法政大学学術機関リポジトリ

HOSEI UNIVERSITY REPOSITORY

PDF issue: 2024-12-21

CKLS modelに対するパラメータ推定手法の比較

茶木, 直人 / Chaki, Naoto

(出版者 / Publisher) 法政大学大学院理工学・工学研究科

(雑誌名 / Journal or Publication Title)

法政大学大学院紀要.理工学・工学研究科編 / 法政大学大学院紀要.理工学・工 学研究科編

(巻 / Volume)
58
(開始ページ / Start Page)
1
(終了ページ / End Page)
8
(発行年 / Year)
2017-03-31
(URL)
https://doi.org/10.15002/00014362

CKLS modelに対するパラメータ推定手法の比較

COMPARISON OF PARAMETER ESTIMATION METHODS FOR CKLS MODEL

茶木直人

Naoto CHAKI

指導教員 安田和弘

法政大学大学院理工学研究科システム理工学専攻修士課程

In mathematical finance, models of stock prices and interest rates are frequently expressed by stochastic differential equations (SDE). In order to use them for option pricing and so on, it is necessary to estimate their unknown parameters from observation data. We generate data using the Euler-Maruyama approximation for SDE. Especially the CKLS model, which includes the various interest rate processes, is considered in this paper. For such data, we estimate parameters in the model using the generalized method of moments, Adaptive Bayes estimation and so on. We compare and discuss results from each estimation method.

Key Words : CKLS model, Ornstein-Uhlenbeck process, Interest rate model, Parameter estimation

1. はじめに

現在金融市場では、金融派生商品は重要な役割を担ってお り、それにあわせて金融派生商品の一種であるオプションの 価格付けに関して非常に多く研究されている.また、数理ファ イナンスの分野において、株価などの価格過程や金利をモデ ル化するとき、確率微分方程式により表されることが多い. このとき、対象となるものを正確に表すためには確率微分方 程式内のパラメータに適切な値を設ける必要がある.しかし、 パラメータの値を事前に知ることは極めて困難である.その ため、観測可能なデータをもとにパラメータを推定していく ことが必要である.よって、本論文では、確率微分方程式のパ ラメータの推定方法の紹介をし、オイラー・丸山近似を用い て得たデータをもとに推定を行い、推定方法による推定結果 の違いについて比較を行っていく.推定手法としては、最尤 推定法や、Adaptive Bayes 推定、一般化モーメント法などを 用いる.

2. 推定を行う確率微分方程式

本研究では、考える確率微分方程式として、Chan K. Ceajer, George A. Karolyi, Francis. A. Longstaff, Anthony B. Sanders による CKLS model を考える. CKLS model のパ ラメータに制約を与えることで表すことのできる Ornstein-Ulenbeck(OU) 過程についても取り扱う. CKLS model は, 以下のように表される確率微分方程式である.

$$dX_t = \alpha(\nu - X_t)dt + \beta X_t^{\gamma} dW_t.$$
(1)

このとき, ν は実数, α , β , $\gamma > 0$ とし, W_t はブラウン運動で ある. CKLS model は数式内の各パラメータに制約を設け ることで,連続型の短期金利モデルである, Vasicek model, CIR model といった代表的なモデルとなるという特徴を有

している. CKLS model(1) の $\gamma = 0$ とした,

$$dX_t = \alpha(\nu - X_t)dt + \beta dW_t, \qquad (2)$$

と表される確率微分方程式は OU 過程もしくは Vasicek model と呼ばれる. OU 過程は、回帰度 α 、回帰レベル ν を持つ自己回帰なガウス過程であり、解は、 $X_0 = x_0$ として、

$$X_t = e^{-\alpha t} \left(x_0 + \int_0^t e^{\alpha s} \alpha \nu ds + \int_0^t e^{\alpha s} \beta dW_s \right)$$

である. X_t の平均, 分散はそれぞれ, 以下のようになる.

$$E[X_t] = \mu_t = e^{-\alpha t} x_0 + \nu (1 - e^{-\alpha t}),$$

$$V(X_t) = v_t = \frac{\beta^2}{2\alpha} (1 - e^{-2\alpha t}).$$

3. パラメータ推定方法

確率微分方程式のパラメータ推定は以下の手法を用いて 行う.

(1) 2 Statistics model による推定

[5] による方法を紹介する. この手法での推定は式 (2) の *ν* を 0 とした

$$dX_t = -\alpha X_t dt + \beta dW_t, \tag{3}$$

についての推定となる. データ数 $n \to \infty$, 時間幅 $\Delta t \to 0$, 満 期が $n\Delta t \to \infty$ という状況の下で考える. 満期を $n\Delta t \to \infty$ としたき OU 過程 X_{∞} の分布は, $\mathcal{N}(0, \frac{\beta^2}{2\alpha})$ である. [5] より, S が可測な実数の集合である時, $Y_t^S = \mathbf{1}_{X_t \in S}$ と定義する. ただし, $\mathbf{1}_A$ 集合 A に対する定義関数とする. 今回は [5] に従 い $S = [1, \infty]$ で考える. ここで Occupation time statistic を次のように定義する.

$$OT_n^S = \frac{1}{n} \sum_{k=0}^{n-1} Y_{k\Delta n}^S = \frac{1}{n} \sum_{k=0}^{n-1} \mathbf{1}_{X_{k\Delta n} \in S}$$

この OT_n^S は, 確率過程 X_t がデータ n このうち何回 $S = [1,\infty[$ に含まれたかを計測するものである. また, OT_n^S は $S = [1,\infty[$ のとき, 次のように 2 次平均収束する. ([5] の Theorem 2.2)

$$\frac{1}{n} \sum_{k=0}^{n-1} \mathbf{1}_{X_{k\Delta n} \in S} \xrightarrow{L^2} \int_1^\infty \frac{1}{\sqrt{2\pi V_\infty}} e^{-\frac{x^2}{2V_\infty}} dx.$$
(4)

次に, Crossing statistic を次のように定義する.

$$C_{n}^{S} = \frac{1}{n} \sum_{k=0}^{n-1} \mathbf{1}_{Y_{k\Delta n}^{S} \neq Y_{(k+1)\Delta n}^{S}}$$

 C_n^s は、 X_t が、1 を跨いだ回数を計るものである. C_n は、 $n\Delta_n^{\frac{3}{2}} \rightarrow +\infty$ と仮定したとき、以下のように 2 次平均収束する. ([5] の Theorem 3.1)

$$\frac{C_n}{\sqrt{\Delta n}} \xrightarrow{L^2} \frac{2\beta}{\sqrt{2\pi}} \mu_{V_\infty}(1).$$
 (5)

 $\mu_{V_{\infty}}(x)$ は平均 0, 分散 V_{∞} の正規分布の密度関数である.式 (4) より, V_{∞} を推定し, 推定した V_{∞} と式 (5) により, β の 推定を行い.得られた β より, α を求める.

