based study that may carry limitations due to the 

difficulties in verification of the transient flow in fluid machinery such as small fans 

regardless of the use of a state-of-the-art equipment. Hence, new technique along with 

conducting experiment is needed in order to understand the phenomena of unsteady 

flow. Recently, approaches with numerical analysis including Computational fluid 

dynamics (CFD) and Computational aeroacoustics (CAA) have been utilized for 

evaluation and prediction of the flow field and the noise in small fans; and the 
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validation of the approach is ongoing [51-53, 83]. 

 

6.2 Characteristics of the unsteady flow field and the flow-induced noise 

For analysis of aerodynamics noise in the small centrifugal fan, the static pressure 

fluctuations in the unsteady flow field were used. The unsteady state analysis was 

performed with the input data of the result that was obtained from the steady state 

analysis on RANS model. Due to the complexity/narrowness of the internal structures 

and configurations contained in small-sized electronics, for example laptops, the flow 

field generated by each rotation of the impeller while rotating the impeller eight rounds 

was examined to set full development of unsteadiness in the flow field. Thereafter, the 

unsteady state analysis was performed during five rotations of the impeller in order to 

obtain the data of static pressure fluctuations on the surfaces that are needed for 

aeroacoustic analysis. 

The static wall pressure distributions recorded at two points on the inner casing during 

5 rotations after 8 rotations were shown in figure 6-1. Point 1 was located on the upper 

casing whereas Point 2 was located on the lower casing. The static pressure that is 

repetitively distributed with similar amplitude at the two points during the 5 rotations 

indicates the full development of unsteadiness. In order to secure the accurate solutions, 

sub-iteration for each iteration was performed and the time step per iteration was 

15.9337 μsec. The convergence condition with respect to each residual for velocity and 

pressure was set as 0.000001 or below and 0.00001 or below, respectively. The 

convergence condition was imposed for each iteration and the next iteration was 

allowed after reaching convergence. 

Figure 6-2 shows the contour of static pressure on the casing’s inner surface by time. 

The gage pressure used here was zero-referenced with respect to the atmospheric 

pressure. With the rotation of the impeller, a complex flow field was produced by the 

interaction between the casing and impeller. The consequent changes in static pressure 

distribution due to the interaction were verified on the surface of the casing. When 

bisecting the yz plane based on the center as x = 0 in figure 6-2 into “Area A” where x > 

0 (left side) and “Area B” where x < 0 (right side), the static pressure was observed to 

be asymmetrically distributed. The flow structure of the centrifugal fan can explain the 

asymmetric pressure distribution. In the centrifugal fan, the flow is introduced from the 
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inlet in the upper region of the impeller and pressurized in “Area A” due to the impeller 

rotation and the casing. Then, the flow is finally discharged from “Area B” to the 

atmosphere due to the pressure difference between the pressurized flow field in “Area A” 

and the outside flow field. In addition, the static pressure difference between the upper 

and lower surfaces of the casing was occurred by the inertia of the fluid and the change 

of flow direction which the flow introduced through the inlet was discharged toward the 

radial direction. 

In figure 6-3, the z-directional velocity distribution was described on zx plane with y = 

0. Because of the impeller rotation and the shape of the casing, z-directional velocity 

gradient in “Area B” was observed greater than those in “Area A”. This was understood 

to be due to the flow structure in the centrifugal fan. 

Figure 6-4 presents the velocity (Figure 6-4(a)) and total pressure (Figure 6-4(b)) 

distribution with streamlines at z = -0.00145 m that is the height of the center plane of 

the centrifugal fan’s outlet when t = 0.073996 sec. As described in figure 6-3, the flow 

toward “A” direction and the flow toward “B” direction were observed. The flow 

toward “A” direction was produced by the pressure that is relatively higher than that of 

the outside whereas the flow toward “B” direction was produced by the impeller 

rotation. Pressure reduction near the outlet, which is the spot between the impeller 

blades in “Area B”, was recognized easier than that between the impeller blades in 

“Area A”; this was understood to be the reduced pressure due to the discharge of the 

flow to the outside. 

