
PDF issue: 2024-12-22

Migration Models for Energy-efficient
Computation of Processes in Server
Clusters

DILAWAER, Duolikun / ディラワリ, ドリクン

(開始ページ / Start Page)
1

(終了ページ / End Page)
84

(発行年 / Year)
2018-03-24

(学位授与番号 / Degree Number)
32675甲第428号

(学位授与年月日 / Date of Granted)
2018-03-24

(学位名 / Degree Name)
博士(工学)

(学位授与機関 / Degree Grantor)
法政大学 (Hosei University)
(URL)
https://doi.org/10.15002/00014766

HOSEI UNIVERSITY

Migration Models for Energy-efficient Computation of
Processes in Server Clusters

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

Doctor of Engineering
(Systems Engineering and Science)

in Advanced Sciences

by

Dilawaer Duolikun

Dissertation committee:

Professor Makoto Takizawa, Committee Chair
Professor Tamai Tetsuo
Professor Takao Miura

Professor Leonard Barolli

2018

c⃝2018 Dilawaer Duolikun

Contents

List of Figures v

List of Tables vi

Acknowledgments vii

Curriculum Vitae viii

Abstract ix

1 Introduction 1

2 Related Studies 6

3 System Model 12
3.1 Servers . 12
3.2 Virtual Machines . 13
3.3 Performance of Virtual Machines 16

4 Power Consumption Models and Computation Models 21
4.1 Power Consumption Model . 21
4.2 Computation Model . 25

5 Process Migration 31
5.1 Models to Estimate Electric Energy Consumption 31
5.2 Process Migration . 33
5.3 Server Selection . 35

ii

6 Static Migration of Virtual Machines 39
6.1 Computation Model of a Virtual Machine 39

6.1.1 Computation model . 39
6.1.2 Estimation model . 41

6.2 Energy-aware Virtual Machine Migration 42
6.2.1 VM selection (VMS) algorithms 43
6.2.2 VM migration (VMM) algorithms 45

7 Dynamic Migration of Virtual Machines 49
7.1 Simple Estimation Model . 49
7.2 Dynamic Virtual Machine Selection (DVMS) Algorithm 50
7.3 Dynamic Virtual Machine Migration (DVMM) Algorithm 54

8 Evaluation 57
8.1 Process Migration . 57

8.1.1 Environment . 57
8.1.2 Evaluation results . 58

8.2 Static Virtual Machine Migration 61
8.2.1 Environment . 61
8.2.2 Evaluation results . 64

8.3 Dynamic Virtual Machine Migration 65
8.3.1 Environment . 65
8.3.2 Evaluation results . 69

9 Conclusions and Future Studies 75
9.1 Conclusions . 75
9.2 Future Studies . 77

Bibliography

List of Publications

78

85

iii

List of Figures

2.1 Macro-level approach. 7
2.2 SPC model. 8
2.3 SC model. 9

3.1 Server. 14
3.2 Virtual machine migration. 15
3.3 Cluster of servers. 17
3.4 Average execution time. 19
3.5 Migration time. 20

4.1 Cluster of servers. 22
4.2 MLPCM model. 24
4.3 Electric power consumption of DSLab server. 25
4.4 Process computation rate of a process pi. 28
4.5 Average execution time of processes on DSLab server. 29
4.6 Computation rates of processes pi and pj 30

5.1 Migration of a process. 33
5.2 Process migration. 34
5.3 Expected termination time. 36
5.4 Expected energy consumption. 37

6.1 VM selection. 43
6.2 VM migration. 46

7.1 VM selection. 52
7.2 VM creation. 53
7.3 Electric energy consumption. 56

8.1 Total energy consumption of servers (m = 8). 59

iv

8.2 Total energy consumption of servers (m = 24). 60
8.3 Average execution time of processes (m = 8). 61
8.4 Number of migrated processes in the MG algorithm (m = 8). . . . 62
8.5 Total energy consumption (n = 1,600). 63
8.6 Total electric energy consumption. 66
8.7 Total active time of servers. 67
8.8 Average execution time of processes. 68
8.9 Total electric energy consumption (m = 4, σ = 5, maxNVMt =

10). 72
8.10 Total electric energy consumption (m = 4, σ = 5). 72
8.11 Total active time of servers (m = 4, σ = 5, maxNVMt = 10). . . 73
8.12 Average execution time of processes (m = 4, σ = 5, maxNVMt

= 10). 73
8.13 Numbers of virtual machines created and dropped (m = 4, σ = 5,

maxNVMt = 10). 74

v

List of Tables

8.1 Parameters. 64
8.2 Parameters. 70

vi

Acknowledgments

The author has received tremendous amount of support from so many people upon
completing the degree that he cannot enumerate all of them at this moment.

First of all, the author would like to express his endless appreciation to his
supervisor, Professor Makoto Takizawa, for his kindness, support, and instruction.
He is the one of the persons who have given the most influence in the author’s life.
The author has studied many things not only about how to do research but also
how to be a good person, and how to do things correctly. He has always given the
best support and help to the author when needed.

Professor Tetsuo Tamai, Professor Takao Miura, Professor Leonard Barolli
(Fukuoka Institute of Technology), Professor Isamu Shioya, Professor Tomoya
Enokido (Rissho University) and Distributed Systems laboratory members of Ho-
sei university, gave the author helpful discussions, instruction, and comments. The
author would like to dedicate this work to all of them, because this work could not
be done without all of them.

Most importantly, the author would like to acknowledge Dr. Alisher Akber for
introducing me to Professor Makoto Takizawa.

Lastly, the author would like to express his appreciation and love to his wife
and son (Kadiriya Yalkun and Feroz Dilawaer), his parents (Dolkun Mahmutjan
and Gulnar Hanbaba), father-in-law and mother-in-law (Yalkun Yasin and
Gulpari Abdulla), elder brother and his family (Diyar Dolkun, Maryam Omar,
Nawruzbek Diyar and Nawranbek Diyar), cousin and her family (Rishat Tursun
and Marzuka Zakir) and all other relatives for giving him behind-the-scenes
support over many years. Words cannot express author’s love to them.

vii

Curriculum Vitae

Dilawaer Duolikun (Dilewer Dolkun)

2010 B.E. in Computers and Information Science, Xinjiang University,
China.

2016 M.E. in Systems Engineering, Graduate School
of Advanced Sciences, Hosei University, Japan

2018 Ph.D. in Systems Engineering of Advanced Sciences,
Hosei University, Japan

Field of Study

Energy-aware dynamic migration of virtual machines, and
distributed systems.

viii

Abstract

It is critical to reduce electric energy to be consumed in every area in order to
realize eco society. Huge amount of electric energy is consumed by servers in
scalable clusters like cloud computing systems in information systems. We have
to reduce electric energy consumed in information systems, especially server clus-
ters to realize eco society. There are multiple approaches to reducing the electric
energy consumption of servers like hardware oriented approach like developing
energy-efficient CPUs. In this thesis, we newly propose a macro-level approach
where we aim at reducing the total electric energy consumption of a whole server
to perform application processes without considering how much electric energy
each hardware device consumes. In order to discuss how to reduce the electric
energy consumption of servers in a cluster, we first need a power consumption
model which shows how much electric power a server consumes to perform ap-
plication processes. In this thesis, a term process means an application process
to be performed on a server. First, we measure the electric power consumed by
types of servers to perform types of application processes. Then, by abstracting
parameters which mostly dominate the electric power consumption of a server,
we newly propose a power consumption model named an MLPCM (Multi-Level
Power Consumption with Multiple CPUs) model where the electric energy con-
sumption of a server depends on numbers of active CPUs, cores, and threads to
perform application processes.

In information systems, processes requested by applications on clients have to
be performed on servers so that not only QoS (quality of service) requirements
like response time and throughput are satisfied but also the total electric energy
consumed by servers to perform processes has to be reduced. Based on the power
consumption and computation models, algorithms to select a most energy-efficient
server to perform a process issued by a client. Here, some servers might be over-
loaded and consume more electric energy than expected. In this thesis, we newly
propose a process migration approach where processes migrate from host servers

ix

to more energy-efficient servers in a cluster. First, we propose an MG (MiGration)
algorithm. Here, each process on a host server migrates to another guest server
if the total electric energy to be consumed by both the servers can be reduced.
However, it is not easy to migrate process among servers due to heterogeneity of
the servers.

Virtual machines are now widely used to support applications with virtual
computation service in clusters like cloud computing systems, which is indepen-
dent of heterogeneity and distribution of servers. Furthermore, a virtual machine
on a host server can migrate to a guest server while processes are being performed
on the virtual machine, i.e. live migration. For example, if the host server of a
virtual machine is heavily loaded and a guest server is less loaded, the virtual ma-
chine migrates to the guest server. Processes can easily migrate from servers to
servers by using virtual machines even if the servers are heterogeneous. We first
propose a static type of migration algorithm, an EAMV (Energy-Aware Migra-
tion of Virtual machines) algorithm where not only a virtual machine is selected
to perform a process issued by a client but also a virtual machine migrates to a
guest server which is expected to consume smaller electric energy to perform pro-
cesses on the virtual machine. Here, a collection of virtual machines are invariant.
Next, we consider a cluster where virtual machines are dynamically created and
dropped depending on number of processes performed on server. We propose a
DVMM (Dynamic Virtual Machine Migration) algorithm to reduce the total elec-
tric energy consumption of servers. If an application issues a process to a cluster,
a most energy-efficient host server is first selected and the process is performed
on a least-loaded virtual machine on the host server. Then, a virtual machine is
selected on a host server and the virtual machine migrates from a host server to a
guest server so that total electric energy consumption of the servers can be reduced
if the host server is expected to consume more electric energy.

In the evaluation, we obtain the total electric energy and active time of servers
and the average execution time of processes compared with non-migration algo-
rithms in the simulation. We show not only the total electric energy consumption
and active time of servers but also the average execution time of processes can be
reduced in the DVMM algorithm compared with the other algorithms.

Keywords: Energy-efficient computation, Virtual machine, Power consump-
tion model, Energy-aware dynamic migration of virtual machines,

x

Chapter 1

Introduction

We have to reduce the electric energy consumed in information systems to real-
ize eco society as discussed in the Kyoto protocol [34], COP21 [58], and COP23
[59]. Especially, huge amount of electric energy is consumed by servers in scal-
able server clusters like cloud computing systems [21, 30] and Internet of Things
(IoT) [45]. Hence, it is critical to reduce the electric energy consumed by servers
in clusters since servers consume more electric energy than clients and other IOT
devices like sensors. There are approaches to reducing the electric energy con-
sumption of computer, especially a server. In the hardware-oriented approach,
energy-efficient hardware devices like CPUs [33, 3] and storages like SSD [53]
are developed and used in servers.

The electric power consumption of a server depends on not only hardware
devices but also software components, especially application processes because
the hardware devices are activated and consume electric energy to perform soft-
ware components. In our macro-level approach to reducing the electric energy
consumption of servers [21, 22], we aim at reducing the total electric energy [J]
consumed by a whole server to perform application processes. We do not discuss
how much electric energy each hardware device consumes. It is more significant
to make clear how much amount of electric energy each server totally consumes
from application software’s point of view. In order to discuss how to reduce the
electric energy consumption of servers in a cluster, we first have to define a power
consumption model which gives how much electric power [W] a server totally
consumes to perform application processes. Types of power consumption models
of a server to perform computation, communication, and storage types of appli-
cation processes are proposed in our previous studies [22]. In the MLPC (Multi-
Level Power Consumption) model [36, 37], the electric power consumption of a

1

server depends on the number of active threads. In this thesis, we newly propose
an MLPCM (MLPC model of a server with Multiple CPUs) model [38, 39] of
a server with multiple CPUs. Here, the electric power consumption of a server
to perform application processes depends on the numbers of active CPUs, active
cores, and active threads of the server. In addition to the power consumption
model, we have to make clear how long it takes to perform each application pro-
cess concurrently with other application processes on a server. In this thesis, we
propose an MLCM (Multi-Level Computation model with Multiple CPUs) model
[38] which gives the execution time of each application process performed on a
server with multiple CPUs. By using the MLPCM and MLCM models, we can
estimate the electric energy to be consumed by a server to perform application pro-
cesses. In this thesis, we propose a model to simply estimate the execution time
of each application process only using the total number of application processes
currently performed on a server based on the power consumption model. In order
to reduce the electric energy consumption of servers in a cluster, types of server
selection algorithms are proposed [14, 22, 23, 27, 36, 37, 38, 39]. Here, each time
a client issues a request to a cluster, a host server is selected in a cluster and an
application process is created to handle the request on the host server so that the
total electric energy consumption of the servers can be reduced. A process means
an application process issued by an application and is performed on a server in
this thesis.

A process migration approach is also discussed in addition to selecting a host
server for each application process [12, 14, 16]. Here, a server is selected to per-
form an application process issued by clients in server selection algorithms. After
application processes are performed on servers, servers might be overloaded and
consume more electric energy than expected. In this thesis, we newly propose a
process migration approach to reducing the electric energy consumptions. Here,
processes migrate to more energy-efficient guest servers while the processes are
being performed. However, it is not easy to migrate types of application processes
to other servers in a heterogeneous cluster where architectures and operating sys-
tems of servers are different.

A server cluster provides applications with virtual computation service by us-
ing virtual machines like KVM [44] and VMware [60]. Applications processes
can be performed on a virtual machine without being conscious of what servers
support what computation resources in a cluster, i.e. independent of heterogene-
ity and distribution of servers. Furthermore, a virtual machine on a host server
can migrate to a guest server while processes are being performed on the vir-
tual machine, i.e. live migration [44]. In our previous studies [20, 57], types of

2

energy-efficient migration algorithms are proposed, where a virtual machine mi-
grates from a host server to a more energy-efficient guest server. First, we discuss
a static cluster where a set of virtual machines are invariant while each virtual ma-
chine migrates to guest servers in a cluster. In this thesis, we propose an EAMV
(Energy-Aware Migration of Virtual machines) algorithm to migrate virtual ma-
chines in a static cluster. Hence, the more number of application processes are
issued to a cluster, the more number of application processes are performed on
each virtual machine. Here, a virtual machine might not find a guest server since
too many number of application processes are performed on the virtual machine
to migrate to another server.

Next, we consider a dynamic cluster where virtual machines are dynami-
cally created and dropped depending on number of processes to be performed on
servers. We newly propose a dynamic virtual machine migration (DVMM) algo-
rithm for a dynamic cluster in this thesis. Here, if an application process is issued
to a cluster, a host server is first selected, which is expected to consume smallest
electric energy. Then, a virtual machine is newly created or selected in existing
virtual machines and the application process is performed on the selected virtual
machine. Each virtual machine migrates from the host server to a guest server
if an application processes on the virtual machine can be more energy-efficiently
performed on the guest server.

We evaluate the MG, EAMV, and DVMM algorithms proposed in this thesis
in terms of the total electric energy consumption of servers and average execu-
tion time of application processes performed on the servers compared with non-
migration algorithms in the simulation. We develop a simulation to measure the
electric energy consumption of a server to perform application processes. We
show the total electric energy consumption and total active time of servers can be
mostly reduced and average execution time of application processes can be mostly
shortened by the DVMM algorithm in the evaluation.

The remaining part of this thesis is organized as follows.
In chapter 2, we overview research studies related with this thesis. Energy-

efficient hardware devices like CPUs are developed in industries. In this thesis,
we do not consider the electric power consumption of each hardware device like a
CPU. Especially, we propose a macro-level approach where the total electric en-
ergy consumed by a whole server is considered to perform application processes.

In chapter 3, we present a model of servers and virtual machines. A server
is composed of CPUs and each CPU is composed of multiple cores. Each core
supports one or two threads. A cluster of servers supports applications virtual ser-
vices on resources like CPU, memory, and storages through virtual machines on

3

servers. Here, applications use computation resources without being conscious of
which server supports the computation resources. Furthermore, a virtual machine
can migrate from a host server to another guest server while application processes
are being performed, i.e. live migration,

In chapter 4, we propose the power consumption and computation models of
a servers, which give electric power consumed by a server to perform applica-
tion processes and execution time of each application process on a server. Here,
we propose an MLPCM (Multi-Level Power Consumption with Multiple CPUs)
model as a power consumption model of a server which is composed of multiple
CPUs. We also propose an MLPC (Multi-Level Power Consumption) model of
a server which gives the execution time of each current application process on
a server. By using the MLPCM and MLPC models, we can estimate the execu-
tion time of each application process and electric energy to be consumed by each
server to perform application processes.

In chapter 5, we consider a process migration approach to energy-efficiently
performing an application process on servers in a cluster. If an application pro-
cess is issued by a client, a server is selected to perform the application process
where the expected electric energy consumption of the server is the smallest in
a cluster. Furthermore, an application process migrates from a host server to an-
other guest server if the host server is expected to consume more electric energy
than expected. We show the electric energy consumption of servers in the process
migration approach can be reduced compared with the non-migration approaches.

In chapter 6, we discuss the process migration approach by using virtual ma-
chines in a cluster. An application processes are able to easily migrate from host
servers to guest servers even if servers are heterogeneous, e.g. diffrent architec-
tures and operating systems. First, we consider a static cluster where the mem-
bership of virtual machines is not changed, i.e. the number of virtual machines is
invariant. In this thesis, we propose an EAMV (Energy-Aware Migration of Vir-
tual machines) algorithm to select a virtual machine to perform a request process
issued by a client and to migrate a virtual machine to another guest server in order
to reduce the total electric energy consumption of servers in a cluster.

In chapter 7, we consider a dynamic cluster whose membership is dynami-
cally changed depending on number of processes performed in a cluster. In this
thesis, we propose a DVMM (Dynamic Virtual Machine Migration) algorithm.
In the DVMM algorithm, virtual machines are dynamically created and dropped
depending on the number of application processes. Initially, there is no virtual
machine on each server in a cluster. A server is first selected to perform an ap-
plication process in the same way as the EAMV algorithm. Then, a smallest

4

virtual machine where the fewest number of application processes are performed
is selected on the server. If more number of application processes on the virtual
machine are performed than some number, a new virtual machine is created to
perform the application process. Otherwise, the application process is performed
on the smallest virtual machine.

In chapter 8, we evaluate the MG, EAMV, and DVMM algorithms proposed
in this thesis in terms of total electric energy consumption and total active time
of servers and the average execution time of application processes. We develop a
time-based simulator on a database in SQL to evaluate the algorithms, especially
measure the electric energy consumption of servers to perform application pro-
cesses. The total electric energy consumption and active time of servers and the
average execution time of application processes in the dynamic DVMM algorithm
can be mostly reduced compared with the EAMV algorithm and non-migration al-
gorithms.

In chapter 9, we conclude this thesis. In this thesis, we newly propose the
macro-level approach to reducing the total electric energy consumed by informa-
tion system. Then, we newly propose the power consumption model and the com-
putation model of a server to perform application processes. Based on the power
consumption and computation models, we propose the MG, EAMV, and DVMM
algorithms to migrate application processes to more energy-efficient servers by
taking advantage of virtual machines supported by server clusters. Our proposed
macro-level approach, power consumption and computation models, and algo-
rithms to select servers and migrate virtual machines are theoretical and practi-
cal foundations to discuss models, architecture, algorithms, implementation, and
evaluation of eco information systems.