(2) 最尤推定法

式 (2) の OU 過程の [6] による, 最尤法を用いた推定方法 を述べる. OU 過程の増分は正規分布に従うことから, 密度 関数は $\Delta t = t_i - t_{i-1}$ ($t_{i-1} < t_i$)を用いて以下のように表 せる.

$$f(X_{t_i}) = \frac{1}{\sqrt{2\pi v_{\Delta t}}} \exp[-A_i].$$

ここで

$$A_{i} = \frac{(X_{t_{i}} - \nu - (X_{t_{i-1}} - \nu)e^{-\alpha(\Delta t)})^{2}}{\frac{\beta^{2}}{\alpha}(1 - e^{-2\alpha(\Delta t)})}$$

このとき、対数尤度関数 $LL(\alpha, \nu, \beta)$ は、

$$LL(\alpha,\nu,\beta) = -\frac{n}{2}\log\left[\frac{\beta^2}{2\alpha}\right]$$
$$-\frac{1}{2}\sum_{i=1}^n \log\left[1 - e^{-2\alpha(\Delta t)}\right] - \sum_{i=1}^n A_i, \quad (6)$$

である.対数尤度関数を ν , β でそれぞれ偏微分しそれぞれ 0 となる ν , β を求めると, ν が α の 1 変数関数 $\nu = g(\alpha)$ とな りそのことを用いると, $\beta = h(g(\alpha), \alpha)$ となる. これらを用 いて推定を行うのがこの手法の特徴である. この $\nu = g(\alpha)$, $\beta = h(g(\alpha), \alpha)$ を対数尤度関数(6)に代入し, それを最大に する α を求め, 順次 β , ν を推定する.

(3) 擬似最尤推定法

擬似最尤推定法は、観測したデータである X_t の確率分布 が未知であるときに、適当な分布を仮定して擬似対数尤度関 数 $QL(x, \theta)$ を定義してパラメータの推定を行う手法である. [3] より、式 (1) において、擬似対数尤度関数 $QL(x, \theta)$ は、 $\theta = (\alpha, \nu, \beta, \gamma)$ として、次のように定義する.

$$QL(X_{t},\theta) = \frac{1}{2} \sum_{i=1}^{n} \left\{ \log(\beta X_{t_{i-1}}^{\gamma})^{2} + \frac{1}{\Delta t} \frac{1}{(\beta X_{t_{i-1}}^{\gamma})^{2}} (\Delta X_{t} - \Delta t \alpha (\nu - X_{t_{i-1}}))^{2} \right\}.$$
 (7)

擬似最尤推定法における推定値を $\tilde{\alpha}, \tilde{\nu}, \tilde{\beta}, \tilde{\gamma}$ とすると, 推定 値は,

$$\tilde{\theta} = (\tilde{\alpha}, \tilde{\nu}, \tilde{\beta}, \tilde{\gamma}) = \arg\min_{\theta} QL(X_t, \theta)$$

のように求める.

(4) Adaptive Bayes 推定

[3] より, Adaptive Bayes 推定は式 (7) の擬似対数尤度関数 を使い, 以下の式により推定をする. それぞれ任意の ν', β', γ' を用いて推定値である $\tilde{\alpha}$ を求めることができる.

$$\tilde{\alpha} = \frac{\int_{\Theta_1} \alpha \exp\{-QL(\alpha, \nu^{'}, \beta^{'}, \gamma^{'})\}\pi_1(\alpha)d\alpha}{\int_{\Theta_1} \exp\{-QL(\alpha, \nu^{'}, \beta^{'}, \gamma^{'})\}\pi_1(\alpha)d\alpha}.$$

ここで, $\pi_1(\cdot)$ は事前分布である.また, Θ_1 は有界な実数の 集合である.この推定値 $\tilde{\alpha}$ を用いて,

$$\tilde{\nu} = \frac{\int_{\Theta_2} \nu \exp\{-QL(\tilde{\alpha},\nu,\beta',\gamma')\}\pi_2(\nu)d\nu}{\int_{\Theta_2} \exp\{-QL(\tilde{\alpha},\nu,\beta',\gamma')\}\pi_2(\nu)d\nu}$$

により, ν の推定値を得る. このときも $\pi_2(\cdot)$ は事前分布で あり, Θ_2 は有界な実数の集合である. 以下同様に, 求めた推 定値を用いて β , γ の推定値を求める. 本研究において, 事前 分布には一様分布を用いて推定を行う. また, ν' , β' , γ' の値 は疑似最尤法の推定値を用いる.

(5) Adaptive LASSO-TYPE 推定

[2] により,式 (1) に対する Adaptive LASSO-TYPE 推 定は,以下の関数 *F*(*θ*) を用いる.

$$F(X_t, \theta) := (\theta - \tilde{\theta})^{\mathrm{T}} \ddot{QL}(X_t, \tilde{\theta})(\theta - \tilde{\theta}) + \lambda_0 |\alpha| |\tilde{\alpha}|^{-\delta_1} + \lambda_0 |\nu| |\tilde{\nu}|^{-\delta_1} + \gamma_0 |\beta| |\tilde{\beta}|^{-\delta_2} + \gamma_0 |\gamma| |\tilde{\gamma}|^{-\delta_2}.$$

ここで, T はベクトルの転置を表す. $\tilde{\theta}$ は, 擬似最尤推定法に よる推定値である. また, $\ddot{QL}(x,\theta)$ は擬似対数尤度関数 QLの θ に関するヘッセ行列であり, $\delta_1, \delta_2 > 0$ である. 推定値 を $\theta' = (\alpha', \nu', \beta', \gamma')$ として

$$\theta' = \arg\min_{\theta} F(X_t, \theta)$$
 (8)

のように推定値を求める.また、本研究では $\lambda_0 = \gamma_0 = 1$ 、 $\delta_1 = \delta_2 = 2$ として推定を行う.