In figure 6-5, the vorticity distribution depending on time was illustrated on a 

cylindrical section between 0° and 180° of r/rfan = 1.00625 (Figure 6-5(a)) and on cross 

sections of z = -0.0145 m and z = -0.0235 m (Figure 6-5(b)). Due to the rotation of the 

impeller, increased vorticity was found in the spot between blades, in the gap between 

the casing and impeller, and near each blade’s tip. The random turbulence was produced 

in the spot in between blades and in the region downstream of the blade’s tip. Especially, 

in the section between 45° and 135°, the vorticity was increased by the flow that was 

discharged to the atmosphere. Furthermore, dissipation of the turbulence structure 

around the blade tip was found as the impeller rotated through the cut-off region (near 

135°). Therefore, the region between 45° and 135° and the region around the cut-off 

region were predicted to be the noise sources. 
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In figure 6-6, the sound spectra of the centrifugal fan are shown that were obtained 

from the numerical analysis and the experimentally measured data using a microphone. 

From the numerical analysis, the aerodynamic sound pressures were obtained from the 

FW-H equation. The numerical analysis predicted the tonal noises of BPF at 2964 Hz 

and its harmonics very well as shown in the figure. For the broadband noise at 

frequency domain, the predicted values were consistent with the experimental value. 

Some difference was found in the flow noise within the frequency range of 850 ~ 1350 

Hz between the predicted value and experimental value. Due to the fact that this 

computational study considered noise radiation only, the noise occurred by the casing 

shape that was gradually increased and reduced within the range was considered to 

cause such discrepancy between noises. 

The locations of aeroacoustic source strength in Base model are shown in figure 6-7. 

In centrifugal fans, the noise sources were not usually found in the impeller; and most 

of those were found in the casing along the impeller’s rotational region. The 

complicated flow field produced by the aforementioned impeller rotation was confirmed 

to generate the region marked as “An” on the upper and lower surface of the casing. To 

be specific, the noise sources on the casing’s upper surface were found in the section 

between 70° ~ 220°. However, the noise sources on the casing’s lower surface were 

found in the section between 50° ~ 180°. Also, the noise sources with higher strength 

were indicated on the lower surface of casing but distributed on narrower region. 

Especially, the distribution of the noise sources on the casing’s upper surface was found 

to be along the impeller tips. Hence, reduction in noise was predicted through 

modification of the impeller tips. On the lower surface of the casing, on the contrary, the 

distribution of the noise source locations was found to be within the diameter not along 

the impeller tips. The interaction between the impeller and the cylindrical step that is 

0.0003 m tall and is located at the spot where r/rfan = 0.8125 on the casing’s lower 

surface toward +z direction. Hence, both impeller configuration and casing 

configuration should be considered for noise reduction in the casing’s lower surface. 

Since the purpose of this study was not the noise reduction in every aspect, this study 

only focused on the noise reduction by modifying the impeller tips. 

 

6.3 Prediction for low noise through modification of impeller tip 
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Figure 6-8 is showing the modification made in the shape of the impeller tips for noise 

reduction. As shown in top view of the impeller, the diameter of the impeller was not 

changed. When the difference in the shapes of the impeller was examined by looking at 

the side views, the tip of the impeller blade in Base model was perpendicular whereas 

each tip of the impeller blade in low noise models was cut by 30° as shown in figure 6-

8(b) and (c), respectively. As described in figure 6-7, the low noise models were 

proposed with the purpose of reduction in noise sources that are generated in the upper 

surface of the casing. 