5

Chapter 2

Related Studies

Information systems are now getting scalable like cloud computing systems [8]
and IOT (Internet of Things) [45]. Servers in these information systems con-
sume more electric energy [J] than clients, personal computers (PCs) and other
IoT devices like sensor and actor nodes. Hence, it is critical to reduce the elec-
tric energy to be consumed by servers in clusters. There are approaches to re-
ducing the electric energy consumption of servers in a cluster. One approach is
a hardware-oriented approach where energy-efficient hardware devices like Intel
CPU [33] and AMD CPU [3] and storages (SSD) [53] are developed. For exam-
ple, energy-efficient CPUs like Intel Xeon [33], AMD Ryzen [3], and ARM [4]
are developed by industries and are used in computers like servers. The electric
energy consumption of computers like servers and personal computers (PCs) is
now decreasing according to the these energy-efficient hardware devices, espe-
cially energy-efficient CPUs.

The electric power consumption [W] of a server depends on not only hardware
devices but also software components, especially application processes. Hard-
ware devices are activated by software components, i.e. processes and consume
electric energy. A server thus consumes electric power to perform application
processes. In our macro-level approach [21, 22] to reducing the electric energy
consumption of a server, we rather aim at reducing the total electric power con-
sumed by a whole server to perform application processes without considering
the power consumption of each hardware device. In order to design, implement,
and evaluate energy-efficient information systems, we first need a formal power
consumption model of a server to perform application processes. A power con-
sumption model gives electric power [W] to be consumed by a whole server to
perform application processes. In our approach, we first measure electric power

6

which each server consumes to perform types of application processes like com-
putation, storage, communication, and general types of processes [22] by using
the electric power meter UWMeters [46] as shown in Figure 2.1. Here, the elec-
tric power consumption [W] of a server can be measured every 100 millisecond.
By abstracting parameters which mostly dominate the electric power consumption
of a server, we define types of power consumption models.

processes

CPU memory

Power

meter

server

Macro-level approach

hardware-oriented

approach

Figure 2.1: Macro-level approach.

First, we consider a computation type of an application process which con-
sumes CPU resources like scientific computation. The SPC (Simple Power Con-
sumption) model [21, 22, 23] is proposed as a power consumption model of a
server to perform application processes of a computation type. The SPC model is
the first power consumption model of a server to give the total electric power. In
the SPC model, a server st consumes the maximum electric power maxEt [W]
if at least one application process is performed. If no process is performed on a
server st, the server st consumes the minimum electric power minEt [W]. Thus,
the electric power consumption of a server st is either the maximum maxEt or

7

minimum minEt as shown in Figure 2.2. A server with a one-thread CPU follows
the SPC model.

Number n of processes.

 [W]

2

Figure 2.2: SPC model.

The MLPC (multi-level power consumption) model [36, 37] is furthermore
discussed as a power consumption model of a server with a multi-thread CPU.
A CPU is composed of one or more than one core. Each core supports threads,
usually one or two threads. A thread is active where at least one application
process is performed. A core is active if at least one thread is active. Here, the
electric power consumption of a server depends on numbers of active cores and
active threads of the server.

A server is currently equipped with multiple multi-thread CPUs. The MLPCM
(MLPC model of a server with Multiple CPUs) model [38, 39] is also proposed
for a server with multiple CPUs to perform application processes which mainly
use CPU resource. In the MLPCM model, the electric power consumption of a
server to perform application processes depends on the number of active CPUs,
active cores, and active threads.

8

Number n of processes.

Figure 2.3: SC model.

The power consumption models are also proposed for communication [21,
22] and storage [32, 49, 52] types of application processes. In papers [21, 22],
the power consumption model of a download server is proposed. A algorithms
to select a server in a cluster are also proposed. Here, it is shown the electric
power consumed by a server to transfer data depends on the total transmission
rate at which the server transmits data to clients. The power consumption of the
communication device to transfer data in files is not so large compared with CPUs.

In a storage type of application process, files in storage drives are manipulated
like database and web applications. The power consumption model of a storage
server to perform storage application processes is proposed [50, 51]. Here, the
electric power consumption of a server is some constant larger than the power
consumption to perform computation application processes.

In addition to the power consumption models, we need a computation model
of a server which gives the execution time of each current application process.
In the SC (Simple Computation) model [21, 22, 23], the execution time of each
application process is proportional to the number of application processes con-
currently performed with the application process as shown in Figure 2.3. minTti

9

shows the minimum execution time of an application process pi on a fastest server
st, i.e. only the process pi is performed. The minimum execution time minTi of a
process pi in a cluster is a minimum of minT1i, . . ., minTmi of servers s1, . . ., sm,
respectively. The minimum execution time minTi shows the total amount V Ci of
computation of an application process pi. The total amount V Ci of computation
of the application process pi is decremented by the computation rate for each time
unit. Thus, the execution time of each application process on a server can be esti-
mated by using the computation model. A server with a single thread follows the
SC model.

An application on a client issues a request process to a cluster of servers. On
receipt of the request from an application on the client, a load balancer selects
a server and forwards the request to the server. Then, an application process is
created and then performed on the server. Here, a server which is expected to con-
sume smaller electric energy has to be selected to perform the application process.

In order to reduce the electric energy consumption of servers in a cluster, types
of algorithms [14, 22, 23, 27, 36, 37, 38, 39] are proposed to select a server in a
cluster to perform an application process. Here, a server to perform an application
process is selected based on the power consumption and computation models so
that the total electric energy consumption of the servers can be reduced in a cluster.
However, it takes time to simulate the execution of each application process to
estimate the electric energy consumption of the server by using the computation
laxity of each application process and the computation rate of the server.

A process migration approach is also discussed to reduce the electric energy
consumption of a cluster of servers. Here, an application process on a host server
migrates to another server if the host server is expected to consume more electric
energy than expected, e.g. because the server is overloaded [11, 12, 13, 14, 16].
In order to increase the reliability and availability of a system, an application pro-
cess is replicated to replicas on multiple servers. The more number of replicas
are performed, the more reliable and available the system is. However, the more
electric energy is consumed by the more number of servers. The energy-efficient
replication and migration ways of an application process are also discussed not
only to increase the reliability and availability of the system but also to reduce the
electric energy consumption of the servers [14, 26]. However, it is not easy to mi-
grate types of application processes to servers with various types of architectures
and operating systems.

Virtual machines are widely used to support applications with virtual com-
putation service in a cluster of servers, e.g. KVM [44], VMware [61]. Here,
applications use computation resources like CPUs and storages like HDDs by

10

using virtual machines independently of what servers support what computation
resources. Furthermore, virtual machines where application processes are per-
formed can easily migrate to guest servers independently of architectures and
operating systems of servers. In this paper, we discuss how to migrate applica-
tion processes to servers by using the migration of virtual machines to reduce the
electric energy consumption of servers.

In clusters like data centers, servers which are not required to perform appli-
cation processes, for example, lightly loaded, are shut down to reduce the electric
energy consumed. Servers are restarted if more number of servers are required to
perform application processes depending on the traffic as discussed in paper [6].
This is the shut-down approach. It is efficient and useful to take this shut-down ap-
proach in the client-server model like cloud computing systems where the servers
are controlled in a centralized manner. In this paper, we rather consider a dis-
tributed system where each server is autonomous like peer-to-peer (P2P) model
[5, 22, 47]. Here, it is not easy to shut down and restart servers since we have to do
the negotiation with owners or administrators of each server. In our approach, we
discuss how to select an energy-efficient server in a cluster to energy-efficiently
perform an application process issued by a client and do not discuss how to shut
down and restart servers.

In wireless sensor networks (WSNs) [2, 5], it is critical to reduce the electric
energy consumption of sensor nodes since the sensor nodes work by using the
electric energy supplied by buttery. Energy-efficient ad hoc routing protocols are
proposed and evaluated [54, 43].

11

Chapter 3

System Model

3.1 Servers
Current information systems like cloud computing systems [8] are based on the
server-client model. A cluster S is composed of servers s1, . . ., sm (m ≥ 1) and
clients which are interconnected in reliable high speed networks. We assume an
underlying network supports a pair of servers with non-loss, non-duplication, and
sending-order delivery of messages, i.e. delivery of messages in sending order
like TCP [28]. We also assume every server is reliable, i.e. does not suffer from
fault in this thesis. Every server is always properly operational.

An application on a client first issues a request to a cluster S. One server st is
selected in the cluster S. For example, a server is selected by a load balancer in
the round-robin algorithm. An application process to handle the request is created
on the selected server st. Then, the application process is performed on the server
st. On termination of the process, the server st sends a reply to the client.

Each server st is equipped with a set CPt of npt (≥ 1) homogeneous CPUs,
cpt0, . . ., cpt,npt−1 as shown in Figure 3.1. Each CPU cptk is composed of cct (≥
1) homogeneous cores ctk0, . . ., ctk,cct−1. Each core ctki supports a set {thtki0,
. . ., thtki,ctt−1} of ctt (≥ 1) homogeneous threads. Usually, ctt is two, i.e. a core
supports two threads. A server st thus supports processes with the total number
ntt (= npt · cct · ctt) of threads on nct (= npt · cct) cores. Each process is at a time
allocated to one thread i.e. performed on a thread [48]. Multiple processes can
be concurrently performed on each thread. An active thread is a thread where at
least one process is performed. If no process is performed on a thread, the thread
is idle. An active core is a core where at least one thread is active. In an idle core,

12

no thread is active. An active server is a server where at least one thread is active,
i.e. at least one process is performed. An idle server is a server where no thread
is active, i.e. no process is performed.

There are types of application processes [23], as presented in the preceding
chapter:

1. Computation processes.

2. Communication processes.

3. Storage processes.

4. General processes.

A computation type of application process is an application process which
uses CPU resource. A computation process does the computation like scientific
computation. In the communication type of application process, communication
resources are used. For example, an application process transmits a file to a client
like FTP (File Transfer Protocol) application. In the storage type of application
processes, data in storage devices like HDD and SDD are manipulated. In general
processes, both CPU and storages are manipulated like web and database applica-
tions.

In this thesis, we consider computation processes as application processes. A
term process means a computation type of an application process to be performed
on a server, which uses CPU resource.

3.2 Virtual Machines
A cluster S supports applications with virtual computation service through virtual
machines as supported by cloud computing systems [44]. Applications can use
computation resources on servers without being conscious of what servers support
the resources and independently of the heterogeneity and distribution of servers
like operating systems and architectures. This means, applications can easily use
resources even on a cluster of heterogeneous servers.

Suppose a set VM of virtual machines vm1, . . ., vmv (v ≥ 1) are supported to
applications in a cluster S. Each virtual machine vmh is supported with threads
of a server st. Here, the server st is referred to as a host server of the virtual

13

threads

cores

CPU

server

… …

…

… … … …

Figure 3.1: Server.

machine vmh and the virtual machine vmh is a resident virtual machine of the
server st. VMt(τ) shows a set of resident virtual machines on a host server st
and HSh(τ) denotes a host server of a virtual machine vmh at time τ . A pro-
cess pi performed on a virtual machine vmh is a resident process of the virtual
machine vmh. V CPh(τ) shows a set of resident processes of a virtual machine
vmh at time τ . A virtual machine vmh is active at time τ if |V CPt(τ)| > 0,
i.e. at least one process is performed on the virtual machine vmh, otherwise idle.
Time τ when an active virtual machine vmh gets idle is referred to as idled time
of the virtual machine vmh. That is, some process is performed by the time τ
and no process is performed after the time τ . CPt(τ) is a set of all the resident
processes performed on virtual machines of a server st at time τ , i.e. CPt(τ) =
∪vmh∈SVMt(τ)V CPh(τ). In this thesis, we assume every application process is
performed on a virtual machine, not directly performed on a host server. A server
st where at least one virtual machine resides, i.e. |VMt(τ)| > 0, is an engaged
server. An engaged server st is active if at least one resident virtual machine of
the server st is active. A server st is free if no virtual machine resides on the
server st. A virtual machine vmh is smaller than a virtual machine vmk (vmk is
larger than the vmh) (vmh < vmk) at time τ if |V CPh(τ)| < |V CPk(τ)|. That

14

is, more number of processes are performed on a larger virtual machine vmk than
a smaller virtual machine vmh (vmk > vmh). A pair of virtual machines vmh

and vmk are equivalent (vmh ≡ vmk) if |V CPh(τ)| = |V CPk(τ)|. vmk ≥ vmh

if vmk > vmh or vmk ≡ vmh. An idle virtual machine vmh is the smallest sine
|V CPk(τ)| = 0.

A virtual machine vmh on a host server st can migrate to a guest server su
while resident processes are performed in the live migration [Figure 3.2]. For
example, a virtual machine vmh on a host server st can migrate to a guest server
su by issuing a following migration command virsh on the host server st in KVM
(Kernel-based Virtual Machine) [44].
“ virsh migrate −live nVM qemu+ssh://destinationURL/system”
A virtual machine vmh on a host server st migrates to a guest server su by issuing
a migration command on the host server st. Another type of migration is offline
migration. Here, every process is terminated on a virtual machine. Then, the
virtual machine migrates to a guest server. In this thesis, we consider the live
migration of virtual machines.

servers

network

application

migration

Super user

Figure 3.2: Virtual machine migration.

15

First, a copy of memory of the virtual machine vmh is created on a guest
server su. Then, the virtual machine vmh migrates to the server su. On issuing
the following migration command the virtual machine vmh from the host server
st to the guest server su.

First, the memory state of the virtual machine vmh on the host server st is
transfered to the guest server su while processes on the virtual machine vmh are
being performed. On termination of the memory state transfer, the processes are
suspended at time τt and the state of the virtual machine vmh changed after the
memory copy, i.e. dirty pages, is transfered to the server su. Then, the virtual
machine vmh is resume, i.e. the processes are restarted on the server su at time
stu. Thus, the processes are not performed for time ett − stu which is down time.
The time stu − stt is the migration time. The migration command is only allowed
to be issued by the superuser of a host server.

A system is composed of servers s1, . . ., sm and clients which are intercon-
nected in reliable networks. First, an application on a client issues a request to
a cluster S of servers s1, . . ., sm (m ≥ 1) as shown in Figure 3.3. On receipt of
a request from a client, a load balancer L selects a host server st in the cluster
S. Then, one virtual machine vmh is selected on the host server st. A process
is created to handle the request on the virtual machine vmh and is performed on
the virtual machine vmh. Even if the virtual machine vmh migrates from the host
server st to another guest server su, the application can take usage of the process
on the virtual machine vmh without being conscious of which server the process
is performed on. Then, a reply is sent back to the application of the client on
termination of the process.

3.3 Performance of Virtual Machines
We consider the overhead of virtual machines on servers in terms of the average
execution time of processes and time to migrate a virtual machine with processes.
We consider a server st and a virtual machine vmh resident on the server st. The
server st is equipped with a CPU (Intel Corei7-6700K) where CentOS7 [48] is
installed as an operating system. The virtual machine vmh is equipped with 2GB
memory storage by KVM [44] and supports CentOS7.

We first measure the average execution time of n (≥ 0) processes which are
performed on the virtual machine vmh and are directly performed without any

16

…
…

VM

…
..

servers

c L
……………………

 S

virtual m achines

Figure 3.3: Cluster of servers.

virtual machine on the server st. First, n processes p1, . . ., pn are created by
forking a process p. It takes 2.1 [sec] to perform the process p on the server st
without any other process. It is minimum execution time minTi of the processes
pi. Each process pi waits until specified time τ after the process pi is created by
the fork mechanism. Then, all the processes p1, . . ., pn start at time τ . Figure 3.4
shows the average execution time of the n processes on the virtual machine vmh

and on the server st. The dotted line and straight line show the average execution
time of the processes which are performed on the virtual machine vmh of the
server st and are performed directly on the server st, respectively. As shown in
Figure 3.4, the average execution time of the n processes on the virtual machine
vmh is about 10% longer than the processes are directly performed on server st.
This means, the average execution time of the processes depends on the number
n of processes performed on the server st even if the processes are performed on
virtual machines.

17

Next, we measure the migration time of the virtual machine vmh. In addition
to the server st, we use another server su with a CPU (Intel core i5 E97378) in our
laboratory. The virtual machine vmh with n processes migrates from the server
st to the server su in the live migration of KVM. That is, n processes are being
performed on the virtual machine vmh while the virtual machine vmh migrates
from the server st to the server su. On the server st, the migration command is
issued at time τ1 and ends at time τ2. The migration time of the virtual machine
vmt is defined to be τ2 − τ1. The virtual machine vmh is composed of memory 1
[GB]. A pair of the servers st and su are connected in a 1Gbps local area network.
Figure 3.5 shows the migration time of the virtual machine vmh with n processes.
As shown in Figure 3.5, the migration time of the virtual machine vmh on the
host server st to migrate to the guest server su is about 11[sec]. The migration
time is independent of number n of processes which are performed on the virtual
machine vmh.

18

0

5

10

15

20

25

30

35

1 10 20 40 60 80 100

A
v

er
a

g
e

ex
ec

u
ti

o
n

 t
im

e
[s

ec
]

Number n of processes.

Figure 3.4: Average execution time.

19

10

20

40

30

50

30 40 50 60

Number n of processes.

M
ig

ra
ti

o
n
 t

im
e

[s
ec

]

2010 70 9080 100

: to .

Figure 3.5: Migration time.

20

Chapter 4

Power Consumption Models and
Computation Models

4.1 Power Consumption Model
First, we would like to propose a power consumption model of a server which
gives the electric power to be consumed by a server to perform application pro-
cesses by the macro-level approach. The power consumption model of a server
gives how much electric power [W] the server consumes to perform application
processes. The power consumption model plays an essential role to design, im-
plement, and evaluate models and algorithms to reduce the electric energy con-
sumption of information systems.

An application on a client cs issues a request to the cluster S of servers s1, . . . ,
sm (m≥ 1) as shown in Figure 4.1. A load balancer L selects a host server st in the
cluster S and sends a request to the server st. An application process pi is created
on the server st to handle the request and the process pi is performed on the server
st. On termination of the process pi, the server st sends a reply to the client cs.
In this thesis, we consider a computation type of application process which uses
CPU resource. A term process means a computation type of application process
in this thesis.

A server st is composed of npt (≥ 1) homogeneous CPUs cpt0, . . . , cpt,npt−1.
Each CPU cptk is composed of cct (≥ 1) homogeneous cores ctk0, . . . , ctk,cct−1.
Each core ctkh supports the same number ctt of homogeneous threads, usually ctt
is one or two. A server st supports totally nct (= npt · cct) homogeneous cores
and ntt (= nct · ctt) homogeneous threads trtk0, . . . , trtk,ntt−1. An active thread

21

is a thread where at least one process is performed. A thread where no process is
performed is idle. Each process is at a time performed on one thread.

Let CPt(τ) be a set of processes concurrently performed on a server st at time
τ . An active server is a server where at least one thread is active. In an active
server, at least one process is performed, i.e. |CPt(τ)| > 0. Suppose a process pi
is performed on a host server st of the process pi. Here, the process pi is resident
process on the host server st.

Figure 4.1: Cluster of servers.

The electric power consumption Et(τ) [W] of a server st to concurrently per-
form processes in the set CPt(τ) at time τ is given as follows [37]:

[MLPCM (Multi-Level Power Consumption with Multiple CPUs) model]

Et(τ) = minEt+

npt−1∑
k=0

{γtk(τ) · [bEt+
cct−1∑
i=0

αtki(τ) · (cEt+
ctt−1∑
h=0

βtkih(τ) · tEt)].

(4.1)
Here, γtk(τ) = 1 if a CPU cptk is active at time τ (k < npt). Otherwise, γtk(τ) =
0. αtki(τ) = 1 if a core ctki is active on a CPU cptk at time τ (i < cct). Otherwise,

22

αtki(τ) = 0. βtkih(τ) = 1 if the hth thread on a core ctki is active (h < ctt).
Otherwise, βtkih(τ) = 0.