[1] を参考に一般化モーメント法の推定について紹介する. 式 (1) をオイラー・丸山近似により, 離散化すると

$$X_{t_i} - X_{t_{i-1}} = \alpha(\nu - X_{t_{i-1}})\Delta t + \beta X_{t_{i-1}}^{\gamma}(W_{t_i} - W_{t_{i-1}}),$$

となる. ここで, W_t はブラウン運動であるから, $W_{t_i} - W_{t_{i-1}}$ は平均 0, 分散 Δt の正規分布なので,

$$X_{t_i} - X_{t_{i-1}} = \alpha(\nu - X_{t_{i-1}})\Delta t + \varepsilon_t, \qquad (9)$$

$$\varepsilon_t^2 = \beta^2 X_{t_{i-1}}^{2\gamma} \Delta t + \eta_t, \qquad (10)$$

と表すことができる. ここで ε_t と η_t は誤差項である. CKLS model における推定が必要なパラメータは 4 個であるため, 4 次元の直交条件が必要になる. [4] により直交条件は, 式 (9), 式 (10) を用いて,

$$h_t(\theta) = \begin{bmatrix} \varepsilon_t \\ \varepsilon_t X_{t-\Delta t} \\ \eta_t \\ \eta_t X_{t-\Delta t} \end{bmatrix}$$
(11)

とする. 各要素に対して n 個のデータの平均をとるベクトル

$$g_n(\theta) = \frac{1}{n} \sum_{i=1}^n h_t(\theta),$$

を用いて、一般化モーメント法の目的関数 $J_n(\theta)$ は、

$$J_n(\theta) = g_n(\theta)^T K_n g_n(\theta) \tag{12}$$

となり, この目的関数 $J_n(\theta)$ を最小化する $\hat{\theta}$ が一般化モーメ ント法によるパラメータの推定値となる. ここで K_n は最適 なウエイトを与える行列である. K_n の求め方は [1] を確認 していただきたい.

4. 数値実験と結果

確率微分方程式の近似はオイラー・丸山近似を用いて、デー タ数 $n = 10 \cdot 2^i$ 、データの間隔を $\Delta t = 0.1 \cdot 2^{\frac{1}{2}}$ としてシミュ レーションを行う.また、データの生成、パラメータ推定を行 う際のソフトウェアには R を用い、関数の最大化、最小化は Nelder-Mead 法を用いる.推定結果を表にまとめるうえで、 前節で紹介した 2 Statistics model を method 1 とし、最尤 推定法を method 2 とし以下同様に紹介した順に番号を割り 当てていく.また、平均分散などの基本統計量を求める際に は、推定値に明らかに異常がある場合はその数値を除いての 算出とする.この際の異常値としては -10 以下、10 以上の ものを指す.

(1) 式(3)のパラメータ推定

式 (3) に対して各パラメータに数値を設定し,第2節の各 推定手法の結果を比較する.基準となる OU 過程について各 パラメータを $x_0 = 0.3$, $\alpha = 1$, $\beta = 1$, $i = 4, 5, \dots, 10$ と設 定し, データ数の増加により各手法の推定値がどのように変 化するのか,また,各手法の推定値を比較していく.

図 1 式 (3) に対する α の推定結果.

図 1, 図 2 の各手法の値はシミュレーションを 1000 回行っ た際の推定値の平均を表している. データ数の少ないうちは, Adaptive LASSO-TYPE 推定推定や,一般化モーメント法 による推定の精度が他の手法に比べ真値に近い推定値を示す ことがわかる. 2 statistic model による推定値は,データ数 が少ないサンプルでの推定だと $S = [1,\infty[$ としたとき,1度 もサンプルデータが1を超えないことがあり,そのとき α, β 共に推定値は 0 となる. また,到達した回数が1度や,2度 と少ない場合は, α の推定値が真値よりもはるかに大きい値 をとることがある.

また, データ数が多い時は, 各手法の α , β の推定値に大き な差はなく, どの手法においても真値である $\alpha = 1, \beta = 1$

図 2 式 (3) に対する β の推定結果.

表1各パラメータが最も真値に近い推定値を得た回数

	α	β	$\alpha \cap \beta$
i = 7			
method 1	155	20	4
method 2	476	302	152
method 3	24	12	0
method 4	153	292	53
method 5	128	84	8
method 6	64	290	15

に近い値をとっていることがわかる.シミュレーションを行 う上での各手法の優劣でいえば,計算コストがあげられる.2 statistic model や,本論文における最尤推定法は,複雑な最 適化計算や反復計算を行わないため,計算時間はデータ数が 増加してもそれほど長くはならない.逆に,最適化や反復計 算を行う手法は時間がかかりやすい傾向にある.

同一のデータに対して推定した各手法の計算結果をそれぞ れ比較し,各推定値が真値に最も近い推定値を得た回数と, α , β が共に真値に最も近い推定値を得た回数 ($\alpha \cap \beta$)を計測し 表 1 にまとめた. この表より, α , β の推定値と両推定値が共 に最も近い推定値を得た回数は最尤推定法が最も多くなり, 次いで Adaptive Bayes 推定となっている. さらに,各手法 の推定値の誤差の割合に対するユークリッド距離を求め,手 法ごとに距離の比較を行い,距離の短くなったものを勝ち,長 くなった場合は負けとし,その回数を表 2 にまとめた.表 2

表2各推定値ごとのユークリッド距離の比較

win \setminus lose	meth.1	meth.2	meth.3	meth.4	meth.5	meth.6
i = 7						
meth.1	-	115	175	168	211	174
meth.2	885	-	699	680	776	709
meth.3	825	301	-	525	460	495
meth.4	832	320	475	-	458	580
meth.5	789	224	540	542	-	503
meth.6	826	291	595	420	497	-

により, 最尤推定法による推定が他の推定手法よりもユーク リッド距離が短くなる結果を得やすいことがわかる.また, 最尤推定法以外の推定手法のうち, 2 Statistic model 以外の 推定の精度には大きな差はないと考えられる.以上より,こ こで実験した数値に対する式 (3) のパラメータ推定では最尤 法が適していると考えられる.

(2) 式(2)のパラメータ推定

式 (2) の各パラメータを $x_0 = 0.3$, $\alpha = 1$, $\nu = 1$, $\beta = 1$, $i = 4, 5, \dots, 10$ と設定し, 2 Statistic model 以外の 5 つの 手法で推定を行う. 図 3, 図 4, 図 5 の値も前節と同様にシ ミュレーションを 1000 回行った際の推定値の平均を表して いる. α の推定値に関して, データ数が $i = 4, \dots, 7$ の間は, Adaptive Bayes 推定による推定値が他の手法に比べ真値に 近い値を取ることがわかる. この手法は ν , β の推定値にお いても真値に近い値を取っている. しかし, データ数の増加 に伴い数値計算が困難となるため, データ数の少ないうちは Adaptive Bayes 推定が 5 つの推定手法の中では, 優れたモ デルであると言える.