In figure 6-9, the sound spectra for the frequency of the Base model and of the low 

noise models with their impeller tips partially modified for noise reduction are 

presented. For the distributions of tonal and broadband noise in each sound spectrum, 

similar trend was commonly observed. However, the tonal noises of BPF and its 

harmonic frequencies, and the broadband noise predicted for low noise models were 

lower than those that the base model. Each OASPL for Base model, Case 1 and Case 2 

was predicted by performing the numerical analysis; and that was 52.2 dB(A), 51.8 

dB(A), and 51.4 dB(A), respectively. Fan performance was changed because of the 

modification made in the impeller tips. Therefore, reduction in flow noise with respect 

to the performance was examined by using specific noise level equation. Below is the 

specific noise level equation described in Sec. 4.4. 

 

              
 

     
 

   

        
 

 

     (4-2) 

 

Compared to the base model, quantitative changes were found in the flow field of the 

low noise models: decreased flow rate by 5.3% in Case 1 and by 3.8% in Case 2, and 

decreased total pressure rise (∆pt) by 8.3% in Case 1 and 7.1% in Case 2. The specific 

noise level for the low noise models was drawn from the calculation of equation (4-2); 

and that was 51.8 dB(A) for Case 1 and 51.4 dB(A) for Case 2 (Refer to Table 6-1). 

Since OASPL of the low noise models predicted by the specific noise level was lower 

compared to the Base model, partial modification made for the impeller tips was 

confirmed to play an important role in noise reduction. 
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            Table 6-1. Specific noise level at centrifugal fans 

 OASPL Q/QBase Δpt/Δpt,Base Ksa 

Base, Ref. 52.2 1 1 52.2 

Case 1 50.8 0.94729 0.91721 51.8 

Case 2 50.6 0.96197 0.92870 51.4 

 

In figure 6-10, the vorticity distribution on the cylindrical surface of r/rfan = 1.00625 at 

t = 0.074252 sec are shown for all models. Clear distinction in the vorticity distribution 

was seen depending on the shapes of impeller tips. In particular, relatively smaller and 

weaker vorticity structure was observed in Case 1 and Case 2 because of the partially 

removed impeller tips in the low noise models. The removed tips were thought to 

weaken the vorticity and thereby reduce the noise. 

The locations of aeroacoustic noise sources for the low noise models are shown in 

figure 6-11. The low noise models presented weaker strength and reduced area of the 

noise sources in both upper and lower surface of the casing compared to the Base model. 

The partially modified tip shape was confirmed to weaken the strength and reduce the 

domain of the noise sources remarkably on the casing’s upper surface. The diameters of 

the noise sources located on the surface of the casing were reduced depending on how 

the partial change was made in the tip. In addition, the strength of the noise sources on 

the casing was found to be decreased differently depending on how the partial change 

was made in the tip as well. In other words, the normal of the plane cut affected the 

strength of the noise sources; the cutting pattern adopted for Case 1 resulted relatively 

weakened noise sources on lower surface of the casing whereas the cutting pattern 

adopted for Case 2 resulted relatively weakened noise sources on the upper surface of 

the casing. 

 

6.4 Summary 

Materials in this chapter were rewritten based on the paper [53]. The characteristics of 

unsteady flow field and noise from a small centrifugal fan were predicted by using 

three-dimensional numerical analysis in this study. To simulate the similar environment, 

a model device with narrow flow channels that are similar to what in a real laptop was 

prepared and the fan was installed in there. LES model was applied to predict the 

unsteady flow field accurately. The centrifugal cooling fans are linked to considerably 
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narrow and complex flow channels in portable electronics. Hence, unsteady flow was 

analyzed following to the full development of unsteady flow field in order to obtain an 

input data for CAA. The noise spectrum was compared to the experimental values. 

Thereafter, the CAA results presented the locations of noise sources. The locations were 

verified from the Base model; and then, the noise was reduced by adopting the low 

noise models. The conclusions drawn in this study are below. 

(1) In the flow structure of the centrifugal fan, the outlet and inlet are placed 

perpendicularly to each other. Hence, the flow field is inconsistent due to the rotational 

axis. Consequently, the flow fluctuates vertically in the casing because of the inertia of 

the fluid created as the impeller rotates. There are two types of the flow that is 

discharged to the radial side: the flow that is discharged due to pressurization caused by 

the impeller and casing, and the flow that is discharged due to the rotation of the 

impeller. 