Let apt(τ), act(τ), and att(τ) be numbers of active CPUs, active cores, and
active threads in a server st at time τ , respectively. Here, apt(τ) ≤ npt, act(τ)
≤ nct (= npt · cct), and att(τ) ≤ ntt (= npt · cct · ctt). The electric power
consumption Et(τ) (formula (1)) is also given as follows:

Et(τ) = minEt + apt(τ) · bEt + act(τ) · cEt + att(τ) · tEt. (4.2)

The maximum electric power maxEt to be consumed by a server st is minEt

+ npt(τ) · bEt + nct(τ) · cEt + ntt(τ) · tEt [W] where every thread is active.
That is, at least one process is performed on every thread. Even if more number
of processes than the total number ntt of threads are performed on a server st at
time τ , the server st consumes the maximum electric power Et(τ) =maxEt. If no
process is performed on a server st at time τ , the server st consumes the minimum
electric power Et(τ) = minEt [W].

In Linux operating systems [48], processes are allocated to threads on a server
st in the round-robin (RR) algorithm. Here, a first process is performed on a
first thread of the core ct00 of the first CPU cpt0. A next process is performed
on a first thread of the second core ct10 of the second CPU cpt1. If one thread
of each core is active, a process is performed on the second thread of the first
core. Thus, processes are allocated to threads, cores, and CPUs in a server st
so that processes are uniformly distributed to threads in the server st. Here, the
electric power CEt(n) [W] consumed by a server st to concurrently perform n (=
|CPt(τ)|) processes at time τ is assumed to be given as follows [39, 40]:

[Power consumption for n processes] [Figure 4.2]

CEt(n) =



minEt if n = 0.
minEt + n · (bEt + cEt + tEt) if 1 ≤ n ≤ npt.
minEt + npt · bEt + n · (cEt + tEt) if npt < n ≤ nct.
minEt + npt · bEt + nct · cEt + ntt · tEt if nct < n ≤ ntt.
maxEt if n > ntt.

(4.2)

23

Figure 4.2: MLPCM model.

The electric power consumption Et(τ) [W] of a server st at time τ is assumed
to be CEt(n) in this paper, where n is the number | CPt(τ) | of processes con-
currently performed. If more number n of processes than the total number ntt of
threads are performed on a server st, n≥ ntt, the server st just consumes the max-
imum electric power maxEt independently of the number n of processes. Thus,
the server st follows the SPC model as long as n ≥ ntt or n = 0. For 0 < n <
ntt, the electric power consumption of a server st depends on the number n of
processes.

We measure the electric power consumption of the DSLab server st [9] with
CentOS7 [48] to concurrently perform n processes in our laboratory every 100
[msec] by using the electric power meter UWmeter [46]. A process p is forked
to n child processes p1, . . ., pn [48]. Each child process pi waits by a system call
syscalls until specified time τ and all the n processes p1, . . ., pn simultaneously
start at the time τ . Figure 4.3 shows the electric power consumption [W] measured
where n (≥ 0) processes are concurrently performed. The server st is equipped
with two Intel Xeon E5-2667 v2 CPUs (npt = 2). Each CPU is composed of eight
cores (cct = 8) and each core supports two threads (ctt = 2). Totally, ntt = npt ·
cct · ctt = 2 · 8 · 2 = 32 threads are supported for processes on nct = npt · cct =
2 · 8 = 16 cores. The electric power consumption minEt = 126.1, bEt = 30, cEt

= 5.6, tEt = 0.6, and maxEt = 301.1 [W] as shown in Figure 4.3. If one process
is performed (n = 1), the server st consumes minEt + bEt + cEt + tEt = 162.3
[W]. For n = 2, both the CPUs are active. Hence, the server st consumes the
electric power minEt + 2 ·(bEt + cEt + tEt) = 198.5 [W]. For n = 3, two cores

24

of one CPU and one core of another CPU are active. Here, minEt + (bEt + 2 ·
(cEt + tEt)) + (bEt + cEt + tEt) =minEt + 2 · bEt + 3 · (cEt + tEt) = 204.7
[W]. For n ≥ 16, every core on every CPU is active. For 16 ≤ n ≤ 32, every core
is active and n threads are active. The server st consumes the electric power 2 ·
(bEt + 8 · cEt) + n · tEt. For n ≥ 32, every thread is active and the server st
consumes the maximum electric energy maxEt = minEt + 2 · bEt + 8 · cEt +
32 · tEt = 425.1 [W]. Thus, the MLPCM model given by formula (2) holds for a
real server as shown in Figure 4.3.

Figure 4.3: Electric power consumption of DSLab server.

4.2 Computation Model
Next, we propose a computation model of a server which gives the execution time
of each process. Processes issued by clients are performed on servers in a cluster
S. Each process is at a time performed on a thread of a server. It takes Tti time
units [tu] to perform a process pi on a thread of a server st. If only a process pi is
performed on a thread of a server st without any other process, the execution time
Tti of the process pi is shortest, i.e. Tti = minTti. The more number of processes
are performed with a process pi on a thread, the longer time it takes to perform
the process pi. Let minTi be a minimum one of minimum execution time minT1i,
. . . , minTmi of a process pi on servers s1, . . . , sm. That is, minTi is the minimum

25

execution time minTfi on the fastest thread which is on a server sf . Here, a server
sf with the fastest thread is referred to as fastest in a cluster S.
We make the following assumption:

1. One virtual computation step [vs] is performed on the thread of the fastest
server sf for one time unit [tu] in this paper.

2. The thread computation rate CRTf of a fastest server sf is one [vs/tu] in a
cluster S, CRTf = 1.

3. The thread computation rate CRTt of a server st is defined to be (minTi /
minTti) · CRTf = minTi / minTti [vs/tu] (≤ CRTf).

It is not easy to measure the total amount of computation of each process.
Hence, we introduce a virtual computation step (VS). On a fastest server sf ,
one (= CRTf = minTi / minTti) virtual computation step is performed for one
time unit [tu] on a thread. On another server st, minTi / minTti (= CRTt) (≤ 1)
virtual computation steps are performed on a thread for one time unit.

The maximum server computation rate maxCRt (≤ ntt) of a server st is ntt ·
CRTt where ntt is the number (= npt · cct · ctt) of threads of the server st. The
maximum server computation rate maxCRt of a server st shows the maximum
throughput of the server st. If there are multiple fastest servers, a server sf whose
maxCRf is largest is taken as a fastest server in a cluster S.

The total number V Ci of virtual computation steps of a process pi is minTi

[tu] · CRTf [vs/tu] = minTi [vs] for a fastest server sf . Thus, minTi shows the
total amount of computation of each process pi. For a pair of processes pi and pj ,
pi is longer than pj (pj is shorter than pi) (pi > pj) if and only if (iff) minTi >
minTj . It takes longer time to perform a process pi than a process pj on a server if
pi > pj . A pair of processes pi and pj are equivalent (pi ≡ pj) if minTi =minTj .
pi ≥ pj iff pi > pj or pi ≡ pj . The maximum computation rate maxCRti of a
process pi on a server st is V Ci / minTti = minTi / minTti (≤ 1). Hence, for
every pair of processes pi and pj on a server st, maxCRti = maxCRtj = CRTt.

The server computation rate CRt(τ) of a server st at time τ is att(τ) ·
CRTt where att(τ) (≤ ntt) is the number of active threads and CRTt is the thread
computation rate of the server st. We assume the computation CPU resource is
fairly allocated to each current process in every server st. Hence, each process
pi is performed at the process computation rate CRti(τ) = CRt(τ) / | CPt(τ) |
where processes in the process set CPt(τ) are concurrently performed at time τ .

26

The process computation rate CRti(τ) (≤ CRTt) indicates the computation rate
[vs/tu] of a process pi on a server st at time τ .

[MLCM (Multi-Level Computation with Multiple CPUs) model] The process
computation rate CRti(τ) [vs/tu] of a process pi on a server st to perform process
at time τ is given as follows:

CRti(τ) =

{
ntt · CRTt / |CPt(τ)| if |CPt(τ)| > ntt.
CRTt if |CPt(τ)| ≤ ntt.

(4.3)

The process computation rate NCRti(n) of a process pi on a server st, where
n processes are performed is given as follows:

NCRti(n) =

{
maxCRt(= ntt · CRt(τ))/n if n > ntt.
CRTt if n ≤ ntt.

(4.4)

Figure 4.4 shows the process computation rate NCRti(n) of a process pi on
a server st where n processes are concurrently performed. If a fewer number of
processes than the total number ntt of threads are performed, the process compu-
tation rate NCRti(n) of each process pi is the thread computation rate CRTt since
only the process pi is performed on a thread. If more number of processes than
the total number ntt of threads are performed, at least one process is performed
on every thread. For example, if 2 · ntt processes are performed on a server st,
two processes are performed on each thread. Here, the process computation rate
NCRti(n) of each process pi is CRTt / 2. Thus, the process computation rate
NCRti(n) of each process decreases as the number of processes concurrently
performed increases.

Suppose there are a pair of servers su and sv with numbers ntu and ntv of
threads, respectively, and each thread of the servers su and sv supports the same
thread computation rate as the server st, i.e. CRTu = CRTv = CRTt. Suppose
the server st supports ntu (= ntt / 2) threads and the server su supports ntv (= ntt
/ 4) threads for the server st. A process pi is performed on each of the servers
concurrently with (n − 1) processes, i.e. totally n processes are concurrentlly
performed. In Figure 4.4, the straight line shows the process computation rate
CRti(τ) of the process pi on the server st and a pair of dashed and dotted lines
show the process computation rates CRui(τ) and CRvi(τ) of the process pi on the
servers st and su, respectively, for number n of processes.

We measure the execution time of processes which are performed on the server
DSLab [9] which supports thirty two threads (ntt = 32) on a pair of CPUs. Figure

27

4.5 shows the average execution time T of n processes p1, . . . , pn. The processes
are created by forking a process p to n child processes p1, . . ., pn as presented in
the preceding section. The n processes are concurrently performed on the server.
The minimum execution time minTi of each process pi is 0.9 [sec] on the DSLab
server. The average execution time of the n processes is almost the same for n ≤
32 since at most one process is performed on each thread. The average execution
time linearly increases as the number n of processes increases for n > 32. The
process computation rate CRti(τ) of each process pi is minTi / T (≤ 1) where T
is the execution time of the process pi. Figure 4.5 shows the computation model
(formula (4.4)) holds on a real server.

Figure 4.4: Process computation rate of a process pi.

Suppose a process pi on a server st starts at time st and ends at time et. Here,∑et
τ=stCRti(τ) = V Ci [vs] (= minTi) shows the total amount of computation, i.e.

total number of virtual computation steps to be performed by a process pi. Figure
4.6 shows the process computation rates CRti(τ) and CRtj(τ) of processes pi
and pj , respectively, which are performed on the same thread of a server st. Here,
a pair of the processes pi and pj start at time τ1 and τ2, respectively. Then, the
processes pi and pj terminate at time τ3 and τ4, respectively. The process pi is
performed at the thread computation rate CRTt from time τ1 to time τ2 since only
one process, i.e. pi is performed on the thread. The process computation rate
CRti(τ) = CRTt for τ1 ≤ τ < τ2. At time τ2, the process pi starts on the thread.
Here, since a pair of the processes pi and pj are performed, the processes pi and

28

NCRti(n)

pj are performed at the same computation rate CRTt / 2. CRti(τ) = CRtj(τ) =
CRTt / 2 for τ2 ≤ τ < τ3. At time τ3, the process pi terminates and then only the
process pj is performed. Here, the computation rate of the process pj increases to
the thread computation rate CRTt. CRtj(τ) = CRTt for τ3 ≤ τ1 The hatched area
shows the total computation, i.e. total number V Ci of virtual computation steps
of the process pi, V Ci =

∑τ3
τ=τ1

CRti(τ).

Figure 4.5: Average execution time of processes on DSLab server.

The computation of each process pi is modeled as follows:
[Process computation model of a process pi]

1. At time τ a process pi starts on a server st, the computation laxity lcti(τ) of
a process pi is V Ci.

2. At each time τ , the computation laxity lcti(τ) of a process pi is decremented
by the process computation rate CRti(τ), i.e. lcti(τ + 1) = lcti(τ) −CRti(τ).

3. If the computation laxity lcti(τ + 1) of a process pi gets equal to or smaller
than zero, the process pi terminates at time τ .

The computation laxity lcti(τ) of a process pi is initially V Ci (= minTi) at
time τ the process pi starts. Then, the computation laxity lcti(τ) is decremented
by the process computation rate CRti(τ) at each time τ . The more number of

29

processes are performed, the smaller process computation rate CRti(τ). If the
computation laxity lcti(τ) − CRti(τ) gets zero or smaller than zero, the process
pi terminates at time τ .

Figure 4.6: Computation rates of processes pi and pj .

30

Chapter 5

Process Migration

5.1 Models to Estimate Electric Energy Consump-
tion

In this chapter, we discuss how a process migrates from a host server to a gust
server where the process can be more energy-efficiently performed. We take the
SC (Simple computation) and SPC (Simple Power Consumption) models. Here,
the maximum computation rate maxCRt of a server st is the thread computation
rate CRTt. In the simple power consumption (SPC) model [1, 21, 22] of a server,
the electric power consumption Et(τ) of a server st at time τ is either the minimum
minEt or the maximum maxEt. If at least one process is performed on a server
st at time τ [W], Et(τ) = maxEt. Otherwise, Et(τ) = minEt. The total electric
energy TEt(τ1, τ2) consumption consumed by a server st from time τ1 to time τ2
is
∑τ2

τ=τ1
Et(τ) [Wtu] where tu shows one time unit.

For each current process pti in the set CPt(τ), the computation laxity lcti(τ)
has to be furthermore performed on a server st after time τ . As discussed in papers
[22, 23, 24], we can estimate termination time by when each current process pti in
CPt(τ) is expected to terminate on a server st if no additional process is performed
on the server st after time τ according to the SC model [22, 23]. In this paper, one
unit time is 100 [msec] since we can measure the power consumption of a server
every 100 [msec] [22, 23]. The expected termination time ETP (st, CPt(τ), pi, τ)
is given as time τt in the following procedure:

ETP (st, CPt(τ), pi, τ) {
lc = lcti(τ); /* laxity of pi on server st */

31

τt = τ ; /* current time τ */
while (lc > 0)
do {
lc = lc − CRt(τi);
τt = τt + 1;

}; /* pti terminates at τt */
CPt(τt + 1) = CPt(τt)− {pti};

};

Here, the computation rate CRti(τ) of a process pi at time τ is CRt(τ) / | CPt(τ)
| on a server st as discussed in the preceding chapter. Here, CRt(τ) is the compu-
tation rate of a server st. The computation rate Fti(τ) monotonically decreases as
the number of processes concurrently performed on a server st increases at each
time τ .

A variable lci shows the computation laxity of a process pti and CP denotes
a set CPt(τ) of current processes on a server st. The expected termination time
ET (st, CPt(τ), τ) by when every process in a current process set CPt(τ) is ob-
tained as time τt by the following procedure:

ET (st, CPt(τ), τ) {
CP = CPt(τ);
lci = lcti(τ) for each process pti in CP ;
τt = τ ; /* current time τ */
while (CP ̸= φ)
do {

for each process pti in CP
do {
lci = lci − CRti(τt); /* pti is performed */

if lci = 0, CP = CP − {pti}; /* pti terminates */
};
τt = τt + 1;

};
};

Every current process in the set CPt(τ) is expected to terminate by time τt
under an assumption that no process additionally starts after time τ . Here, the
server st is expected to consume the amount EE(st, CPt(τ), τ) of electric energy
to perform every current process in the current process set CPt(τ) at time τ . The

32

expected energy consumption EE(st, CPt(τ), τ) is (τt − τ) · maxEt to perform
all the current processes of time τ on a server st.

5.2 Process Migration
Suppose a cluster S is composed of multiple servers s1, . . ., sn (n≥ 1) and clients
which are interconnected in an underlying reliable network N . Each server st
supports clients with computation service.

A client cs first finds a server st in the cluster S and issues the process pi to
a server st. Every process pi is assumed to do the computation in this paper as
presented. The process pi is performed on the server st. Then, the process pi
migrates from the host server st to another server su as shown in Figure 5.1. If
the process pi terminates on the server su, the reply is sent to the client cs. Here,
the process pi is referred to as migrated and a pair of the servers st and su are
migrated servers of the process pi.

reply

Figure 5.1: Migration of a process.

A process on a host server st migrates to another server su in a cluster S so
that not only some performance requirement of the process pi like deadline con-
straint dli is satisfied but also the electric energy to be consumed by the serversu
is smaller than the host server su. We discuss migration conditions that a process
on one host server migrates to another server. Suppose a process pi is performed
on a host server st at time τ . There are two ways to perform the process pi [Figure
5.2]:

33

server server

server

1) 2) Migration

Figure 5.2: Process migration.

1 The process pi is performed on the server st without migrating to another
server.

2 The process pi is performed on another server su by migrating the process
pi from the host server st to the server su.

First, suppose that the process pi stays on the server st at time τ . Here, the
server st is expected to consume electric energy EE(st, CPt(τ), τ) to perform all
the current processes in the set CPt(τ) of time τ . It is expected for every process
in the set CPt(τ) to terminate on the server st by time ET (st, CPt(τ), τ) and for
each process pi in the set CPt(τ) to terminates at time ETP (st, CPt(τ), pi, τ).

Next, suppose the process pi migrates to the server su from the current server
st at time τ . The energy consumption of the server st is expected to decrease to
EE(st, CPt(τ) − {pi}, τ) because one current process pi leaves the server st.
The process pi has to be transmitted to the server su. It is assumed to take δi time
units to migrate the process pi on a server to another server. Hence, the process
pi starts on the server su at time τ + δi after the process pi is transmitted from
the other server st to the server su at time τ . On the other hand, the server su
consumes more amount of electric energy because the process pi is additionally
performed after time τ + δi. The server su is expected to consume total energy
EE(su, CPu(τ + δi) ∪ {pi}, τ + δi) [Ws] to perform the process pi and current
processes in the set CPu(τ + δi) of time τ + δi. The expected termination time
of the process pi and every current process on the server su at time τ + δi is also

34

changed with ET (su, CPu(τ + δi) ∪ {pi}, τ + δi).
We have to obtain the current process set CPu(τ + δi) on a server su at time

τ + δi. Current processes in the set CPu(τ) are performed on the server su from
time τ to time τ + δi. The computation laxity lcuj(τ) of each process puj in the
set CPu(τ) is decremented by the computation rate CRuj(τ) of the process pj on
the server su. If the computation laxity lcuj(τ ′) gets 0 at time τ ′ (τ ≤ τ ′ ≤ τ + δi),
the process puj is removed in the process set CPu(τ + δi). The current process set
CPu(τ + δi) is estimated by the following procedure:

for x = τ , · · · , τ + δi,
do { C = CRu(x) / |CPu(x)|;

for every process puj in CPu(x)
do {

lcuj(x+ 1) = lcuj(x) − C;
if lcuj(x+ 1) = 0,

CPu(x+ 1) = CPu(x) - {puj};
}; /* for end */

}; /* for x end */

5.3 Server Selection
A process pi on a host server st can migrates to another server su if the following
migration (MG) conditions are satisfied:

[Migration conditions]

1 [Energy condition] EE(st, CPt(τ) − {pi}, τ) < EE(su, CPu(τ + δi) ∪
{pi}, τ + δi).