データ数がi = 8以降にしたときは, α の推定値は4つの 手法による推定値に大きな差はない.

同一のデータに対して推定した各手法の計算結果をそれぞ れ比較し, 真値に最も近い推定値を得た回数の計測を行った (表 3).

また,ドリフト項とボラティリティ項のパラメータを分け て考える.ボラティリティ項のβに関しては表3のβの欄 がそのままボラティリティ項のパラメータ真値に最も近い推 定値を算出した際の回数である.ドリフト項のパラメータで あるα,νが同時に真値に最も近い推定値を算出した際の回 数を求め表4に記す.さらに表4には3つのパラメータ全て

表3各パラメータが最も真値に近い推定値を得た回数

	α	ν	β
i = 7			
method 2	92	22	409
method 3	25	30	17
method 4	519	374	81
method 5	258	424	195
method 6	106	150	298

が最も真値に近い値を取った回数も掲載する.

表 4 ドリフト項並びに, 3 パラメータが最も真値に近 い推定値を得た回数

	$\alpha\cap\nu$	$\alpha\cap\nu\cap\beta$
i = 7		
method 2	1	0
method 3	0	0
method 4	218	17
method 5	130	30
method 6	18	4

表5各推定値ごとのユークリッド距離の比較

V	vin\ lose	meth.2	meth.3	meth.4	meth.5	meth.6
i	=7					
ľ	neth.2	-	220	199	350	391
ľ	neth.3	780	-	244	361	524
ľ	neth.4	802	756	-	693	740
r	neth.5	650	639	307	-	585
ľ	neth.6	609	476	260	415	-

表 4 より α , ν 同時に真値に最も近い推定値を得る回数 ($\alpha \cap \nu$)は、Adaptive Bayes 推定が最も多く、次いで Adaptive LASSO-TYPE 推定が多くなっている.また、ボラティリティ 項に関しては、最尤推定法の推定値が真値に最も近い値を取 ることが多いが、 β の各手法の推定値は真値に近い値を取る ことが多く、ばらつきも小さくなっている. そのため、式 (2) におけるパラメータ推定を考えるにあたって、表4にあるよ うに3パラメータの推定値が同時に真値に最も近い推定値を 得る回数 ($\alpha \cap \nu \cap \beta$) は Adaptive LASSO-TYPE 推定が良い ととることが出来るが、より重要視するべきはドリフト項の 推定精度であると考える.また、表5に前節と同様に各推定値 ごとのユークリッド距離の比較した結果をまとめる.表5か ら、表4の結果と同様に、Adaptive Bayes 推定と、Adaptive LASSO-TYPE 推定による推定値が他の手法に比べ、真値に 近い推定値を得やすいことがわかる.また、その2つの手法 では、Adaptive Bayes 推定の推定値のほうが勝ち数が多く、 前述のドリフト項の推定精度を考えると、式 (2)の OU 過程 の推定にあたっては、今回の実験で用いたパラメータに対し て Adaptive Bayes 推定が優れた推定手法であると言える.

(3) 式(1)のパラメータ推定(I)

式 (1) の各パラメータを $x_0 = 2.3$, $\alpha = 1$, $\nu = 3$, $\beta = 0.3$, $\gamma = 0.5$, i = 4, 5, 6, 7 と設定し,疑似最尤推定法, Adaptive Bayes 推定, Adaptive LASSO-TYPE 推定, 一般化モーメン ト法の 4 つの手法で推定を行う. $\gamma = 0.5$ としたので生成す るデータは CIR model に従うものとなっている.

図 6 ~ 9 の値もこれまでと同様にシミュレーションを 1000 回行った際の推定値の平均を表している.

CKLS model による推定では、ドリフト項のパラメータ α の推定に関しては、Adaptive LASSO-TYPE 推定による推 定では、他の手法に比べてデータ数の少ないうちから、推定 値が真値である 1 に近い値を取る傾向にあることが確認で きる.また、Adaptive LASSO-TYPE 推定以外の推定では、 データ数の増加に伴い推定の精度が上がることが確認できる が、データを十分得ることが出来ない状況だと推定の推定精 度はあまり高くはない、次にパラメータ ν の推定に関しては、 Adaptive Bayes 推定による推定がデータ数の少ないうちか ら、精度の高い推定が期待できる.他の手法に関しては、 α の 推定値と同様にデータを十分得ることが出来ない状況だと推 定の推定精度はあまり高くないことが確認できる.

また, ボラティリティ項のパラメータ β , γ の推定に関し ては, 図 8, 図 9 よりドリフト項と同様に精度の高い推定が 出来ているわけではなく, β , γ の推定では, Adaptive Bayes 推定等の他の手法による推定値の方が真値に近い推定値を得 ることが多い. このことは以下の表 6 からも確認できる.

図 6 式 (1) に対する α の推定結果.

各手法のi = 7とした際の計算結果をそれぞれ比較し, 真 値に最も近い推定値を算出した回数の計測を行い表 6 にまと める. 表 6 より, α の推定値では, Adaptive LASSO-TYPE

推定による推定値が最も多い結果となった.しかし, β , γ の 推定値に関しては他の推定手法と比較すると,大きく差をつ けられていることが確認できる. ν の推定値の比較では,最 も真値に近い推定値を得た回数にあまり大きな差は生じない 結果となった.

|--|

	α	ν	β	γ
i = 7				
method 3	158	213	314	322
method 4	245	244	244	237
method 5	345	276	94	80
method 6	252	267	348	361

CKLS model においてもドリフト項とボラティリティ項 に関してそれぞれ分けて比較を行う. *i* = 7 のときにドリフ ト項とボラティリティ項のパラメータの推定値が同時に真値 に最も近い値を取った回数を表7にまとめる.

表7からも、Adaptive LASSO-TYPE 推定では、ドリフト 項の推定値が他の手法の推定値に比べ真値に近い値を得やす いということが分かる.ただし、表7からボラティリティ項に 関しては、擬似最尤推定法など他の手法に比べて高い精度で の推定は困難であると考えられる.Adaptive LASSO-TYPE 推定以外の推定手法では、ドリフト項の推定値が共に真値に 近い値を取ることが少なく、推定値ごとの差も少ない.ボラ ティリティ項の β , γ の結果は、一般化モーメント法による推 定の結果が真値に近い値を得やすいことが確認できる.