(2) The comparison of the noise spectrum between the prediction and measurement in 

a frequency domain revealed the agreement of tonal noises at BPF and its harmonics, 

and broadband noise. Since the prediction in this study was done only for the noise 

radiation, the increase of the noise, which is due to the centrifugal fan configuration, 

presented within some frequency ranges was not predicted. 

(3) The major aeroacoustic noise sources of the Base model were mostly presented 

around the casing of the centrifugal fan and the distribution of the locations on the 

casing were existed along the rotational direction of the impeller. However, the 

locations of the noise sources on the upper surface of the casing and on the lower 

surface did not match each other. In particular, the noise sources that were caused by the 

blade tip were observed on the upper surface of the casing in contrast to the noise 

sources that were produced by the centrifugal fan’s complex flow structure were 

observed on the lower surface of the casing. 

(4) For minimization of the noise sources that are located on the upper surface of the 

casing, noise reduction was performed by modifying the shape of the impeller’s blade 

tips. In addition, the noise reduction using the low noise models was discovered by 

using specific noise level. Compared to the Base model’s OASPL, the noise reduction 

by around 0.8 dB was accomplished. 
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Fig. 6-1 Time-dependent static pressure distribution at two points on the inner casing 
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(a) Static wall pressure at upper casing 

Fig. 6-2 Distribution of static wall pressure on the inner casing (continue) 
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(b) Static wall pressure at lower casing 

Fig. 6-2 Distribution of static wall pressure on the inner casing (continue) 
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Fig. 6-3 z-directional velocity distribution on the zx plane with y = 0 
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(a) Magnitude of velocity 

 

 (b) Total pressure 

Fig. 6-4 Distribution of flow properties and streamline at z = -0.00145 m and t = 

0.073996 sec 
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(a) At cylindrical plane r/rfan = 1.00625 

Fig. 6-5 Vorticity distribution depending on time (continue) 

 

 

 



Chapter 6. Application for the noise reduction of a centrifugal fan 

136 

 

 

 

 

 

 

 

 

(b) At z = -0.0145 m and -0.0235 m (cross section a - aʹ and b - bʹ) 

Fig. 6-5 Vorticity distribution depending on time (continue) 
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Fig. 6-6 Comparison of aerodynamic sound spectra of Base model 
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           (a) Upper casing and impeller           (b) Lower casing 

 

           (c) Bottom view of impeller 

Fig. 6-7 Aeroacoustic source strength distribution of Base model 
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Fig. 6-8 Modification of impeller shapes for low noise 
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Fig. 6-9 Comparison of aerodynamic sound spectra between Base model and modified 

impeller models 
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Fig. 6-10 Vorticity distribution of r/rfan = 1.00625 and t = 0.074252 sec 
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                  (a) Case 1                          (b) Case 2 

Fig. 6-11 Aeroacoustic source strength distribution in low noise models 
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Chapter 7. Conclusions 

 

In this study, numerical analysis method by using CFD and aeroacoustic analogy was 

utilized for noise reduction in the turbomachinery that is used in home electronics. To 

predict the flow field produced by the rotation of the turbomachinery, the three-

dimensional unsteady Navier-Stokes equations were solved. The turbulence model used 

for the flow field prediction was SST k–ω model that thoroughly simulates the adverse 

pressure gradient and separation in the boundary layer and LES model presenting the 

excellence in modeling of the turbulence intensity. In order to increase the accuracy of 

the unsteady state flow analysis, double precision solver and sub-iteration in each time 

step were adopted, the convergence condition was given for each time step, and the next 

step was conducted only after the condition was satisfied. 