2 [Performance condition 1] ETP (su, CPu(τ + δi) ∪ {pi}, pi, τ + δi) + δi ≤
dli − τ .

3 [Performance condition 2] ETP (su, CPu(τ + δi) ∪ {pi}, pi, τ + δi) + δi ≤
ETP (st, CPt(τ), pi, τ).

The energy condition indicates that a smaller amount of electric energy is con-
sumed by a server su than a current server st. In addition to the energy condition,
a process pi has to satisfy the following performance conditions.

35

The first performance condition shows that a process pi has to terminate by
the deadline dli. The second performance condition means that it has to take a
shorter time to perform every current process on a server su than a host server st
if the process pi on the host server st is migrated to the server su. In Figure 5.3,
if a process pi is performed on a server st at time τ , the process pi is expected to
terminate at time τ2 = ETP (st, CPt(τ), pi, τ). If the process pi on the server st
migrates to a server su at time τ , the process pi is expected to terminate at time
τ1 = ETP (su, CPu(τ + δi) ∪ {pi}, pi, τ + δi). Here, the computation time to
perform the process pi can be reduced if the process pi migrates to the server su,
i.e. (τ2 − τ) > (τ1 − τ).

Suppose the first condition is not satisfied. Suppose the deadline dli of a pro-
cess pi is specified as performance constraint. If ETP (su, CPu(τ +δi) ∪ {pi}, pi,
τ + δi) + δi ≤ dli − τ , the process pi can be expected to terminate on the server
su by the deadline dli. Hence, the process pi can migrate from the host server st
to the server su. Otherwise, the process pi might not terminate by the deadline dli
if the process pi migrates to the server su.

time

(1)

(2)

0

0

Figure 5.3: Expected termination time.

In Figure 5.4, τti shows time by when every current process in the set CPt(τ)
terminates, i.e. τti = ET (st, CPt(τ), τ) and τu = ET (su, CPu(τ), τ) where a
process pi is performed on the host server st at time τ . Suppose the process pi on
the host server st migrates to the server su. Since the process pi is not performed
on the server st after time τ , the expected termination time τt of all the processes
in the set CPt(τ) is ET (st, CPt(τ) − pi, τ). Here, τti < τt since the process pi
migrates from the host server st to the server su. The process pi starts on the server
su at time τ +δi. The expected termination time τui of processes in CPu(τ +δi) is

36

time

(1)

(2)

Figure 5.4: Expected energy consumption.

ET (su, CPu(τ+δi) ∪ {pi}, τ+δi) + δi. τti < τt since the process pi is additionally
performed. The hatched areas (1) and (2) show the total energy consumption of
the servers st and su, respectively, where the process pi migrates from the host
server st to the server su.

If there are multiple servers which satisfy the migration conditions, a server
su where the expected energy consumption EE(su, CPu(τ + δi) ∪ {pi}, τ + δi)
is minimum is selected in the cluster S.

A server su is selected for a process pi with a deadline constraint dli on a host
server st at time τ as follows:

[Process migration]
E = EE(st, CPt(τ), τ);
T = dli − τ ; /* deadline of a process pi*/

for each server su in a cluster S,
do {

if (EE(su, CPu(τ + δi) ∪ {pi}, τ + δi) < E) {
if (ETP (su, CPu(τ + δi) ∪ {pi}, pi τ + δi) +
δi < T) { /* deadline is satisfied */
E = EE(su, CPu(τ + δi) ∪ {pi}, τ + δi);
T = ET (su, CPu(τ + δi) ∪ {pi}, τ + δi);
s = su;
};

}; /* for end */
};

37

The MG conditions are checked every γi time units if a more number of pro-
cesses are performed than a process pi starts on a host server st. Here γ =maxTi

/ 4. If the MG conditions are satisfied on the server st. The process pi migrates to
a guest server s.

38

Chapter 6

Static Migration of Virtual
Machines

6.1 Computation Model of a Virtual Machine

6.1.1 Computation model
It is not easy for processes to migrate among types of servers, e.g. heteroge-
neous servers with different operating systems and architectures. For example, it
is difficult, almost impossible for a C process to migrate from a Linux server to
a Windows server. A cluster like cloud computing systems support applications
with virtual computation services through virtual machines like KVM [44]. We
consider a process migration way to migrate processes by using virtual machines.
Processes issued by clients are performed on virtual machines in a cluster. The
process computation rate CRti(τ) of each process pi depends on the total number
|CPt(τ)| of processes but is independent of the number |SVMt(τ)| of virtual ma-
chines of a host server st. Let phi show a resident process pi which is performed
on a virtual machine vmh of a server st.

The virtual machine (VM) laxity vlch(τ) [vs] of a virtual machine vmh

at time τ is defined to be the summation of computation laxities of the resident
processes of the virtual machine vmh:

• vlch(τ) =
∑

pi∈V CPh(τ)
plci(τ).

The server laxity slct(τ) [vs] of a server st is the summation of VM laxities
of virtual machines hosted by the server st at time τ :

39

• slct(τ) =
∑

vmh∈SVMt(τ)
vlch(τ).

Hence, the VM computation rate V CRh(τ) [vs/sec] of a virtual machine vmh

is defined as follows:

[Virtual machine (VM) computation rate] The VM computation rate V CRh(τ)
of a virtual machine vmh on a server st at time τ is given as follows:

V CRh(τ) ={
maxCRt · |V CPh(τ)| / |CPt(τ)| if |CPt(τ)| > ntt.

CRTt · |V CPh(τ)| if |CPt(τ)| ≤ ntt.
(6.1)

That is， CRti(τ) = CRtj(τ) for every pair of resident processes pi and pj
of virtual machines on a server st. Here, V CRh(τ) ≤ V CRk(τ) if |V CPh(τ)| ≤
|V CPk(τ)| for every pair of resident virtual machines vmh and vmk on a same
server st. V CRh(τ) / V CRk(τ) = |V CPh(τ)| / |V CPk(τ)| for every pair of
resident virtual machines vmh and vmk on a server.

The VM laxity vlch(τ) of a virtual machine vmh and the server laxity slct(τ)
of a host server st of the virtual machine vmh are manipulated as follows:

[VM computation (VMC) model on a virtual machine VMh of a server st]
while (|V CPh(τ)| > 0)
{

for every process pi which starts on vmh at time τ , {
V CPh(τ) = V CPh(τ) ∪ {pi};
V CPh(τ + 1) = V CPh(τ);

/* for end */
for each process pi on a virtual machine vmh, i.e. pi ∈ V CPh(τ),
{

plci(τ + 1) = plci(τ) − V CRh(τ) / |V CPh(τ)|;
if plchi(τ + 1) ≤ 0; /* pi terminates at time τ */
V CPh(τ + 1) = V CPh(τ + 1) − {pi};

}; /* for end */
vlch(τ + 1) = vlch(τ) − V CRh(τ);
τ = τ + 1;

}; /* while end */

40

At each time τ , if a process pi starts on a virtual machine vmh, the process
pi is added to a set V CPh(τ). Then, for every process pi on the virtual machines
vmh, the computation laxity of the process pi is decremented by the process com-
putation rate V CRt(τ) / |V CPt(τ)|, i.e. CRt(τ) / |CPt(τ)|. Here, plci(τ + 1)
= plci(τ) − V CRh(τ) / |V CPt(τ)|. If the computation laxity plci(τ + 1) ≤ 0,
the process pi terminates and V CPh(τ + 1) = V CPh(τ + 1) − {pi}. Then, the
VM laxity vlch(τ) is decremented by the VM computation rate V CRt(τ), i.e.
vlch(τ + 1) = vlch(τ) − V CRh(τ). If vlch(τ + 1) ≤ 0, the virtual machine vmh

gets idle.

6.1.2 Estimation model
Suppose, every resident process of the virtual machine vmh terminates at time
τ . Here, time τ is idled time of the virtual machine vmh. Time before when at
least one virtual machine is active and after when no virtual machine is active on
a server st is referred to as termination time ETt of the server st. EEt shows
the electric energy to be consumed by a server st by the termination time ETt.
We assume no new process is issued to a server st after time τ . We estimate
the termination time ETt and electric energy consumption EEt of a server st to
perform every process by considering active virtual machines, not each process,
in the following procedure VMEST (st, τ, SVMt(τ);EEt, ETt):

[Virtual machine computation (VMC) model]
VMEST (st, τ, SVM ;EEt, ETt)
input st, τ , SVM ; /*set of VMs */
output EEt; ETt;
{ ncp = |CPt(τ)|; /*number of processes on st*/

vlc = 0;
x = τ ; /* current time */
EEt = 0;

/* obtain laxity vlc of the server st */
for each virtual machine vmh in SVM ,
{

/* VM laxity of vmh */
vlch = vlch(τ) (=

∑
pi∈V CPh(τ)

plci(τ));
ncph = |V CPh(τ)|; /*number of processes on
vmh*/

41

vlc = vlc + vlch; /* server laxity of st */
}; /* for end */
while (SVM ̸= ϕ)
{
EEt = EEt + CEt(ncp); /* electric energy */
for each virtual machine vmh in SVM ,
{
vlch = vlch − V CRh(x);
/* VM laxity is decremented */
if vlch ≤ 0, /*vmh gets idle */ {

SVM = SVM − {vmh};
ncp = ncp − ncph;

} else vlc = vlc − vlch; /*decrement server laxity*/
}; /* for end */
x = x + 1; /* time advances */

}; /* while SVM end */
ETt = x − 1; /* every virtual machine gets idle on st*/

};

Here, the VM computation rate V CRh(τ) of a virtual machine vnh depends on
how many number of processes are totally performed on the virtual machine vmh

at time τ . The more number of processes are performed on a virtual machine vmh,
the larger VM computation rate V CRh(τ). Here, it is noted we do not consider
the termination time of each process pi and only consider the idled time of each
virtual machine. This means, the computation complexity of the estimation gets
simpler by our approach.

6.2 Energy-aware Virtual Machine Migration
A client issues a process pi to a set VM of virtual machines vm1, . . ., vmv (v ≥
1) in a cluster S. We have to discuss a pair of algorithms on virtual machines:

1. VM selection (VMS): a virtual machine vmh is selected to perform a new
process pi issued by a client.

2. VM migration (VMM): a virtual machine vmh in a server st is selected to
migrate to another server su.

42

6.2.1 VM selection (VMS) algorithms
First, a process pi is issued to a cluster S by an application on a client. We discuss
how to select a virtual machine vmh to perform the process pi in a cluster S
[Figure 6.1]. In the first random VM selection (RDVMS) algorithm, a virtual
machine vmh is randomly selected in a set VM of virtual machines in a cluster S.

….. …..

….. …..

cluster S

network

VM

Figure 6.1: VM selection.

[Random VM selection (RDVMS)]

1. Randomly select a virtual machine vmh in the virtual machine set VM .

In another random server selection (RDSS) algorithm, a server st which hosts
virtual machines is randomly selected. Then, a smallest virtual machine vmh

where the number |V CPh(τ)| of resident processes is minimum is selected in the
selected server st.

[Random server selection (RDSS)]

43

1. Randomly select an engaged server st which hosts at least one virtual ma-
chine in a cluster S.

2. Select a smallest resident virtual machine vmh of the server st where |V CPh(τ)|
is minimum, i.e. the fewest number of processes are performed.

In the second way, a virtual machine is selected in a round-robin (RR) manner.
In a round-robin VM selection (RBVMS) algorithm, a virtual machine vmh is
selected in the virtual machine set VM as follows:

[Round-robin VM selection (RBVMS)]

1. Select a virtual machine vmh in the round-robin (RR) algorithm, i.e. vmh

is selected after a virtual machine vmh−1 is selected.

In another round-robin server selection (RBSS) algorithm, an engaged server
st which hosts at least one virtual machine is first selected. Then, a smallest resi-
dent virtual machine vmh where the number |V CPh(τ)| of processes is minimum
is selected in the selected server st.

[Round-robin server selection (RBSS)]

1. Select an engaged server st in the round-robin (RR) algorithm, i.e. st is
selected after st−1 is selected.

2. Select a resident virtual machine vmh of the server st where |V CPh(τ)| is
minimum, i.e. the fewest number of processes are performed.

In the third way, a virtual machine is selected so that the processing load is bal-
anced among virtual machines. A smallest virtual machine vmh is selected where
the number of processes is minimum in a load-efficient VM selection (LVMS)
algorithm.

[Load-efficient VM selection (LVMS)]

1. Select a smallest virtual machine vmh where |V CPh(τ)| is minimum in the
set VM .

In another load-efficient server selection (LSS) algorithm, a server st where
the number |CPt(τ)| of processes is minimum is first selected. Then, a resident
virtual machine vmh of the server st is selected.

[Load-efficient server selection (LSS)]

44

1. Select a smallest engaged server st where |CPt(τ)| is minimum in a cluster
S.

2. Select a smallest virtual machine vmh on the host server st where |V CPh(τ)|
is minimum.

In the last way, a virtual machine is selected so that the electric energy con-
sumption of the servers can be reduced. The expected electric energy consump-
tion EEt and expected termination time ETt of a server st to perform every
current process on the virtual machines are obtained by the procedure VMEST
(st, τ ;ETt, EEt). Then, one virtual machine vmh on a server st is selected to per-
form a process pi in an energy-efficient VM selection (EVMS) algorithm. Here, a
smallest virtual machine vmh is selected as follows:

[Energy-efficient VM selection (EVMS)]

1. for each server su in a cluster S, VMEST (su, τ ;EEu, ETu);

2. MS = {su | EEu is minimum in S};

3. select st in MS where |CPt(τ)| is minimum;

4. select a smallest virtual machine vmh in the selected server st where |V CPh(τ)|
is minimum;

Then, the process pi is performed on the selected virtual machine vmh in the
selected host server st.

6.2.2 VM migration (VMM) algorithms
Next, virtual machines migrate to guest servers. We first have to discuss the fol-
lowing points in the VMM algorithms.

[VM condition]

1. When servers are checked if a resident virtual machine migrates to a guest
server.

2. Conditions to migrate virtual machines on host servers.

45

If the migration conditions are satisfied, a virtual machine vmh on a host server
st migrates to another guest server su as shown in Figure 6.2. Here, we have to
discuss the following points:

migrate

network

Figure 6.2: VM migration.

[VM migration (VMM)]

1. Host server (HS) selection: one engaged server st which hosts at least one
virtual machine is selected.

2. Virtual machine selection: one resident virtual machine vmh on a selected
server st is selected.

3. Guest server (GS) selection: one guest server su is selected, to which the
virtual machine vmh is to migrate from the server st.

4. Virtual machine migration (VMM): the virtual machine vmh migrates from
the host server st to the guest server su.

46

Each engaged server st is periodically checked and the expected electric en-
ergy consumption EEt of each server st to perform every current process is ob-
tained. Then, a host server st is selected, where the expected electric energy
consumption EEt is maximum in a cluster S.

[VM condition]

1. Each engaged server st is periodically checked and the expected electric en-
ergy consumption EEt of the server st obtained by the procedure VMEST
(su, τ, SVMt(τ);EEt, ETt).

2. A server st whose expected electric energy consumption EEt is maximum
is selected. Then one virtual machine is selected on the server st and mi-
grates to another server.

First, a server st is selected, whose expected electric energy consumption EEt

is the largest in a cluster S. Then, a smallest virtual machine vmh is selected in
the selected server st, where the number |V CPh(τ)| of processes performed on
the virtual machine vmh is minimum.

[Energy-efficient VMM (EVMM) selection on st]
HS = a set of engaged servers in a cluster S;
for each engaged server su in HS,

VMEST (su, τ ;EEu, ETu);
while (HS ̸= ϕ)
{

select st whose EEt is maximum in HS;
select vmh on st where |V CPh(τ)| is minimum;
VMEST (st, τ, SVMt(τ)− {vmh};NEt, NTt);
for each server su in S (su ̸= st)
{

VMEST (su, τ, SVMu(τ) ∪ {vmh};NEu, NTu);
}; /* for end */
select a server su where (EEu + EEt) − (NEt +
NEu) (> 0) is the largest;
if found,
{
migrate vmh from st to su;
SVMt(τ) = SVMt(τ) − {vmh};

47

SVMt(τ) = SVMt(τ) ∪ {vmh};
EEt = NEt; EEu = NEu;

};
else HS = HS − {st};

}; /* while end */

48

Chapter 7

Dynamic Migration of Virtual
Machines

7.1 Simple Estimation Model
In order to select a host server where a process is to be performed, we have to
estimate the execution time of each current process on each server. In the es-
timation model [22, 38] discussed in the preceding chapter, the number V Ci of
virtual computation steps of each process pi is collected and then the expected
termination time of each process pi with the other processes is calculated by the
computation model. However, it takes time to estimate the termination time of
each process on each server st [17, 18, 19].

In this paper, we propose a simple model to estimate the termination time of
each process pi on a server st. We assume each process pi has the same total
number of virtual computation steps, V Ci = V C as discussed in paper [42]. In
this thesis, we assume V C =1. We also assume that the half V C / 2 (= 1 / 2) of
the total number of virtual computation steps of each current process pi is finished.
Here, suppose n (= |CPt(τ)|) processes are currently performed on a server st.
The total amount of computation to be performed by the n processes is n / 2.
If k processes newly start on the server st, the number of virtual computation
steps of the k new processes is k. Hence, totally (n / 2 + k) virtual computation
steps [vs] are considered to be performed on the server st. It takes (n / 2 + k) /
NPRt(n+ k) time units [tu] to perform n current processes and k new processes
on a server st. Hence, the expected termination time SETt(n, k) [tu] and expected
electric energy consumption SEEt(n, k) [Wtu] of each server st to perform both

49

n current processes and k (≥ 0) new processes are given as follows:

SETt(n, k) = (n/2 + k)/NPRt(n+ k). (7.1)

SEEt(n, k) = SETt(n, k) ·CEt(n+k) = (n/2+k) ·CEt(n+k)/NPRt(n+k).
(7.2)

In the estimation model, only the number n of current processes is used to
estimate the electric energy consumption of each server st. In addition, the com-
putation to estimate the termination time and electric energy consumption of a
server is simple. Hence, it is easy to estimate the electric energy to be consumed
by a server. Thus, the estimation model to estimate the electric energy consump-
tion of a server is practical even in a cluster.

7.2 Dynamic Virtual Machine Selection (DVMS) Al-
gorithm

In our previous studies [17, 18, 19, 55], the EAVM (Energy-Aware Virtual ma-
chine Migration) algorithm is proposed where virtual machines migrate from host
servers to guest servers [19]. Here, the number v of virtual machines is fixed inde-
pendently of number of processes performed on servers. Here, the more number
of processes are issued to a cluster, the more number of processes are performed
on each virtual machine. If a large number of processes are performed on a virtual
machine vmh, the virtual machine vmh may not be able to migrate from a host
server to another guest server su since the virtual machine vmh is too large to be
performed on the guest server su.

We propose a dynamic virtual machine migration (DVMM) algorithm
[19], where virtual machines are dynamically created and dropped depending on
the number of processes on host servers so that virtual machines can anytime
migrate to other servers. Let VM be a set of virtual machines in a cluster S of
servers s1, . . ., sm (m≥ 1). VMt shows a set of resident virtual machines on each
server st (t = 1, . . ., m). Initially, VM = ϕ and VMt = ϕ for every server st.
Suppose a process pi is issued to a cluster S at time τ . Here, we assume nt (=
|CPt(τ)| ≥ 0) processes are concurrently performed on each server st. Let nvh
show the number |V CPh(τ)| of resident processes on each virtual machine vmh

at current time τ .