これまでと同様にユークリッド距離の比較した結果を表8 にまとめる. 表 8 の結果より, Adaptive LASSO-TYPE 推 定による推定結果がどの手法に対しても半分以上の割合で勝 利しているが、 すべての手法における推定結果に大きな差は 確認できず, 手法の優劣の判断材料にはなり難い. よって, 十 分データを得られる状況では、ドリフト項の推定に重きを置 く場合, Adaptive LASSO-TYPE 推定を用い, ボラティリ ティ項の推定に重きを置く場合は、一般化モーメント法を用 いるのが良いと考えられる. ここで、i=4としたときのユー クリッド距離の比較した結果を表9にまとめる. i = 4 と したとき各パラメータが最も真値に近い推定値を得た回数等 は i = 7 と大きな差はないが, ユークリッド距離に関しては i = 7のときとi = 4としたときに差が生じた.表9より、 Adaptive Bayes 推定がどの手法に対してもおよそ6割の確 率で勝利することが確認できる.このことからデータ数の少 ない場合での推定では、Adaptive Bayes 推定を用いるのが 良いと考えられる.

表 7 ドリフト項, ボラティリティ項のパラメータが最 も真値に近い推定値を得た回数

	$\alpha\cap\nu$	$\beta\cap\gamma$
i = 7		
method 3	68	277
method 4	85	212
method 5	136	64
method 6	97	327

表 8 各推定値ごとのユークリッド距離の比較						
win \setminus lose	$\mathrm{meth.3}$	meth.4	$\mathrm{meth.5}$	$\mathrm{meth.6}$		
i = 7						
meth.3	-	599	509	548		
meth.4	401	-	468	493		
meth.5	491	532	-	489		
$\mathrm{meth.6}$	452	507	511	-		
表 9 各推	É定値ごと	のユーク!	リッド距離	の比較		
win \setminus lose	$\mathrm{meth.3}$	meth.4	meth.5	$\mathrm{meth.6}$		
i = 4						
meth.3	-	359	506	461		
meth.4	641	-	641	596		
meth.5	494	359	-	426		