The method used for prediction of the flow noise in this study was acoustic analogy 

method that is one of the hybrid methods in which CFD and CAA are combined 

together. The grid used to predict the noise with the acoustic analogy was the surface 

grid that is used in CFD. Numerical algorithm was adopted for prediction of the noise at 

the location identical to the location of the microphone that was used to measure the 

noise. Consequently, the use of the surface grid that was identical to what was used in 

CFD and expresses the shape of the turbomachinery enabled to predict the location and 

the distribution of the noise source in a more accurate manner. In addition, aeroacoustic 

analogy was conducted in this study to predict the flow noise by solving Lowson 

equation that is easy for numerical application and can be used to predict the sound 

pressure on a point force which is moving in a free field based on Neise research 

reporting that the major noise sources of the turbomachinery operating in subsonic 

domain are caused by the dipole. 

Each of the noise predicted by the numerical analysis was compared with the 

corresponding noise measured through the experiment. Observation on the noise 

spectrum revealed considerable agreement in the tonal noise of BPF and its harmonic 

frequency and the broadband noise at low frequency between the predicted noise and 

the measured noise. However, the disagreement at high frequency was determined to be 

that the broadband noise due to the random broadband noise was not able to be 
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predicted since the noise radiation at a free field in which only dipole was considered 

was calculated. 

In the small axial flow fan with cylindrical shroud, the noise source was found to be 

located in the pressure side of the blade. As a result of the investigation on the unsteady 

state flow field based on the location of the noise source, the flow structure in which the 

flow that was separated from the right-angled cross-section of the shroud inlet causes 

the tip leakage vortex by interacting with the blades of the rotor and the caused tip 

leakage vortex produces noise as it hits the following blades was confirmed. For 

reduction of the flow noise, the shape of the shroud inlet was altered to the nozzle shape 

with various radius of the curvature; and noise reduction by 3.7 dB was predicted. 

To verify that the approach of numerical analysis is possible for noise prediction in a 

small turbomachinery, the flow noise of a small axial flow fan used as a cooling fan in a 

rack mount server computer with smaller rotor diameter and higher rotation speed than 

the small axial flow fan with the cylindrical shroud that was predicted above was 

predicted in advance. Agreement was confirmed by comparing the predicted noise 

spectrum with the measured noise spectrum. In particular, the tonal noise that occurs by 

the irregular clearance that is the interval between the blade tip and the shroud due to 

the shroud shape was well predicted. In addition, the correlation between the surface 

pressure fluctuation obtained by the flow analysis and the sound pressure predicted at 

the location of the microphone from the noise analysis was confirmed through the 

coherence analysis. 

For the centrifugal fan with smaller size of the impeller, higher rotation speed, and 

different flow structure compared to the two axial flow fan predicted above, the flow 

noise was predicted and its characteristics were understood. Due to the structure of the 

centrifugal fan that is operated for cooling of the electronics as embedded inside the 

electronics such as portable laptops, asymmetric flow field was observed. The locations 

of the noise source were also distributed asymmetrically by unsteady flow and stronger 

noise sources were found in the casing rather than in the impeller of the centrifugal fan. 

After analyzing the distribution of the noise source, the method of numerical analysis 

was applied for reduction of the flow noise and the impeller tip was cut obliquely to 

minimize the noise sources produced by the impeller tip; and noise reduction by 0.8 dB 

was predicted. In the low noise models applied for noise reduction above, fan 



Chapter 7. Conclusions 

145 

 

performance was changed by altering the shape of the shroud or the rotating part. Hence, 

specific noise level was used to determine the noise reduction in the low noise models. 

In this study, the flow noise caused by the turbomachinery was predicted by 

combining CFD and CAA, and the method of numerical analysis was utilized to reduce 

flow noise. Since the random broadband noise at high frequency was not predicted well 

as this study focused on the radiation of the dipole noise in a free field, accurate sound 

pressure at the measuring point where the microphone is located in the space was not 

predicted. However, the location and characteristics of the noise source were predicted 

well. As a result, the unsteady flow related to the noise sources was confirmed and 

understood; hence, the shape of the low noise model that can reduce the flow noise can 

be drawn. The results of this study are believed to be sufficient to motivate the use of 

the numerical analysis for reduction of flow noise in the turbomachinery through the 

understanding on the noise sources. 
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