50

One server st is selected in the cluster S and then a virtual machine vmh is
created or selected in the host server st depending on the number of processes. In
addition, virtual machines migrate from host server to guest servers. Idle virtual
machines are also dropped on a server to reduce the number of virtual machines.
The DVMM algorithm is thus composed of the following algorithms.

1. DVMS (Dynamic Virtual Machine Selection).

2. DVMD (Dynamic Virtual Machine Drop).

3. DVMM (Dynamic Virtual Machine Migration).

First, we discuss the DVMS algorithm to select a host server st and then a
virtual machine is selected on the server st to perform a process pi issued by a
client.

[Dynamic VM selection (DVMS)] A process pi is issued to a cluster S.

1. Select a host server st to perform the process pi whose expected electric en-
ergy consumption SEEt(nt, 1) to perform both the process pi and nt current
processes is minimum in the cluster S.

2. If the server st is free, i.e. there is no resident virtual machine, go to 5.

3. Select a smallest virtual machine vmh resident on the server st, i.e. nvh is
minimum.

4. If nvh ≤ maxNVMt, perform the process pi on the virtual machine vmh

of the server st [Figure 7.1].

5. Otherwise, create a new virtual machine vmk on the server st [Figure 7.2],
i.e. VMt = VMt ∪ {vmk} and VM = VM ∪ {vmk} and perform the
process pi on the virtual machine vmk.

As discussed in papers [55, 56], the average execution time of processes is in-
dependet of number of virtual machines and just depends on number nt of current
processes performed on a host server st. Hence, a server st is first selected in the

51

….. …..

Figure 7.1: VM selection.

cluster S, whose expected electric energy consumption SEEt(nt, 1) is minimum
to perform both nt current processes and one new process pi issued by a client.
A new virtual machine vmh is created to perform a new process pi on a selected
server st if VMt = ϕ, i.e. there is no virtual machine on the server st. Processes
are thus issued to the smallest virtual machine vmh on the selected server st. If
the number nvh of processes on the smallest virtual machine vmh is larger than a
constant value maxNVMt, i.e. nvh >maxNVMt, a new virtual machine vmk is
created to perform the process pi on the server st. Otherwise, the smallest resident
virtual machine vmh is selected on the server st and the process pi is performed
on the server st.

Thus, the number of virtual machines monotonically increases as a new pro-
cess is issued to the cluster. We have to reduce the number of virtual machines.
Each server st is periodically checked if there is an idle resident virtual machine.
If there is an idle virtual machine vmh on the server st, the virtual machine vmh

is dropped as follows:

[Dynamic VM drop (DVMD)]

1. An idle virtual machine vmh on a server st is dropped.

52

…..

create

Figure 7.2: VM creation.

2. VMt = VMt − {vmh} and VM = VM − {vmh};

In the VM selection (VMS) algorithm, if a new process is issued to a cluster
S, a virtual machine vmh is created or selected on a server depending on the
number of processes performed on the server. On the other hand, each server st is
periodically checked. If there is an idle virtual machine vmh on the server st, the
idle virtual machine vmh is dropped on the server st.

Thus, virtual machines are dynamically created and dropped depending on the
number of processes performed in the cluster S. The more number of processes
are performed, the more number of virtual machines on the servers. This means,
the number vnh of resident processes on each virtual machine vmh is reduced so
that the virtual machine vmh can anytime migrate from the host server to another
server.

53

7.3 Dynamic Virtual Machine Migration (DVMM)
Algorithm

Processes issued by clients are performed on servers as discussed in the preceding
section. In addition to selecting a host server for each new process issued by
a client, virtual machines migrate from host servers to guest servers in order to
reduce the electric energy consumption of servers depending on the number of
current processes.

Each engaged server st is periodically checked if an active virtual machine
vmh on the server st is to migrate to another guest server so that the electric
energy consumption of the servers can be reduced.

[Dynamic VM migration (DVM)] The following procedure is periodically per-
formed to migrate virtual machines to another guest server for each engaged host
server st where at least one virtual machine resides:

1. Obtain the expected electric energy consumption EEu = SEEu(nu, 0) and
expected termination time ETu = METu(nu, 0) of every server su to per-
form only nu current processes (u = 1, . . . , m).

2. Select a smallest virtual machine vmth in the set VMt on the host server
st. Obtain the expected electric energy consumption NEt = SEEt(nt −
nvth, 0) and termination time NTt = SETt(nt − nvth, 0) of the server st to
perform every process after the virtual machine vmth migrates to another
server.

3. Obtain the expected electric energy consumption NEtu = SEEu(nu +
nvth, 0) and expected termination time NTtu = SETu(nu+nvth, 0) of each
server su to perform not only nu current processes but also nvth processes
on the virtual machine vmth (u = 1, . . ., m, u ̸= t).

4. Select a server su where EEt + EEu > NEt + NEtu and NEtu is min-
imum (u ̸= t) [7.3]. If found, the virtual machine mvth migrates from the
host server st to the guest server su. Otherwise, no virtual machine migrates
from the server st.

For each engaged server st in a cluster S, the DVM migration (DVMM) al-
gorithm is performed. At step 1, the expected electric energy consumption EEu

and expected termination time ETu of each server su including the host server st

54

are obtained where only nu current processes are performed. Here, we assume no
resident virtual machine migrates to or from the server su, EEu = SEEu(nu, 0)
and ETu = SETu(nu, 0). At step 2, a smallest resident virtual machine vmth is
selected on the server st. The virtual machine vmth is a candidate to migrate from
the server st to another guest server. The expected electric energy consumption
NEt of the server st is obtained by the estimation procedure SEEt(nt − nvth, 0),
where the virtual machine vmth migrates from the server st to another server.
That is, nvth processes on the virtual machine vmth leave the server st. Next,
the virtual machine vmth migrates from the host server st to another server su.
Here, nvth processes carried by the virtual machine vmth are performed on the
guest server su in addition to nu current processes. Hence, the expected electric
energy consumption NEtu of each guest server su (̸= st) is obtained as NEtu =
MEEt(nu + nvth, 0). If EEt + EEu > NEt + NEtu, the total electric energy
to be consumed by a pair of the servers st and su is reduced to NEt + NEtu

by migrating the virtual machine vmth from the host server st to the guest server
su. We find a guest server su where the total electric energy consumption NEt +
NEtu of both the host server st and the guest server su can be mostly reduced and
the electric energy consumption NEtu of the guest server su is minimum. If such
a server su is found, the virtual machine vmth migrates from the host server st to
the guest server su.

Suppose there are a pair of servers st and and su as shown in Figure 7.3. ETt

and ETu show a pair of termination time of the servers st and su, respectively,
where no virtual machine on the host server st migrates to the guest server su.
That is, some current process is performed on the server st before time ETt and
no process is performed after time ETt. In Figure 7.3, a pair of the dotted area
show the electric energy EEt and EEu to be consumed by the servers st and su
to perform every current process, respectively.

Next, a virtual machine vmh on the host server st migrates to the guest server
su. Here, processes resident on the virtual machine vmh move from the host
server st to the guest server su. Hence, the other processes on the server st termi-
nate at time NTt before time ETt. On the other hand, more number of processes
are performed on the server su since the resident processes of the virtual machine
vmh are additionally performed. The hatched area of the server st in Figure 7.3
shows the electric energy consumption of the servers st and su to perform the
resident processes of the virtual machine vmh. By migrating the virtual machine
vmh to the guest server su, the server st consumes the smaller electric energy. On
the other hand, the electric energy consumption of the server su increases since
the virtual machine vmh with nvh processes newly come. The area obtained by

55

removing the hatched area from the doted area shows the electric energy con-
sumption NEt of the server st. On the other hand, the area obtained by adding the
hatched area to the dotted area shows the electric energy computation NEtu of the
server su. The doted area of the server su in Figure 7.3 shows the electric energy
consumption NEt + NEtu to perform the processes on the virtual machine vmh.
If NEt +NEtu is smaller than EEt + EEu the virtual machine vmh can migrate
from the server st to the server su.

time

time

Figure 7.3: Electric energy consumption.

56

Chapter 8

Evaluation

8.1 Process Migration

8.1.1 Environment
We first evaluate the energy-efficient process migration (MG) algorithm in terms
of total energy consumption and total execution time of servers. We consider a
cluster S which is composed of m (≥ 1) servers s1, · · · , sm. Each server st fol-
lows the simple power consumption (SPC) model [22, 23] with maximum power
consumption maxEt and minimum power consumption minEt. In this evalua-
tion, the maximum power consumption maxEt is randomly taken out of 100 to
200 [W] and the minimum power consumption minEt is also randomly taken out
of 80 to 100 [W] for each server st. In each server st, the maximum computation
rate maxCRt is randomly taken out of 0.5 to 1.0. The degradation constant αt

= 1 for |CPt(τ)| ≤ maxNt and maxNt = 200. For |CPt(τ)| > maxNt, αt is
randomly taken out of 0.99 to 1.0. The computation rate CRt(τ) of a server st
is given al−maxNt−1

t · CRT t for number n = | CPt(τ) | of processes concurrently
performed at time τ as presented in this paper.

Totally n (≥ 1) processes are performed on the servers s1, · · · , sm in the cluster
S. For each process pi, the starting time sti is randomly taken from 0 to xtime.
In this evaluation, the simulation time xtime is 10,000 time units [tu]. One time
unit is assumed to be 100 [msec]. That is, xtime = 10,000 [msec]. The minimum
computation time minT i of each process pi is randomly taken out of 10 to 20 time
units. The simulation ends at time etime when every process terminates. Here,
etime ≥ xtime.

In the evaluation, we consider three selection algorithms, random (RD), round

57

robin (RR), and energy-efficient process migration (MG) algorithms to select a
server for each process pi.

In the RD algorithm, one server is randomly selected as a host server of each
process pi in the clusters of m servers s1, · · · , sm. In the RR algorithm, a server
s1 is selected for a first process. A server s2 is selected for a next coming process.
Thus, a server st is selected for a process after a server st−1. Here, t shows t
modulo m + 1. In the MG algorithm, a server st whose expected electric power
consumption is minimum is selected to perform each process pi. The process pi
is performed on the selected host server st. Every γi = minT t / 4 time units, it
is checked from the process pi if a more number of processes are concurrently
performed than the process pi starts on a server st. If so, the migration (MG)
conditions are checked. If a server su which satisfies the MG conditions, i.e. the
server su is expected to consume a smaller amount of electric energy to perform
processes than the host server st, the process pi migrates to the guest server su.
The delay time δi to migrate the process pi from host server st to another guest
server su is the half of the maximum minimum computation time, i.e. δi = 20 / 2
= 10 time units.

8.1.2 Evaluation results
The cluster S is composed of m (≥ 1) servers s1, · · · , sm. Figures 8.1 and 8.2
show the total energy consumption [Wtu] of the servers s1, · · · , sm to perform n
processes on servers of the cluster S in the MG, RR, and RD algorithms for m =
8 and 24, respectively. As shown in Figures 8.1 and 8.2, the total electric energy
consumption of the m servers is smaller in the MG algorithm than the RR and RD
algorithms. The RR and RD algorithms imply almost the same electric energy
consumption. For example, the total electric energy consumption of the servers in
the MG algorithm is about 70% of the RR and RD algorithms for 1,400 processes
(n = 1,400) for eight servers (m = 8) as shown in Figure 8.1. For m = 8, every
server is heavily loaded. For twenty four servers (m = 24), since three times
more number of servers are less loaded than m= 8. Hence, processes can migrate
to other servers so that the total energy consumption of the servers is reduced.
Hence, the energy consumption of the servers in the MG algorithm is less reduced
for m = 8 than m = 24. For example, the total electric energy consumption of the
servers in the MG algorithm is about 60% of the RR and RD algorithms for m =
24 as shown in Figure 8.2.

Figure 8.3 shows the average execution time of the n processes for eight
servers (m = 8). The average execution time of the processes is shorter in the

58

MG algorithm than the RR and RD algorithms. In the RR and RD algorithms, the
average execution time of the processes drastically increases for more number of
processes than 1,200 (n> 1,200). However, the average execution time of the pro-
cesses in the MG algorithm does not change even if more number of processes are
performed. Because each process can migrate to a more energy-efficient server if
the host server is overloaded in the MG algorithm.

RR

RD

MG

Figure 8.1: Total energy consumption of servers (m = 8).

In the MG algorithm, processes migrate form host servers to guest servers to
reduce the electric energy consumption. Figure 8.4 shows the number of processes
which migrates on eight servers (m = 8) in the MG algorithm. There is no pro-
cess which migrates to another guest server if a fewer number n of processes are
performed (n < 400). For n = 400, processes migrate from host server to guest
server. For example, about 20% of the processes migrate for n = 1,000 while
about 75% of the processes migrate for n = 1,600. Thus, the more number of
processes are performed, the more number of processes migrate so that the total
electric energy consumption of the server can be reduced.

59

20

40

80

60

100

400 800 1,200 1,600

T
o
ta

l
en

er
g
y
 c

o
n

su
m

p
ti

o
n
[t

u
]

Number n of processes

2,000 2,200200 2,400

.

RD

MG

RR

Figure 8.2: Total energy consumption of servers (m = 24).

Figure 8.5 shows the total electric energy consumption of m servers s1, · · · ,
sm in the cluster S to perform 1,600 processes (n = 1,600). In the RR and RD
algorithms, the electric energy consumption of the servers does not change even
if the number m of servers increases. In the MG algorithm, the total energy con-
sumption of the servers decreases as the number m of servers increases. In the
MG algorithm, the smaller electric energy is consumed by the servers than the RR
and RD algorithms.

60

RR

RD

MG

Figure 8.3: Average execution time of processes (m = 8).

8.2 Static Virtual Machine Migration

8.2.1 Environment
Next, we evaluate the migration algorithms of virtual machines. We first evaluate
the static migration algorithm, EAMV (Energy-Aware Migration of Virtual Ma-
chines) algorithm in terms of the total electric energy consumption TEE [J] and
total active time TAT [tu] of servers and the average execution time AET [tu] of
processes compared with the non-migration random (RD), round robin (RR) al-
gorithms. In this paper, we consider the EAMV algorithm which takes usage of
the EVMS algorithm to select a virtual machine and EVMM algorithm to migrate
a virtual machine from a host server to a guest server. A virtual machine is se-
lected in the EVMS algorithm. In the RD algorithm, one virtual machine vmh is
randomly selected. In the RR algorithm, a virtual machine vmh is selected after
a virtual machine vmh−1 is selected. In the RD and RR algorithms, every virtual
machine vmh does not migrate and stays on one server. In the EAMV algorithm,
each virtual machine vmh migrates to a guest server if a migration condition is
satisfied.

61

250

500

1,000

750

1,250

400 600 800 1,000 1,200 1,400

N
u

m
b

er
 o

f
m

ig
ra

te
d

 p
ro

ce
ss

es

Number n of processes

1,600 1,800 2,000 2,200

1,500

1,750

2,000

Figure 8.4: Number of migrated processes in the MG algorithm (m = 8).

There are m (≤ 1) heterogeneous servers s1, . . ., sm in a cluster S. The electric
power consumption parameters like minEt, maxEt, cEt, bEt, and tEt [W] and
the performance parameters like thread computation rate CRTt and number ntt
of threads of each server st are randomly taken as shown in Table 8.2. There are
a set VM of eight virtual machines vm1, . . ., vm8 and VM = {vm1, . . ., vmv}.
In the evaluation, we consider six servers (m = 6) and eight virtual machines (v
= 8).

The number n (≥ 1) of processes p1, . . ., pn are randomly issued to the cluster
S. In the simulation, one time unit [tu] is assumed to be 100 [msec] since the
electric power of a server is measured by using the electric power meter UWmeter
[46]. Each process configuration PFng includes a pair ¡pi, minTi, stimei¿ where
pi starts at time stimei. The minimum execution time minTi of each process pi
is randomly taken from 5 to 10 [tu], i.e. 0.5 to 1.0 [sec]. The amount V Si [vs] of
virtual computation steps of each process pi is minTi as discussed in this paper.
The start time stimei of each process pi is randomly taken from 0 to xtime -
1. The simulation time xtime is 200 [tu] (= 20 [sec]). The simulation is time-
based. We randomly generate four process configurations PFn1, . . ., PFn4 of the
processes p1, . . ., pn.

62

Number m of servers

8 2416

50

100

150

T
o

ta
l

en
er

g
y
 c

o
n

su
m

p
ti

o
n

[t
u

]

RR

RD

MG

Figure 8.5: Total energy consumption (n = 1,600).

We randomly generate four server configurations SF1, . . ., SF4 of the six
servers s1, . . ., sm (m = 6). In each server configuration SFk, the parameters of
each server st like minimum electric power minEt, number ntt of threads, and
thread computation rate CRTt are randomly taken.

We also generate four VM configurations V F1, . . ., V F4 of the virtual ma-
chines vm1, . . ., vmv (v = 8). In each VM configuration V Fl, initially each
virtual machine vmh is randomly deployed on a server st (l = 1, . . ., 4).

For each combination of the configurations SFk, V Fl, and PFng, the electric
energy consumption EEt and active time ATt of each server st and the execution
time ETi of each process pi are obtained in the simulation. Then, the total electric
energy consumption TEE of servers s1, · · · , sm are calculated as EE1 + . . . +
EEm and average execution time AET of the processes p1, · · · , pn as (ET1 + . . .
+ ETn / n). The average active time AT of the server s1, . . ., sm is calculated as
(AT1 + . . . + ATm / m).

63

Table 8.1: Parameters.
parameters values

m number of servers s1, . . . , sm (≥ 1).
npt number of CPUs (≤ 2).
nct number of cores (1 ∼ 8)/ CPU .
ctt threads/core (= 2).
ntt number of threads (= 2 · npt · nct).

CRTt 0.5 ∼ 1 [vs/tu].
maxCRt ntt · maxCt [vs/tu].
minEt 80 ∼ 100 [W].
maxEt 100 ∼ 200 [W].
bEt (maxEt - minEt) / (4 · npt) [W]
cEt 5 · (maxEt - minEt) / (8 · npt · nct) [W]
tEt (maxEt - minEt) / (8 · ntt) [W]
n number of processes p1, . . . , pn (n ≥ 1)

minTi minimum computation time of a process pi (5 - 10 [tu])
V Si 5 ∼ 10 [vs] (V Si = minTi)

stimei starting time of pi (0 ≤ sti < xtime - 1)
xtime simulation time (= 200 [tu] = 20 [sec])

v number of virtual machines vm1, . . ., vmv (v = 8)

8.2.2 Evaluation results
Figure 8.6 shows the total electric energy TEE = EE1 + . . . + EEm [Wtu] of
the four servers s1, . . ., sm (m = 4) for number n of processes with eight virtual
machines vm1, . . ., vm8 (v = 8). As shown in Figure 8.6, the total electric energy
TEE of the RD algorithm is almost the same as the RR algorithm. The total
electric energy consumption TEE of the four servers s1, . . ., s4 in the EAMV
algorithm is smaller than the other non-migration RD and RR algorithms. For
example, only 40% of the electric energy of the RD and RR algorithm is consumed
in the EAMV algorithm for n ≥ 800. In the EAMV algorithm, a virtual machine
on a host server st migrates to another guest server su if the host server st is
expected to consume more electric energy to perform processes than the guest
server su. Hence, the total electric energy consumption TEE of the m servers s1,
. . ., sm can be reduced in the EAMV algorithm compared with the non-migration
RR and RD algorithms.