表 10 CIR model に対する各推定手法の推定値の基本 統計量

	$\operatorname{meth.3}_{lpha}$	ν	eta	γ
真値	1.0	3.0	0.3	0.5
平均	1.174	2.827	0.3072	0.4945
分散	0.4030	0.8311	0.003789	0.03314
中央値	1.170	2.975	0.3002	0.4992
最大値	3.634	8.509	0.6279	1.175
最小值	-0.04070	-8.562	0.1423	-0.1505
歪度	0.1434	-5.643	0.7821	0.03492
尖度	3.329	14.48	4.811	3.627
	$\operatorname{meth.4}_{\alpha}$	ν	β	γ
真値	1.0	3.0	0.3	0.5
平均	1.162	2.919	0.3085	0.5304
分散	0.4051	0.1016	0.01171	0.06878
中央値	1.108	2.956	0.2972	0.5116
最大值	3.897	3.834	1.252	1.858
最小值	0.07007	1.751	0.07825	0.0009136
歪度	0.5845	-0.6291	3.071	0.7879
尖度	3.233	3.824	21.17	4.955
	meth.5		2	
	α	ν	β	γ
真値	1.0	$ \frac{\nu}{3.0} $	$egin{array}{c} eta \\ 0.3 \end{array}$	$rac{\gamma}{0.5}$
 平均	$\frac{1.0}{1.020}$	$\frac{\nu}{3.0}$ 2.904	$\begin{array}{c} \beta \\ 0.3 \\ \hline 0.3131 \end{array}$	$\begin{array}{r} \gamma \\ 0.5 \\ \hline 0.4950 \end{array}$
<u>真値</u> 平均 分散	α 1.0 1.020 0.4286	$ \frac{\nu}{3.0} 2.904 0.2368 $	$\begin{array}{c} \beta \\ 0.3 \\ \hline 0.3131 \\ 0.01189 \end{array}$	$\gamma \\ 0.5 \\ 0.4950 \\ 0.09956 \\ \end{array}$
<u>真値</u> 平均 分散 中央値	$ \begin{array}{r} \alpha \\ 1.0 \\ 1.020 \\ 0.4286 \\ 1.023 \\ \end{array} $	$\nu \\ 3.0 \\ 2.904 \\ 0.2368 \\ 2.978 \\ $	$\begin{array}{c} \beta \\ 0.3 \\ \hline 0.3131 \\ 0.01189 \\ 0.3005 \end{array}$	$\begin{array}{c} \gamma \\ 0.5 \\ \hline 0.4950 \\ 0.09956 \\ 0.4948 \end{array}$
<u>真値</u> 平均 分散 中央値 最大値	$ \begin{array}{r} \alpha \\ 1.0 \\ 1.020 \\ 0.4286 \\ 1.023 \\ 3.646 \\ $	$\nu \\ 3.0 \\ 2.904 \\ 0.2368 \\ 2.978 \\ 5.517 \\ $	$\beta \\ 0.3 \\ 0.3131 \\ 0.01189 \\ 0.3005 \\ 1.101 \\ 0.101 \\ 0.0005 \\ 0$	$\begin{array}{r} \gamma \\ 0.5 \\ \hline 0.4950 \\ 0.09956 \\ 0.4948 \\ 2.091 \end{array}$
<u>真</u> 値 平均 分散 中央値 最小値	$ \begin{array}{r} 1.0 \\ 1.020 \\ 0.4286 \\ 1.023 \\ 3.646 \\ -1.197 \\ \end{array} $		$\beta \\ 0.3 \\ 0.3131 \\ 0.01189 \\ 0.3005 \\ 1.101 \\ -0.1891 \\ 0.301 \\ 0.0100 \\ 0.0000 \\ $	$\begin{array}{c} \gamma \\ 0.5 \\ \hline 0.4950 \\ 0.09956 \\ 0.4948 \\ 2.091 \\ -0.3991 \end{array}$
直 値 均 か 中 史 大 値 最 小 値 一 次 的 一 の 十 の 一 の 一 の 一 の 一 の 一 の 一 の 一 の 一	$\begin{array}{c} 1.0\\ 1.020\\ 0.4286\\ 1.023\\ 3.646\\ -1.197\\ 0.1134 \end{array}$	$ \nu $ 3.0 2.904 0.2368 2.978 5.517 -0.7773 -1.781	$\beta \\ 0.3 \\ 0.3131 \\ 0.01189 \\ 0.3005 \\ 1.101 \\ -0.1891 \\ 0.4215 \\ 0.4215$	$\begin{array}{c} \gamma \\ 0.5 \\ \hline 0.4950 \\ 0.09956 \\ 0.4948 \\ 2.091 \\ -0.3991 \\ 0.9762 \end{array}$
真 平 分 中 最 最 歪 尖 如 か 中 最 重 変	$\begin{array}{c} 1.0\\ 1.020\\ 0.4286\\ 1.023\\ 3.646\\ -1.197\\ 0.1134\\ 3.054 \end{array}$	ν 3.0 2.904 0.2368 2.978 5.517 -0.7773 -1.781 14.24	β 0.3 0.3131 0.01189 0.3005 1.101 -0.1891 0.4215 9.509	$\begin{array}{c} \gamma \\ 0.5 \\ 0.4950 \\ 0.09956 \\ 0.4948 \\ 2.091 \\ -0.3991 \\ 0.9762 \\ 5.980 \end{array}$
真値 平分中最大小値 最度 笑	$\begin{array}{c} 1.0\\ 1.020\\ 0.4286\\ 1.023\\ 3.646\\ -1.197\\ 0.1134\\ 3.054 \end{array}$	$ \nu $ 3.0 2.904 0.2368 2.978 5.517 -0.7773 -1.781 14.24	$eta \ 0.3 \ 0.3131 \ 0.01189 \ 0.3005 \ 1.101 \ -0.1891 \ 0.4215 \ 9.509 \ 0.500 \ $	$\begin{array}{c} \gamma \\ 0.5 \\ 0.4950 \\ 0.09956 \\ 0.4948 \\ 2.091 \\ -0.3991 \\ 0.9762 \\ 5.980 \end{array}$
真值 均 散 中 最 小 成 度 定	$\begin{array}{c} 1.0\\ 1.020\\ 0.4286\\ 1.023\\ 3.646\\ -1.197\\ 0.1134\\ 3.054\\ \end{array}$	$ \nu $ 3.0 2.904 0.2368 2.978 5.517 -0.7773 -1.781 14.24	$eta \ 0.3 \ 0.3131 \ 0.01189 \ 0.3005 \ 1.101 \ -0.1891 \ 0.4215 \ 9.509 \ eta \ eba \ $	γ 0.5 0.4950 0.09956 0.4948 2.091 -0.3991 0.9762 5.980
真平分中最最歪尖 真砂散央大小度度 值	$\begin{array}{c} 1.0 \\ 1.020 \\ 0.4286 \\ 1.023 \\ 3.646 \\ -1.197 \\ 0.1134 \\ 3.054 \end{array}$ $\begin{array}{c} \text{meth.6} \\ \alpha \\ 1.0 \end{array}$	$\nu \\ 3.0 \\ 2.904 \\ 0.2368 \\ 2.978 \\ 5.517 \\ -0.7773 \\ -1.781 \\ 14.24 \\ \nu \\ 3.0 \\ $	$eta \ 0.3 \ 0.3131 \ 0.01189 \ 0.3005 \ 1.101 \ -0.1891 \ 0.4215 \ 9.509 \ eta \ 0.3 \ eta \ 0.3 \ eta \ 0.3 \ eta \ 0.3 \ eta \ beta $	$\begin{array}{c} \gamma \\ 0.5 \\ 0.4950 \\ 0.09956 \\ 0.4948 \\ 2.091 \\ -0.3991 \\ 0.9762 \\ 5.980 \end{array}$
真平分中最最歪尖 真平分中最最重劣 真平均	$\begin{array}{c} 1.0 \\ \hline 1.020 \\ 0.4286 \\ 1.023 \\ 3.646 \\ -1.197 \\ 0.1134 \\ 3.054 \\ \hline \text{meth.6} \\ 1.0 \\ \hline 1.0 \\ 0.9481 \end{array}$	ν 3.0 2.904 0.2368 2.978 5.517 -0.7773 -1.781 14.24 ν 3.0 2.814	$eta \ 0.3 \ 0.3131 \ 0.01189 \ 0.3005 \ 1.101 \ -0.1891 \ 0.4215 \ 9.509 \ eta \ eta \ 0.3 \ 0.3111 \ eta \ 0.3111 \ eta \ beta $	$\begin{array}{c} \gamma \\ 0.5 \\ 0.4950 \\ 0.09956 \\ 0.4948 \\ 2.091 \\ -0.3991 \\ 0.9762 \\ 5.980 \\ \end{array}$
真平分中最最歪尖 真平分的 使人 真子的 真子的 真子的 真子的 真子的 真子的 建丁烯二乙基 真子的 真子的 计算法 真子的 化乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基	$\begin{array}{c} 1.0 \\ 1.020 \\ 0.4286 \\ 1.023 \\ 3.646 \\ -1.197 \\ 0.1134 \\ 3.054 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	ν 3.0 2.904 0.2368 2.978 5.517 -0.7773 -1.781 14.24 ν 3.0 2.814 0.1247	β 0.3 0.3131 0.01189 0.3005 1.101 -0.1891 0.4215 9.509 β 0.3 0.3111 0.004791	$\begin{array}{c} \gamma \\ 0.5 \\ 0.4950 \\ 0.09956 \\ 0.4948 \\ 2.091 \\ -0.3991 \\ 0.9762 \\ 5.980 \\ \end{array}$ $\begin{array}{c} \gamma \\ 0.5 \\ 0.4852 \\ 0.03847 \end{array}$
真平分中最最歪尖 真平分中	$\begin{array}{c} 1.0\\ 1.020\\ 0.4286\\ 1.023\\ 3.646\\ -1.197\\ 0.1134\\ 3.054\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \frac{\nu}{3.0} $ 2.904 0.2368 2.978 5.517 -0.7773 -1.781 14.24 $ \frac{\nu}{3.0} $ 2.814 0.1247 2.883	$eta \ 0.3 \ 0.3131 \ 0.01189 \ 0.3005 \ 1.101 \ -0.1891 \ 0.4215 \ 9.509 \ eta \ eta \ 0.3 \ 0.3111 \ 0.004791 \ 0.3039 \ eta \ beta \ b$	γ 0.5 0.4950 0.09956 0.4948 2.091 -0.3991 0.9762 5.980 γ 0.5 0.4852 0.03847 0.4878
真平分中最最歪尖 真平分中最大小度度 值均散使在值值。	$\begin{array}{c} 1.0\\ 1.020\\ 0.4286\\ 1.023\\ 3.646\\ -1.197\\ 0.1134\\ 3.054\\ \hline \\ meth.6\\ \alpha\\ 1.0\\ 0.9481\\ 0.4257\\ 0.9482\\ 3.124\\ \end{array}$	ν 3.0 2.904 0.2368 2.978 5.517 -0.7773 -1.781 14.24 ν 3.0 2.814 0.1247 2.883 3.876	eta 0.3 0.3131 0.01189 0.3005 1.101 -0.1891 0.4215 9.509 eta 0.3 0.3111 0.004791 0.3039 0.963	$\begin{array}{c} \gamma \\ 0.5 \\ 0.4950 \\ 0.09956 \\ 0.4948 \\ 2.091 \\ -0.3991 \\ 0.9762 \\ 5.980 \\ \hline \\ \gamma \\ 0.5 \\ 0.4852 \\ 0.03847 \\ 0.4878 \\ 1.171 \\ \end{array}$
真平分中最最歪尖 真平分中最最低的散央大小度度 值均散央大小度度 值均散央大小	$\begin{array}{c} 1.0\\ 1.020\\ 0.4286\\ 1.023\\ 3.646\\ -1.197\\ 0.1134\\ 3.054\\ \end{array}$ $\begin{array}{c} \text{meth.6}\\ \alpha\\ 1.0\\ 0.9481\\ 0.4257\\ 0.9482\\ 3.124\\ -0.08303\\ \end{array}$	ν 3.0 2.904 0.2368 2.978 5.517 -0.7773 -1.781 14.24 ν 3.0 2.814 0.1247 2.883 3.876 1.059	eta 0.3 0.3131 0.01189 0.3005 1.101 -0.1891 0.4215 9.509 eta 0.3 0.3111 0.004791 0.3039 0.963 0.1477	$\begin{array}{c} \gamma \\ 0.5 \\ 0.4950 \\ 0.09956 \\ 0.4948 \\ 2.091 \\ -0.3991 \\ 0.9762 \\ 5.980 \\ \end{array}$ $\begin{array}{c} \gamma \\ 0.5 \\ 0.4852 \\ 0.03847 \\ 0.4878 \\ 1.171 \\ -0.5621 \\ \end{array}$
真平分中最最歪尖 真平分中最最歪尖 植均散央大小度度 值均散央大小度度 值均散央大小度	$\begin{array}{c} 1.0\\ 1.020\\ 0.4286\\ 1.023\\ 3.646\\ -1.197\\ 0.1134\\ 3.054\\ \end{array}$ $\begin{array}{c} \text{meth.6}\\ \alpha\\ 1.0\\ 0.9481\\ 0.4257\\ 0.9482\\ 3.124\\ -0.08303\\ 0.421\\ \end{array}$	$ \frac{\nu}{3.0} $ 2.904 0.2368 2.978 5.517 -0.7773 -1.781 14.24 $ \frac{\nu}{3.0} $ 2.814 0.1247 2.883 3.876 1.059 -1.390	eta 0.3 0.3131 0.01189 0.3005 1.101 -0.1891 0.4215 9.509 eta 0.3 0.3111 0.004791 0.3039 0.963 0.1477 1.551	$\begin{array}{c} \gamma \\ 0.5 \\ 0.4950 \\ 0.09956 \\ 0.4948 \\ 2.091 \\ -0.3991 \\ 0.9762 \\ 5.980 \\ \end{array}$ $\begin{array}{c} \gamma \\ 0.5 \\ 0.4852 \\ 0.03847 \\ 0.4878 \\ 1.171 \\ -0.5621 \\ -0.1251 \\ \end{array}$