Figure 8.7 shows the total active time TAT [tu] of the four servers s1, . . ., s4

64

for the number n of processes with eight virtual machines vm1, . . ., vm8. TAT
= AT1 + . . . + ATn. The active time of a server st means time when the server
st is active, i.e. at least one process is performed on the server st. The total active
time TAT of the RD algorithm is almost the same as the RR algorithm, because
processes are uniformly allocated to the servers. The total active time TAT of
the four servers (m = 4) in the EAMV algorithm is shorter than the other non-
migration RR and RD algorithms. For example, the total active time TAT of the
servers s1, . . ., s4 of the EAMV algorithm is half of the RR and RD algorithms.
This means, the servers are more lightly loaded in the EAMV algorithm than the
other RR and RD algorithms.

Figure 8.8 shows the average execution time AET [tu] of the number n of
processes p1, . . ., pn where m = 4 and v = 8. The average execution time AET
is (ET1 + . . . + ETn) / n. The average execution time AET of the processes p1,
. . ., pn in the EAMV algorithm is shorter than the RD and RR algorithms. In the
simulation, the average minimum execution time (= (minT1 + . . . + minTn) /
n) of the processes is 8.0 [tu] as shown in Table 8.2. As shown in Figure 8.8, the
average execution time AET of RD algorithm is almost same as the RR algorithm.
In the EAMV algorithm, the average execution time AET of the n processes is
shorter than 10 [tu] for n ≤ 300 and 11 [tu] for n = 400. On the other hand, the
average execution time AET of the n processes is about 50 and 100 [tu] in the RD
and RR algorithms for n = 300 and n = 400, respectively. By migrating virtual
machines to servers, the average execution time AET of the n processes can be
thus reduced in the EAMV algorithm compared with the non-migration RR and
RD algorithms.

8.3 Dynamic Virtual Machine Migration

8.3.1 Environment
We consider the dynamic migration algorithm, DVMM (Dynamic Virtual Ma-
chine Migration) algorithm where virtual machines are dynamically created and

65

100 200 300 400 500 600 700 800 900 1,000

EAMV

RR

RD

0

50

100

150

200

250

300

350

400

450

500

T
o
ta

l
el

ec
tr

ic
 e

n
er

g
y

 [
W

tu
].

Number n of processes.

Figure 8.6: Total electric energy consumption.

dropped depending on number of processes. The DVMM (Dynamic Virtual Ma-
chine Migration) algorithm is evaluated in terms of the total electric energy con-
sumption TEE [Wtu] and total active time TAT [tu] of servers and the average
execution time AET [tu] of processes compared with the migration type EAMV
(Energy-Aware Migration of Virtual Machine) [19] algorithm and a pair of the
non-migration types of random (RD) and round robin (RR) algorithms.

In the RD algorithm, one virtual machine vmh is randomly selected in a set
VM of virtual machines. In the RR algorithm, a virtual machine vmh is selected
after a virtual machine vmh−1 is selected in the virtual machine set VM . Thus,
virtual machines are serially selected. In the RD and RR algorithms, every vir-
tual machine vmh just stays on the host server. A virtual machine vmh on an
energy-efficient server is first selected to perform a process issued by a client.
Then, virtual machines migrate to energy-efficient servers so as to reduce the total
electric energy consumption of the servers in the EAMV and DVMM algorithms.
In the RD, RR, and EAMV algorithms, the number v of virtual machines are in-
variant where there are eight virtual machines vm1, . . ., vm8 (v = 8) in a cluster
S. If a process pi is newly issued to a cluster S, one virtual machine is selected
to perform the process pi. In the EAMV and DVMM algorithms, each server st

66

100 200 300 400 500 600 700 800 900 1,000

EAMV

RR

RD

Number n of processes.

T
o
ta

l
ac

ti
v
e

ti
m

e
[t

u
].

0

500

1,000

1,500

2,000

2,500

Figure 8.7: Total active time of servers.

is checked every σ time units. Then, a smallest resident virtual machine is se-
lected and migrates to another guest server su if the electric energy consumption
of the servers st and su can be reduced. The electric energy to be consumed by the
servers is estimated by using the more sophisticated way in the EAMV algorithm
than the DVMM algorithm. However, it takes a longer time to do the computa-
tion to estimate the electric energy consumption. In the DVMM algorithm, the
estimation procedure is simple since just the number nt of current processes of
each server st is used. In the DVMM algorithm, virtual machines are dynami-
cally created and dropped depending on the number of processes. Hence, the total
number n of virtual machines is changed depending on the number of processes
performed. Initially, there is no virtual machine on each server st, i.e. VMt = ϕ
and VM = ϕ in the cluster S.

There are four server configurations SF1, . . ., SF4 (m = 4). In each server
configurations SFi, the power consumption parameters like minimum electric en-
ergy consumption minEt and core energy consumption cEt [W] and the perfor-
mance parameters like thread computation rate CRTt [vs/tu] and number ntt of
threads of each server st are randomly taken as shown in Table 8.2.

The number n (≥ 1) of processes p1, . . ., pn are randomly issued to the cluster

67

100 200 300 400 500 600 700 800 900 1,000

EAMV

RR

RD

A
v
er

ag
e

ex
ec

u
ti

o
n

 t
im

e
[t

u
].

400

300

200

100

500

600

0

Figure 8.8: Average execution time of processes.

S. One server st is selected for each process pi in the cluster S. One time unit [tu]
is assumed to be 100 [msec]. In each process configuration PFng, the minimum
execution time minTi of each process pi is randomly taken from 5 to 10 [tu]. The
amount V Ci [vs] of virtual computation steps of each process pi is minTi, i.e, 5
to 10. The starting time stimei of each process pi is randomly taken from time
0 to xtime - 1. The simulation time xtime is 1,00 [tu] (= 10 [sec]). Thus, in
each process configuration PFng, a tuple ¡pi, minTi, stimei¿ is randomly taken
for each process pi. We randomly generate four process configurations PFn1, . . .,
PFn4 of the n processes p1, . . ., pn.

In the EAMV algorithm, eight virtual machines vm1, . . ., vm8 (v = 8) are
randomly deployed on the four servers s1, . . ., s4. Four virtual machine configura-
tions V F1, . . ., V F4 are generated in the EAMV algorithm. For each combination
of the configurations SFk, PFng, and V Fh (k, g, h= 1, . . ., 4), the electric energy
consumption EEt and active time ATt of each server st and the execution time
ETi of each process pi are obtained.

In the DVMM algorithm, virtual machines are dynamically created and dropped.
Each server is checked every five time units, i.e. σ = 5, to drop idle virtual ma-
chines on the server. The electric energy consumption EEt and active time ATt

68

of each server st and the execution time ETt of each process pi are obtained for
each pair of server and process configurations SFk and PFng (k, g = 1, . . ., 4) in
the simulation.

8.3.2 Evaluation results
First, the total electric energy consumption TEE = EE1 + . . . + EE4 [Wtu] of
the servers is considered. Figure 8.9 shows the total electric energy consumption
TEE for number n of processes. maxNVMt = 10 and σ = 5 in the DVMM
algorithm. If the number nvh of processes on a smallest virtual machine vmh is
larger than maxNVMt, a new virtual machine is created on the server st. The
total electric energy consumption TEE of the m (m = 4) servers s1, . . ., sm in
the RD algorithm is the same as the RR algorithm. As shown in Figure 8.6, the
total electric energy consumption TEE of the server in the DVMM algorithm is
smaller than the other algorithms. For example, only 40% of the electric energy
of the servers in the RD and RR algorithms and 70% of the EAMV algorithm
are consumed in the DVMM algorithm. In the DVMM and EAMV algorithms,
the total electric energy consumption TEE of the servers s1, . . ., s4 can be re-
duced compared with the non-migration RD and RR algorithms. In the EAMV
algorithm, since the total number v of virtual machines is invariant, i.e. v = 8,
the more number n of processes are issued, the more number of processes are
performed on each virtual machine. This means, even if a server consumes more
electric energy, no resident virtual machine of the server can migrate to another
server since too many number of processes are performed on the virtual machine
to migrate to another server. On the other hand, virtual machines are dynamically
created and dropped in the DVMM algorithm. The more number of processes are
issued, the more number of virtual machines. Hence, the servers consume smaller
electric energy in the DVMM algorithm than the EAMV algorithm.

Figure 8.10 shows the toal electric energy consumption TEE of the four
servers s1, . . ., s4 in the DVMM algorithm for maxNVMt where n (= 100, 500,
1,000) processes are performed. The larger maxNVMt gets, the smaller total
electric energy TEE is consumed by the servers for n ≥ 100. For example, the
total electric energy consumption of servers s1, . . ., s4 where maxNVMt is 20
is about 10% smaller than maxNVMt = 5, for n = 1,000. For n = 100, the
total electric energy consumption TEE of the servers does not change even if
maxNVMt changes.

Figure 8.11 shows the total active time TAT [tu] of the servers s1, . . ., s4 for
the number n of processes. The active time ATt of each server st means time

69

Table 8.2: Parameters.
parameters values

m number of servers s1, . . . , sm (≥ 1).
npt number of CPUs (≤ 2).
cct number of cores (1 ∼ 8)/ CPU .
ctt threads/core (= 2).
ntt number of threads (= 2 · npt · cct).

CRTt 0.5 ∼ 1 [vs/tu].
maxCRt ntt · maxCRt [vs/tu].
minEt 80 ∼ 100 [W].
maxEt 100 ∼ 200 [W].
bEt (maxEt - minEt) / (4 · npt) [W].
cEt 5 · (maxEt - minEt) / (8 · npt · nct) [W].
tEt (maxEt - minEt) / (8 · ntt) [W].
n number of processes p1, . . . , pn (n ≥ 1).

minTi minimum computation time of a process pi (5 - 10 [tu]).
V Si 5 ∼ 10 [vs] (V Si = minTi).

stimei starting time of pi (0 ≤ sti < xtime - 1).
xtime simulation time (= 200 [tu] = 20 [sec]).

v number of virtual machines vm1, . . ., vmv (v = 8).

70

when the server st is active, i.e. at least one process is performed on the server
st. The total active time TAT of the servers is AT1 + . . . + AT4. The total active
time TAT of the servers in the RD algorithm is the same as the RR algorithm. The
total active time TAT of the servers s1, . . ., s4 in the DVMM algorithm is longer
than the EAMV algorithm while TAT is shorter than the RD and RR algorithms.
For example, the total active time TAT of the servers in the DVMM algorithm is
about 60% of the total active time TAT of the RR and RD algorithms and is 10%
longer than the EAMV algorithm. This means, the servers are more lightly loaded
in the migration type DVMM and EAMV algorithms than the non-migration RR
and RD algorithms.

Figure 8.12 shows the average execution time AET [tu] of the number n of
processes p1, . . ., pn. The average execution time AET of the processes p1, . . .,
pn is (ET1 + . . . + ETn) / n where ETi is the execution time of each process
pi. The average execution time AET of the n processes in the RD algorithm is
the same as the RR algorithm since process are uniformly issued to the servers
s1, . . ., s4. The average execution time AET of the n processes in the DVMM
algorithm is about half of the other algorithms. By dynamically creating virtual
machines and migrating virtual machines to more energy-efficient servers, the
average execution time AET of the n processes can be thus reduced in the DVMM
algorithm compared with the non-migration RR and RD algorithms.

Figure 8.13 shows the numbers of virtual machines created and dropped and
the number of migrations in the DVMM algorithm for number n of processes.
The more number n of processes are issued by clients, the more number of virtual
machines are created and dropped. In addition, virtual machines migrate more
frequently among servers. It takes time and consumes electric energy to drop
virtual machines. We have to reduce the number of virtual machines dropped.

71

100 200 300 400 500 600 700 800 900 1,000

RR

RD

EAMV

DVMM

0

50

100

150

200

250

300

350

400

500

450
T

o
ta

l
el

ec
tr

ic
 e

n
er

g
y

 T
E
E

[W
tu

].

Number n of processes.

Figure 8.9: Total electric energy consumption (m = 4, σ = 5, maxNVMt = 10).

0

50

100

150

200

250

5 10 15 20

n = 500

n = 1,000

n = 100

T
o

ta
l

el
ec

tr
ic

 e
n

er
g

y
 T
E
E

[W
tu

].

Figure 8.10: Total electric energy consumption (m = 4, σ = 5).

72

RR

RD

EAMV

DVMM

T
o
ta

l
ac

ti
v
e

ti
m

e
T
A
T

[t
u

].

Number n of processes.
100 300 500400 700600200 900 1,000800

1,000

1,500

2,000

2,500

500

0

Figure 8.11: Total active time of servers (m = 4, σ = 5, maxNVMt = 10).

0

100

200

300

400

500

600

700

100 200 300 400 500 600 700 800 900 1,000

RR

RD

EAMV

DVMM

A
v

er
ag

e
ex

ec
u

ti
o

n
 t

im
e
A
E
T

[t
u

].

Number n of processes.

Figure 8.12: Average execution time of processes (m = 4, σ = 5, maxNVMt =
10).

73

0

20

40

60

80

100

120

140

160

100 200 300 400 500 600 700 800 900 1,000

Number of VMs created in DVMM

algorithm

Number of VMs dropped in

DVMM algorithm

Number of VMs migrated in

DVMM algorithm

Number n of processes.

N
u
m

b
er

 o
f

v
ir

tu
al

 m
ac

h
in

es
.

Figure 8.13: Numbers of virtual machines created and dropped (m = 4, σ = 5,
maxNVMt = 10).

74

Chapter 9

Conclusions and Future Studies

9.1 Conclusions
In order to realize eco society, it is critical to reduce the electric energy consump-
tion of information systems. Especially, servers in scalable clusters like cloud
computing systems consume huge electric energy compared with clients. In this
thesis, we take the macro-level approach to reducing the electric energy consump-
tion of servers. Here, we aim at reducing the total electric energy consumed by
servers to perform application processes issued by applications. First, we mea-
sured the electric power [W] consumed by types of servers to perform types of ap-
plication processes. Then, parameters which mostly dominate the electric power
consumption of a server. Then, we newly proposed the MLPCM (MLPC model of
a server with Multiple CPUs) model as a power consumption model which gives
electric power to be consumed by a server to perform application processes. We
made clear the power consumption of a server st depends on the number of active
threads. If no application process is performed, a server st consumes the mini-
mum electric power minEt. If equal to or more number of processes than the
total number ntt of threads are performed, the server st consumes the maximum
electric power maxEt. Then, we proposed the MLCM (Multi-Level Computa-
tion model with Multiple CPUs) model as a computation model of a server which
gives the expected termination time of each application process performed with
other application processes. The computation rate of each process is constant, i.e.
the thread computation rate if a fewer number of processes than the total num-
ber of threads are concurrently performed on the server. Otherwise, the process
computation rate decrease as the number of concurrent processes increases. The

75

MLPCM and MLCM models give the formal basis to consider how to reduce the
electric energy consumption of servers at the macro level.

Each application on a client issues a request to a cluster of servers. One server
is selected and a process to handle the request is created on the server. The process
is performed on the server. In this thesis, we newly proposed the process migration
approach to reducing the electric energy consumption of servers in addition to
selecting an energy-efficient server to perform each application process. First,
we discussed how to migrate each process on a host server to another energy-
efficient guest server. We proposed the MG (Process Migration) algorithm to
decide which process on which server to migrate to which server, so that the total
electric energy to be consumed by the servers is reduced. Based on the MLPCM
and MLCM models, the expected termination time of each process is obtained by
decrementing the computation laxity by the computation rate.

Secondly, we discussed virtual machine migration algorithms where we take
advantage of virtual machine technologies which are used to support virtual ser-
vice in clusters like cloud computing systems. It is not easy to migrate types of
processes among heterogeneous servers with different architectures and operating
system. Processes on a virtual machine on a host server can easily migrate to
another guest server independently of heterogeneity of servers. In the virtual ma-
chine migration algorithms, a pair of static and dynamic migration algorithms of
virtual machines are newly proposed. In the static migrations of virtual machines,
the number v of virtual machines is invariant in a cluster independently of num-
ber of processes performed. We proposed the EAMV (Energy-Aware Migration
of Virtual machines) algorithm where each virtual machine migrates from host
server to another guest server. We also proposed the DVMM (Dynamic Virtual
Machine Migration) algorithm to dynamically migrate virtual machines among
servers. Here, virtual machines are dynamically created and dropped depending
on number of processes performed on the servers. The more number of processes
are performed, the more number of virtual machines are created. In the EAMV
algorithm, it takes time to estimate the expected termination time of each process
since the computation of each current process has to be simulated by decrement-
ing the computation laxity of each process by the process computation rate. In
order to make the estimation simpler, we proposed the simple estimation model
where only number nt of processes on each server st and the number nvh on a
virtual machine vmh to migrate. by using the simple estimation model, a virtual
machine on a host server and a guest server to which the virtual machine migrates
are selected so that the total electric energy to be consumed by the host and guest
servers can be reduced.

76

Lastly, we evaluated the MG, EAMV, and DVMM algorithms which we pro-
posed in this thesis, in terms of the total electric energy consumption of servers,
the active time of servers, and the average execution time of processes in the sim-
ulation. In order to do the simulation, we developed the time-based simulator
by which the electric energy consumption and active time of each server and the
execution time of each process are obtained. The simulator is implemented by
taking advantage of a relational database and SQL. In the evaluation, the total
electric energy of servers can be mostly reduced in the dynamic migration algo-
rithm DVMM compared with non-migration algorithms RR (Round-Robin), RD
(Random), SGEA (Simple Globally Energy-Aware), and static migration algo-
rithm EAMV.

In this thesis, we newly proposed the power consumption model of a server
with multi-thread CPUs to perform application processes. Then, we newly dis-
cussed the migration approach to reducing the electric energy consumption of
servers in a cluster. We proposed novel algorithms to select energy-efficient
servers to perform an application process and migrate processes to more energy-
efficient servers by taking advantage of virtual machine technologies. The models
and algorithms which we newly discussed and proposed in this thesis. They are
the theoretical foundations to design, implement, and evaluate energy-efficient
information systems.

9.2 Future Studies
In this thesis, we proposed migration types of the MG, EAMV, and DVMM algo-
rithms to reduce the electric energy consumption of servers in clusters and evalu-
ated the algorithms in terms of total electric energy consumption of servers and av-
erage execution time of processes in the simulation. We would like to implement
and evaluate the algorithms, which we proposed, in real server clusters, especially
scalable clusters.

Information systems are composed of various types of nodes like sensors [2]
and actors like robots in addition to servers and clients as discussed in IoT (Inter-
net of Things) [45]. In the IoT system, there are fog nodes between devices and
clouds of servers. Data and computation are stored and used in a cloud. In the
IoT system, data and computation are distributed to not only servers in a cloud but
also fog nodes. We would like to make a power consumption model of fog nodes
and IoT devices in the IoT system.

77

Bibliography

[1] A. Aikebaier, T. Enokido, and M. Takizawa. ’Energy-Efficient Computation
Models for Distributed Systems,’ Proc. of the 12th International Conference
on Network-Based Information Systems (NBiS-2009), 2009, pp.424–431.

[2] L. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E Cayirci, ’A Survey on
Sensor Networks,’ IEEE Communication Magazines, 2002, Vol. 40, No. 8,
pp.102–114.

[3] AMD Ryzen. (2017) https://www.amd.com/en/ryzen.

[4] Processors Arm. (2017) https://www.arm.com/products/processors

[5] L. Barolli and F. Xhafa. ’JXTA-OVERLAY: A P2P Platform for Distributed,
Collaborative and Ubiquitous Computing,’ IEEE Transactions on Industrial
Electronics, Vol. 58, No. 6, 2011, pp. 2163-2172.

[6] R. Bianchini and R. Rajamony. ’Power and Energy Management for Server
Systems,’ IEEE Computer, Vol.37, No.11, 2004 pp.68-74.

[7] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair. ’Distributed Systems
Concepts and Design (4th Edition),’ Addison Wesley, 2012, 983 pages.

[8] Ray J. Rafaels. ’Cloud Computing: From Beginning to End,’ Create Space
Independent Publishing Platform. 2015, 152 pages.

[9] DSLab URL. http://www.http://takilab.org/.

[10] D. Duolikun, A. Aikebaier, T. Enokido, and M. Takizawa. ’Energy-aware
Passive Replication of Processes,’ Journal of Mobile Multimedia, Vol. 9,
No. 1&2, 2013, pp.53-65.

78

[11] D. Duolikun, A. Aikebaier, T. Enokido, and M. Takizawa. ’Power Consump-
tion Models for Redundantly Performing Mobile-Agents,’ Proc. of the 8th
International Conference on Complex, Intelligent and Software Intensive
Systems (CISIS-2014), 2014 pp.185-190.

[12] D. Duolikun, A. Aikebaier, T. Enokido, and M. Takizawa. ’Power Consump-
tion Models for Migrating Processes in a Server Cluster,’ Proc. of the 17th
International Conference on Network-Based Information Systems (NBiS-
2014), 2014, pp.155–162.

[13] D. Duolikun, T. Enokido, and M. Takizawa. ’Asynchronous Migration of
Process Replicas in a Cluster,’ Proc. of IEEE the 29th International Confer-
ence on Advanced Information Networking and Applications (AINA-2015),
2015, pp.271–278.

[14] D. Duolikun, T. Enokido, and M. Takizawa. ’Energy-Efficient Replication
and Migration of Processes in a Cluster,’ Proc. of the 9th International
Conference on Complex, Intelligent and Software Intensive Systems (CISIS-
2015), 2015, pp.118–125.

[15] D. Duolikun, A. Aikebaier, T. Enokido, and M. Takizawa. ’Energy-Efficient
Dynamic Clusters of Servers,’ Journal of Supercomputing, Vol.71, No.5,
2015, pp.1642–1656.

[16] D. Duolikun, S. Nakamura, T. Enokido, and M. Takizawa. ’An Energy-
efficient Process Migration Approach to Reducing Electric Energy Con-
sumption in a Cluster of Servers,’ International Journal of Communication
Networks and Distributed Systems, Vol.15, No.4, 2015, pp.400–420.

[17] D. Duolikun, R Watanabe, T. Enokido, and M. Takizawa. ’A Model for Mi-
gration of Virtual Machines to Reduce Electric Energy Consumption,’ Proc.
of the 8th International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS-2016), 2016 pp.160-166.

[18] D. Duolikun, R Watanabe, T. Enokido, and M. Takizawa. ’Energy-aware
Migration of Virtual Machines in a Cluster,’ Proc. of the 11th International
Conference on Broadband and Wireless Computing, Communication and
Applications (BWCCA-2016), 2016, 283-287.

79

[19] D. Duolikun, R Watanabe, T. Enokido, and M. Takizawa. ’A Model for
Energy-aware Migration of Virtual Machines,’ Proc. of the 19th Inter-
national Conference on Network-Based Information Systems (NBiS-2016),
2016, pp.50-57,

[20] D. Duolikun, T. Enokido, and M. Takizawa. ’An Energy-aware Algorithm
to Migrate Virtual Machines in a Server Cluster,’ International Journal of
Space-Based and Situated Computing , Vol.7, No.1, 2017, pp.32–42.

[21] T. Enokido, A. Aikebaier, S. M. Deen, and M. Takizawa. ’Power
Consumption-based Server Selection Algorithms for Communication-based
Systems,’ Proc. of the 13th International Conference on Network-Based In-
formation Systems (NBiS-2010), 2010, pp.201–208.

[22] T. Enokido, A. Aikebaier, and M. Takizawa. ’A Model for Reducing Power
Consumption in Peer-to-Peer Systems,’ IEEE Systems Journal, Vol.4, No.2,
2010, pp.221–229.

[23] T. Enokido, A. Aikebaier, and M. Takizawa. ’Process Allocation Algorithms
for Saving Power Consumption in Peer-to-Peer Systems,’ IEEE Transactions
on Industrial Electronics, Vol.58, No.6, 2011, pp.2097–2105.

[24] T. Enokido and M. Takizawa. ’An Extended Power Consumption Model for
Distributed Applications,’ Proc. of IEEE the 26th International Conference
on Advanced Information Networking and Applications (AINA-2012), 2012,
pp.912–919.

[25] T. Enokido and M. Takizawa. ’An Integrated Power Consumption Model for
Distributed Systems,’ IEEE Transactions on Industrial Electronics, Vol.60,
No.2, 2013, pp.824–836.

[26] T. Enokido, A. Aikebaier, and M. Takizawa. ’The Evaluation of the Im-
proved Redundant Power Consumption Laxity-Based (IRPCLB) Algorithm
in Homogeneous and Heterogeneous Clusters,’ Proc. of the 7th International
Conference on Complex, Intelligent and Software Intensive Systems (CISIS-
2013), 2013, pp.91-98.

[27] T. Enokido, A. Aikebaier, and M. Takizawa. ’An Extended Simple Power
Consumption Model for Selecting a Server to Perform Computation Type
Processes in Digital Ecosystems,’ IEEE Transactions on Industrial Infor-
matics, Vol.10, No.2, 2014, pp.1627–1636.

80

[28] W. R. Stevens. ’TCP/IP illustrate,’ Addison Wesley, 1994, 1017 pages.

[29] E. Elnozahy, M. Kistler, R. Rajamony. ’Energy-Efficient Server Clusters,’
Power-Aware Computer Systems, Vol. 2325, 2003, pp.179-197.

[30] S. Ghemawat, H. Gobioff, and S. T. Leung. ’The Google File System,’ Proc.
of ACM the 19th Symposium on Operating System Principle (SOPI 03),
2003, pp.29–43.

[31] HP DL-360p server. https://www.hpe.com/h20195/v2/GetPDF.aspx/
c04123167.pdf, 2015.

[32] T. Inoue, A. Aikebaier, T. Enokido, and M. Takizawa. ’Evaluation of Energy-
aware Server Selection Algorithm,’ Journal of Mathematical and Computer
Modeling, Vol.58, No.5&6, 2013, pp.1475–1488.

[33] Intel Xeon Processor 5600 Series. ’The Next Generation of Intelligent Server
Processors,’ http://www.intel.com/content/www/us/en/processors/
xeon/xeon-5600-brief.html, 2010.

[34] Kyoto protocol. http://unfccc.int/kyoto protocol/items/2830.php, 1997.

[35] A. Kipp, T. Jiang, J. Liu, M. Fugini, M. Vitali, B. Pernici, and I. Salomie.
’Applying green metrics to optimise the energy consumption footprint of IT
service centres,’ International Journal of Space-Based and Situated Com-
puting , Vol.2, No.3, 2012, pp.158–174.

[36] H. Kataoka, D. Duolikun, T. Enokido, and M. Takizawa. ’Power Consump-
tion and Computation Models of a Server with a multi-core CPU and Ex-
periments,’ Proc. of IEEE the 29th International Conference on Advanced
Information Networking and Applications (AINA-2015), 2015, pp. 217–222.

[37] H. Kataoka, D. Duolikun, T. Enokido, and M. Takizawa. ’Evaluation of
Energy-Aware Server Selection Algorithms,’ Proc. of the 9th International
Conference on Complex, Intelligent and Software Intensive Systems (CISIS-
2015), 2015, pp.318–325.

[38] H. Kataoka, D. Duolikun, T. Enokido, and M. Takizawa. ’Multi-level Com-
putation and Power Consumption Models,’ Proc. of the 18th International
Conference on Network-based Information Systems (NBiS-2015), 2015,
pp.40–47.

81

[39] H. Kataoka, D. Duolikun, T. Enokido, and M. Takizawa. ’Energy-efficient
Virtualisation of Threads in a Server Cluster,’ Proc. of the 10th Interna-
tional Conference on Broadband and Wireless Computing, Communication
and Applications (BWCCA-2015), 2015, pp.288-295.

[40] H. Kataoka, A. Sawada, D. Duolikun, T. Enokido, and M. Takizawa.
’Energy-aware Server Selection Algorithms in a Scalable Cluster,’ Proc. of
IEEE the 30th International Conference on Advanced Information Network-
ing and Applications (AINA-2016), 2016, pp.565-572.

[41] H. Kataoka, A. Sawada, D. Duolikun, T. Enokido, and M. Takizawa.
’Energy-efficient Virtualisation of Threads in a Server Cluster,’ Proc. of
the 11th International Conference on Broadband and Wireless Computing,
Communication and Applications (BWCCA-2016), 2016, pp.573–584.

[42] H. Kataoka, D. Duolikun, T. Enokido, and M. Takizawa. ’Simple Energy-
aware Algorithms for Selecting a Server in a Scalable Cluster,’ Proc of AINA-
2017 workshops (WAINA-2017), 2017, pp.146-153.

[43] E. Ogawa, S. Nakamura, T. Enokido, and M. Takizawa. ’An Energy-saving
Unicast Routing Protocol in Wireless Ad-hoc Network,’ Proc. of the 11th In-
ternational Conference on Complex, Intelligent and Software Intensive Sys-
tems (CISIS-2017), 2017, CD-ROM.

[44] J. D. la Rosa. ’KVM Virtualization in RHEL 6 Made Easy,’ Dell Linux En-
gineering, 2011.

[45] A. McEwen and H. Cassimally, ’Designing the Internet of Things,’ Wiley,
2013 338 pages.

[46] Meta Protocol Corp:”UWmeter”, http://www.metaprotocol.com/UWmeter/Feautures.html,
2011.

[47] T. Mori, M. Nakashima, and T. Ito. ’SpACCE: a Sophisticated Ad hoc Cloud
Computing Environment Built by Server Migration to Facilitate Distributed
Collaboration,’ International Journal of Space-Based and Situated Comput-
ing, Vol.2, No.4, 2012, pp.230–239.

[48] C. Negus and T. Boronczyk. ’CentOS Bible,’, 2009.

82

[49] A. Sawada, H. Kataoka, D. Duolikun, T. Enokido, and M. Takizawa.
’Energy-aware Server Selection Algorithms for Storage and Computation
Processes,’ Proc. of the 11th International Conference on Broadband and
Wireless Computing, Communication and Applications (BWCCA-2016),
2016, pp.45–56.

[50] A. Sawada, H. Kataoka, D. Duolikun, T. Enokido, and M. Takizawa. ’Design
and Evaluation of Algorithms to Energy-efficiently Select Servers for Stor-
age and Computation Processes,’ Proc. of the 10th International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-
2016), 2016, pp.162–169, .

[51] A. Sawada, H. Kataoka, D. Duolikun, T. Enokido, and M. Takizawa. ’Se-
lection Algorithms to Select Energy-efficient Servers for Storage and Com-
putation Processes,’ Proc. of the 19th International Conference on Network-
Based Information Systems (NBiS-2016), 2016, pp.218-225.

[52] A. Sawada, H. Kataoka, D. Duolikun, T. Enokido, and M. Takizawa. ’Algo-
rithm to Energy-efficiently Select a Server for a General Process in a Scal-
able Cluster,’ Proc of AINA-2017 Workshops (WAINA-2017), 2017, pp.138-
145.

[53] SSD. http://searchsolidstatestorage.techtarget.com/definition/SSD-solid-
state-drive, 2014.

[54] M. Sugino, S. Nakamura, T. Enokido, and M. Takizawa. ’Trustworthiness-
based Broadcast Protocols in Wireless Networks,’ Proc. of the 18th Interna-
tional Conference on Network-Based Information Systems (ıtNBiS-2015),
2015, pp.125–132 .

[55] R. Watanabe, D. Duolikun, T. Enokido, and M. Takizawa. ’An Eco Model
of Process Migration with Virtual Machines in Clusters,’ Proc. of the 19th
International Conference on Network-based Information Systems (NBiS-
2016), 2016, pp.292-297.

[56] R. Watanabe, D. Duolikun, T. Enokido, and M. Takizawa. ’An Eenergy-
efficient Migration Model of Process with Virtual Machines in a Server Clus-
ters,’ Proc. of the 11th International Conference on Broadband and Wire-
less Computing, Communication and Apprications (BWCCA-2016), 2016,
pp.33-44.

83

[57] R. Watanabe, D. Duolikun, T. Enokido, and M. Takizawa. ’Energy-aware
Virtual Machine Migration Models in a Scalable Cluster of Servers,’ Proc.
of IEEE the 31st International Conference on Advanced Information Net-
working and Applications (AINA-2017), 2017, pp.85-92.

[58] 2015 United Nations Climate Change Conference (COP21), 2015.

[59] 2017 United Nations Climate Change Conference (COP23), 2017.

[60] Linux. ’Job Scheduling Algorithms in Linux Virtual Server,’, 2013.

[61] Q. Xilong and X. Peng. ’An Energy-efficient Virtual Machine Scheduler
Based on CPU Share-reclaiming Policy,’ International Journal of Grid and
Utility Computing, Vol.6, No.2, 2015, pp. 113–120.

84

List of Publications

1. Refereed Journal papers

1. D. Duolikun, A. Aikebaier, T. Enokido, M. Takizawa: “Energy-aware Passive Replication of Processes,”

International Journal of Mobile Multimedia, Vol. 9, No. 1&2, 2013, pp.53-65, DOI:

10.1145/2536853.2536865.

2. D. Duolikun, A. Aikebaier, M. Takizawa: “A Hybrid Clock Group Communication Protocol,” International

Journal of Adaptive and Innovative Systems, Vol.2, No.1, 2014, pp.59-72, DOI:

10.1504/IJAIS.2014.062048.

3. D. Duolikun, A. Aikebaier, T. Enokido, M. Takizawa: “Design and Evaluation of a Quorum-based

Synchronization of Multimedia Replicas,” (IJAHUC), Vol.17, No.2&3, 2014, pp.100-109, DOI:

10.1504/IJAHUC.2014.065773.

4. D. Duolikun, T. Enokido, M. Takizawa: “Energy-efficient Dynamic Cluster of Servers,” International

Journal of Supercomputing, Vol. 71, No.5, 2015, pp.1642-1656, DOI: 10.1007/s11227-014-1261-3.

5. D. Duolikun, S. Nakamura, T. Enokido, M. Takizawa: "An Energy-efficient Process Migration Approach to

Reducing Electric Energy Consumption in a Cluster of Servers," International Journal of Communication

Networks and Distributed Systems, Vol.15, No.4, 2015, pp.400-420, DOI: 10.1504/IJCNDS.2015.072404.

6. T. Enokido, D. Duolikun, M. Takizawa: “An Extended Improved Redundant Power Consumption

Laxity-Based (EIRPCLB) Algorithm for Energy Efficient Server Cluster Systems,” World Wide Web

Journal, Vol.18, No.6, 2015, pp.1603-1629, DOI: 10.1007/s11280-014-0315-z.

7. T. Enokido, D. Duolikun, M. Takizawa: “The Delay Time-based Server Selection Algorithm for

Energy-efficient Redundant Execution of Processes,” International Journal of Communication Networks

and Distributed Systems, Vol.15, No.4, 2015, pp. 366-385, DOI: 10.1504/IJCNDS.2015.072401.

8. R. Watanabe, D. Duolikun, T. Enokido, and M. Takizawa: “A Simply Energy-efficient Migration Algorithm

of Processes with Virtual Machines in Server Clusters,” International Journal of Wireless Mobile Networks,

Ubiquitous Computing, and Dependable Applications(JoWUA), Vol. 8, No.2, pp. 1-18, 2017,

DOI:10.22670/JOWUA.2017.06.31.001.

9. D. Duolikun, T. Enokido, M. Takizawa: “An Energy-aware Algorithm to Migrate Virtual Machines

in a Server Cluster,” International Journal of Space-Based and Situated Computing (IJSSC), Vol. 7, No,

1, 2017, DOI: 10.1504/IJSSC.2017.10004986.

10. H. Kataoka, S. Nakamura, D. Duolikun,T. Enokido, M. Takizawa: “Multi-level Power Consumption Model

and Energy-aware Server Selection Algorithm,” International Journal of Grid and Utility Computing

(IJGUC), Vol.8, No. 3, 2017, pp.201-210, DOI: 10.1007/S12652-017-0541-1.

11. D. Duolikun, T. Enokido, M. Takizawa: “Dynamic Migration of Virtual Machines to Reduce Energy

Consumption in a Cluster,” International Journal of Grid and Utility Computing (IJGUC), 2017,

(Accepted).

12. D. Duolikun, H. Kataoka, T. Enokido, M. Takizawa: “Simple Algorithms for Selecting an

Energy-efficient Server in a Cluster of Servers,” International Journal of Communication Networks

and Distributed Systems (IJCNDS), 2017, (Accepted).

13. T. Enokido, D. Duolikun, M. Takizawa: “An Energy-Aware Load Balancing Algorithm to Perform

85

https://doi.org/10.1145/2536853.2536865
https://doi.org/10.1504/IJAHUC.2014.065773
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
https://doi.org/10.1504/IJCNDS.2015.072401
http://dblp.uni-trier.de/pers/hd/d/Duolikun:Dilawaer
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/d/Duolikun:Dilawaer
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/d/Duolikun:Dilawaer
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/d/Duolikun:Dilawaer
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/d/Duolikun:Dilawaer
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto

Computation Type Application Processes in a Cluster of Servers,” International Journal of Web and Grid

Services (IJWGS), 2017, (Accepted).

2. Refereed International Conference Papers

1. D. Duolikun, A. Aikebaier, T. Enokido, M. Takizawa: “Ordered Delivery of Messages in Group

Communication Protocols,” Proc. of the 15th International Conference on Network-Based Information

Systems (NBiS-2012), Melbourne, Australia, September, 2012, pp.397-401.

2. D. Duolikun, M. Takizawa: “Communication Protocols in Layered Groups with Heterogeneous Clocks,”

Proc. of the 7th International Conference on Broadband, Wireless Computing, Communication and

Applications (BWCCA-2012), Victoria, Canada, November, 2012, pp.568-572.

3. D. Duolikun, H. Hama, A. Aikebaier, T. Enokido, M. Takizawa: “Group Communication Protocols for

Scalable Groups of Peers,” Proc. of IEEE the 27th International Conference on Advanced Information

Networking and Applications (AINA-2013), Barcelona, Spain, March, 2013, pp. 1027-1032.

4. D. Duolikun, A. Aikebaier, T. Enokido, M. Takizawa: “A Scalable Group Communication Protocol on P2P

Overlay Networks,” Proc. of the 7th International Conference on Complex, Intelligent, and Software

Intensive Systems (CISIS-2013), Taichung, Taiwan, July, 2013, pp.428-433.

5. D. Duolikun, A. Aikebaier, T. Enokido, L. Barolli, M. Takizawa: “Energy-efficient Passive Replication of a

Process in Mobile Environment,” Proc. of International Conference on Advances in Mobile Computing &

Multimedia (MoMM-2013), Vienna, Austria, December, 2013, pp.416-424.

6. D. Duolikun, A. Aikebaier, T. Enokido, M. Takizawa: “Experimentation of Group Communication

Protocols,” Proc. of the 16th International Conference on Network-Based Information Systems (NBiS-2013),

Gwangju, Korea, September, 2013, pp.476-481.