表 10 に i = 7 とした際の各推定手法の推定値の基本統計 量を掲載する.表 10 より,各パラメータについては前述のよ うに推定値の平均は,真値に近い結果得ていることが確認で きる.また,分散については,ボラティリティ項のパラメータ である β , γ に関しては非常に小さいものとなっており,推 定の際は安定してパラメータの推定が可能であると確認でき る.ドリフト項のパラメータである α , ν については, β , γ に 比べて分散は大きくなっていることが確認できる.

(4) 式(1)のパラメータ推定(II)

 $x_0 = 2.3, \alpha = 1, \nu = 3, \beta = 0.3, \gamma = 0, i = 4$ と設定し, 疑似最尤推定法, Adaptive Bayes 推定, Adaptive LASSO-TYPE 推定, 一般化モーメント法の 4 つの手法で推定を行 う. $\gamma = 0$ としたので生成するデータは OU 過程に従うもの となっている.表 11 に各パラメータが最も真値に近い推定 値を得た回数をまとめた.次いで,表 12 にドリフト項のパラ メータ α, ν の推定値が同時に最も真値に近い推定値を得た 回数と,ボラティリティ項のパラメータ β, γ の推定値が同時 に最も真値に近い推定値を得た回数をまとめた.

表 11 各パラメータが最も真値に近い推定値を得た回数

	α	ν	β	γ
i = 4				
method 3	117	182	391	286
method 4	206	179	386	253
method 5	39	157	601	203
method 6	2	120	723	155

表 12 ドリフト項, ボラティリティ項のパラメータが最 も真値に近い推定値を得た回数

	$\alpha\cap\nu$	$\beta\cap\gamma$
i = 4		
method 3	36	1
method 4	58	107
method 5	208	592
method 6	116	122

表 11,表 12 より,生成するデータを OU 過程としてパラ メータ推定をした結果と,CIR model に従うデータをもとに パラメータ推定を行った結果とで大きく異なる結果となった. 表 11 の結果により,i = 4としたときのパラメータ推定では, 各推定値ごとで比較すると, α , ν , β , γ の全ての推定値にお いて Adaptive LASSO-TYPE 推定により得られた推定値が 最も真値に近い推定値を得た回数が多い結果となった.生成 するデータとして,CIR model を想定した場合は,Adaptive LASSO-TYPE 推定による β の推定値は他の手法に比べて 最も真値に近い推定値を得た回数は少ないものとなっていた が,OU 過程を想定しての推定の場合では,他の手法に比べ, 格段に最も真値に近い結果となる回数が多いことが確認でき る.また, γ についたも同様に,Adaptive LASSO-TYPE 推 定による推定値が最も真値に近い結果となる回数が多いこと が確認できる. 擬似最尤推定法の結果では、表 11 の限りで は、ボラティリティ項のパラメータの推定値は他の手法に比 べ精度の高い推定は望めないと考えられる.また、表 12 にお いて、Adaptive LASSO-TYPE 推定による推定値がドリフ ト項、ボラティリティ項のそれぞれの推定値において最も真 値に近い推定値を得た回数が多く、次いで一般化モーメント 法による推定値となっている.

次に, 各手法の推定値の誤差の割合に対するユークリッド距 離を求め各推定手法ごとに比較したものを表 13 にまとめる.

表 13 各推定値ごとのユークリッド距離の比較

win \backslash lose	$\mathrm{meth.3}$	meth.4	$\mathrm{meth.5}$	$\mathrm{meth.6}$
i = 7				
meth.3	-	550	421	635
meth.4	450	-	433	649
meth.5	579	567	-	661
meth.6	365	351	339	-

表 13 の結果により、CIR model を想定しての結果では、 Adaptive Bayes 推定による推定が優れていると考えられたが、 OU過程を想定しての場合では、Adaptive LASSO-TYPE 推 定による推定値が、他の手法に比べて推定値の誤差の割合は少 ないものとなっており、先述のことも併せて、*i* = 4 とし、OU 過程を想定した推定をした際は Adaptive LASSO-TYPE 推 定が誤差の少ない推定が可能であると言える.次に、誤差の 割合に対するユークリッド距離について、表 13 にまとめた 1 対 1 での比較のほかに、4 つの手法の中で最もユークリッド 距離が短かった回数、2 番目に少なかった回数といったラン ク付けを行った.その結果について、図 10 にまとめた.

図 10 により, 疑似最尤法による推定値がユークリッド距離が最も短くなる回数は少ないが, 2 番目となる回数は最も 多く, 最下位となることは最も少なくなっていることが分か る.また一般化モーメント法については, 最下位となること が最も多く, 推定の精度は他のパラメータに比べ劣っている と考えられる.

さらに,表 14 に手法ごとの各推定値に対する基本統計量 を記す.表 14 から,一般化モーメント法における α , γ の推 定において,他の手法に比べ分散が大きくなっていることが 確認できる.そのことから,一般化モーメント法における推 定が,各推定手法ごとに順位を比べた際に,最下位となるこ とが最も多くなったものと考えられる.また, α , γ の推定に

表 14 OU 過程に対する各推定手法の推定値の基本統 計量

	meth.3			
	α	ν	eta	γ
真値	1.0	3.0	0.3	0.0
平均	1.554	2.947	0.3734	0.02665
分散	0.7112	0.6069	0.1005	0.4921
中央値	1.423	2.963	0.2899	0.02491
最大値	5.808	7.230	3.466	2.643
最小値	-0.2339	-8.223	0.01761	-2.451
歪度	0.9709	-9.084	3.377	0.07271
尖度	4.925	125.7	22.26	3.583
	$\operatorname{meth.4}_{lpha}$	ν	β	γ
真値	1.0	3.0	0.3	0.0
平均	1.563	2.976	0.3766	0.02189
分散	0.6355	0.07335	0.1021	0.4917
中央値	1.440	2.967	0.2914	0.02202
最大値	4.263	4.140	3.493	2.639
最小値	0.02333	1.027	0.01783	-2.455
歪度	0.6498	-1.653	3.379	0.07144
尖度	3.212	17.55	22.30	3.581
	$\operatorname{meth.5}_{lpha}$	u	β	γ
真値	1.0	3.0	0.3	0.0
平均	1.269	2.973	0.2399	0.3246
分散	0.7756	0.3011	0.05327	0.6589
中央値	1.211	2.968	0.2616	0.00009601
最大値	6.404	8.529	2.722	3.559
最小值	-2.265	-1.348	-0.1687	-2.248
歪度	0.5171	0.1370	4.997	1.056
尖度	5.395	33.041	43.31	4.290
	meth.6	17	в	\sim
真値	1.0	3.0	0.3	0.0
	1.232	2.682	0.3234	-0.4157
分散	1.207	0.6039	0.2015	1.636
中央値	1.085	2.851	0.2709	-0.2336
最大値	5.899	6.516	2.801	3.252
最小値	-0.3169	-6.380	-1.974	-6.603
歪度	0.8295	-4.835	1.068	-1.309
尖度	3.617	52.02	8.06788	5.831

ついては,全ての手法において ν , β の推定値の分散に比べ 大きくなっていることが確認できる.表 10 においても α の 推定値の分散が大きいことから,回帰度 α の推定は他のパラ メータよりも困難であると考えられる.

5. 終わりに

本研究では、オイラー・丸山近似を用いて、自らが定めた 各パラメータを持つ確率微分方程式に従ったデータをもとに シミュレーションを行った.そのため推定するデータのモデ ルがはっきりとわかっている状況の下で、そのモデルに対す るパラメータの推定を行ったことから、比較的良い結果も得 ることができた.しかし、実際のデータの場合ではそのデー タがどのようなモデルに従っているかを仮定したうえで推定 しなければならないため、推定の精度はさらに落ちるのでは ないかと考えられる.

今後の課題としては, 推定のためのデータを生成する際に 各パラメータを変化させていきたい. 例えば, ボラティリティ 項の影響が強い場合や, 回帰度が非常に強い場合, 弱い場合 等, まだ考えられる状況は豊富にあるのでその点についてシ ミュレーションを行っていきたい. また, 2 statistic model による推定の際に, [5] に従い $S = [1,\infty)$ としたが S の選び 方を変え, データの増減に関わらずに推定の精度が向上させ られるように考えていきたい. あわせて, Adaptive LASSO-TYPE-TYPE 推定についても重みづけのパラメータである $\lambda_0, \gamma_0, \delta_1, \delta_2$ についても, このパラメータを変えた際に推定 値にどのような変化があるのかや, 推定するモデルに対して 最適となるようなパラメータのとり方があるのかについて考 えていきたい.

参考文献

- 乾孝治,室町幸雄,金融モデルにおける推定と最適化,朝 倉書店, (2013).
- Alessandro De Gregorio, Stefano M. Iacus, Adaptive Lasso-type estimation for multivariate diffusion processes, Econometric Theory, 28, (2012), pp. 838-860.
- 3) Alexandre Brouste, Hideitsu Hino, Hiroki Masuda, Kengo Kamatani, Masaaki Fukasawa, Masayuki Uchida, Nakahiro Yoshida, Ryosuke Nomura, Stefano M. Iacus, Yasutaka Shimizu, Yuta Koike, The YUIMA Project: A computational framework for simulation and inference of stochastic differential equations, Journal of Statistical Software, vol 57, Issue 4, (2014), pp. 1-34.
- 4) Chan K. Ceajer, George A. Karolyi, Francis. A. Longstaff, Anthony B. Sanders, An empirical comparison of alternative models of the short-term interest rate, The Journal of Finance, 47(3), (1992), pp. 1209-1227.
- 5) Emmanuel Gobet, Gustaw Matulewicz, Parameter estimation of Ornstein-Uhlenbeck process generating a stochastic graph, (2016), preprint.
- 6) Jose Carlos Garcia Franco, Maximum likelihood estimation of mean reverting processes , http:// www.investmentscience.com /Content/howtoArticles /MLE_ for_ OR_ mean_ reverting.pdf, preprint.