7. D. Doulikun, A. Aikebaier, T. Enokido, M. Takizawa: “Energy-Efficient Dynamic Clusters of

Servers,” Proc. of the 8th International Conference on Broadband, Wireless Computing, Communication

and Applications (BWCCA-2013), Compiegne, France, October, 2013, pp 253-260.

8. D. Doulikun, A. Aikebaier, T. Enokido, M. Takizawa: “Group Communication Protocols Based on Hybrid

Types of Logical and Physical Clocks,” Proc. of the 8th International Conference on Broadband, Wireless

Computing, Communication and Applications (BWCCA-2013), Compiegne, France, October, 2013, pp

494-499.

9. D. Duolikun, A. Aikebaier, T. Enokido, M. Takizawa: “Energy-Aware Replication Models of Mobile

Agents,” Proc. of IEEE the 28th International Conference on Advanced Information Networking and

Applications (AINA-2014), Victoria, Canada, May, 2014, pp.1132-1139.

10. D. Duolikun, A. Aikebaier, T. Enokido, and M. Takizawa: “Power Consumption Models for Redundantly

Performing Mobile-Agents,” Proc. of the 8th International Conference on Complex, Intelligent, and

Software Intensive Systems (CISIS-2014), Birmingham, UK, July 2014, pp.185-190 (Best paper award).

11. D. Duolikun, A. Aikebaier, T. Enokido, M. Takizawa: “Power Consumption Models for Migrating

Processes in a Server Cluster,” Proc. of the 17th International Conference on Network-Based Information

Systems (NBiS-2014), Salerno, Italy, September, 2014, pp.15-22.

12. D. Duolikun, T. Enokido, M. Takizawa: “A Process Migration Approach to Energy-efficient Computation in

a Cluster of Servers,” Proc. of the 9th International Conference on Broadband and Wireless Computing,

86

http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Dilawaer+Duolikun%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Ailixier+Aikebaier%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Tomoya+Enokido%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Makoto+Takizawa%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Dilawaer+Duolikun%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Makoto+Takizawa%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=96AEAD75722BD42EA61992AA1714586E?search=&q=by%3A%22Dilawaer+Duolikun%22
http://pandasearch.ruc.edu.cn/search?theme=scholar&keyword=Dilawaer%20Duolikun&offset=0
http://pandasearch.ruc.edu.cn/search?theme=scholar&keyword=Hiroyuki%20Hama&offset=0
http://pandasearch.ruc.edu.cn/search?theme=scholar&keyword=Ailixier%20Aikebaier&offset=0
http://pandasearch.ruc.edu.cn/search?theme=scholar&keyword=Tomoya%20Enokido&offset=0
http://pandasearch.ruc.edu.cn/search?theme=scholar&keyword=Makoto%20Takizawa&offset=0
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Dilawaer+Duolikun%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Ailixier+Aikebaier%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Tomoya+Enokido%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Makoto+Takizawa%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=96AEAD75722BD42EA61992AA1714586E?search=&q=by%3A%22Dilawaer+Duolikun%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action;jsessionid=96AEAD75722BD42EA61992AA1714586E?search=&q=by%3A%22Dilawaer+Duolikun%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Dilawaer+Duolikun%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Ailixier+Aikebaier%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Tomoya+Enokido%22
http://dl.acm.org/author_page.cfm?id=81100240095&coll=DL&dl=ACM&trk=0&cfid=914691029&cftoken=32599218
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Makoto+Takizawa%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Dilawaer+Duolikun%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Ailixier+Aikebaier%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Tomoya+Enokido%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Makoto+Takizawa%22
http://dblp.uni-trier.de/pers/hd/a/Aikebaier:Ailixier
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/a/Aikebaier:Ailixier
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Dilawaer+Duolikun%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Ailixier+Aikebaier%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Tomoya+Enokido%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Makoto+Takizawa%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Dilawaer+Duolikun%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Ailixier+Aikebaier%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Tomoya+Enokido%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Makoto+Takizawa%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Dilawaer+Duolikun%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Tomoya+Enokido%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Makoto+Takizawa%22

Communication and Applications (BWCCA-2014), Guangzhou, China, November, 2014, pp. 191-198.

13. D. Duolikun, T. Enokido, M. Takizawa: “Asynchronous Migration of Process Replicas in a Cluster,” Proc.

of IEEE the 29th International Conference on Advanced Information Networking and Applications

(AINA-2015), Gwangju, Korea, March, 2015, pp.271-278.

14. D. Duolikun, T. Enokido, M. Takizawa: "Energy-Efficient Replication and Migration of Processes in a

Cluster,” Proc. of the 9th International Conference on Complex, Intelligent and Software Intensive Systems

(CISIS-2015), Blumenau, Brazil, July 2015, pp.118–125.

15. D. Duolikun, H. Kataoka, S. Nakamura, T. Enokido, Makoto Takizawa: “Energy-Aware Migration and

Replication of Processes in a Cluster,” Proc. of the 9th International Conference on Broadband and

Wireless Computing, Communication and Applications (BWCCA-2015), Krakow, Poland, November, 2015,

pp.283-287.

16. D. Duolikun, R. Watanabe, H. Kataoka, S. Nakamura, T. Enokido, M. Takizawa: “An Energy-aware

Migration of Virtual Machines,” Proc. of IEEE the 30th International Conference on Advanced Information

Networking and Applications (AINA-2016), Crans-Montana, Switzerland, March 2016, pp.557-564.

17. D. Duolikun, R. Watanabe, T. Enokido, and M. Takizawa: "A Model for Migration of Virtual

Machines to Reduce Electric Energy Consumption,” Proc. of the 10th International Conference on

Complex, Intelligent and Software Intensive Systems (CISIS-2016), Fukuoka, Japan, July 2016, pp.159-166.

18. D. Duolikun, R. Watanabe, T. Enokido, and M. Takizawa: “A Model for Energy-Aware Migration of Virtual

Machines,” Proc. of the 19th International Conference on Network-based Information Systems (NBiS-2016),

Ostrava, Czech, September 2016, pp.50-57 (Best paper award).

19. D. Duolikun, S. Nakamura, R. Watanabe, T. Enokido, M. Takizawa: “Energy-aware Migration of Virtual

Machines in a Cluster,” Proc. of the 11th International Conference on Broadband and Wireless Computing,

Communication and Applications (BWCCA-2016), Asan, Korea, November 2016, pp.283-287.

20. D. Duolikun, R. Watanabe, T. Enokido, M. Takizawa: “An Eco Migration of Virtual Machines in a Server

Cluster,” Proc. of IEEE the 31st International Conference on Advanced Information Networking and

Applications (AINA-2017), Taipei, Taiwan, March 2017, pp.1098-1105.

21. D. Duolikun, T. Enokido, and M. Takizawa: “Energy-aware Dynamic Migration of Virtual Machines in a

Server Cluster,” Proc. of the 11th International Conference on Complex, Intelligent and Software Intensive

Systems (CISIS-2017), Torino, Italy, July 2017, pp.70-81.

22. D. Duolikun, R. Watanabe, T. Enokido, M. Takizawa: “An Eco Algorithm for Dynamic Migration of Virtual

Machines in a Server Cluster,” Proc. of the 20th International Conference on Network-Based Information

Systems (NBiS-2017), Toronto, Canada, August 2017, pp. 42-54.

23. D. Duolikun, R. Watanabe, T. Enokido, M. Takizawa: “Energy-aware Dynamic Migration of Virtual

Machines in a Server Cluster,” Proc. of the 12th International Conference on Broadband and Wireless

Computing, Communication and Applications (BWCCA-2017), Barcelona, Spain, November 2017,

pp.161-172.

24. D. Duolikun, R. Watanabe, T. Enokido, M. Takizawa: “An Eco Migration of Virtual Machines in a Server

Cluster,” Proc. of IEEE the 32nd International Conference on Advanced Information Networking and

Applications (AINA-2018), Cracow, Poland, May 2018, (Accepted).

25. H. Nakayama, D. Duolikun, A. Aikebaier, T. Enokido, M. Takizawa: “Causal Order of Application Events is

P2P Publish/Subscribe Systems,” Proc. of the 9th International Conference on Broadband and Wireless

87

http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Dilawaer+Duolikun%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Tomoya+Enokido%22
http://dblp.kbs.uni-hannover.de/dblp/Search.action?search=&q=by%3A%22Makoto+Takizawa%22
http://dblp.uni-trier.de/pers/hd/k/Kataoka:Hiroki
http://dblp.uni-trier.de/pers/hd/n/Nakamura:Shigenari
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/a/Aikebaier:Ailixier
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto

Computing, Communication and Applications (BWCCA-2014), Guangzhou, China, November, 2014,

pp.444-449.

26. H. Nakayama, D. Duolikun, A. Aikebaier, T. Enokido, M. Takizawa: “Situation-Aware Group

Communication Protocols,” Proc. of the 8th International Conference on Complex, Intelligent, and

Software Intensive Systems (CISIS-2014), Birmingham, UK, July, 2014, pp.415-420.

27. H. Nakayama, D. Duolikun, T. Enokido, M. Takizawa: “A P2P Model of publish/Subscribe Systems,” Proc.

of the 9th International Conference on Broadband and Wireless Computing, Communication and

Applications (BWCCA-2014), Guangzhou, China, November, 2014, pp.383-388.

28. H. Nakayama, D. Duolikun, T. Enokido, M. Takizawa: “Selective Delivery of Event Messages in

Peer-to-Peer Topic-Based Publish/Subscribe Systems,” Proc. of the 18th International Conference on

Network-based Information Systems (NBiS-2015), Taipei, Taiwan, September, 2015, pp.379-386.

29. H. Honda, S. Nakamura, D. Doulikun, T. Enokido, M. Takizawa: “Reduction of Unnecessarily Ordered

Messages in Scalable Group Communication,” Proc. of the 18th International Conference on

Network-based Information Systems (NBiS-2015), Taipei, Taiwan, September, 2015, pp.99-106.

30. H. Kataoka, D. Duolikun, T. Enokido, M. Takizawa: “Multi-level Computation and Power Consumption

Models,” Proc. of the 18th International Conference on Network-based Information Systems (NBiS-2015),

Taipei, Taiwan, September, 2015, pp.40-47.

31. H. Nakayama, D. Duolikun, T. Enokido, M. Takizawa: “Synchronization of Peers in Peer-to-Peer

Publish/Subscribe Systems,” Proc. of the 9th International Conference on Innovative Mobile and Internet

Services in Ubiquitous Computing (IMIS-2015), Blumenau, Brazil, July, 2015, pp.252-259.

32. H. Kataoka, D. Duolikun, T. Enokido, M. Takizawa: “Evaluation of Energy-Aware Server Selection

Algorithms,” Proc. of the 9th International Conference on Complex, Intelligent and Software Intensive

Systems (CISIS-2015), Blumenau, Brazil, July, 2015, pp.318-325.

33. A. Sawada, H. Kataoka, D. Duolikun, T. Enokido, M. Takizawa: “Power Consumption and Computation

Models of a Storage Server,” Proc. of the 9th International Conference on Broadband and Wireless

Computing, Communication and Applications (BWCCA-2015), Krakow, Poland, November, 2015,

pp.472-477.

34. H. Kataoka, D. Duolikun, T. Enokido, M. Takizawa: “Energy-Efficient Virtualization of Threads in a Server

Cluster,” Proc. of the 9th International Conference on Broadband and Wireless Computing, Communication

and Applications (BWCCA-2015), Krakow, Poland, November, 2015, pp.288-295.

35. H. Nakayama, D. Duolikun, T. Enokido, M. Takizawa: “Causally Ordered Delivery of Event Messages with

Keyword Vectors in P2P Publish/Subscribe Systems,” Proc. of IEEE the 28th International Conference on

Advanced Information Networking and Applications (AINA-2015), Gwangju, Korea, March, 2015,

pp.534-541.

36. K. Kouno, D. Duolikun, T. Enokido, M. Takizawa: “Broadcast Protocols in Wireless Networks,” Proc. of

IEEE the 28th International Conference on Advanced Information Networking and Applications

(AINA-2015), Gwangju, Korea, March, 2015, pp.272-277.

37. A. Sawada, H. Kataoka, D. Duolikun, T. Enokido, M. Takizawa: “Energy-Aware Clusters of Servers for

Storage and Computation Applications,” Proc. of IEEE the 30th International Conference on Advanced

Information Networking and Applications (AINA-2016), Crans-Montana, Switzerland, March, 2016,

pp.400-407

88

http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/a/Aikebaier:Ailixier
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakamura:Shigenari
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto

38. H. Kataoka, A. Sawada, D. Duolikun, T. Enokido, M. Takizawa: “Energy-Aware Server Selection

Algorithms in a Scalable Cluster,” Proc. of IEEE the 30th International Conference on Advanced

Information Networking and Applications (AINA-2016), Crans-Montana, Switzerland, March, 2016,

pp.565-572.

39. H. Nakayama, D. Duolikun, T. Enokido, M. Takizawa: “Reduction of Unnecessarily Ordered Event

Messages in Peer-to-Peer Model of Topic-Based Publish/Subscribe Systems,” Proc. of IEEE the 30th

International Conference on Advanced Information Networking and Applications (AINA-2016),

Crans-Montana, Switzerland, March, 2016, pp.1160-1167.

40. H. Kataoka, A. Sawada, D. Duolikun, T. Enokido, M. Takizawa: “Energy-Aware Algorithms to Select

Servers in Scalable Clusters,” Proc. of the 10th International Conference on Complex, Intelligent and

Software Intensive Systems (CISIS-2016), Fukuoka, Japan, July, 2016, pp.308-315.

41. A. Sawada, H. Kataoka, D. Duolikun, T. Enokido, M. Takizawa: “Design and Evaluation of Algorithms to

Energy-Efficiently Select Servers for Storage and Computation Processes,” Proc. of the 10th International

Conference on Complex, Intelligent and Software Intensive Systems (CISIS-2016), Fukuoka, Japan, July,

2016, pp.162-169.

42. H. Kataoka, A. Sawada, D. Duolikun, T. Enokido, M. Takizawa: “Multi-level Power Consumption and

Computation Models and Energy-Efficient Server Selection Algorithms in a Scalable Cluster,” Proc. of the

19th International Conference on Network-based Information Systems (NBiS-2016), Ostrava, Czech,

September, 2016, pp.210-217.

43. A. Sawada, H. Kataoka, D. Duolikun, T. Enokido, M. Takizawa: “Selection Algorithms to Select

Energy-Efficient Servers for Storage and Computation Processes,” Proc. of the 19th International

Conference on Network-based Information Systems (NBiS-2016), Ostrava, Czech, September, 2016,

pp.218-225.

44. R. Watanabe, D. Duolikun, T. Enokido, M. Takizawa: “An Eco Model of Process Migration with Virtual

Machines,” Proc. of the 19th International Conference on Network-based Information Systems (NBiS-2016),

Ostrava, Czech, September, 2016, pp.292-297.

45. A. Sawada, H. Kataoka D. Duolikun, T. Enokido, M. Takizawa, “Energy-aware Server Selection

Algorithms for Storage and Computation Processes,” Proc. of the 11th International Conference on

Broadband and Wireless Computing, Communication and Applications (BWCCA-2016), Asan, Korea,

November 2016, pp.45-56.

46. R. Watanabe, D. Duolikum, T. Enokido, M. Takizawa, “An Energy-efficient Migration Model of Process

with Virtual Machines in a Server Clusters,” Proc. of the 11th International Conference on Broadband and

Wireless Computing, Communication and Applications (BWCCA-2016), Asan, Korea, November 2016,

pp.33--44.

47. R. Watanabe, D. Duolikun, T. Enokido, M. Takizawa: “Energy-aware Virtual Machine Migration Models in

a Scalable Cluster of Servers,” Proc. of IEEE the 31st International Conference on Advanced Information

Networking and Applications (AINA-2017), Taipei, Taiwan, March 2017, pp.85-92.

48. T. Enokido, D. Duolikun, M. Takizawa: “Energy-Efficient Quorum Selection Algorithm for Distributed

Object-Based Systems,” Proc. of the 11th International Conference on Complex, Intelligent and Software

Intensive Systems (CISIS-2017), Torino, Italy, July 2017, 31-42.

49. A. Sawada, D. Duolikun, T. Enokido, M. Takizawa: “Simple Energy-aware Algorithms to Selecting a

89

http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/n/Nakayama:Hiroki
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto
http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto

Server for Storage and Computation Processes in a Cluster,” Proc. of the 11th International Conference on

Complex, Intelligent and Software Intensive Systems (CISIS-2017), Torino, Italy, July 2017, pp.98-109.

50. R. Watanabe, D. Duolikun, T. Enokido, M. Takizawa: “An Energy-efficient Migration Algorithm of Virtual

Machines in Server Clusters,” Proc. of the 11th International Conference on Complex, Intelligent and

Software Intensive Systems (CISIS-2017), Torino, Italy, July 2017, pp.94-105.

51. R. Watanabe, D. Duolikun, T. Enokido, M. Takizawa: “A Simple Energy-Aware Virtual Machine Migration

Algorithm in a Server Cluster,” Proc. of the 20th International Conference on Network-based Information

Systems (NBiS-2017), Toronto, Canada, August, 2017, pp.55-65.

52. R. Watanabe, D. Duolikun, T. Enokido, M. Takizawa: “A Simple Migration Algorithm of Virtual Machine

in a Server Cluster,” Proc. of the 11th International Conference on Broadband and Wireless Computing,

Communication and Applications (BWCCA-2017), Barcelona, Spain, November 2017, 149-160.

53. T. Enokido, D. Duolikun, M. Takizawa: “An Energy Efficient Load Balancing Algorithm Based on the

Active Time of Cores,” Proc. of the 11th International Conference on Broadband and Wireless Computing,

Communication and Applications (BWCCA-2017), Barcelona, Spain, November 2017, pp.185-196.

54. R. Watanabe, D. Duolikun, T. Enokido, M. Takizawa: “Eco Migration Algorithms of Processes with Virtual

Machines in a Server Cluster,” International Conference on Emerging Internet, Data and Web Technologies

(EIDWT-2018), Tirana, Albania, March 2018, (Accepted).

55. R. Watanabe, D. Duolikun, T. Enokido, M. Takizawa: “Energy-aware Virtual Machine Migration Models in

a Scalable Cluster of Servers,” Proc. of IEEE the 32nd International Conference on Advanced Information

Networking and Applications (AINA-2018), Cracow, Poland, May 2018, (Accepted).

3. Awards

1. Best paper award, “Power Consumption Models for Redundantly Performing Mobile-Agents,” the 8th

International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2014),

Birmingham, UK, July 2014.

2. 2015年度中国新疆籍優秀自費留学生賞, Tokyo, Japan, November, 2015.

3. Best paper award, “A Model for Energy-Aware Migration of Virtual Machines,” the 19th International

Conference on Network-based Information Systems (NBiS-2016), Ostrava, Czech, Sept. 2016.

4. Grants

1. 公益財団法人 NEC C&C財団 2017年度（平成 29年度）外国人研究員助成.

(NEC C&C FOUNDATION Grants for Non-Japanese Researchers (Grants for Fiscal Year 2017)).

2. 独立行政法人日本学術振興会 特別研究員-DC2 (平成 30年度).

(Japan Society for the Promotion of Science Research Fellowship for Young Scientists-DC2

(Grants for Fiscal Year 2018)).

90

http://dblp.uni-trier.de/pers/hd/e/Enokido:Tomoya
http://dblp.uni-trier.de/pers/hd/t/Takizawa:Makoto

	PhD
	1

